# GENERALIZED JORDAN DERIVATIONS ON SEMIPRIME RINGS

## BRUNO L. M. FERREIRA™, RUTH N. FERREIRA and HENRIQUE GUZZO Jr.

(Received 1 May 2018; accepted 1 May 2019; first published online 29 July 2019)

Communicated by J. East

#### **Abstract**

The purpose of this note is to prove the following. Suppose  $\Re$  is a semiprime unity ring having an idempotent element e ( $e \neq 0$ ,  $e \neq 1$ ) which satisfies mild conditions. It is shown that every additive generalized Jordan derivation on  $\Re$  is a generalized derivation.

2010 *Mathematics subject classification*: primary 16W25; secondary 47B47. *Keywords and phrases*: Jordan derivation, generalized Jordan derivation, rings.

#### 1. Introduction

Let  $\Re$  be a ring. Recall that an additive (linear) map  $\delta$  from  $\Re$  to itself is called a derivation if  $\delta(ab) = \delta(a)b + a\delta(b)$  for all  $a, b \in \Re$ ; a Jordan derivation if  $\delta(a^2) =$  $\delta(a)a + a\delta(a)$  for each  $a \in \Re$ ; and a Jordan triple derivation if  $\delta(aba) = \delta(a)ba +$  $a\delta(b)a + ab\delta(a)$  for all  $a, b \in \Re$ . More generally, if there is a derivation  $\tau : \Re \to \Re$ such that  $\delta(ab) = \delta(a)b + a\tau(b)$  for all  $a, b \in \Re$ , then  $\delta$  is called a generalized derivation and  $\tau$  is the relating derivation; if there is a Jordan derivation  $\tau: \mathbb{R} \to \mathbb{R}$  such that  $\delta(a^2) = \delta(a)a + a\tau(a)$  for all  $a \in \Re$ , then  $\delta$  is called a generalized Jordan derivation and  $\tau$  is the relating Jordan derivation. The structures of derivations, Jordan derivations, generalized derivations and generalized Jordan derivations have been systematically studied. It is obvious that every generalized derivation is a generalized Jordan derivation and every derivation is a Jordan derivation. But the converse is in general not true. Herstein [3] showed that every Jordan derivation from a 2-torsion free prime ring into itself is a derivation. Brešar [1] proved that Herstein's result is true for 2-torsion free semiprime rings. Jing and Lu, motivated by the concept of generalized derivation, initiate the concept of generalized Jordan derivation in [5]. Moreover, in [5] the authors conjecture that every generalized Jordan derivation on a 2-torsion free semiprime ring is a generalized derivation.



<sup>© 2019</sup> Australian Mathematical Publishing Association Inc.

In the present paper we characterize generalized Jordan derivation on a semiprime ring  $\Re$ . We prove that if there is a nontrivial idempotent element in  $\Re$  which satisfies mild conditions, then every generalized Jordan derivation is a generalized derivation.

In the ring  $\Re$ , let e be an idempotent element so that  $e \neq 0$ ,  $e \neq 1$ . As in [4], the two-sided Peirce decomposition of  $\Re$  relative to the idempotent e takes the form  $\Re = e\Re e \oplus e\Re (1-e) \oplus (1-e)\Re e \oplus (1-e)\Re (1-e)$ . We will formally set  $e_1 = e$  and  $e_2 = 1-e$ . So letting  $\Re_{mn} = e_m\Re e_n$ , m, n = 1, 2, we may write  $\Re = \Re_{11} \oplus \Re_{12} \oplus \Re_{21} \oplus \Re_{22}$ . Moreover, an element of the subring  $\Re_{mn}$  will be denoted by  $a_{mn}$ .

### 2. Results and proofs

In this section we discuss the generalized Jordan derivations on rings. The following theorem is our main result.

**THEOREM** 2.1. Let  $\Re$  be a 2-torsion free semiprime unity ring containing a nontrivial idempotent  $e_1$ . Consider  $\Re = \Re_{11} \oplus \Re_{12} \oplus \Re_{21} \oplus \Re_{22}$  the Peirce decomposition relative to the idempotent  $e_1$  satisfying the following conditions:

(**•**) if 
$$x_{11} \cdot \Re_{12} = 0$$
 then  $x_{11} = 0$ ; if  $x_{21} \cdot \Re_{12} = 0$  then  $x_{21} = 0$ .

Then every generalized Jordan derivation from  $\Re$  into itself is a generalized derivation.

Henceforth, let  $\Re$  be a 2-torsion free semiprime unity ring containing a nontrivial idempotent  $e_1$ . Consider  $\Re = \Re_{11} \oplus \Re_{12} \oplus \Re_{21} \oplus \Re_{22}$  the Peirce decomposition relative to the idempotent  $e_1$  satisfying the following conditions:

(**•**) if 
$$x_{11} \cdot \Re_{12} = 0$$
 then  $x_{11} = 0$ ; if  $x_{21} \cdot \Re_{12} = 0$  then  $x_{21} = 0$ .

Let  $\delta: \Re \to \Re$  be a generalized Jordan derivation and  $\tau: \Re \to \Re$  the relating Jordan derivation such that  $\delta(a^2) = \delta(a)a + a\tau(a)$  for all  $a \in \Re$ . We shall complete the proof of the above theorem by proving several lemmas.

**Lemma 2.2.** For all  $a, b, c \in \mathbb{R}$ , the following statements hold:

- (i)  $\delta(ab + ba) = \delta(a)b + a\tau(b) + \delta(b)a + b\tau(a)$ ;
- (ii)  $\delta(aba) = \delta(a)ba + a\tau(b)a + ab\tau(a)$ ;
- (iii)  $\delta(abc + cba) = \delta(a)bc + a\tau(b)c + ab\tau(c) + \delta(c)ba + c\tau(b)a + cb\tau(a)$ .

**Proof.** See [5, Lemma 2.1].

LEMMA 2.3.  $\tau(e_1) = [e_1, s]$  for some  $s \in \Re$ , where [x, y] = xy - yx for  $x, y \in \Re$ .

PROOF. Write  $\tau(e_1) = s_{11} + s_{12} + s_{21} + s_{22}$ . Since  $\tau(e_1) = \tau(e_1)e_1 + e_1\tau(e_1)$ , we have  $s_{11} + s_{12} + s_{21} + s_{22} = 2s_{11} + s_{12} + s_{21}$ , which implies that  $s_{11} = s_{22} = 0$  and  $\tau(e_1) = s_{12} + s_{21}$ . Let  $s = s_{12} - s_{21}$ . It is obvious that  $\tau(e_1) = [e_1, s]$ .

Observe that  $d_s: \Re \to \Re$  so that  $d_s(a) = [a, s]$  is a derivation and thus a Jordan derivation. Define  $\Delta$  by  $\Delta(a) = \delta(a) - d_s(a)$  for each  $a \in \Re$ . Clearly,  $\Delta$  is also a generalized Jordan derivation from  $\Re$  into itself, and  $\Xi: \Re \to \Re$ , defined by  $\Xi(a) = \tau(a) - d_s(a)$  for each  $a \in \Re$ , is the relating Jordan derivation. Note that

$$\Xi(e_1) = \Xi(e_2) = 0. \tag{\dagger}$$

LEMMA 2.4.  $\Xi(a_{ij}) \subset \Re_{ij}$  for any  $a_{ij} \in \Re_{ij}$  (i, j = 1, 2).

PROOF. Case 1. For i = j = 1,  $a_{11} = e_1 a_{11} e_1$ , we have from Lemma 2.2(ii) that

$$\Xi(a_{11}) = \Xi(e_1 a_{11} e_1) = \Xi(e_1) a_{11} e_1 + e_1 \Xi(a_{11}) e_1 + e_1 a_{11} \Xi(e_1) = e_1 \Xi(a_{11}) e_1.$$

By (†) we get  $\Xi(a_{11}) \in \Re_{11}$ .

Case 2. For i = j = 2 write  $\Xi(a_{22}) = b_{11} + b_{12} + b_{21} + b_{22}$  we have from Lemma 2.2 item (i)

$$0 = \Xi(e_1 a_{22} + a_{22} e_1) = \Xi(e_1) a_{22} + e_1 \Xi(a_{22}) + \Xi(a_{22}) e_1 + a_{22} \Xi(e_1)$$
$$= e_1 \Xi(a_{22}) + \Xi(a_{22}) e_1 = 2b_{11} + b_{12} + b_{21},$$

by (†) we have  $\Xi(a_{22}) \in \Re_{22}$ .

Case 3. For i = 1 and j = 2, write  $\Xi(a_{12}) = b_{11} + b_{12} + b_{21} + b_{22}$ . We have from Lemma 2.2(i), (ii) and the fact that  $\Xi$  is a derivation because  $\Xi$  is defined on a 2-torsion free semiprime ring [1] that

$$\Xi(a_{12}) = \Xi(e_1 a_{12} + a_{12} e_1) = e_1 \Xi(a_{12})$$

and

$$0 = \Xi(e_1 a_{12} e_1) = e_1 \Xi(a_{12}) e_1.$$

Hence,  $\Xi(a_{12}) \in \Re_{12}$  by (†).

Case 4. Finally, for i = 2 and j = 1, write  $\Xi(a_{21}) = b_{11} + b_{12} + b_{21} + b_{22}$ . We have from Lemma 2.2(i), (ii) that

$$\Xi(a_{21}) = \Xi(e_1 a_{21} + a_{21} e_1) = \Xi(a_{21}) e_1$$

and

$$0 = \Xi(e_1 a_{21} e_1) = e_1 \Xi(a_{21}) e_1.$$

Thus,  $\Xi(a_{21}) \in \Re_{21}$  by (†).

LEMMA 2.5.  $\Delta(a_{ij}) \subset \Re_{ij} + \Re_{ji}$  for  $i \neq j$ .

PROOF. Firstly, we prove that  $\Delta(e_1) \in \Re_{11} + \Re_{21}$ . Let  $\Delta(e_1) = a_{11} + a_{12} + a_{21} + a_{22}$ . Since, by  $(\dagger)$ ,  $\Delta(e_1) = \Delta(e_1)e_1 + e_1\Xi(e_1) = \Delta(e_1)e_1$ , we see that  $a_{11} + a_{12} + a_{21} + a_{22} = a_{11} + a_{21}$ , which implies that  $a_{12} = a_{22} = 0$  and  $\Delta(e_1) = a_{11} + a_{21} \in \Re_{11} + \Re_{21}$ .

Case 1. For i = 1 and j = 2, let  $a_{12} \in \Re_{12}$  and  $\Delta(a_{12}) = b_{11} + b_{12} + b_{21} + b_{22}$ . Then

$$\begin{aligned} b_{11} + b_{12} + b_{21} + b_{22} &= \Delta(a_{12}) \\ &= \Delta(e_1 a_{12} + a_{12} e_1) \\ &= \Delta(e_1) a_{12} + e_1 \Xi(a_{12}) + \Delta(a_{12}) e_1 + a_{12} \Xi(e_1) \\ &= \Delta(e_1) a_{12} + \Xi(a_{12}) + b_{11} + b_{21}. \end{aligned}$$

Hence,  $b_{12} + b_{22} = \Delta(e_1)a_{12} + \Xi(a_{12}) \in \Re_{12} + \Re_{22}$  by (†). On the other hand,

$$b_{11} + b_{12} + b_{21} + b_{22} = \Delta(a_{12}) = \Delta(a_{12}e_2 + e_2a_{12})$$

$$= \Delta(a_{12})e_2 + a_{12}\Xi(e_2) + \Delta(e_2)a_{12} + e_2\Xi(a_{12})$$

$$= \Delta(a_{12})e_2 + \Delta(e_2)a_{12}$$

$$= b_{12} + b_{22} + \Delta(e_2)a_{12}.$$

Thus, by (†), we get  $b_{11} + b_{12} + b_{21} + b_{22} = \Delta(e_1)a_{12} + \Xi(a_{12}) + \Delta(e_2)a_{12}$ , which implies that  $\Delta(a_{12}) \in \Re_{12} + \Re_{22}$ .

Case 2. For i = 2 and j = 1, let  $a_{21} \in \Re_{21}$  and  $\Delta(a_{21}) = b_{11} + b_{12} + b_{21} + b_{22}$ . Then

$$\begin{aligned} b_{11} + b_{12} + b_{21} + b_{22} &= \Delta(a_{21}) \\ &= \Delta(a_{21}e_1 + e_1a_{21}) \\ &= \Delta(a_{21})e_1 + a_{21}\Xi(e_1) + \Delta(e_1)a_{21} + e_1\Xi(a_{21}) \\ &= b_{11} + b_{21}. \end{aligned}$$

Therefore, by  $(\dagger)$ ,  $\Delta(a_{21}) \in \Re_{11} + \Re_{21}$ .

LEMMA 2.6.  $\Delta(a_{ii}) \subset \Re_{ii} + \Re_{ii}$ , with  $i \neq j$ .

PROOF. Case 1. For i = 1, by Lemma 2.2(ii) we have

$$\Delta(a_{11}) = \Delta(e_1 a_{11} e_1)$$

$$= \Delta(e_1) a_{11} e_1 + e_1 \Xi(a_{11}) e_1 + e_1 a_{11} \Xi(e_1)$$

$$= \Delta(e_1) a_{11} + \Xi(a_{11}).$$

Therefore, by  $(\dagger)$ ,  $\Delta(a_{11}) \in \Re_{11} + \Re_{21}$ .

*Case* 2. The proof is similar to Case 1.

Lemma 2.7. (1)  $\Delta(a_{11}b_{12}) = \Delta(a_{11})b_{12} + a_{11}\Xi(b_{12})$  holds for all  $a_{11} \in \Re_{11}$  and  $b_{12} \in \Re_{12}$ .

- (2)  $\Delta(a_{12}b_{22}) = \Delta(a_{12})b_{22} + a_{12}\Xi(b_{22})$  holds for all  $a_{12} \in \Re_{12}$  and  $b_{22} \in \Re_{22}$ .
- (3)  $\Delta(a_{21}b_{12}) = \Delta(a_{21})b_{12} + a_{21}\Xi(b_{12})$  holds for all  $a_{21} \in \Re_{21}$  and  $b_{12} \in \Re_{12}$ .
- (4)  $\Delta(a_{22}b_{22}) = \Delta(a_{22})b_{22} + a_{22}\Xi(b_{22})$  holds for all  $a_{22}, b_{22} \in \Re_{22}$ .

PROOF. For any  $a_{11} \in \Re_{11}$  and  $b_{12} \in \Re_{12}$ , it follows from Lemmas 2.2 and 2.5 that

$$\begin{split} \Delta(a_{11}b_{12}) &= \Delta(a_{11}b_{12} + b_{12}a_{11}) \\ &= \Delta(a_{11})b_{12} + a_{11}\Xi(b_{12}) + \Delta(b_{12})a_{11} + b_{12}\Xi(a_{11}) \\ &= \Delta(a_{11})b_{12} + a_{11}\Xi(b_{12}). \end{split}$$

Similarly, (2) is true for all  $a_{12} \in \Re_{12}$  and  $b_{22} \in \Re_{22}$ .

Now for any  $a_{21} \in \Re_{21}$  and  $b_{12} \in \Re_{12}$ , it follows from Lemmas 2.2, 2.4, 2.5 and (†) that

$$\begin{split} \Delta(a_{21}b_{12}) &= \Delta(a_{21}b_{12}e_2 + e_2b_{12}a_{21}) \\ &= \Delta(a_{21})b_{12}e_2 + a_{21}\Xi(b_{12})e_2 + a_{21}b_{12}\Xi(e_2) \\ &+ \Delta(e_2)(b_{12}a_{21}) + e_2\Xi(b_{12})a_{21} + e_2b_{12}\Xi(a_{21}) \\ &= \Delta(a_{21})b_{12} + a_{21}\Xi(b_{12}). \end{split}$$

Finally, for any  $a_{22} \in \Re_{22}$ , by Lemma 2.2(ii) and ( $\dagger$ ), we have

$$\Delta(a_{22}) = \Delta(e_2 a_{22} e_2)$$

$$= \Delta(e_2) a_{22} e_2 + e_2 \Xi(a_{22}) e_2 + e_2 a_{22} \Xi(e_2)$$

$$= \Delta(e_2) a_{22} + \Xi(a_{22}),$$

and hence  $\Delta(a_{22}b_{22}) = \Delta(e_2)a_{22}b_{22} + \Xi(a_{22}b_{22})$  holds for all  $a_{22}, b_{22} \in \Re_{22}$ . Since

$$\begin{split} \Delta(a_{22})b_{22} + a_{22}\Xi(b_{22}) &= \Delta(e_2)a_{22}b_{22} + \Xi(a_{22})b_{22} + a_{22}\Xi(b_{22}) \\ &= \Delta(e_2)a_{22}b_{22} + \Xi(a_{22}b_{22}), \end{split}$$

we get that  $\Delta(a_{22}b_{22}) = \Delta(a_{22})b_{22} + a_{22}\Xi(b_{22})$ .

**Lemma** 2.8.  $\Delta(ab) = \Delta(a)b + a\Xi(b)$  for all  $a, b \in \Re$ , that is,  $\Delta$  is a generalized derivation.

**PROOF.** First, for any  $a, b \in \Re$  and  $x_{12} \in \Re_{12}$ , by Lemmas 2.2–2.7, we have

$$\begin{split} \Delta(abx_{12}) &= \Delta(a_{11}b_{11}x_{12} + a_{12}b_{21}x_{12} + a_{22}b_{21}x_{12} + a_{21}b_{11}x_{12}) \\ &= \Delta(a_{11}b_{11})x_{12} + a_{11}b_{11}\Xi(x_{12}) + \Delta(a_{12}b_{21})x_{12} + a_{12}b_{21}\Xi(x_{12}) \\ &\quad + \Delta(a_{22}b_{21})x_{12} + a_{22}b_{21}\Xi(x_{12}) + \Delta(a_{21}b_{11})x_{12} + a_{21}b_{11}\Xi(x_{12}) \\ &= \Delta(a_{11}b_{11} + a_{12}b_{21} + a_{22}b_{21} + a_{21}b_{11})x_{12} \\ &\quad + (a_{11}b_{11} + a_{12}b_{21} + a_{22}b_{21} + a_{21}b_{11})\Xi(x_{12}) \\ &= \Delta(ab)x_{12} + ab\Xi(x_{12}). \end{split}$$

Second, for any  $x_{12} \in \Re_{12}$ , by Lemmas 2.2–2.7, we get

$$\begin{split} \Delta(abx_{12}) &= \Delta(a_{11}b_{11}x_{12} + a_{12}b_{21}x_{12} + a_{22}b_{21}x_{12} + a_{21}b_{11}x_{12}) \\ &= \Delta(a_{11})b_{11}x_{12} + a_{11}\Xi(b_{11}x_{12}) + \Delta(a_{12})b_{21}x_{12} + a_{12}\Xi(b_{21}x_{12}) \\ &+ \Delta(a_{22})b_{21}x_{12} + a_{22}\Xi(b_{21}x_{12}) + \Delta(a_{21})b_{11}x_{12} + a_{21}\Xi(b_{11}x_{12}) \\ &= \Delta(a)bx_{12} + a\Xi(b)x_{12} + ab\Xi(x_{12}). \end{split}$$

So  $(\Delta(ab) - \Delta(a)b - a\Xi(b))x_{12} = 0$  for any  $x_{12} \in \Re_{12}$ . Hence  $e_1(\Delta(ab) - \Delta(a)b - a\Xi(b))e_1 = 0 = e_2(\Delta(ab) - \Delta(a)b - a\Xi(b))e_1$  by condition ( $\spadesuit$ ).

Third, for any  $x_{22} \in \Re_{22}$ , we compute

$$\begin{split} \Delta(abx_{22}) &= \Delta(a_{11}b_{12}x_{22}) + \Delta(a_{12}b_{22}x_{22}) + \Delta(a_{21}b_{12}x_{22}) + \Delta(a_{22}b_{22}x_{22}) \\ &= \Delta(a_{11}b_{12})x_{22} + a_{11}b_{12}\Xi(x_{22}) + \Delta(a_{12}b_{22})x_{22} + a_{12}b_{22}\Xi(x_{22}) \\ &+ \Delta(a_{21}b_{12})x_{22} + a_{21}b_{12}\Xi(x_{22}) + \Delta(a_{22}b_{22})x_{22} + a_{22}b_{22}\Xi(x_{22}) \\ &= \Delta(ab)x_{22} + a_{11}b_{12}\Xi(x_{22}) + a_{12}b_{22}\Xi(x_{22}) + a_{21}b_{12}\Xi(x_{22}) \\ &+ a_{22}b_{22}\Xi(x_{22}). \end{split}$$

Fourth, on the other hand,

$$\begin{split} \Delta(abx_{22}) &= \Delta(a_{11}b_{12}x_{22}) + \Delta(a_{12}b_{22}x_{22}) + \Delta(a_{21}b_{12}x_{22}) + \Delta(a_{22}b_{22}x_{22}) \\ &= \Delta(a_{11})b_{12}x_{22} + a_{11}\Xi(b_{12}x_{22}) + \Delta(a_{12})b_{22}x_{22} + a_{12}\Xi(b_{22}x_{22}) \\ &+ \Delta(a_{21})b_{12}x_{22} + a_{21}\Xi(b_{12}x_{22}) + \Delta(a_{22})b_{22}x_{22} + a_{22}\Xi(b_{22}x_{22}) \\ &= \Delta(a)bx_{22} + a_{11}\Xi(b_{12}x_{22}) + a_{12}\Xi(b_{22}x_{22}) + a_{21}\Xi(b_{12}x_{22}) \\ &+ a_{22}\Xi(b_{22}x_{22}) \\ &= \Delta(a)bx_{22} + a_{11}\Xi(b_{12})x_{22} + a_{11}b_{12}\Xi(x_{22}) + a_{12}\Xi(b_{22})x_{22} \\ &+ a_{12}b_{22}\Xi(x_{22}) + a_{21}\Xi(b_{12})x_{22} + a_{21}b_{12}\Xi(x_{22}) + a_{22}\Xi(b_{22})x_{22} \\ &+ a_{22}b_{22}\Xi(x_{22}) \\ &= \Delta(a)bx_{22} + a\Xi(b)x_{22} + a_{11}b_{12}\Xi(x_{22}) + a_{12}b_{22}\Xi(x_{22}) \\ &+ a_{21}b_{12}\Xi(x_{22}) + a_{22}b_{22}\Xi(x_{22}). \end{split}$$

Thus, comparing the above two equations, we obtain  $(\Delta(ab) - \Delta(a)b - a\Xi(b))x_{22} = 0$  for any  $x_{22} \in \Re_{22}$ , and then  $e_1(\Delta(ab) - \Delta(a)b - a\Xi(b))e_2 = 0 = e_2(\Delta(ab) - \Delta(a)b - a\Xi(b))e_2$ . Therefore  $\Delta(ab) = \Delta(a)b + a\Xi(b)$ .

PROOF OF THEOREM 2.1. From the above lemmas, we have proved that  $\Delta: \Re \to \Re$  is a generalized derivation. Since  $\Delta(a) = \delta(a) - d_s(a)$  for each  $a \in \Re$ , by a simple calculation, we see that  $\delta$  is also a generalized derivation. The proof is complete.

COROLLARY 2.9. Let  $M_2(\mathbb{C})$  denote the algebra of all  $2 \times 2$  complex matrices. Suppose that  $\delta: M_2(\mathbb{C}) \to M_2(\mathbb{C})$  is a linear mapping such that  $\delta(E^2) = \delta(E)E + E\tau(E)$  holds for all idempotent E in  $M_2(\mathbb{C})$ , where  $\tau: M_2(\mathbb{C}) \to M_2(\mathbb{C})$  is a linear mapping satisfying  $\tau(E) = \tau(E)E + E\tau(E)$  for any idempotent E in  $M_2(\mathbb{C})$ . Then  $\delta$  is a generalized derivation.

**PROOF.** Let  $M_2(\mathbb{C}) = E_1 M_2(\mathbb{C}) E_1 \oplus E_1 M_2(\mathbb{C}) E_2 \oplus E_2 M_2(\mathbb{C}) E_1 \oplus E_2 M_2(\mathbb{C}) E_2$  be the Peirce decomposition relative to the idempotent  $E_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ . Clearly  $M_2(\mathbb{C})$  is semiprime and satisfies ( $\spadesuit$ ). By [5, Theorem 4.1] we have that  $\tau$  is a derivation and  $\delta(A^2) = \delta(A)A + A\tau(A)$  for any  $A \in M_2(\mathbb{C})$ . Therefore, by Theorem 2.1,  $\delta$  is a generalized derivation.

**DEFINITION** 2.10. Let  $U(\Re)$  be the group of units of  $\Re$ . An ideal I of a ring  $\Re$  is unit-prime if, for any  $a, b \in \Re$ ,  $aU(\Re)b \subseteq I$  implies  $a \in I$  or  $b \in I$ , and unit-semiprime if, for any  $a \in \Re$ ,  $aU(\Re)a \subseteq I$  implies  $a \in I$ . A ring  $\Re$  is unit-(semi)prime if (0) is a unit-(semi)prime ideal of  $\Re$ .

THEOREM 2.11. Matrix rings over unit-semiprime rings are unit-semiprime.

The purpose of the following example is to show the existence of a ring that satisfies the hypotheses of the main theorem of this paper.

Example 2.12. Let  $M_2$  be a  $2 \times 2$  matrix ring over a unit-semiprime ring. Suppose that  $\delta: M_2 \to M_2$  is a generalized Jordan derivation and  $\tau: M_2 \to M_2$  is the related Jordan derivation. Then  $\delta$  is a generalized derivation.

**PROOF.** First observe that  $M_2$  is a unit-semiprime ring by Theorem 2.11. Consider  $E = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$  nontrivial idempotent in  $M_2$  and

$$M_2 = (M_2)_{11} \oplus (M_2)_{12} \oplus (M_2)_{21} \oplus (M_2)_{22}$$

the Peirce decomposition relative to E. Suppose  $X_{11}(M_2)_{12} = 0$ , where  $X_{11} = \begin{bmatrix} x_{11} & 0 \\ 0 & 0 \end{bmatrix} \in (M_2)_{11}$ . As  $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \in (M_2)_{12}$  it follows that  $X_{11} = 0$ . Similarly, we show that if  $X_{21}(M_2)_{12} = 0$  then  $X_{21} = 0$ . Therefore  $M_2$  satisfies ( $\spadesuit$ ). It is worth noting that with a fixed non-trivial idempotent satisfying ( $\spadesuit$ ), we can demonstrate Theorem 2.1. Hence  $\delta: M_2 \to M_2$  is a generalized derivation.

In [5], the authors introduced the concept of generalized Jordan triple derivation. Let  $\Re$  be a ring and  $\delta: \Re \to \Re$  an additive map. If there is a Jordan triple derivation  $\tau: \Re \to \Re$  such that  $\delta(aba) = \delta(a)ba + a\tau(b)a + ab\tau(a)$  for every  $a,b \in \Re$ , then  $\delta$  is called a generalized Jordan triple derivation, and  $\tau$  is the relating Jordan triple derivation. Recall that  $\tau$  is a Jordan triple derivation if  $\tau(aba) = \tau(a)ba + a\tau(b)a + ab\tau(a)$  for any  $a,b \in \Re$ .

The authors conjecture that every generalized Jordan triple derivation on 2-torsion free semiprime ring is a generalized derivation. In our case we have the following corollary.

COROLLARY 2.13. Let  $\Re$  be a 2-torsion free semiprime unity ring satisfying ( $\spadesuit$ ) and  $\delta$  be a generalized Jordan triple derivation from  $\Re$  into itself. If there exist an idempotent e so that  $e \neq 0$ ,  $e \neq 1$  in  $\Re$ , then  $\delta$  is a generalized derivation.

**PROOF.** Let  $\delta: \Re \to \Re$  be a generalized Jordan triple derivation and  $\tau: \Re \to \Re$  the relating Jordan triple derivation. Note that  $\tau(e_1 + e_2) = 0$ , so  $\tau$  is in fact a Jordan derivation. Now it is easy to check that a generalized Jordan triple derivation on  $\Re$  is a generalized Jordan derivation. Therefore, by Theorem 2.1,  $\delta$  is a generalized derivation.

The open question that remains is whether the Jing and Lu conjectures hold if  $\Re$  does not contain a nontrivial idempotent.

#### References

- [1] M. Brešar, 'Jordan derivations on semiprime rings', Proc. Amer. Math. Soc. 104 (1988), 1003–1006.
- [2] G. Călugăreanu, 'A new class of semiprime rings', Houston J. Math. 44 (2018), 21–30.
- [3] I. N. Herstein, 'Jordan derivations of prime rings', Proc. Amer. Math. Soc. 8 (1957), 1104–1110.
- [4] N. Jacobson, *Structure of Rings*, American Mathematical Society Colloquium Publications, 37 (American Mathematical Society, Providence, RI, 1964).
- [5] W. Jing and S. Lu, 'Generalized Jordan derivations on prime rings and standard operator algebras', Taiwanese J. Math. 7 (2003), 605–613.

BRUNO L. M. FERREIRA, Universidade Tecnológica Federal do Paraná, Avenida Professora Laura Pacheco Bastos, 800, 85053-510 Guarapuava, Brazil e-mail: brunoferreira@utfpr.edu.br

RUTH N. FERREIRA, Universidade Tecnológica Federal do Paraná, Avenida Professora Laura Pacheco Bastos, 800, 85053-510 Guarapuava, Brazil e-mail: ruthnascimento@utfpr.edu.br

HENRIQUE GUZZO Jr., Universidade de São Paulo, Rua do Matão, 1010, 05508-090 São Paulo, Brazil e-mail: guzzo@ime.usp.br