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Cooperative hunting with multiple Autonomous Underwater Vehicles (AUVs) not only needs
the AUVs to cooperate, but also demands real-time path planning to catch up with evading tar-
gets. In this paper a time-based alliance mechanism to form efficient dynamic hunting alliances is
proposed. After that, during the active hunting stage, an improved neural network model based
on a Glasius Bio-inspired Neural Network (GBNN) is presented for path planning to imme-
diately achieve tracking of an intelligent target. This study shows that the improved GBNN
model has good performance in real-time hunting path planning. From the simulation studies as
described in this paper, both the hunting alliance formation mechanism and the proposed real-
time hunting path planning strategy show their advantages. The results show that the improved
GBNN model proposed in this paper can work well in the control of multiple AUVs to hunt for
intelligent evading targets in environments containing obstacles.
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1. INTRODUCTION. Applications in many fields have been developed for Autonomous
Underwater Vehicles (AUVs) including underwater exploration, deep-sea surveying and
the maintenance of underwater installations (Krieg and Mohseni, 2010; Blidberg, 2001;
Monroy et al., 2017; Joung et al., 2009). However, the capabilities of a single AUV are
limited because of the limited available energy. Therefore, AUV cooperative working sys-
tems have been widely considered. For a multi-AUV system, cooperative hunting is an
interesting problem (Li et al., 2009) and can be divided into three subtasks: searching for
the targets, task allocation, and real-time path planning in a fast-changing environment until
capture is achieved (Li et al., 2010).

Much work has been completed on the overall hunting problem. Yamaguchi (1998;
1999) applied a feedback control law to control mobile robots to capture targets in a time-
varying environment. However, this control law can become deadlocked in an environment
with many variably shaped obstacles. Ishiwaka et al. (2003) studied the hunting problem
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and presented an algorithm based on Reinforcement Learning (RL). This algorithm can
decide the hunter’s action (speed and direction) to hunt for the evaders. Song et al. (2015)
studied the hunting behaviour of multiple robots and proposed a mathematical model. The
output of this model was stable, but the chase process was not studied because it assumed
that the robots complete hunting when all of them detect the target. Inspired by the good
performance of the Bio-inspired Neural Network (BNN) model to solve real-time path
planning problems in dynamic environments, Ni and Yang (2011) used the model for real-
time hunting of multiple robots. This algorithm can successfully finish the hunting problem.
The fault tolerance of the algorithm was also verified. However, it would appear that all the
hunting robots move faster than the targets, which may not be practical in reality. More
importantly, all the robots shared the neural activity to hunt for a target during the pursuit
stage in the study. Since the underwater environment has severe communication limitations,
the sharing and spreading of neural activity will take a considerable time and cause delays.
Real-time hunting is very difficult with such delays.

All the studies mentioned above focus on the Two-Dimensional (2D) ground-hunting
problem. Hunting in the underwater environment is not the same as hunting on the ground
as it is a Three-Dimensional (3-D) environment and path planning for AUVs can require
significant calculation time. Nguyen and Hopkin (2005) proposed the use of multiple AUVs
for mine hunting and proposed a complete coverage approach. Although the approach is
efficient, the targets were static and had no intelligence and are thus easier to catch. Later,
Williams (2010) reduced the distance for the AUV to detect the mine based on probabil-
ities. Zhu et al. (2015) solved the multi-AUV cooperative hunting problem with a BNN
model by sharing the neural activities. They proposed a method for assigning hunting tasks
based on distance-based negotiation between AUVs, but sometimes this could encounter
conflicts. To overcome the conflicts, Cao et al. (2015) and Cao and Yu (2017) proposed
a location forecasting method. Chen and Zhu (2018) solved the hunting problem of inho-
mogeneous AUVs and focused on the task allocation step but did not fundamentally solve
the weakness of the GBNN model. More recently, Ni et al. (2018) proposed an approach
based on the spinal neural system to perform the hunting control of multiple heterogeneous
AUVs. This algorithm applied a spinal neural system for heterogeneous AUVs to search for
evading targets. However, in the rounding-up step, they introduced a genetic algorithm to
assign directions for the AUVs. The genetic algorithm needs several iterations to generate
near-optimal directions for the AUVs, which can cause time delays. However, all of these
studies assume that hunting AUVs are much faster than targets, which will greatly reduce
the difficulty of hunting. If there is not much difference between the speed of AUVs and
targets, it may be difficult for an AUVs to follow a fast-moving target in such a dynamic
environment. An approach to plan the paths for the robots to track the fast escaping target
is vital in the control of multi-AUV hunting.

Some neural network models have been proposed and have proved efficient for
path planning. Agreev (1998) proposed a multi-layer and feed-forward neural network for
path planning. Xia and Wang (2000) presented a recurrent neural network for shortest-
path routing. Although both of these algorithms are efficient for path planning, they are
only suitable for stationary environments. Inspired by Grossberg’s shunting model (Gross-
berg, 1988), Yang and Meng (2000; 2001; 2003) proposed a BNN model for real-time path
planning in dynamic environments. It is suitable for a wide range of robots. To make the
BNN model suitable for the path planning of AUVs, Ni et al. (2017) proposed an improved
dynamic BNN model. Although the algorithm reduces computational complexity, it does
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not guarantee an optimal path for the AUV. Lebedev et al. (2005) applied a dynamic wave
expansion model for robot path planning in time-varying environments. Owing to only four
adjacent neurons in the model, the robot can only move in four directions. Glasius et al.
(1994; 1995; 1996) proposed the discrete Glasius Bio-inspired Neural Network (GBNN)
model for path planning in environments containing obstacles. It has been applied in path
planning for AUVs (Zhu et al., 2017), but it has been reported that it has difficulty in deal-
ing with real-time path planning in rapidly changing environments. In order to make the
GBNN model work well in fast changing environments, this paper presents several tech-
nical improvements and demonstrates that the improved model is suitable for real-time
hunting control.

This paper considers the multi-AUV cooperative hunting problem, in which evading
targets have intelligence. When an intelligent target changes direction, the AUV must
adjust strategy quickly to generate a real-time and effective route to chase the target. The
contributions of the paper can be described as follows.

(1) An improved GBNN model is proposed to adapt to a rapidly changing environment.
For real-time path planning, the algorithm needs to be computationally efficient to
avoid time delays. The improved GBNN model can meet the requirements, which
makes it unnecessary to share neural activity among AUVs. Every AUV has its own
neural activity for a target and plans the path by itself.

(2) The improved GBNN model has good dynamic performance and is able to track fast
moving targets.

(3) A novel dynamic alliance-forming strategy is proposed to distribute the hunting task
for the AUVs. The strategy is suitable for both homogeneous and inhomogeneous
AUVs. From simulation studies, it can be seen that both the proposed alliance-
forming strategy and the improved GBNN model can successfully solve the hunting
problem of multi-AUV systems.

The rest of this paper is organised as follows: Section 2 introduces the multi-AUV
cooperative hunting problem. In Section 3, the algorithm to control multiple AUVs in coop-
eratively hunting for an intelligent evading target is proposed. In order to demonstrate the
validity of the proposed algorithm, simulations are reported in Section 4. Finally, some
conclusions and directions for possible future research are made in Section 5.

2. THE MULTI-AUV COOPERATIVE HUNTING PROBLEM. As a grid map simpli-
fies the problem and is convenient for study of hunting, it is applied in this study. At first,
a set of AUVs are to hunt for several evading targets. It is supposed that n AUVs (AUV1,
AUV2, . . . , AUVn) are to hunt for m evaders (Ev1, Ev2, . . . , Evm). To catch the evader,
hunting AUVs in a hunting alliance move towards the evader. When the AUVs tightly
encircle and evenly distribute around the evader, hunting succeeds. As shown in Figure 1,
the black blocks represent obstacles and the blank areas are the free spaces. Four hunting
AUVs are required in a 2D environment to encircle an evader, and six AUVs are required
to form a successful encirclement in 3-D hunting. If any obstacle helps with the successful
capture, the hunting can be successful with fewer AUVs, as shown in Figure 1(b).

An intelligent evader can run to avoid being caught. Their evasion strategies can
be divided into two different situations as shown in Figure 2. When the surrounding
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(a) (b)

Figure 1. Illustration of successful hunting in a 2-D environment.

(a) (b)

Figure 2. Evasion strategies in a 2-D environment.

encirclement has not formed as shown in Figure 2(a), the evader travels away from the
AUVs to prevent being caught. The evader changes its direction by changing its target
point as in:

et = ec +
n∑

i=1

(ec − wi)/r (1)

et is the location of the evader’s target point which will make it run against the hunting
AUVs. ec means its current position, and n is the quantity of AUVs within the perception
region. wi is the position of AUVs near the evader where n evaders are assumed to be
nearby. r > 1 is introduced to avoid the coordinates of its target from exceeding the size of
the environment.

Another situation is that the AUVs are distributed around the evader. In this situa-
tion, the evader should run to the mid-point of the two AUVs furthest away, as shown in
Figure 2(b).

In the 3D environment, the surrounding encirclement is examined through projection.
We can take every one of the three coordinate planes to examine the encirclement. If no
encirclement is formed in any of the planes, a 3D encirclement is not formed. Similarly, if
no surrounding encirclement is formed, the evader moves away from the AUVs; otherwise,
the mid-point between two farthest adjacent AUVs will be the escape direction.
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An evader’s escaping strategy in these two situations are consistent with the general
situations. In practical applications, the evader usually moves to keep away from the AUVs.
Our strategies can help the evader to find a direction with the highest opportunity to escape
from being hunted. Since the intelligent evader applies the proposed escaping strategies,
which lets it possess the ability to avoid being hunted, it is harder for the AUVs to encircle
the evader. The escaping strategies are proposed for general cases and are independent of
the proposed hunting algorithm.

3. PROPOSED STRATEGIES. This study proposes strategies for allocating the hunt-
ing mission to form effective hunting alliances and real-time path planning to capture fast
escaping evaders.

3.1. AUVs’ dynamic alliances. To make an easy calculation, the locations of evaders
are programmed into the matrix E, and the matrix W represents the locations of AUVs.
Each row of the two matrices is their coordinate value.

E =

⎡
⎢⎣

x1 y1 z1
...

...
...

xm ym zm

⎤
⎥⎦ (2)

W =

⎡
⎢⎣

w1x w1y w1z
...

...
...

wnx wny wnz

⎤
⎥⎦ (3)

Dwe :=
√

W2
. · M1 + M2 · (ET)2

. − 2 · W · ET (4)

In Equation (4), M1 is a 3∗m matrix, and the size of M2 is n∗3. The values of all the
elements of matrices M1 and M2 are one. ET is the transpose of E. Dwe is an n∗m matrix,
and the j -th column contains the distances from the evader j to the AUVs from 1 to n.

Inhomogeneous AUVs possess distinct energies and thrust torques. They have different
safety distances and maximum sailing speeds. The safety distance for an AUV is the total
distance it can run without worrying about having insufficient energy. If dwiej exceeds the
AUV’s sailing capability, it is simply set to infinite.

dwiej =

{
dwiej , dwiej ≤ csafei

∞, else
(5)

twe := (Dwe)./Spd (6)

In Equation (5), dwiej is the element of Dwe in row i and column j . csafei is defined as the
i-th AUV’s safety distance. The estimated hunting time is acquired from Equation (6). Spd
contains the velocity values of every AUV, which is programmed to be the same size as
Dwe. The elements of its row vector are the velocity values of the AUVs.

With twe, dynamic hunting alliances between AUVs using Algorithm 1 are formed. The
inputs of the algorithm contain twe: estimated hunting time matrix; TeamNum: The max-
imum number of hunting teams that can be formed by AUVs; Num: number of AUVs
required, for 2D encircling it is four, for 3D encircling it is six; NumEvader: evaders’
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number to be hunted. The outputs of the algorithm are the evaders’ hunting order (evIndex:
row vector); the index of AUVs in each of the hunting alliance (auvIndex: matrix).

ALGORITHM 1

Step 1: Initialise: set j = 1, evIndex = a zero vector (1*TeamNum), and auvIndex = a zero
matrix (TeamNum* Num);

Step 2: LOOP: sort twe: [stT, winners] = Sort(twe);
Step 3: For each evader, get the first Num rows of stT: For i = 1 to NumEvader:

tmSdT(:,i) = stT(1:Num,i);
Step 4: Sum and sort tmSdT: tmTotTime = sum(tmSdT), [,winnerIndex] = sort

(tmTotTime);
Step 5: Get the index of the most easily caught evader: evIndex(1,j) = winnerIndex(1,1);
Step 6: Assign the AUV that has no hunting task and can reach the evader with

the minimum estimated time to hunt for the evader: auvIndex(j,:) = winners
(1:Num,evIndex(1,j));

Step 7: Set the arrival time to a large positive value to prevent the evader from winning
the competition again: twe (:,evIndex(1,j)) = colBigValue;

Step 8: j increases by 1: j = j + 1;
Step 9: return to LOOP until the condition (j ≤ NumEvader & j ≤ TeamNum) is not

satisfied.

In our strategy, the AUVs first hunt for the easiest evader who has the least estimated
hunting time. After the evaders’ hunting sequence is determined, the AUVs with the least
total hunting time for an evader will form a hunting alliance. The alliance is dynamic as
the environment changes. In the alliance formation mechanism, we consider AUVs’ differ-
ent speeds, which makes the hunting faster with less chasing and gives a shorter evading
distance.

3.2. Distribution of hunting points. The AUVs must occupy the hunting points
around the evader to complete the hunting task. If the AUVs do not form an encirclement,
then the strategy assigns the nearest and fastest AUV in the hunting alliance to move to
the other side to hinder the escape of the evader, as shown in Figure 3(a). When the AUVs
have formed a surrounding encirclement, then the strategy first allocates the easiest point
that is nearest to one of the AUVs, and this easiest point is assigned to the nearest AUV on
the evader’s same side, as shown in Figure 3(b).

The hunting point distribution strategies help to define clear target points for every AUV.
Without any conflict among AUVs, they quickly move closer to the evader. The distribution
strategies can also prevent the evader from escaping since the strategies can control the
AUVs to quickly form an encirclement. Although the evader is intelligent, and the hunting
is hard, the hunting point distribution strategies proposed for the general cases help to
improve hunting efficiency.

3.3. Improved Glasius Bio-inspired Neural Network. After the AUVs form a hunting
group and hunting points are distributed to them as their target points, path planning to the
assigned points is the next step.

3.3.1. Review of Glasius Bio-inspired Neural Network. Glasius et al. (1996) proposed
the Glasius Bio-inspired Neural Network (GBNN) model. The models for 2D and 3D envi-
ronments are shown in Figure 4. A neuron is connected with its neighbours. The model is
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(a) (b)

Figure 3. Distribution of hunting points.

(a) (b)

Figure 4. GBNN neural network.

described in Equation (7).

xi(t + 1) = f

⎛
⎝∑

j ∈Si

(wij · xj (t)) + Ii

⎞
⎠ (7)

wij =

{
e−γ ·dist(pi−pj ) if dist(pi − pj ) ≤ R
0, otherwise

(8)

Ii =

⎧⎪⎨
⎪⎩

v, grid i is target
−v, grid i is occupied
0, else

(9)

f (x) =

⎧⎪⎨
⎪⎩

1, x ≥ 1
β · x, 0 < x < 1
0, else

(10)

xi(t + 1) is the i-th grid’s neural activity at the current time step. xj (t) is the neighbour’s
neural activity a time step before the current time step. wij means the weight value to
connect the neurons, and dist(pi − pj ) represents the neurons’ Euclidean distance. R is the
radius as shown in Figure 4. Ii is the external input value representing the information of
each grid, and v >> 1. The occupied grids mean that other AUVs, obstacles, mountains,
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Figure 5. Backward calculation from target neuron (numbered “1”).

or evaders are located at the grids. f (x) in Equation (10) is a transfer function, which is
piecewise and linear.

There are two main parameters, γ and β, in the GBNN model. The choice of γ and β

needs to ensure neurons other than the target neuron have an activity level less than one.
For 2D application, R is usually equal to

√
2, the constraints are described by Equation

(11): {
4 · β · (e−γ + e−2γ ) < 1
4(e−γ + e−2γ ) < 1

(11)

If β is equal to 1, the upper inequality in Equation (11) is the same as the second one and
then γ > (ln(2

√
2 + 2) ≈ 1.5745). Since the parameters are limited, the GBNN model has

dissatisfactory decay rates. The GBNN model has a fixed decay rate in the time dimension,
which is equal to one. This makes it possible that the change of neural activity lags behind
the fast-changing environment. In the space dimension, however, the GBNN model has an
exponential decay rate which decays quickly. It takes some time steps for the propagation
of a target’s neural activity to reach the AUV’s initial position. With the time steps delay,
the GBNN model is also unsuitable for real-time path planning.

3.3.2. Improved Glasius bio-inspired neural network. Some technical improvements
are proposed to give the GBNN model a better performance in real-time path planning in a
dynamic environment.

First, it is necessary for the neural activity to spread fast in the environment for real-time
path planning. For the fast propagation of neural activity over the whole environment in a
time step, we have to calculate the neural activity of the GBNN model outwardly from the
target neuron, which can be referred to as a backward calculation as shown in Figure 5.
The yellow circle represents the target neuron and its activity is calculated first. Activity
of neurons a grid next to the target is calculated next and other neural activity is obtained
sequentially as grids extend out.

Second, the neural activity contains incorrect path information when the target or obsta-
cle moves quickly in a dynamic environment. When the target or obstacle moves quickly,
all the neurons are suppressed at the next time step and the neural activity is recalculated
outwardly starting from the target position.
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Third, the model can be improved to achieve higher decay rate in the time dimension,
which is described in Equation (12):

xi(t + 1) = f

⎛
⎝∑

j ∈Si

(wij · xj (t)) + Ii − R2 · e−γ ·R2 · xi(t)

⎞
⎠ (12)

Equation (12) is the same as Equation (7) apart from an added decay term. All sym-
bols have the same meanings as described in Equations (7)–(10). With this model, the
constraints of the parameters are described by Equation (13) for a 2D environment.{

β · (4 · e−γ + 2 · e−2γ ) < 1
4 · e−γ + 2 · e−2γ < 1

(13)

If β is equal to 1, then γ > (ln(
√

1.5 − 1) ≈ 1.4928). With the improvements, properties
as follows can be obtained:

Property 1. With the neural activity calculated outwardly from the target location,
neurons in the grid map can be active in a time step. The model can be applied in real-time
path planning without any delay in the propagation of neural activity.

Property 2. The additional decay term can enhance neuronal dynamic performance in
the time dimension and helps to slightly improve parameter performance since the value
of γ can be reduced. Moreover, neurons are suppressed when the environment changes
quickly, which helps to reduce the cumulative error message of the path. When the neural
activity changes as fast as the time varying environment, it is suitable for path planning in
a fast-varying environment.

Property 3. With the additional decay term, the model is still stably calculated. The
added decay term makes the time decay rate of the GBNN model higher than 1, which
is 1 + e−γ ·R2

. The higher decay rate allows the neuronal activity to stabilise more quickly.
In fact, because a decay term is added, it shortens the time for the system to reach the
equilibrium state.

3.3.3. Path Planning. With the improved GBNN model, the AUV sails to the grid
next to the AUV’s current position, which has the greatest neural activity.

Path = Pn|xPn = max{xi, i = 1, 2, . . . , k}, Pp = Pc, Pc = Pn (14)

xi is the grid’s activity near the AUV’s current position. For the 2D environment, k is set to
8, and it is set to 26 in the 3D environment. Pp , Pc and Pn are positions of the AUV at three
adjacent time steps.

The improved algorithm with fixed calculation direction accelerates the propagation of
neural activity. The additional decay item also improves the dynamic property of the GBNN
model. Even if the evader keeps escaping, this approach ensures the obstacle grid has
minimal neural activity and changes the neural activity as fast as the changing environment.

4. SIMULATION STUDIES. In order to study the feasibility of hunting control by the
proposed strategies, several simulation experiments were conducted using MATLAB. We
made three reasonable assumptions for the convenience of the simulation experiments.
First, since the ocean environment is vast, the shapes of the evader and the AUV were

https://doi.org/10.1017/S0373463318000851 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463318000851


768 MINGZHI CHEN AND DAQI ZHU VOL. 72

ignored. The evader and the AUV are worked as mass points. Second, it is supposed that an
AUV can turn its direction slowly to track the path planned by the improved GBNN model.
The speed of an AUV is usually slow. This assumption is reasonable as an AUV has plenty
of time to change its direction to follow the planned path. Third, the location information
of the evader is known to the AUVs after one of the AUVs finds it. In fact, the location
information of the evader is a short message, and it can be transmitted to the AUVs quickly.
The neural activities around the environment do not need to be propagated, which makes
communication quick enough to spread the location information of the evader. Experiments
of 2D hunting control are described first. The results are compared with algorithms such
as a BNN model and distance-based hunting alliance strategies. Finally, a 3D cooperative
hunting experiment was also devised. In the simulation experiments, the size of obstacles
was expanded to avoid AUV collisions under actual conditions. The enlarged grids are
marked as grey units. The simulation programs run on a computer with an i7-6700HQ
Core and 16 GB memory.

4.1. Hunting in a 2D environment. In a 2-D environment, eight AUVs need to hunt
for two evaders. The size of the designed hunting environment contains 60*60 grids. The
perception range of the evader is a circle with a diameter of ten grid units, and it runs away
from the AUVs when it detects hunting AUVs nearby. First, a simulation experiment was
devised that all AUVs are twice as fast as the evaders. The hunting task was fulfilled with
the improved GBNN model and the BNN model, respectively. After that, as in our lab,
some AUVs are slower than others, and may only have the same speed capability as the
evader. For the same environment, the experiment of hunting by inhomogeneous AUVs
with different speed capabilities is to verify the validity of the proposed alliance formation
mechanism. In order to make the simulation experiment more in line with the real world,
multi-threading technology was used to complete an independent calculation of the neural
activity of each AUV.

4.1.1. Hunting of homogeneous AUVs with the proposed algorithm. Initially, two
evaders were located at grids (6, 15) and (56, 54), and moved randomly. Eight AUVs
were at the boundary of the environment and were ready for hunting. In this section, it is
supposed that all AUVs are twice as fast as the evaders. The parameters are set as β = 1,
v = 200, γ = 1.4929 and R =

√
2. For all the 2D hunting experiments with the improved

GBNN model, parameters are all set with the same values. The hunting process is shown in
Figure 6. In the figure, the black blocks represent obstacles, the symbols of different shapes
and colours represent different AUVs and the evaders are represented by the red circles.
The hunting step count increases after each evader’s movement.

Figure 6 shows that eight AUVs form two hunting alliances. A team comprising AUV1,
AUV2, AUV7 and AUV8 hunted for Ev1. Another group pursued Ev2. The intelligent
evaders ran in the opposite direction to the AUVs to escape from being hunted when they
detected the hunting AUVs. AUV7 encountered an obstacle at grid (2, 57), and it avoided
the obstacle with the improved GBNN model. Moreover, with the improved GBNN model,
the AUVs got closer to their hunting points to fulfil the hunting mission. Ev1 and Ev2 were
encircled at grids (8, 29) and (57, 45) respectively. The program ran for 40 hunting steps.
The second column of Table 1 lists the AUVs’ distance cost and the evaders’ escaping
distance.

4.1.2. Hunting of homogeneous AUVs with BNN model. For the same situation stated
above, the BNN model was applied for path planning. For full access to the BNN model
compared, see Yang et al. (2001, 2000, 2003). In the BNN model, the parameters were set as
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Figure 6. Result of hunting by homogeneous AUVs with the proposed algorithm.

Table 1. Comparison of hunting simulations by improved GBNN and BNN models.

Improved GBNN model BNN model

AUV1’s distance 3,817 m 4,040 m
AUV2’s distance 4,507 m 4,506 m
AUV3’s distance 4,347 m 5,047 m
AUV4’s distance 3,572 m 3,926 m
AUV5’s distance 2,831 m 3,097 m
AUV6’s distance 4,617 m 4,434 m
AUV7’s distance 3,454 m 4,120 m
AUV8’s distance 3,028 m 3,434 m
AUVs’ Average distance 3,772 m 4,076 m
Ev1’s distance 2,180 m 2,604 m
Ev2’s distance 2,307 m 2,573 m
Simulation time 2·9 sec. 311·2 sec.

follows in the simulation, B = D = 1, A = 25, u = 1 and R = 2. Figure 7 shows the hunting
result. The AUVs were similarly distributed and constructed the same hunting alliances.
Hunting was completed with the BNN model but took more steps and much more running
time. Ev1 and Ev2 were encircled at grids (13, 32) and (57, 52), and the program ran for 45
hunting steps. Ev2 ran further as AUV6 occupied the hunting point later than in the GBNN
model. This was the same for Ev1. The third column of Table 1 lists the AUVs’ distance
cost and the evaders’ escaping distance for comparison.
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Figure 7. Result of hunting by homogeneous AUVs with BNN model.

With the improved GBNN model, the AUVs finished hunting with an average distance
travelled of 3,772 m, and that of BNN model is higher. The BNN model has been reported
as suitable for real-time path planning. Nevertheless, the improved GBNN model provides
the AUV with a more direct direction and a shorter path. The technical improvements
to the GBNN model improve its dynamic performance to provide effective path informa-
tion. More importantly, the improved GBNN model does not cost much computation time,
requiring only 2.9 seconds of simulation time. The BNN model needs to solve a differential
equation for each neuron and takes 311.2 seconds for the same process. In the experiments,
except for the calculation of neural activity, the other procedures are the same. In this
regard, the BNN model is very time consuming and will be unmanageable in a 3D underwa-
ter environment, where many neurons are required to construct the environment. Therefore,
the improved GBNN has a good performance in real-time path planning in fast changing
environments and is computationally efficient.

4.1.3. Monte-Carlo hunting simulations by homogeneous AUVs with the GBNN and
BNN models. In the 2D environment, the locations of the evaders were randomly gen-
erated 50 times in performing Monte-Carlo tests. Both the GBNN and BNN models were
applied to fulfil the hunting task for comparison. After the simulation experiments, the
average distance the AUVs and evaders travelled was calculated. Meanwhile, the average
simulation time is also listed, as shown in Table 2. In the experiments, the result of the path
planning method using the BNN model is inferior to the improved GBNN method. With the
improved GBNN model, the average travelled distance of the AUVs was 3,795 m, whereas
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Table 2. Average cost and efficiency comparison of 50 repetitions of Monte-Carlo
simulations.

Improved GBNN model BNN model

AUV1’s distance 3,712 m 4,310 m
AUV2’s distance 3,388 m 3,944 m
AUV3’s distance 3,400 m 3,986 m
AUV4’s distance 3,939 m 3,393 m
AUV5’s distance 4,003 m 3,850 m
AUV6’s distance 4,097 m 3,823 m
AUV7’s distance 3,798 m 4,584 m
AUV8’s distance 4,020 m 4,570 m
AUVs’ Average distance 3,795 m 4,058 m
Ev1’s distance 2,193 m 2,536 m
Ev2’s distance 2,284 m 2,575 m
Simulation time 3·0 sec. 308·6 sec.

for the BNN model, it was 4,058 m. In addition, the BNN model took 308.6 seconds on
average to complete an experiment, which is much higher than the improved GBNN model.
The high computational complexity may make it impossible for the BNN model to satisfy
the requirements of real-time path planning. However, the improved GBNN model can
have a good dynamic performance while ensuring low computational complexity.

4.1.4. Hunting of inhomogeneous AUVs by the proposed time-based alliance formation
mechanism. Hunting experiments of multiple inhomogeneous AUVs with different speed
capabilities were performed for the same hunting task as described above. AUV1, AUV3,
AUV5 and AUV7 have the same speed capability as the evaders, and others can run at
double the speed of the evaders. The experiment was first carried out with the proposed
alliance formation mechanism and the improved GBNN model. As shown in Figure 8, the
hunting process is longer than the previous experiment as not all the AUVs are running
faster than evaders.

At first, AUV1, AUV3, AUV7 and AUV8 were distributed to hunt for Ev1. The rest
of the AUVs were allocated to pursue Ev2. As the team to hunt for Ev2 had a high-speed
capability, Ev2 was quickly encircled at grid (56, 43). After that, the alliance to chase
Ev1 changed. AUV2 and AUV4 replaced AUV3 and AUV7, and the hunting for Ev1 was
finished at grid (34, 35). The program ran for 62 hunting steps. The second column of
Table 3 lists the distance travelled for each AUVs and the evaders’ escaping distances.

4.1.5. Hunting of inhomogeneous AUVs by distance-based alliance. In the distance-
based strategy, AUVs negotiate to form hunting alliances with neighbour rules. For a full
access to the strategy, See Zhu et al. (2015). The result of hunting with the distance-based
alliance formation method is shown in Figure 9. The AUVs construct different dynamic
hunting alliances. AUV1, AUV2, AUV7 and AUV8 hunted for Ev1. The remaining AUVs
chased Ev2. The hunting was completed with this alliance formation algorithm but requires
much longer chasing distances. Ev1 and Ev2 were encircled at grids (31, 4) and (3, 5)
respectively. The program ran for 138 hunting steps. As the hunting alliance is formed by
negotiation that only depends on the position information of AUVs and evaders, one of
the AUVs may have a low speed, resulting in a low chasing efficiency. The third column
of Table 3 lists the distance cost of AUVs and the escaping distance of evaders to make a
comparison.
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Figure 8. Result of hunting by inhomogeneous AUVs with the proposed algorithm.

Table 3. Comparison of hunting simulations by different alliance
formation methods.

Proposed alliance Distance-based
formation mechanism alliance

AUV1’s distance 5,067 m 7,115 m
AUV2’s distance 8,149 m 8,529 m
AUV3’s distance 2,483 m 10,205 m
AUV4’s distance 4,262 m 12,498 m
AUV5’s distance 3,170 m 10,702 m
AUV6’s distance 7,913 m 11,780 m
AUV7’s distance 2,483 m 6,701 m
AUV8’s distance 6,915 m 8,193 m
AUVs’ Average distance 5,055 m 9,466 m
Ev1’s distance 5,067 m 6,915 m
Ev2’s distance 3,046 m 10,485 m
Simulation time 3·1 sec. 6·5 sec.

With the time-based alliance formation mechanism, the AUVs finish hunting with an
average distance of 5,055 m, but the distance-based mechanism requires 9,466 m. The
dynamic hunting alliances constructed with the time-based alliance formation mechanism
can take advantage of each AUV, which will improve the hunting efficiency and cut down
the hunting cost. In other words, the proposed strategies set up the hunting alliances that
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Figure 9. Result of hunting by inhomogeneous AUVs with distance-based mechanism.

allow a hunting group to have almost the same AUVs with the same speed abilities. The
distance-based negotiations ignore the speed capabilities of the AUVs, and the capability
of a hunting group is limited by the weakest AUV. The distance-based negotiation can-
not solve the problem of hunting task allocation of multiple AUVs with different abilities.
The time-based alliance formation mechanism is more efficient and effectively assigns the
hunting task among multiple AUVs.

4.2. Simulation design of hunting in a 3D environment. The underwater environment
is a Three-Dimensional (3D) and obstacle cluttered environment. A 3D environment for
the hunting simulation experiment was designed. Mountains exist at the bottom as shown
in Figure 10. As shown in Figure 10, the coordinate “0” of the “z” axis is set as zero
metres. Taking this as a reference, the height of the valley is −1,500 m, and the height
of the mountain is 2,000 m. The hunting AUVs are located in the eight corners of the
simulated environment. An evader is initially located in the middle, at grid (20, 30, 34).
In the experiment, AUV3, AUV5, AUV6 and AUV7 had the same maximum speed as the
evader, and the others had double the speed of the evader.

For the application of the improved GBNN model in a 3D environment, R is equal to√
3, then γ and β are subjected to the constraint of Equation (15).

{
(6 · e−γ + 12 · e−2γ + 5 · e−3γ ) · β < 1
6 · e−γ + 12 · e−2γ + 5 · e−3γ < 1

(15)
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Figure 10. PUnderwater hunting with improved GBNN model, view from grid (85, 30).

If β is equal to 1, then γ > (ln(
√

69+7
2 ) ≈ 2.0351). Therefore, in the experiment, β = 1,

v = 200, γ = 2.0352 and R =
√

3.
Figure 10 shows the hunting process of this experiment from the viewpoint at grid (85,

30). The hunting task was first assigned to AUV1, AUV2, AUV4, AUV5, AUV7 and
AUV8. As the evader goes nearer to AUV3 while it is escaping, which makes the dis-
tance from the evader to the AUV5 further than the distance from the evader to AUV3,
AUV5 is replaced by AUV3 at the tenth hunting step. In the hunting process, the AUVs
are able to prevent collision with hills and obstacles and change their directions as soon as
the evader runs to another location. AUV5 sailed a distance of 1,732 m and then stops at
grid (−48, 48, 48). The distances that AUV1, AUV2, AUV3, AUV4, AUV7 and AUV8
travelled are 12,678, 12,932, 7,368, 9,274, 7,781 and 10,445 m, respectively. The evader
was encircled in a globe by six AUVs at grid (22, −19, 8) with the escaping distance trav-
elled of 7,923 m. The program ran for 59 hunting steps and took 798.6 seconds. With the
improved GBNN model, the AUVs updated their neural activity in 13.5 seconds. The BNN
model was also tested for path planning in the vast 3D environment, and the program took
more than two hours to update all the neural activities of the grids in the environment. This
is not practical for 3D real-time hunting applications.

5. CONCLUSION. The study described in this paper researched a multi-AUV cooper-
ative hunting problem, and it mainly focused on the final two steps. The algorithm formed
effective hunting alliances, dividing the AUVs into groups and chasing the evaders one
by one. The mechanism can work well for both homogeneous and inhomogeneous AUVs.
In addition, the GBNN model is improved for real-time path planning in a fast-changing
environment. The effectiveness of the proposed algorithm has been demonstrated through
analysis and simulation studies. The improved GBNN algorithm was compared with the
BNN model. The strategies presented in the study reduced the chasing distances of AUVs.
The simulation also shows that the algorithm successfully performs underwater hunting by
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multiple AUVs, in a three-dimensional and obstacle cluttered environment. The improved
GBNN model, which is computationally efficient, is also suitable for hunting control in a
3D environment. In this research, the AUV is considered to be able to move quickly to
follow up the path planned by the GBNN model. Although the AUV’s speed is slow and it
can theoretically track the path, trajectory tracking of the AUV needs to be further studied
to demonstrate the assumptions proposed in this paper. Different from many studies where
the path is usually pre-set in advance, trajectory tracking in the hunting control is a dynamic
trajectory tracking where the trajectory is previously unknown.
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