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Streaky dynamo equilibria persisting at
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Nonlinear three-dimensional dynamo equilibrium solutions of viscous-resistive
magneto-hydrodynamic equations are continued to formally infinite magnetic and
hydrodynamic Reynolds numbers. The external driving mechanism of the dynamo
is a uniform shear, which constitutes the base laminar flow and cannot support
any kinematic dynamo. Nevertheless, an efficient subcritical nonlinear instability
mechanism is found to be able to generate large-scale coherent structures known
as streaks, for both velocity and magnetic fields. A finite amount of magnetic
field generation is identified at the self-consistent asymptotic limit of the nonlinear
solutions, thereby confirming the existence of an effective nonlinear dynamo action
at astronomically large Reynolds numbers.
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1. Introduction

Almost exactly one century ago, Larmor envisioned that the magnetic field observed
in the Universe is self-excited through a motion of electrically conducting fluids
(Larmor 1919). Generating a magnetic field via the kinematic–magnetic energy
conversion like a mechanical dynamo looked like a simple task at first glance given
the coupling of the velocity and magnetic fields in the magneto-hydrodynamic (MHD)
equations. However, despite the intensive theoretical, numerical and experimental
studies over a hundred years, many problems remain open in this area of research.

One of the biggest concerns in dynamo studies is whether the energy conversion
remains effective at extremely large magnetic Reynolds number Rm of astrophysical
interest. Finding kinematic dynamos with finite positive growth rate (so-called fast
dynamos) was a major goal in the early years of highly idealised model flow studies
(Childress & Gilbert 1995), while the recent state-of-the-art simulations by Yousef
et al. (2008a) found that kinematic dynamos can be supported by a simple shear,
which naturally presents in various physical situations (for example, stellar interiors,
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laboratory dynamos and solar atmospheres, see Ossendrijver (2003), Monchaux et al.
(2007), Charbonneau (2014) also). The Rm used in Yousef et al. (2008a) was very
small. The subsequent kinematic and nonlinear shear dynamo simulations by Tobias
& Cattaneo (2013) and Teed & Proctor (2017) then uncovered that the large-scale
coherent structures within turbulent flows are ultimately responsible for magnetic
field generation even at moderately high Rm. However, the advances in computing
technology have not yet allowed us to reach the Rm of typical solar/stellar dynamos.

The computational difficulty in particular at the nonlinear stage essentially comes
from the multi-scale and chaotic nature of turbulence. Turbulent flow simulations of
real-world problems must rely greatly on phenomenological turbulent models, while
researchers who seek to make a reduced model with a mean–fluctuation decomposition
always encounter the closure problem, where no mathematically justified procedure is
available. In general, whether effective nonlinear dynamo coherent structures exist at
astronomically large Rm remains a fundamental question in the dynamo study; see the
latest excellent review paper by Rincon (2019), for example.

Towards the end of the 20th century, the dynamical systems theory approach spread
among hydrodynamicists who hoped to analyse coherent structures in turbulence
without using any ad hoc assumption. In this approach, turbulence is understood as
a chaotic trajectory wandering around a complicated network formed by unstable
solutions whose properties are invariant in time (for example, steady equilibrium
solutions, travelling wave solutions, periodic orbits); see Waleffe (1997), Gibson,
Halcrow & Cvitanovic (2008), Kawahara, Uhlmann & van Veen (2012) and Willis,
Cvitanovic & Avila (2013). Even shear flows with a simple configuration could
support three-dimensional equilibrium solutions, as first found in plane Couette flow
by Nagata (1990) and Clever & Busse (1992). It has been repeatedly shown that
the flow fields of the invariant solutions are remarkably reminiscent of large-scale
coherent structures observed in turbulent simulations and experiments (Hamilton,
Kim & Waleffe 1995; Hof et al. 2004). More recently, there has also been a great
deal of dynamical-systems-theory-based research on nonlinear shear-driven MHD
dynamos under Kepler rotation, although the studies are limited to relatively small
Rm (Rincon, Ogilvie & Proctor 2007; Herault et al. 2011; Riols et al. 2013). Deguchi
(2019a,b) theoretically and numerically showed that, at least for the non-rotating case,
the large-Rm dynamo solution branch obeys a clean asymptotic law. However, the
generated magnetic field is unfortunately found to become asymptotically small at
the large-Rm limit.

Our goal in this paper is twofold. One, compute a new equilibrium dynamo
solution in the infinite-Rm limit for a simple shear flow. Two, use that limiting
equilibrium solution to confirm the generation of a finite magnetic field amplitude at
asymptotically large Rm. In the next section, we begin by presenting the mathematical
formulation of the problem. In § 3 we shall first generate a nonlinear dynamo
solution branch by a bifurcation from the subcritical three-dimensional hydrodynamic
plane Couette flow solution mentioned above, and then theoretically and numerically
analyse their large-Reynolds-number fate. The results are summarised in § 4 with a
brief discussion.

2. Formulation of the problem

It will become clear that the theoretical framework to be developed in this study can
be applicable for a quite wide range of MHD flows. However, it is advantageous to
choose the flow configuration as simple as possible in order to concisely describe the
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FIGURE 1. (a) Configuration of dimensional plane Couette flow and its laminar solution.
(b) The nonlinear steady plane Couette flow solution due to Nagata (1990), Clever &
Busse (1992). R = 236.4. The box size is [0, 2π/α] × [−1, 1] × [0, π], where α =
300/R ≈ 1.27. The solution is purely hydrodynamic, and corresponds to the green dot
at ε = 1.79 × 10−5 in figure 2. The streak structure is shown by the grey isosurface of
zero streamwise velocity. The red and blue isosurfaces illustrate the streamwise vorticity
by showing 70 % of the maximum and minimum values, respectively.

main point of the theory and the computational methodology. The flow configuration
we select for this purpose is plane Couette flow, a flow between two mutually moving
parallel walls; see figure 1(a). Choosing the wall speed U and the half-gap h as the
velocity and the length scales, respectively, the non-dimensional MHD equations can
be written as

Du
Dt
− (b · ∇)b=−∇p+

1
R
∇

2u, ∇ · u= 0, (2.1)

Db
Dt
− (b · ∇)u=

1
Rm
∇

2b, ∇ · b= 0. (2.2)

Here ∇ = (∂x, ∂y, ∂z) is the gradient in the Cartesian coordinates and D/Dt =
∂t + (u · ∇) is the material derivative. Note that for the magnetic field, the
corresponding Alfvén wave speed is non-dimensionalised by the velocity scale.
The first set of equations are the Navier–Stokes equations, which represent the
conservation of momentum and mass, while the second set of equations are found
from the Maxwell equations and Ohm’s law. Kinematic dynamo studies assume the
smallness of the magnetic field b= (bx, by, bz) so that the Lorentz force term (b · ∇)b
is negligible in (2.1). In that case, the magnetic field is found from a linear analysis
of (2.2), because the velocity u = (ux, uy, uz) and the pressure p are determined
from (2.1). As our interest here is the amplitude of the magnetic field, fully nonlinear
analysis is necessary.

The magnetic and hydrodynamic Reynolds numbers are defined as Rm =Uh/η and
R=Uh/ν, respectively, using the kinematic viscosity ν and Ohmic diffusivity η of the
fluid. The flow is assumed to be periodic in both x ∈ [0, 2π/α] and z ∈ [0, π], with
the streamwise wavenumber α. The box dimensions seen in figure 1(b) are close to
those used in Hamilton et al. (1995), and as seen in that paper, typically only one
streak is generated in the flow. The walls at y=±1 are no-slip, and either perfectly
conducting or insulating (Roberts 1964). Dynamos are self-excited MHD solutions,
so any external magnetic effects must be switched off. We do not use the small-
scale isotropic, non-helical external forcing term used in the majority of shear-driven
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FIGURE 2. Bifurcation diagram of the dynamo solution branches. Here α0 ≡ αRm = 300
and Pm = 1. Red solid curve: perfectly conducting walls. Blue dashed curve: perfectly
insulating walls. The green dot corresponds to the pitchfork bifurcation point where the
red branch emanates from the kinematic dynamo action on top of the streaky field shown
in figure 1(b). Panel (a) shows that both branches can be continued towards the infinite-
Reynolds-number limit (ε= 0). The solutions for ε < 0 do not have any physical meaning;
see (3.1).

dynamo studies (Yousef et al. 2008a,b; Tobias & Cattaneo 2013; Teed & Proctor
2017). Therefore, the only mechanism of energy input to the system is the shear due
to the movement of the walls.

The system has the laminar Couette flow solution u= (y, 0, 0), b= (0, 0, 0). There is
no linear instability at all in this flow, unlike cylindrical (Willis & Barenghi 2002) or
spherical (Guervilly & Cardin 2010) Couette dynamo problems. The proof is simple.
First, we note that Squire’s theorem is applicable even when magnetic effects are
present, and thus it is sufficient to look for z-independent two-dimensional perturbation
(Squire 1933; Drazin & Reid 1981). Then from the Zel’dovich theorem (Zel’dovich
1957), there is no exponentially growing magnetic perturbations. Finally, as shown by
Romanov (1973), there is no linear instability for purely hydrodynamic plane Couette
flow.

Transition to turbulence nonetheless occurs by finite-amplitude perturbations
(Nauman & Blackman 2017). For the purely hydrodynamic case b≡ 0, the non-trivial
steady solution found in Nagata (1990) and Clever & Busse (1992) is responsible for
this subcritical transition; here we reproduce the same solution in figure 1(b). The
flow field of the solution is characterised by streaks – namely, inhomogeneity of the
streamwise velocity swept by the streamwise vortices. A detailed description of the
numerical code used can be found in Deguchi, Hall & Walton (2013) and Deguchi
(2019b). The scheme first discretises (2.1) and (2.2) by means of the spectral method,
and then Newton’s method is applied to find steady unstable solutions. To produce
a reliable numerical result, up to 12 and 30 Fourier harmonics are taken in x and z,
respectively, while 70 Chebyshev modes are used in y.

3. Theoretical and numerical analyses

The streak field for example seen in figure 1(b) is three-dimensional and hence
can support a kinematic dynamo action, whose onset provides the bifurcation
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point of nonlinear dynamo solution branches. Throughout our computations the
magnetic Prandtl number Pm = Rm/R= ν/η is fixed to be unity. Also the streamwise
wavenumber is set to be α = 300/R for later convenience, unless otherwise specified.
The bifurcation diagram shown in figure 2 can best illustrate the emergence of the
dynamo solution branches. Here we measure the magnetic field amplitude by the
maximum of |Bx|, where Bx(y) is the streamwise magnetic field averaged in x and z.
The horizontal axis is

ε = R−2
m . (3.1)

We shall shortly see that the introduction of this small parameter is the key to reaching
our goals.

When the walls are perfectly conducting, the kinematic dynamo problem (2.2)
possesses a real eigenvalue, which passes thorough zero at R = 236.4; that is,
the parameter used in figure 1(b). This solution corresponds to the green point
at ε = 1.79× 10−5 in figure 2. The red curve is one of the dynamo solution branches
produced by the pitchfork bifurcation at this point. The other dynamo solution branch
exactly overlaps this curve because of the transformation b → −b mapping one
solution to the other; equations (2.1) and (2.2) are invariant under this transformation
because the magnetic field is a pseudo-vector in the MHD framework.

An alternative way to obtain a dynamo solution is by seeking nonlinear solutions
to an externally magnetised system and then examining the limit of vanishing external
magnetic field. This approach resulted in a successful strategy for perfectly insulating
walls in the previous study (Deguchi 2019a,b); the corresponding dynamo solution
branch is shown by the blue dashed curve in figure 2.

Having determined nonlinear dynamo solution branches, we will now continue them
to the large-Rm limit. Because of the choice Pm= 1, this limit corresponds also to the
large-R limit. We begin the analysis by applying the long-wavelength rescaling

x= RmX (3.2)

with

(ux, uy, uz, p)= (Ux, R−1
m Uy, R−1

m Uz, R−2
m P), (3.3)

(bx, by, bz)= (Bx, R−1
m By, R−1

m Bz), (3.4)

which makes the steady version of (2.1) and (2.2) take the form

(U · ∇)U− (B · ∇)B=−∇εP+ Pm4εU, ∇ ·U= 0, (3.5)
(U · ∇)B− (B · ∇)U=4εB, ∇ ·B= 0. (3.6)

Here ∇ is redefined as (∂X, ∂y, ∂z), and

∇ε = (ε∂X, ∂y, ∂z), 4ε = ε∂
2
X + ∂

2
y + ∂

2
z . (3.7a,b)

Note that no approximation has been made at this stage. In the rescaled coordinate,
the flow is periodic in [0, 2π/αRm], so we define the rescaled wavenumber α0= αRm,
where α0 = 300.

The underlying motivation behind the scaling is somewhat similar to Prandtl’s
boundary layer theory; more precisely, equations (3.5) and (3.6) at the limit ε→ 0
are similar to the so-called ‘boundary region equations’, used in the boundary layer
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FIGURE 3. The streamwise magnetic field generated at infinite Reynolds number (ε = 0
in figure 2). α0 ≡ αRm = 300 and Pm = 1. The box size is [0, 2π] × [−1, 1] × [0,π]. The
yellow/blue surfaces are the isosurface of 50 % of the maximum/minimum, respectively.
(a) Perfectly conducting walls. (b) Perfectly insulating walls.

and microchannel flow studies (Kemp 1951; Fletcher 1988; Hall 1988; Rubin &
Tannehill 1992; Deguchi et al. 2013). With this scaling, some diffusive terms are
still retained even at the large-Reynolds-number limit. This is because the driving
mechanisms brought about by the shear are multiplied by the x derivative, which
is small from (3.2); hence the viscous–convective balance is always achieved. This
diffusivity allows us to continue the solution branch across ε= 0, as shown in figure 2.
In fact, the streamwise magnetic field shown in figure 3 suggests that the limiting
flow field remains nicely smooth.

There is one minor technical remark that should be made here. If one uses the
toroidal–poloidal potential decomposition for the flow field, some special care must be
taken in the scaling of the potentials to avoid the singularity of the Jacobian matrix at
ε = 0; see Deguchi et al. (2013). Alternatively, one can confirm that the initial guess
created by a linear interpolation of nearby two solutions (at ε=10−12 and −10−12, say)
gives a very small residue with which the input data can be accepted as an accurate
solution.

The streaky hydrodynamic flow structure is qualitatively unchanged from that
shown in figure 1(b), while the examination of figure 3 indicates that the generated
magnetic field also forms a streaklike structure. The dynamo solution inherits the two
symmetries seen in the hydrodynamic plane Couette solution (Nagata 1990; Clever &
Busse 1992)

[ux, uy, uz](x, y, z) = [−ux,−uy, uz](−x,−y, z+π/2)
= [ux, uy,−uz](x+π/α, y,−z), (3.8)

with the same symmetries satisfied for the magnetic field. It is widely acknowledged
in hydrodynamic studies that the latter shift–reflection symmetry is responsible for
the sinusoidal meandering of the streak. The transformation (3.2) implies that, for
large enough Rm, streamwise development of the flow is so slow that it may locally
look almost two-dimensional. However, that streamwise modulation is nevertheless
crucial in sustaining the dynamo mechanism because if it is absent there should be
no dynamo solution from the parallel flow manifestation of Cowling’s antidynamo
theorem (Cowling 1934).
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FIGURE 4. The generated mean magnetic field for α0 = 300. The solid curve
is the limiting result (the same solutions as figure 3). The red points are the
finite-Reynolds-number result at Rm = R = 3000. (a) Perfectly conducting walls.
(b) Perfectly insulating walls.

The flow field quickly converges to the limiting result with increasing Rm. Figure 4
compares the mean magnetic field Bx of the limiting and finite-Reynolds-number
solutions. Even at Rm as low as order 103, the two results are very close to each
other. At higher Rm, of order 104, the finite-Reynolds-number result is graphically
indistinguishable from the limiting result.

The reason for the rapid convergence can be explained by the formal asymptotic
analysis. We first remark here that the large-Reynolds-number limit is a singular
perturbation problem, where the ideal (diffusionless) problem may not produce the
same result as the R−1

m → 0 limit of the diffusive problem. The diffusion effect is in
fact not negligible when the flow develops a small-scale structure. This is the reason
why the formal asymptotic analysis of high-Reynolds-number flows usually involves
complicated matched asymptotic expansions.

Having said that, the rescaled system of (3.5)–(3.6) admits the regular asymptotic
expansions

U=U0(X, y, z)+ εU1(X, y, z)+O(ε2), (3.9)
B=B0(X, y, z)+ εB1(X, y, z)+O(ε2), (3.10)
P= P0(X, y, z)+ εP1(X, y, z)+O(ε2), (3.11)

for small ε. The crux of the argument is that, in our particular equilibrium invariant
solutions, all the small-scale structures are screened out. As was mentioned in § 1, the
solutions satisfy the MHD equations exactly within numerical accuracy, and hence,
in this sense, there is no model reduction necessary to isolate large-scale coherent
structures.

The leading-order solution (U0, B0, P0) is what we found by letting ε→ 0 in the
rescaled system of (3.5)–(3.6). The correction to the leading-order part is of O(ε),
which is numerically very small even at moderately high Rm. Clearly, the scaling (3.4)
and the asymptotic expansions (3.10) indicate that the streamwise magnetic field
eventually becomes independent of Rm. Therefore, the generated magnetic field is,
indeed, finite at the asymptotic limit.
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FIGURE 5. (a) The α0 dependence of the limiting dynamo solutions (ε = 0, Pm = 1).
Red solid curve: perfectly conducting walls. Blue dashed curve: perfectly insulating walls.
(b–d) Visualisation of the electric current strength |j| generated by the corresponding
dynamo solutions indicated in (a). Grey transparent/green surface represents 50 %/60 %
maximum value.

The strength of the dynamo action gets stronger with decreasing α0, as shown
in figure 5(a). For large α0, on the other hand, the dynamo becomes less effective;
this observation is certainly consistent with Deguchi (2019a,b), where theoretical and
numerical evidence was given for the O(ε1/6) magnetic field generation at the shorter
wavelength α = O(1). Note also that in Deguchi (2019b) the asymptotic problem is
solved with a regularisation effect whose strength is controlled by a parameter. On
the other hand, the asymptotic problem obtained in this paper does not require such
regularisation.

The electric current j = ∇ × b produced by the dynamo mechanism is also O(ε0).
In figure 5(b–d) we use the magnitude of it to see the α0 dependence of the
field structure of the dynamos. The green blobs enclosing the region where the
strong current is generated are shortened in the streamwise direction for smaller α0;
compare figure 5(d) for α0 = 300 and figure 5(c) for α0 = 200. That streamwise
concentration of the structure affects the decay of the streamwise Fourier coefficients,
and hence the computation was double-checked using 18 streamwise Fourier modes.
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The convergence problem becomes even more serious on approaching the saddle-node
point (b), because of the complicated field structure developed in all three directions.
We are unable to determine if it is possible to round the saddle-node point. Note that,
unlike finite-Reynolds-number computations, the solution branch of an asymptotically
reduced problem may be terminated due to a mathematical singularity; see Dempsey
et al. (2016) for example.

4. Summary and discussion

We have demonstrated that there are self-consistent, subcritical, nonlinear and
three-dimensional dynamo solutions that persist at infinite hydrodynamic and magnetic
Reynolds numbers. The homogeneous shear, which is used as an external base
driving mechanism of the dynamos, presents as a large-scale background structure in
many real-world problems (Ossendrijver 2003; Monchaux et al. 2007; Charbonneau
2014; Rincon 2019). Although such base flows may be stable with respect to
small perturbations, finite-amplitude dynamos can be driven indirectly via the
three-dimensional nonlinear mechanism. The key to the successful computation of
the dynamos at the large-Reynolds-number limit is the method of invariant solutions,
which allows us to isolate the large-scale structure without any ad hoc assumptions.
The nonlinear dynamo solutions found are almost always unstable. As established in
many previous purely hydrodynamic and magneto-hydrodynamic studies, at least for
the transitional regime, such unstable solutions typically constitute a mathematically
rational ‘backbone’ on which large-scale coherent structures in turbulence hang
(Hamilton et al. 1995; Waleffe 1997; Hof et al. 2004; Rincon et al. 2007; Gibson
et al. 2008; Herault et al. 2011; Kawahara et al. 2012; Riols et al. 2013; Willis et al.
2013).

The finite-amplitude dynamo magnetic field generation at the large-Rm limit has
been conclusively determined for the first time, within a framework that is fully
consistent to the asymptotic behaviour of the finite-Rm results. The rapid convergence
of the finite-Reynolds-number results towards the limiting result is justified by the
asymptotic analysis. The numerical limiting process has been proved successful for
the two popularly used magnetic boundary conditions on the walls. Thus we expect
that the effective streaky magnetic field generation mechanism is robust against the
flow configuration, so that a similar structure may also appear in various MHD flows.

There are some astrophysical flows where the present method could be applicable,
but with some extensions. Threadlike structures reminiscent of the streak can for
example be found in the observation of the Sun’s atmosphere (Okamoto et al. 2015).
For such atmospheric flows the effects of compressibility and stratification must be
included to find quantitative features of the dynamos. Streaklike subcritical dynamos
have also been observed in shear flows under Kepler rotation, and believed to play
an important role in angular momentum transport of accretion disks (Rincon et al.
2007; Herault et al. 2011; Riols et al. 2013). At least it was numerically confirmed
for moderate Rm that the shear-driven dynamo obtained in Yousef et al. (2008a)
works even for the rotating case (Yousef et al. 2008b). More recently, the existence
of similar subcritical dynamos in global cylindrical coordinate simulations has been
reported by Guseva et al. (2017). In cylindrical geometry, there is a maximal length
scale in the streamwise (azimuthal) direction. This means that the cross-streamwise
scale of the coherent structures must be small in order to apply the scaling of the
dynamos discussed in this paper.

The present study focused only on Pm = 1. The question therefore naturally arises
as to how the magnetic field generation changes as that parameter varies. Within the
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asymptotic framework, Pm is formally an O(ε0) quantity. Thus the range of Pm within
which the large-Rm dynamos exist must be studied numerically in the future. The
value of Pm in plasma flows changes depending on the temperature and density; for
example, the recent plasma experiment used noble gases to control Pm within the
range 0.2–12 (Collins et al. 2014). The tentative calculations suggest that certainly our
limiting dynamo solutions exist for the relevant range of Pm. This result may motivate
experimentalists to use a plasma flow as simple as that through a long straight pipe
to generate a strong streaky magnetic field. Such experiments may help answering the
question whether the invariant solutions remain relevant to turbulent dynamics at large
Rm and R, beyond the transitional regime.
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