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Abstract

This paper evaluates an evolution strategy to tune conventional proportional plus integral plus derivative~PID! and
gain scheduling PID control algorithms. The approach deals with the utilization of an evolution strategy with learning
acceleration by derandomized mutative step-size control using accumulated information. This technique is useful to
obtain the following characteristics:~1! freedom of choice of a performance index,~2! increase of the convergence
speed of evolution strategies to get a local minimum to determine controller design parameters, and~3! flexibility and
robustness in the automatic design of controllers. Performance analysis and experimental results are carried out using
a laboratory scale nonlinear process fan and plate. The practical prototype contains features such as nonminimum
phase, dead time, resonant, and turbulent disturbance behavior that motivate the utilization of intelligent control techniques.

Keywords: PID Control, Gain Scheduling Control, Evolutionary Computation, Evolution Strategies, Experimental
Nonlinear Process

1. INTRODUCTION

Advanced techniques to design industrial control systems
are, in general, dependent of mathematical models for the
controlled process. In addition, the task of the controllers is
to achieve optimum performance when faced with various
types of disturbance that are unknown in most practical ap-
plications~Åström & Wittenmark, 1989!.

Despite the huge development in control theory, the ma-
jority of industrial processes are controlled by the well-
established proportional plus integral plus derivative~PID!
controller. The popularity of PID control can be attributed
to its simplicity ~in terms of design and from the point of
view of parameter tuning! and to its good performance in a
wide range of operating conditions. However, PID control-
lers present as a disadvantage, the need of retuning when-
ever the processes are subjected to some kind of disturbance
or when processes present complexities~nonlinearities!. So,
over the last few years, significant development has been
established in the process control area to adjust the PID con-

troller parameters in an automatic way, in order to ensure
adequate servo and regulatory behavior for a closed-loop
plant~Åström & Wittenmark, 1989; Coelho et al., 1998; Co-
elho & Coelho, 1998; VanDoren, 1998!.

In recent decades, the theory and the practice relative to
the process control area have received great attention and
the importance of having well-behaved control loops have
been recognized in the academic and industrial environ-
ments for a long time. PID provides low cost, implementa-
tion simplicity, and when adequately tuned, provides good
dynamic behavior for the controlled process. In general, the
tuning parametersKp ~proportional gain!, Ti ~integral time!,
andTd ~derivative time! can be based on different methods.

Åström and Wittenmark~1989! present a method in which
a limit cycle oscillation is enforced on the process to be con-
trolled by a relay with suitable values of amplitude and hys-
teresis, so that angular frequency and critical gain values
can be found from the amplitude and frequency of the re-
sulting process output with controlled oscillation. Hang et al.
~1991! present the a procedure to refine the Ziegler and Nich-
ols ~1942! tuning formula in the context of PID andPI auto-
tuning. Yamamoto and Shah~1998! treat a new multivariable
self-tuning PID controller design scheme and the proposed
scheme is experimentally evaluated on a 23 2 level plus
temperature control system. Yusof and Omatu~1993! present
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a multivariable self-tuning controller with a PID structure
with a combination of the self-tuning property, in which the
controller parameters are tuned automatically on-line. Wil-
lis and Montague~1993! treat the benefits to be gained uti-
lizing nonlinear neural networks process models for PID
control system design. Malki et al.~1997! present the de-
sign and experiment of a fuzzy PID controller for a flexible
robot arm driven by a dc motor in a laboratory with uncer-
tainties from time-varying loads.

In the literature, several authors have proposed the tuning
of PID controllers by genetic algorithms~GAs!. Wang and
Kwok ~1993! presented a comparative study of PID design
based on GAs, Ziegler–Nichols rules and pattern recogni-
tion method of Hooke–Jeeves and evaluated in a simulation
studyofapHprocess.HwangandThompson~1993!dealtwith
PID control tuning in a digital form by GAs, applied to an un-
stable simulated process of third order. Lo Bianco and Piazzi
~1996! developed the optimum PID design forH` control via
GAs with uncertainties through simulation. Huang and Chen
~1997! shown the PID design by GAs in controlling a preci-
sion positioning table. Chen et al.~1995! developed a PID
control combiningH2/H`norms applied to a process with un-
certainties. Takahashi et al.~1997! presented the multiobjec-
tive H2/H` type PID based on gradient and on GAs, applied
to dc motor model.

In this paper, the parameter tuning task of conventional
PID and gain scheduling PID~GS-PID! controllers with
application in a practical nonlinear process is assessed. The
tuning procedure of controller gains utilizes an evolution
strategy~ES! algorithm with derandomized mutative step-
size control using accumulated information. The fan and
plate prototype contains features of nonminimum phase,
dead-time, resonant and turbulent disturbance behavior and
therefore motivates the utilization of intelligent control
techniques.

The paper is organized as follows: In Section 2, notions
of evolutionary computation and description of evolution
strategies are presented. In Section 3, procedure and control
tuning descriptions of a PID and a GS-PID are shown. The
description of the fan and plate nonlinear process is pre-
sented in Section 4. Experimental results and performance
analysis of optimized controllers are described in Section 5.
Finally, conclusions and directions for future work are shown
in Section 6.

2. EVOLUTIONARY COMPUTATION

Evolution can be regarded as a sequence of self-organization
steps, that is, as the underlying universal principle of any
kind of self-organization. Evolutionary computation~EC!
is a field of research that use computational models of evo-
lutionary processes as key elements in the design and im-
plementation of computer-based problem-solving systems.
It is important to note that the field ofEC is not more than
a small part of a greater, more complex scientific universe

that, incorporating fuzzy systems and neural networks, is
referred to by some authors as computational intelligence
and by others as soft computing~Zadeh, 1994; Miranda et al.,
1998!. The mainECalgorithms investigated by researchers
in the field ofEC include genetic algorithms, evolutionary
programming, evolution strategies, and genetic program-
ming ~Bäck et al., 1997!.

Evolutionary algorithms~EA! mimic the process of nat-
ural evolution, the driving process for the emergence of
complex and well-adapted organic structures. To put it suc-
cinctly and with strong simplifications, evolution is the re-
sult of the interplay between the creation of new genetic
information and its evaluation and selection. The effective-
ness and simplicity ofEAs have led many researchers to
argue they are methods of choice for hard real-life prob-
lems, because they are especially capable of handling op-
timization problems in which the objective function are
nonconvex, discontinuous or nondifferentiable, noisy, multi-
objective or multimodal~Goldberg, 1989!.

Classical methods to look for a “best” solution to such
problems often rely on the use of a gradient-based search.
Unfortunately, the error response surface to be examined is
often a general nonlinear function possessing multiple local
optima. Gradient methods are guaranteed to converge to lo-
cally optimal solutions if the step size tends to zero. But
such solutions may be far from the global optima and may
not provide adequate system performance~Fogel, 1995;
Goldberg, 1989!.

EAshave been successfully applied to solve hard prob-
lems in many fields of study, such as search, optimization,
scheduling, pattern recognition, image classification, pro-
cess identification, and control~Chipperfield & Fleming,
1996; Man et al., 1996!. The next section describes the evo-
lution strategies utilized in tuning of controller parameters.

2.1. Evolution strategies

Similar to GAs, ESs are algorithms that imitate the princi-
ples of natural evolution as a method to solve parameter
optimization problems. ESs are an abstraction of evolution
at individual behavior level, stressing the behavioral link
between an individual and its offspring, while GAs main-
tain the genetic link. ES uses the mutation operator as main
operator, it works directly with floating point vectors, and it
allows self-adaptation of strategy parameters through stan-
dard deviation and covariances~Bäck et al., 1997; Miranda
et al., 1998!.

ESs were developed by Rechenberg and Schwefel in the
1960s, at the Technical University of Berlin, Institute of Fluid
Mechanics, during their studies of aerotechnology and space
technology~Rechenberg, 1965; Bäck et al., 1997!. Rechen-
berg~1965! developed a theory of convergence velocity for
the so-called~111!-ES, a simple mutation-selection mech-
anism working on one individual that creates one offspring
per generation by means of Gaussian mutation. He also pro-
posed a first multimember ES, a~m 1 1!-ES, wherem ≥ 1
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individuals recombine to form one offspring, which after
mutation eventually replaces the worst parent individual.

Schwefel~1981! introduced recombination and popula-
tions with more than one individual, and provided a com-
parative study of ESs with more traditional optimization
techniques. The motivation to extend the~1 1 1!-ES and
~m 1 1!-ES to a~m 1 l!-ES and a~m,l!-ES has been two
aspects of essential importance: the use parallel computers,
and to enable self-adaptation of strategic parameters like the
standard deviations of the mutations. The nomenclature~m1
l!-ES suggests,m parents producel offspring and the whole
population is reduced again to them parents of the next gen-
eration; in other words, the selection operates on the joined
set of parents and offspring. Thus, parents survive until they
are superseded by better offspring. The~m,l!-ES suggests
that only the offspring undergo selection, whereas the an-
cestors are forgotten. Ifm . 1, then the principle of recom-
bination can be introduced~Davidor & Schwefel, 1992; Bäck
& Schwefel, 1993!.

Comparable with other optimization techniques, the per-
formance of ESs depends on a suitable choice of internal
strategy control parameters. Apart from a fixed setting, an
ES facilitates an adjustment of such parameters within a self-
adaptation process, while in conventional GAs the control
parameters are adjusted by trial-and-error methods. The self-
adaptation of strategy parameters provides one of the main
features of the success of ESs because ESs use evolutionary
principles to search in the space of object variables and strat-
egy parameters simultaneously.

2.1.1. ES with learning acceleration by derandomized
mutative step-size control

The principle of self-adaptation, as mainly utilized in ESs,
facilitates the implicit control of strategy parameters by in-
corporating them into the representation of individuals and
by evolving the strategy parameters themselves in analogy
with the usual evolution of object variables. The term strat-
egy parameters refers to parameters that control the evolu-
tionary search process, such as mutation rates, mutation
variances, and recombination probabilities, and the idea of
self-adaptation consists in evolving these parameters in anal-
ogy to the object variables themselves~Bäck et al., 1997!.

Most of the research of self-adaptation principles inEAs
deal with parameters related to the mutation operator. The
technique of self-adaptation is most widely utilized for the
variances and covariances of a generalizedn-dimensional
normal distribution~Schwefel, 1981; Fogel, 1995!.

The power of an ES is mainly based upon its ability to
perform a second-level optimization of strategy param-
eters. This process adapts the mutation strength, in such a
way that the whole algorithm presents near-optimal perfor-
mance. There are different possibilities of constructing such
strategies. The simplest is the105 success probability rule
of Rechenberg~1973!, where the ratio of successful muta-
tions to all mutations should be 105. If it is greater than 105,
increase the mutation variance; if it is less, decrease the vari-

ance,s2 ~Beyer, 1996!. This algorithm works satisfactorily
in most problems optimization, but it depends on the appli-
cability of an external model of parameter space topology
and it only able one general step-size, but no an individual
step-size~Ostermeier et al., 1995a!.

The mutation operator in an ES realizes a kind of hill-
climbing search procedure, when it is considered in combi-
nation with selection operator. With dedicated standard
deviation,s, for each object variable preferred directions
of search may be established only along the axes of the co-
ordinate system. In general, the best search direction~the
gradient! is not aligned on those axes. Thus, an optimal rate
of progress is achieved only by chance when suitable mu-
tations coincide~when they are correlated!. Otherwise, the
trajectory of the population through the search space is zig-
zagging along the gradient~Bäck et al., 1991; Davidor &
Schwefel, 1992!.

To avoid this reduction of the rate of progress, the muta-
tion operator can be extended again to handle correlated mu-
tations. Schwefel~1981! proposes the extension the mutation
operator to handle correlated mutations that require an ad-
ditional strategy vector with the idea to approximate the in-
verse of the Hessian probabilistically simultaneous to the
optimization process. Rudolph~1992! shows that the prob-
abilistic approximation procedure of Schwefel~1981! can
be used to construct any valid correlated multinormal ran-
dom vector. However, numerical results indicate that the con-
vergence of the approximation is not yet satisfactory. The
main reason might be found in the fact that the step-size
adaptation process affects the angle adaptation process in a
disruptive way.

The methodology of derandomized ES~Ostermeier et al.,
1994, 1995a, 1995b! is utilized in this paper to tune conven-
tional PID and gain scheduling PID control algorithms. This
algorithm deals an ES based on the derandomized scheme of
mutative step-size control. The adaptation concept uses in-
formation accumulated from the preceding generations with
an exponential fading of old information instead of using in-
formation from the current generation only.

The implemented~11 l!-ES tries to derandomize the ad-
aptation process by exploiting information gathered in pre-
ceding iterations. Derandomized adaptation usually takes
place without mutation of the strategy parameters them-
selves. It uses selected points~more specifically: selected
mutation steps! in the object parameter space for strategy
parameter adjustment. Derandomized~11 l!-ES has a start
point chosen randomly with uniform probability distribu-
tion, and it uses two operators: selection and mutation. The
recombination operator is not utilized becausem 5 1 is
adopted. The selection~adaptation! operator is completely
deterministic; it just chooses the most fitm individuals~1≤
m , l! out of the set ofl offspring individuals. The indi-
vidual ~m 51! with the highest fitness advances to the next
generation, that is,

<Km~t 1 1! 5 <Klsel~t! ~1!
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where <Km~t! is the parameter vector of generationt andselmarks the quantities of theselected offspring of generationt.
Mutation is the main operator and introduces random modification into the population. The implemented algorithm realizes
mutation ellipsoids in the direction of the selected offspring. The creation ofl offspring is given by~Ostermeier et al., 1994,
1995a!:

<Kli ~t! 5 <Km~t! 1 d~t!{ ;dscal~t!{ ;Zi , ~2!

whered~t! is the general step-size of generationt, ;dscal~t! is the individual step-sizes of generationt ~ ;dscal~0! 5 ~1, . . . ,1!!,
;Z 5 ~z1, . . . ,zn!, with zi ~0,1! normally distributed,n is the number of parameters to be optimized. The equation of accu-

mulation of selected mutations is given by:

; OZ~t! 5 ~12 c! ; OZ~t 2 1! 1 c ;Zsel, ; OZ~0! 5 ;0, ~3!

wherec 5 %1/n is the constant factor that determine how fast the contribution of former generations declines, that
is, the weighting of the fast generation and the lifespan of the information of preceding generations, respectively. The
adaptation scheme of the general step-size uses the convergence of thex-distribution,6 ;Z65%(~zi !

2

Nr`
&& N~!n,0.5!, and

it is given by:

d~t 1 1! 5 d~t!{SexpS 6 ; OZ~t!6

!n{%c/~2 2 c!
2 1 1

1

5nDDb

~4!

;dscal~t 1 1! 5 ;dscal~t!{SexpS 6 ; OZ~t!6

%c/~2 2 c!
1 0.35DDbscal

, ~5!

whereb 5 %1/n andbscal 5 1/n. The exponentsb andbscal are relevant factors for adaptation speed and precision.
Sensible values are in the range~0,1!. Small values facilitate a precise but time-consuming adaptation and vice versa. The given
values yield an adequate compromise. The factor%c/~22 c! normalizes the mean variances of the resulting distributions to
one~when no selection takes place!. It results from the geometric series of the mean variations of the added mutations:

lim
mr`
% c2 1 @c{~12 c!# 2 1 @c{~12 c!2 # 2 1 @c{~12 c!3 # 2 1 . . .1 @c{~12 c!m# 2 5 %c/~2 2 c!. ~6!

The derandomized mutative step-size control in ESs en-
ables a reliable step-size adaptation and the utilization of
accumulated information decreases the locality of the ad-
aptation process. The improvement achieved arises from the
implicit use of correlations of the selected mutations in
the generation sequence. Consequently, the step-sizes are
adapted to such values that successive selected mutations
tends to be orthogonal on average. This seems to be char-
acteristic for optimal step-sizes in general~Ostermeier, 1994,
1995a!.

3. EVOLUTIONARY OPTIMIZATION BY
DERANDOMIZED (1 1 l)-ES

The optimization objective by derandomized~11 l!-ES is
the adjustment of three parameters~Kp, Ti , andTd!. The stan-
dard form of classic digital PID control is given by:

u~k! 5 u~k 2 1! 1 q0e~k! 1 q1e~k 2 1! 1 q2e~k 2 2!, ~7!

where the parametersq0, q1, andq2 are calculated by

q0 5 KpS11
Ts

2Ti

1
Td

Ts
D ~8!

q1 5 2KpS11
2Td

Ts

2
Ts

2Ti
D ~9!

q2 5 Kp

Td

Ts

, ~10!

and whereu~k! e @0.0; 5.0# volts is the control action,Ts is
the sampling time, ande~k! is the error given by the differ-
ence between the output and desired setpoint,y~k! e @0.0;
5.0# volts is the process output.

GS-PID control design is different from conventional PID
because the former is adequate for treatment of0with dif-
ferent dynamics for each operation range, that is, the pro-
cesses can be governed by multiple models. The adopted
design of GS-PID control consists in the tuning of three pa-
rameters of a PID controller, including one for each set-
point change,yr , with total number of nine parameters. The
optimization procedure is tested for three setpoint changes,
as shown in Section 5.

The performance index to be minimized,J~u,e!, adopted
for PID and GS-PID controller tuning, denotes dynamic as-
pects of error terms using steady-state, rise time, overshoot
and relative stability, and is given by
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J~u,e! 5
(
k51

N

$6e~k!61 w6De~k!6% i

N
, ~11!

whereDe~k! 5 e~k! 2 e~k21!, N is the number of process
samples,w is set to 1,i is equal tok, except when any change
of setpoint occurs, in which case,i 5 1 and subsequently
should be increased in each iteration ask increases. The uti-
lized functional consists of theL1 norm of error weighted in
time ~Li et al., 1996!. Consequently, the fitness,F@J~u,e!#
to be maximized by derandomized~1 1 l!-ES is given by

F @J~u,e!# 5
1

11 J~e,u!
~12!

Figure 1 presents the configuration for optimization of
PID and GS-PID controllers by a derandomized~11 l!-ES.

The tuning procedure of PID and GS-PID controllers when
applied to the fan and plate process follows the steps:

1. determination of the controller configuration~range
for parameter search!, process~number of samples,
sampling time, setpoint! and derandomized~11 l!-ES
to be utilized in the practical experiment. Design pa-
rameters utilized in this work are presented in Table 1;

2. initialization with uniform distribution of parameters
of the population of the PID~or GS-PID! controller,
that is, a set of controllers that conform the initial pop-
ulation is generated randomly;

3. application of control law with the parameters of each
population individual and sampling time;

4. storage of input, output, and error data of the fan and
plate process for the individual under analysis;

5. evaluation of fitness of population’s individuals;

6. application of deterministic selection operator for
choice ofm parent for new generation;

7. application of mutation operator with self-adaptation
mechanisms and generation of new population ofl
individuals;

8. repeating of steps~3! to ~7! until a stopping condition
is satisfied—in this case, the number of generations
should be equal to 10.

4. FAN AND PLATE NONLINEAR PROCESS

The fan and plate experiment is presented in several uni-
versities for teaching and research activities. The fan-and-
plate process has complex features and motivates the design
of intelligent techniques. The fan and plate control system
is composed of a fan driven by a dc motor, a 50-cm-long air
duct with a funneling characteristic and having on its left
extremity a small rectangular plate~Fig. 2!.

The 24-V dc motor is driven by an actuator circuit whose
input is compatible with the D0A converter output. The an-
gular deflection of the plate is measured by a photoconduc-
tive cell ~light from LED that passes through a disk painted
with varying shades, from white to black, whose incidence

Fig. 1. PID and GS-PID controllers with tuning by a derandomized~11 l!-ES.

Table 1. Design parameters of experiment

Parameters Values

Ts 200 ms
m 1
l 5
Number of generations 10
Experiments realized for

design of each controller
5

Range of parameter search Kp 5 @0.04; 0.2# , Ti 5 @0.1; 1.0# ,
Td 5 @0.0; 1.0#

Samples 500 samples~that demand 1 min and 40 s
for each fitness evaluation!
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on a photo element will cause it to change its conductive
properties! and connected to the measurement circuit.

The control problem is to regulate the angular deflection
of the plate~controlled variable! actuating on the input volt-
age of the dc motor~manipulated variable!. The distance
between fan and plate can be changed and defines an im-
portant parameter of the system. The prototype, containing
nonminimum phase, dead-time, resonant and turbulent dis-
turbance behavior, can serve as tangible evidence of the use-
fulness of intelligent control techniques in difficult situations.

5. EXPERIMENTAL RESULTS

The ~1 1 l!-ES is implemented in the C language and uti-
lizes the 80486 Intel processor with clock of 33 MHz. The
total time for each complete cycle of controller optimiza-
tion is 1 hour and 50 min, plus the time of processing of ES
and the time required for the process to start in the same
position for all fitness evaluations.

Next, the experimental results of servo behavior—tuning
phase—with three changes of setpoint toyr15 2.0~samples
0 to 150!, yr2 5 3.5 ~samples 151 to 300!, andyr3 5 2.5
~samples 301 to 500! are presented. In the servo0regulatory

behavior analysis of the controller tuning—test phase—the
parameters obtained in the tuning phase by the~11 l!-ES
are maintained constant and a bias of1 0.5 V is added at
samples 100 and 400, and removed at samples 150 and 450,
respectively.

Table 2 presents the results of tuning the PID and GS-
PID controllers with a derandomized~1 1 l!-ES. Results
are obtained after 10 generations of evolution in 5 experi-
ments. These data are associated with the experiments for
three setpoint changes. Figures 3–6 present the best results
in tuning and test phases ofPID and GS-PID controllers.

The most adequate gains for controller configurations are:
Kp 5 0.093; Ti 5 0.167, andTd 5 0.143—for the PID
controller—andKp150.168;Ti1 5 0.269;Td1 5 0.0 ~ yr1 5
2.0!; Kp2 5 0.040;Ti2 5 0.128,Td2 5 0.002~ yr2 5 3.5!, and
Kp3 5 0.073;Ti3 5 0.714; andTd3 5 0.038~ yr3 5 2.5!—for
the GS-PID controller.

Gains for the conventional tuning by Ziegler–Nichols
method~PID-ZN!, based on critical gain and oscillation pe-
riod ~Åström & Hägglund, 1988! areKp5 0.153;Ti 5 0.148;
andTd 5 0.108. The servo behavior is shown in Figure 7. It

Fig. 2. Physical setup of the fan and plate.

Table 2. Comparative study by derandomized (11 l)-ES in the
tuning phase of PID and GS-PID controllers

Experimental Data PID GS-PID

Experiment0Functional J~u,e! J~u,e!

Number 1 9.659 10.176
Number 2 9.064 8.417
Number 3 8.529 9.674
Number 4 9.136 9.389
Number 5 8.683 8.283
Average 9.014 9.188
Standard deviation 0.441 0.816
Best value 8.529 8.283
Worst value 9.659 10.176

Fig. 3. PID control of fan and plate process—tuning phase—with a de-
randomized~11 l!-ES.
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can be observed that the adjusted gains do not provide an
adequate tuning for PID if compared with evolutionary tun-
ing for PID and GS-PID controllers, as presented in Fig-
ures 3–6. The obtained functional by PID-ZN isJ~e,u! 5
61.310. The complexities of the fan-and-plate process are
affecting the performance of PID-ZN technique in the PID
tuning phase.

Figure 8 shows the gain evolution by derandomized~1 1
l!-ES is the controller turning PID~3! and GS-PID~5!, ac-
cording to Table 2.

According to Table 2 and Figures 3–6, it is possible to
observe that the derandomized~1 1 l!-ES is adequate to
tune PID and GS-PID controllers, as evidenced by the fast
convergence confirmed by average and standard deviation
values in relation to the adopted configuration of number of

tuning parameters, population size and small number of gen-
erations for evolutionary optimization cycle.

6. CONCLUSION

The derandomized~1 1 l!-ES procedure was successful
when applied to tune PID and GS-PID controllers without
the necessity ofa priori knowledge of the fan and plate pro-
cess model. In this practical application, the derandomized
~1 1 l!-ES was able to converge toward adequate param-
eters, although there was no knowledge of fan and plate pro-
cess parameters, such as process order, nonlinearities, noise
properties, and other factors.

Among the relevant aspects considered in this work are:
~1! application of the evolutionary methodology in control-

Fig. 4. GS-PID control of fan and plate process—tuning phase—with a
derandomized~11 l!-ES.

Fig. 5. PID control of fan and plate process—test phase—with a deran-
domized~11 l!-ES.

Fig. 6. GS-PID control of fan and plate process—test phase—with a de-
randomized~11 l!-ES.

Fig. 7. PID-ZN tuning for setup changes~tuning phase!.
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ler tuning for a practical process;~2! possibility of utiliza-
tion of these powerful tools ofEC in an industrial process,
and~3! features of robustness and fast convergence of the
derandomized~11 l!-ES.

Servo and regulatory results are motivating in consider-
ing the proposed procedure as a suitable tool for controller
design, and also stimulates investigating the possibility of
further application to design and development in the case
of practical multivariable systems.

As future works, have been evaluated to deal with the
comparative study of ES and other intelligent paradigms with
adaptive control methodologies. Therefore, a robust and ef-
ficient design structure for application in system identifica-
tion, modeling, and process control in laboratory and
industrial environments may be achievable.
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