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Abstract

This paper evaluates an evolution strategy to tune conventional proportional plus integral plus def®&)vand

gain scheduling PID control algorithms. The approach deals with the utilization of an evolution strategy with learning
acceleration by derandomized mutative step-size control using accumulated information. This technique is useful to
obtain the following characteristicél) freedom of choice of a performance ind€R) increase of the convergence

speed of evolution strategies to get a local minimum to determine controller design paramet€3s flamibility and
robustness in the automatic design of controllers. Performance analysis and experimental results are carried out using
a laboratory scale nonlinear process fan and plate. The practical prototype contains features such as nonminimum
phase, dead time, resonant, and turbulent disturbance behavior that motivate the utilization of intelligent control techniques.

Keywords: PID Control, Gain Scheduling Control, Evolutionary Computation, Evolution Strategies, Experimental
Nonlinear Process

1. INTRODUCTION troller parameters in an automatic way, in order to ensure
adequate servo and regulatory behavior for a closed-loop
Advanced techniques to design industrial control systemplant(Astrém & Wittenmark, 1989; Coelho et al., 1998; Co-
are, in general, dependent of mathematical models for thelho & Coelho, 1998; VanDoren, 1998
controlled process. In addition, the task of the controllersis In recent decades, the theory and the practice relative to
to achieve optimum performance when faced with varioughe process control area have received great attention and
types of disturbance that are unknown in most practical apthe importance of having well-behaved control loops have
plications(Astrom & Wittenmark, 1989 been recognized in the academic and industrial environ-
Despite the huge development in control theory, the maments for a long time. PID provides low cost, implementa-
jority of industrial processes are controlled by the well-tion simplicity, and when adequately tuned, provides good
established proportional plus integral plus derivati®D)  dynamic behavior for the controlled process. In general, the
controller. The popularity of PID control can be attributed tuning parameters,, (proportional gaif, T; (integral time,
to its simplicity (in terms of design and from the point of andT, (derivative timg can be based on different methods.
view of parameter tuningand to its good performance ina  Astrém and Wittenmark1989 present a method in which
wide range of operating conditions. However, PID control-a limit cycle oscillation is enforced on the process to be con-
lers present as a disadvantage, the need of retuning whetrolled by a relay with suitable values of amplitude and hys-
ever the processes are subjected to some kind of disturbangsresis, so that angular frequency and critical gain values
or when processes present complexitienlinearities. So,  can be found from the amplitude and frequency of the re-
over the last few years, significant development has beesulting process output with controlled oscillation. Hang et al.
established in the process control area to adjust the PID cofi1991) present the a procedure to refine the Ziegler and Nich-
0ls (1942 tuning formula in the context of PID ariél auto-
tuning. Yamamoto and Sh&h998) treat a new multivariable
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a multivariable self-tuning controller with a PID structure that, incorporating fuzzy systems and neural networks, is
with a combination of the self-tuning property, in which the referred to by some authors as computational intelligence
controller parameters are tuned automatically on-line. Wil-and by others as soft computitigadeh, 1994; Miranda et al.,
lis and Montagu€1993 treat the benefits to be gained uti- 1998. The mainEC algorithms investigated by researchers
lizing nonlinear neural networks process models for PIDin the field of EC include genetic algorithms, evolutionary
control system design. Malki et al1997) present the de- programming, evolution strategies, and genetic program-
sign and experiment of a fuzzy PID controller for a flexible ming (Back et al., 199Y.
robot arm driven by a dc motor in a laboratory with uncer-  Evolutionary algorithmgEA) mimic the process of nat-
tainties from time-varying loads. ural evolution, the driving process for the emergence of
In the literature, several authors have proposed the tuningomplex and well-adapted organic structures. To put it suc-
of PID controllers by genetic algorithni&As). Wang and  cinctly and with strong simplifications, evolution is the re-
Kwok (1993 presented a comparative study of PID designsult of the interplay between the creation of new genetic
based on GAs, Ziegler—Nichols rules and pattern recogniinformation and its evaluation and selection. The effective-
tion method of Hooke—Jeeves and evaluated in a simulationess and simplicity oEAs have led many researchers to
study of a pH process. Hwang and Thomp&®93 dealtwith  argue they are methods of choice for hard real-life prob-
PID controltuning in a digital form by GAs, appliedto an un- lems, because they are especially capable of handling op
stable simulated process of third order. Lo Bianco and Piazzimization problems in which the objective function are
(1996 developed the optimum PID design fér, controlvia  nonconvex, discontinuous or nondifferentiable, noisy, multi-
GAs with uncertainties through simulation. Huang and Cherpbjective or multimodalGoldberg, 1988
(1997 shown the PID design by GAs in controlling a preci-  Classical methods to look for a “best” solution to such
sion positioning table. Chen et &ll995 developed a PID  problems often rely on the use of a gradient-based search.
control combinindd,/H_, norms applied to a process withun- Unfortunately, the error response surface to be examined is
certainties. Takahashi et &.997) presented the multiobjec- often a general nonlinear function possessing multiple local
tive H,/H_, type PID based on gradient and on GAs, appliedoptima. Gradient methods are guaranteed to converge to lo-
to dc motor model. cally optimal solutions if the step size tends to zero. But
In this paper, the parameter tuning task of conventionakuch solutions may be far from the global optima and may
PID and gain scheduling PIDGS-PID controllers with  not provide adequate system performarEegel, 1995;
application in a practical nonlinear process is assessed. Thgoldberg, 1988
tuning procedure of controller gains utilizes an evolution EAshave been successfully applied to solve hard prob-
strategy(ES) algorithm with derandomized mutative step- lems in many fields of study, such as search, optimization,
size control using accumulated information. The fan andscheduling, pattern recognition, image classification, pro-
plate prototype contains features of nonminimum phasegess identification, and contr¢Chipperfield & Fleming,
dead-time, resonant and turbulent disturbance behavior ari®96; Man et al., 1996 The next section describes the evo-
therefore motivates the utilization of intelligent control lution strategies utilized in tuning of controller parameters.
techniques.
The paper is orgamzed_ as follows: In_ Sgctlon 2, notllonsz.l. Evolution strategies
of evolutionary computation and description of evolution
strategies are presented. In Section 3, procedure and conti®imilar to GAs, ESs are algorithms that imitate the princi-
tuning descriptions of a PID and a GS-PID are shown. Theples of natural evolution as a method to solve parameter
description of the fan and plate nonlinear process is preeptimization problems. ESs are an abstraction of evolution
sented in Section 4. Experimental results and performancat individual behavior level, stressing the behavioral link
analysis of optimized controllers are described in Section 5between an individual and its offspring, while GAs main-
Finally, conclusions and directions for future work are showntain the genetic link. ES uses the mutation operator as main
in Section 6. operator, it works directly with floating point vectors, and it
allows self-adaptation of strategy parameters through stan-
dard deviation and covariancéBack et al., 1997; Miranda
2. EVOLUTIONARY COMPUTATION etal., 1998.
ESs were developed by Rechenberg and Schwefel in the
Evolution can be regarded as a sequence of self-organizatid®60s, at the Technical University of Berlin, Institute of Fluid
steps, that is, as the underlying universal principle of anyMechanics, during their studies of aerotechnology and space
kind of self-organization. Evolutionary computati¢BC) technology(Rechenberg, 1965; Back et al., 199Rechen-
is a field of research that use computational models of evoberg(1965 developed a theory of convergence velocity for
lutionary processes as key elements in the design and inthe so-calledl1 + 1)-ES, a simple mutation-selection mech-
plementation of computer-based problem-solving systemsanism working on one individual that creates one offspring
It is important to note that the field &C is not more than per generation by means of Gaussian mutation. He also pro-
a small part of a greater, more complex scientific universeposed a first multimember ES,(a + 1)-ES, whereu > 1
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individuals recombine to form one offspring, which after anceg? (Beyer, 1996. This algorithm works satisfactorily
mutation eventually replaces the worst parent individual. in most problems optimization, but it depends on the appli-
Schwefel(198)) introduced recombination and popula- cability of an external model of parameter space topology
tions with more than one individual, and provided a com-and it only able one general step-size, but no an individual
parative study of ESs with more traditional optimization step-sizg Ostermeier et al., 19%5.
techniques. The motivation to extend tfie+ 1)-ES and The mutation operator in an ES realizes a kind of hill-
(nu+1)-EStoa(u + A)-ES and d u,A)-ES has been two climbing search procedure, when it is considered in combi-
aspects of essential importance: the use parallel computensation with selection operator. With dedicated standard
and to enable self-adaptation of strategic parameters like theeviation,o, for each object variable preferred directions
standard deviations of the mutations. The nomencldjure  of search may be established only along the axes of the co-
M)-ES suggestgy parents producs offspring and the whole  ordinate system. In general, the best search directioam
population is reduced again to theparents of the next gen- gradienj is not aligned on those axes. Thus, an optimal rate
eration; in other words, the selection operates on the joinedf progress is achieved only by chance when suitable mu-
set of parents and offspring. Thus, parents survive until theyations coincidédwhen they are correlatedOtherwise, the
are superseded by better offspring. The A)-ES suggests trajectory of the population through the search space is zig-
that only the offspring undergo selection, whereas the anzagging along the gradieiBack et al., 1991; Davidor &
cestors are forgotten. }f > 1, then the principle of recom- Schwefel, 1992
bination can be introduce®avidor & Schwefel, 1992; Back To avoid this reduction of the rate of progress, the muta-
& Schwefel, 1993. tion operator can be extended again to handle correlated mu-
Comparable with other optimization techniques, the pertations. Schwefel1981) proposes the extension the mutation
formance of ESs depends on a suitable choice of internadperator to handle correlated mutations that require an ad-
strategy control parameters. Apart from a fixed setting, arditional strategy vector with the idea to approximate the in-
ES facilitates an adjustment of such parameters within a selfrerse of the Hessian probabilistically simultaneous to the
adaptation process, while in conventional GAs the controbptimization process. Rudolgi992 shows that the prob-
parameters are adjusted by trial-and-error methods. The selébilistic approximation procedure of Schwef@éB81) can
adaptation of strategy parameters provides one of the maime used to construct any valid correlated multinormal ran-
features of the success of ESs because ESs use evolutionalym vector. However, numerical results indicate that the con-
principles to search in the space of object variables and stratergence of the approximation is not yet satisfactory. The
egy parameters simultaneously. main reason might be found in the fact that the step-size
adaptation process affects the angle adaptation process in a
2.1.1. ES with learning acceleration by derandomized  disruptive way.
mutative step-size control The methodology of derandomized ESstermeier et al.,
The principle of self-adaptation, as mainly utilized in ESs,1994, 1993, 199%) is utilized in this paper to tune conven-
facilitates the implicit control of strategy parameters by in-tional PID and gain scheduling PID control algorithms. This
corporating them into the representation of individuals andalgorithm deals an ES based on the derandomized scheme of
by evolving the strategy parameters themselves in analogmutative step-size control. The adaptation concept uses in-
with the usual evolution of object variables. The term strat-formation accumulated from the preceding generations with
egy parameters refers to parameters that control the evol@an exponential fading of old information instead of using in-
tionary search process, such as mutation rates, mutatidiermation from the current generation only.
variances, and recombination probabilities, and the idea of The implementedl + A)-ES tries to derandomize the ad-
self-adaptation consists in evolving these parameters in anakptation process by exploiting information gathered in pre-
ogy to the object variables themselu@ick et al., 199Y. ceding iterations. Derandomized adaptation usually takes
Most of the research of self-adaptation principle€is  place without mutation of the strategy parameters them-
deal with parameters related to the mutation operator. Theelves. It uses selected poiritaore specifically: selected
technique of self-adaptation is most widely utilized for the mutation stepsin the object parameter space for strategy
variances and covariances of a generalinatimensional parameter adjustment. Derandomiz&e- A)-ES has a start
normal distribution(Schwefel, 1981; Fogel, 1995 point chosen randomly with uniform probability distribu-
The power of an ES is mainly based upon its ability totion, and it uses two operators: selection and mutation. The
perform a second-level optimization of strategy param-recombination operator is not utilized becayse= 1 is
eters. This process adapts the mutation strength, in suchaalopted. The selectiofmdaptation operator is completely
way that the whole algorithm presents near-optimal perfordeterministic; it just chooses the most/itindividuals(1 <
mance. There are different possibilities of constructing suclhu < A) out of the set ofd offspring individuals. The indi-
strategies. The simplest is tig5 success probability rule vidual (x = 1) with the highest fithess advances to the next
of Rechenberg1973, where the ratio of successful muta- generation, that is,
tions to all mutations should bei. If it is greater than 45, R R
increase the mutation variance; if it is less, decrease the vari- K.(t+1) = Kyselt) D
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WhereKM(t) is the parameter vector of generatibandselmarks the quantities of theelkected offspring of generation
Mutation is the main operator and introduces random modification into the population. The implemented algorithm realizes
mutation ellipsoids in the direction of the selected offspring. The creatiaroffpring is given by{Ostermeier et al., 1994,
1995):

Kai (1) = K, (t) + 8(1) - 8scalt)- Zi, (2)

whereé (1) is the general step-size of generattoﬁscal(t) is the individual step-sizes of generat'rb(ﬁsca,(O) =(1,...,D),
Z=(z4,...,2,), with z(0,2) normally distributedn is the number of parameters to be optimized. The equation of accu-
mulation of selected mutations is given by:

Z(t) = 1-0)Z(t—1) + cZo, Z(0)=0, 3)

wherec = v 1/n is the constant factor that determine how fast the contribution of former generations declines, that
is, the weighting of the fast generation and the lifespan of the information of preceding generations, respectively. The
adaptation scheme of the general step-size uses the convergencgafiitébution,|Z| = v 3 (z )2 R N(vn,0.5), and

it is given by:
< ( 20| 1 ))ﬂ
s(t+1) =8t)-[exp| ——2— 1+ — .
vn-Je/(2—c) 5n
s (t+1) = 5. (t) (exp(ﬂ 40 35>>Bscal .
scal scal m . ,

whereB = V1/n andB.., = 1/n. The exponent@ andB.., are relevant factors for adaptation speed and precision.
Sensible values are in the ran@el). Small values facilitate a precise but time-consuming adaptation and vice versa. The given
values yield an adequate compromise. The fa¢tf2 — c) normalizes the mean variances of the resulting distributions to
one(when no selection takes placé results from the geometric series of the mean variations of the added mutations:

nLianJ& +[c-(1-0)]2+[c-(1—-0)2]2+[c-(1-0)%]2+...+ [c-(L—c)™]2 = Jc/(2 — ¢). (6)

The derandomized mutative step-size control in ESs en-
ables a reliable step-size adaptation and the utilization of T, T
accumulated information decreases the locality of the ad- 01 = _Kp<l+ i E)
aptation process. The improvement achieved arises from the S '
implicit use of correlations of the selected mutations in iy
the generation sequence. Consequently, the step-sizes are G = Kp o (10)
adapted to such values that successive selected mutations °

tends to be orthogonal on average. This seems to be chagnd wherau(k) € [0.0; 5.4 volts is the control actioril, is
acteristic for optimal step-sizes in genei@stermeier, 1994,  the sampling time, anel(k) is the error given by the differ-

(€)

199%). ence between the output and desired setpgitkt) e [0.0;
5.0] volts is the process output.
3 EVOLUTIONARY OPTIMIZATION BY ) GS—PIDtrc]:or;trol deglgn(ljs dlffetrerfn fr?m ct:onvy;r/];lrc])r:ja_fl PID
DERANDOMIZED (1 + A)-ES ecause the former is adequate for treatme if-

ferent dynamics for each operation range, that is, the pro-
The optimization objective by derandomizéld+ A)-ES is  cesses can be governed by multiple models. The adopted
the adjustment of three parametéig, T;, andT,). The stan-  design of GS-PID control consists in the tuning of three pa-
dard form of classic digital PID control is given by: rameters of a PID controller, including one for each set-
point changey,, with total number of nine parameters. The
u(k) =u(k—1) + goe(k) + que(k—1) + gpe(k—2), (7)  optimization procedure is tested for three setpoint changes,
as shown in Section 5.

where the parametetg, g,, andd, are calculated by The performance index to be minimizely, e), adopted
for PID and GS-PID controller tuning, denotes dynamic as-
Q= Kp<1 n T " E) ®) pects of error terms using steady-state, rise time, overshoot
2T Ts and relative stability, and is given by
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Table 1. Design parameters of experiment

2 {le()] +wlae(kl}i

k=1

J(u,e) = N ; (11 Parameters Values
Ts 200 ms
whereAe(k) = e(k) — e(k— 1), N is the number of process 1
sampleswis setto 1j is equal tk, except when any change 2 5

of setpoint occurs, in which case= 1 and subsequently E:&?ﬁ: ;’;gergzrét;”for 5 10

should be increased in each iteratiorkaiscreases. The uti- - joign of each controller
lized functional consists of the; norm of error weighted in - Range of parameter search K,=[0.04;0.2, T, = [0.1; 1.0,

time (Li et al., 1996. Consequently, the fitnesB[J(u, e)] T,=[0.0; 1.0
to be maximized by derandomizéti + A)-ES is given by ~ Samples 500 sampléthat demand 1 min and 40 s
for each fitness evaluation
SR —— 12
T T e

Figure 1 presents the configuration for optimization of o _ _ _
PID and GS-PID controllers by a derandomiz&d- A)-ES. 7. apphcat!on of mutation op_erator with self-ada_lptanon

The tuning procedure of PID and GS-PID controllers when _me_chamsms and generation of new populatiom of
applied to the fan and plate process follows the steps: individuals;

o . . 8. repeating of step®) to (7) until a stopping condition
1. determination of the controller configuratigrange is satisfied—in this case, the number of generations
for parameter searghprocess(number of samples, should be equal to 10.

sampling time, setpoihtind derandomized + A)-ES
to be utilized in the practical experiment. Design pa-
rameters utilized in this work are presented in Table 14. FAN AND PLATE NONLINEAR PROCESS

2. initialization with uniform distribution of parameters The tan and plate experiment is presented in several uni-
of the population of the PIDor GS-PID controller,  \g(sities for teaching and research activities. The fan-and-
thatis, a set of controllers that conform the initial pop- y|ate process has complex features and motivates the design
ulation is generated randomly; of intelligent techniques. The fan and plate control system

3. application of control law with the parameters of eachis composed of a fan driven by a dc motor, a 50-cm-long air
population individual and sampling time; duct with a funneling characteristic and having on its left

4. storage of input, output, and error data of the fan angXtremity a small rectangular platgig. 2). o
plate process for the individual under analysis: . Thg 24-V dc motor is driven by an actuator circuit whose

input is compatible with the A converter output. The an-

gular deflection of the plate is measured by a photoconduc-

6. application of deterministic selection operator for tive cell (light from LED that passes through a disk painted
choice ofu parent for new generation; with varying shades, from white to black, whose incidence

5. evaluation of fitness of population’s individuals;

o[  (+n-Es

fitness

A" PID / GS-PID

fan-and-plate process

Fig. 1. PID and GS-PID controllers with tuning by a derandomizéd- ))-ES.
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&
instrumentation
V=

SENSOr

79& .

air flow

(a) photograph (b) physical sctup

Fig. 2. Physical setup of the fan and plate.

on a photo element will cause it to change its conductivebehavior analysis of the controller tuning—test phase—the
propertieg and connected to the measurement circuit. parameters obtained in the tuning phase by(ihe A)-ES
The control problem is to regulate the angular deflectionare maintained constant and a biast00.5 V is added at
of the plate(controlled variablgactuating on the input volt- samples 100 and 400, and removed at samples 150 and 450,
age of the dc motofmanipulated variable The distance respectively.
between fan and plate can be changed and defines an im- Table 2 presents the results of tuning the PID and GS-
portant parameter of the system. The prototype, containin@ID controllers with a derandomized + A)-ES. Results
nonminimum phase, dead-time, resonant and turbulent disare obtained after 10 generations of evolution in 5 experi-
turbance behavior, can serve as tangible evidence of the useents. These data are associated with the experiments for
fulness of intelligent control techniques in difficult situations. three setpoint changes. Figures 3—6 present the best results
in tuning and test phases BID and GS-PID controllers.
The most adequate gains for controller configurations are:
5. EXPERIMENTAL RESULTS K, = 0.093;T, = 0.167, andT, = 0.143—for the PID

The (1 + A)-ES is implemented in the C language and uti- controller—and<,;=0.168;T;; = 0.269;Ty; = 0.0(y;; =
lizes the 80486 Intel processor with clock of 33 MHz. The 2-0); Kpz = 0.040T;, = 0.128,Ty, = 0.002(y,, = 3.5), and
total time for each complete cycle of controller optimiza- Kes = 0-073:T;5 = 0.714; andly3 = 0.038(y, 5 = 2.5 —for
tion is 1 hour and 50 min, plus the time of processing of EShe GS-PID controller.

and the time required for the process to start in the same Gains for the conventional tuning by Ziegler—Nichols
position for all fitness evaluations. method(PID-ZN), based on critical gain and oscillation pe-

Next, the experimental results of servo behavior—tuningi0d (Astrom & Hagglund, 198BareK,, = 0.153,T, = 0.148;
phase—with three changes of setpoinyto= 2.0(samples andTy = 0.108. The servo behavior is shown in Figure 7. It
0 to 150, y,, = 3.5 (samples 151 to 30Ppandy,; = 2.5
(samples 301 to 50@re presented. In the sertregulatory

5 . r .

Table 2. Comparative study by derandomized1\)-ES in the

tuning phase of PID and GS-PID controllers w“'ﬁ i
Tt e PNV R OPPOVS

Experimental Data PID GS-PID ‘ 1

Experiment Functional J(u,e) J(u,e) WWMW

Number 1 9.659 10.176 setpoint ]

Number 2 9.064 8.417 sty ]

Number 3 8.529 9.674 ,.l output

Number 4 9.136 9.389 ! J 1

Number 5 8.683 8.283 05

Average 9.014 9.188

Standard deviation 0.441 0.816 % 100 00 200 200 =00

Best value 8.529 8.283 sample

Worst value 9.659 10.176

Fig. 3. PID control of fan and plate process—tuning phase—with a de-
randomized1 + A)-ES.
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gy setpoint
151 r / J 15+

t output’ | 1H

/
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sarmple sample

output

Fig. 4. GS-PID control of fan and plate process—tuning phase—uwith aFig. 6. GS-PID control of fan and plate process—test phase—uwith a de-
derandomizedl + A)-ES. randomized1 + A)-ES.

can be observed that the adjusted gains do not provide anning parameters, population size and small number of gen-

adequate tuning for PID if compared with evolutionary tun-erations for evolutionary optimization cycle.

ing for PID and GS-PID controllers, as presented in Fig-

ures 3—6. The obtained functional by PID-ZNJige,u) =

61.310. The complexities of the fan-and-plate process arg' CONCLUSION

affecting the performance of PID-ZN technique in the PIDThe derandomizedl + A)-ES procedure was successful

tuning phase. when applied to tune PID and GS-PID controllers without
Figure 8 shows the gain evolution by derandomiged the necessity odi priori knowledge of the fan and plate pro-

M)-ES is the controller turning PI3) and GS-PID5), ac-  cess model. In this practical application, the derandomized

cording to Table 2. (1 + A)-ES was able to converge toward adequate param-
According to Table 2 and Figures 3—6, it is possible toeters, although there was no knowledge of fan and plate pro-

observe that the derandomizétl+ A)-ES is adequate to cess parameters, such as process order, nonlinearities, noise

tune PID and GS-PID controllers, as evidenced by the fagproperties, and other factors.

convergence confirmed by average and standard deviation Among the relevant aspects considered in this work are:

values in relation to the adopted configuration of number of(1) application of the evolutionary methodology in control-

5
45}
° 45} .
4+ 1
control at control ]
/ ] 35} /
_ | r
2 !
'§2.5 F
2 .
J setpoint J
151 /
1 output 4
0 1 L f L 0.5 ]
0 100 200 300 400 500 0 L ) L .
sample 0 100 200 300 400 500
) . sample
Fig. 5. PID control of fan and plate process—test phase—with a deran-
domized(1 + A)-ES. Fig. 7. PID-ZN tuning for setup changétuning phasg
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Fig. 8. Evolution of PID and GS-PID controllers gains.
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