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We give a semantics for a classical variant of Dale Miller and Alwen Tiu’s logic FOλ∇. Our

semantics validates the rule that nabla x implies exists x, but is otherwise faithful to the

authors’ original intentions. The semantics is based on a category of so-called nabla sets,

which are simply strictly increasing sequences of non-empty sets. We show that the logic is

sound for that semantics. Assuming there is a unique base type ι, we show that it is

complete for Henkin structures, incomplete for standard structures in general, but complete

for standard structures in the case of Π1 formulae, and that includes all first-order formulae.

1. Prolog(ue)

I started my research career in automated deduction, and came to learn about Dale

when I touched the subject of proofs in higher order logic. His work on expansion

proofs was impressive, and daunting. I kept on hearing of Dale, as he developed λ-

Prolog, as he discovered higher order patterns, as he realized the value of uniform proofs,

of intuitionism, of hereditary Harrop formulae, as he studied extensions of logic with

definitions, as he delved into focusing and linear logic, and so on and so forth.

We finally got in touch on February 14, 2002. I had sent him a rather vague question

on his paper (Miller 1992) by email that day. My interest was to encode fresh names

(nonces) in cryptographic protocols, and I had seen that Dale had pursued the idea of

using the quantifiers of linear logic to this very end. The paper’s title ended with the

enigmatic phrase ‘preliminary results,’ and I wanted to know whether he had done any

more recent research in this vein. He answered me the same day, despite the fact that

he was busy at a Logic and Interaction meeting in Marseilles–Luminy, and that we had

never met before. Dale has to be commended for giving me a lucid and candid answer.

Who do you know would tell the following to a perfect stranger?

If you map processes to logical formulas directly, you have a lot of exciting things that can happen.

My original efforts (an experiment, really) failed, however, for at least two reasons (referring to the

paper ‘The pi-calculus as a theory in linear logic’).

† A variant of this paper was presented at Dale Miller’s 60th birthday. The current presentation is simpler,

although essentially equivalent. We have also taken the opportunity to correct a mistake in the proof of

Proposition 8.4.
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I am not including any more of his email to me. One of the two reasons he mentions is

that, if try to encode νx.P (x) (create a fresh name x, then do P (x)) as ∀x.P (x) in linear

logic, then you cannot make much of a difference between νx.νy.P (x, y) and νz.P (z, z),

because ∀x.∀y.P (x, y) linearly implies ∀z.P (z, z) – so much for y being fresh.

For cryptographic protocols, one can get around that problem (Cervesato et al. 1999),

as we learned a few years later. Meanwhile, Dale worked on finding a general way of

talking about freshness. Alwen Tiu and he found a simple logical way of answering the

question (Miller and Tiu 2005): the nabla quantifier ∇. That certainly goes way beyond

cryptographic protocols, and has the distinctive quality of good mathematics: simple,

elegant and general. It was only natural for me to pay homage to Dale by contributing

to the theory of nabla.

2. Introduction

With Alwen Tiu, Dale Miller introduced a logic FOλ∇ for so-called generic judgements

(Miller and Tiu 2005). The main new feature of that logic is the nabla quantifier:

∇x : τ.F(x) means that F(x) holds for x generic of type τ.

Generic stands for ‘with no remarkable property,’ and is close to the notion of being

fresh, but different. Pitts and Gabbay gave nice, deep definitions of the notion of freshness

(Gabbay and Pitts 1999), based on the category of nominal sets. Dale Miller’s solution

came later, and is an elegant proof-theoretic construction. One can define what it means

to be fresh, using the nabla quantifier, but there are some differences (Miller and Tiu

2005, Section 8). First, in ∇x : τ.F(x), one may request a generic object x of any

arbitrary type τ. The only fresh thing one can create in Pitts and Gabbay’s approach

is a name. Second, ∀x.P (x) implies Nx.P (x), which implies ∃x.P (x), while no such

implication holds with ∇ instead of N. Also, while Nx. Ny.P (x, y) and Ny. Nx.P (x, y) are

equivalent, ∇x.∇y.P (x, y) and ∇y.∇x.P (x, y) are not; but that equivalence was added later

(Gacek 2008).

One may hope to understand ∇ better by giving it a semantics, and it is precisely

one of the purposes of this paper. Historically, the first semantics of ∇, and of the logic

FOλ∇, was given by Miculan and Yemane’s (2005, Section 7), based on the category ̂D of

presheaves over the category D of so-called distinctions. FOλ∇ is sound for their semantics,

but completeness is not addressed. For simplicity, nabla-quantified variables can only be

of one type α (Remark 5, loc. cit.) Schöpp later generalized a similar construction, based

on the category ̂L of presheaves over the category L of so-called λ-tree contexts and

substitutions, in the form of categories with binding structure (Schöpp 2007, Part II).

That Part II also generalizes Part I of the same paper, where Schöpp defines a Henkin

semantics for a classical variant of FOλ∇, which he proves sound and complete for that

semantics. The ∇ quantifier is again restricted there to apply to variables of certain base

types called the lambda-tree types. One may also cite Bucalo et al. (2006), who offer a

semantics of higher order abstract syntax – a very closely related problem – based on a

glueing construction due to Hofmann (1999), and with a unique type υ of names. We shall

make a small guided tour of the semantical differences between the categories involved

right at the end of Section 3, when we have enough material.
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In all those proposals, the types of which one can create fresh objects are designated

base types. While that makes a comparison with the Nquantifier easier, this ignores one

distinctive feature of Miller and Tiu’s proposal: the possibility of considering fresh objects

of any type, even higher order, not just base types.

Our semantics will address this. All the semantics mentioned earlier, except for Bucalo

et al. (2006) and Hofmann (1999), are presheaf semantics, over various categories, and

the properties they enjoy are due to general categorical reasons, notably the fact that

presheaf categories are toposes, or the crucial use of the Yoneda lemma for completeness

at λ-tree types in Schöpp (2007). Our semantics is close to a presheaf semantics, but is

not a presheaf semantics, precisely because of the need to interpret ∇ over non-base types.

The properties it has do not seem to be due to any general categorical reason, and our

development will therefore be elementary.

To be more precise, our semantics will be given in a category ∇∇∇ that is close

to the presheaf category SetN , but is sufficiently different that, for example, it has

no terminal object. (We shall explain why in Section 3.) The objects of SetN are

families of sets (Dn)n∈N together with maps oldDn : Dn → Dn+1, n ∈ N . In ∇∇∇, we

additionally require each Dn to be non-empty, and each oldDn to be injective and non-

surjective. Non-surjectivity allows us to find fresh elements in Dn+1, namely elements

that are not of the form oldDn (d) for any d ∈ Dn. That is required to ensure that

our models have enough maps, which in turn is necessary for soundness. Injectivity

implies that Dn can be considered as a subset of Dn+1, which will lead to the simplified

Definition 3.1.

For completeness purposes (but not for soundness), we will assume that there is only

one base type ι. (Schöpp makes a similar assumption in his Part II.) As we have just

said, this will not prevent us from consider fresh objects of any type, as in ∇xι, ∇yι→ι, or

∇z(ι→ι→ι)→ι→ι.

We shall be almost, but not completely faithful to Miller and Tiu (2005). First and

foremost, our semantics – and our proof rules – will validate the implication of ∃x.P (x)

by ∇x.P (x). That rule is also valid in Abella (Gacek 2008), and also in Miculan and

Yemane’s (2005) original semantics. It will also validate the rule that ∇x.F and ∇y.F are

equivalent when x, y are not free in F , even when x and y have different types. However,

and conforming to Miller and Tiu (2005), it will not validate the Abella equivalences

between ∇x.F and F when x is not free in F , or between ∇x.∇y.P (x, y) and ∇y.∇x.P (x, y).

Second, our logic will be classical, not intuitionistic, as in Schöpp (2007): semantics is

easier in a classical setting.

Outline. We introduce the category ∇∇∇ of nabla sets in Section 3. This is the basis of

our semantics for nabla, of which the most general form is a kind of Henkin semantics

(Section 4), including both standard semantics and a term-based semantics. We show that

classical FOλ∇ is sound for all Henkin structures with generic families that admit enough

maps in Section 5, and that it is complete in Section 6, provided there is exactly one base

type ι. Completeness is obtained for term structures, by using a construction of Hintikka

sets. This has many similarities with what Schöpp does (Schöpp 2007, Section 1.6), and

indeed rests on principles that have been well established for decades. Our use of Hintikka
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sets, instead of Henkin sets, also allows us to show that the cut rule can be eliminated.

We examine the question of completeness for standard structures in the rest of the paper,

and this is more involved. We notice that the logic is in fact incomplete for standard

structures in Section 7, by showing that the axiom of choice is true but unprovable; then,

we show that the logic is complete, even without the cut rule again, if we restrict ourselves

to so-called Π1 formulae – and that includes the first-order fragment as a special case. We

do this by building a specific retraction of the standard universe onto the term universe,

which interacts nicely with a natural Kripke logical relation. We list a few open questions

in Section 9, and conclude in Section 10.

3. Nabla sets

Our main object of study is the following.

Definition 3.1. A nabla set D is a strictly increasing chain of non-empty sets D0 � D1 �
D2 � · · · � Dn � Dn+1 � · · · . For convenience, we write D∞ for

⋃

n∈N Dn.

Dn is meant to be the set of values of some type D, in a context where at most n

generic values have been created. The objects in Dn+1 � Dn are meant to be fresh relative

to Dn.

Definition 3.2. A nabla map f from a nabla set D to a nabla set E is a map f : D∞ → E∞
such that f maps every element of Dn to an element of En, for each n ∈ N .

Nabla sets and nabla maps form a category ∇∇∇. An isomorphism between D and E in ∇∇∇
is a bijection that restricts to bijections between Dn and En for each n ∈ N .

∇∇∇ has products of all non-empty families (Di)i∈I . The canonical product D =
∏

i∈I Di is

defined pointwise: Dn =
∏

i∈I Din.

Beware that there is no product of the empty family, namely, no terminal object, as the

reader will realize by him/herself. That means that one cannot model unit types such as

unit in ML, or Unit in Haskell, or void in Java or in C. This is probably unavoidable:

recall that our semantics is meant to allow for the creation of generic, or fresh, objects,

of any type; then, how should one interpret the creation of a generic or fresh object of a

unit type? We do not.

We shall use the following notations:

— For a product D =
∏

i∈I Di, πi : D → Di is ith projection, defined by πi(dj)j∈I = di.

— D1 × D2 stands for
∏

i=1,2 Di.

— For f1 : D1 → E1, f2 : D2 → E2, f1 × f2 : D1 × D2 → E1 × E2 maps (d1, d2) to

(f1(d1), f2(d2)).

— For f1 : D → E1, f2 : D → E2, 〈f1, f2〉 : D → E1 × E2 maps d to (f1(d), f2(d)).

An object D in a category with binary products is exponentiable if and only if ×D has

a right adjoint [D → ] (usually written D). Explicitly, D is exponentiable if and only if,

for every object E, there is an object [D → E], a so-called application (a.k.a., evaluation)

map App : [D → E] × D → E, and for every morphism f : C × D → E, a currified map

Λ(f) : C → [D → E] satisfying the following equations (Curien 1993):
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— (β-rule) App ◦ (Λf × idD) = f for every f : C × D → E.

— (η-rule) Λ(App) = id[D→E].

— (Substitution rule) Λf ◦ g = Λ(f ◦ (g × idD)), for all f : C × D → E and g : B → C .

Proposition 3.3. In ∇∇∇, every object is exponentiable.

Proof. Given two nabla sets D and E, we define [D → E]n as the set of maps

f : D∞ → E∞ such that f maps every element of Dm to Em, for every m � n. Clearly,

[D → E]n ⊆ [D → E]n+1.

Pick e0 from E0, and en+1 from En+1 � En for each n ∈ N . For each given n ∈ N , we

define a map f[n] from D∞ to E∞ by: f[n](d) = en for every d ∈ Dn, f[n](d) = em+1 for

every d ∈ Dm+1 � Dm, m � n. Clearly, f[n] is in [D → E]n. When n � 1, f[n] is not in

[D → E]n−1 because f[n] maps the elements of Dn−1 (and there are some) to en, which is

not in En−1. Therefore, the inclusion [D → E]n ⊆ [D → E]n+1 is strict. This shows that

the chain [D → E] of sets [D → E]n forms a nabla set.

Define App by App(f, d) = f(d). This is a morphism from [D → E]×D to E. For every

morphism f : C ×D → E, define Λf(c) as f(c, ), the map that sends d to f(c, d), for every

c ∈ C∞. We check that Λf is a morphism from C to [D → E]. For every n ∈ N , for every

n ∈ N , for every c ∈ Cn, this amounts to say that for every m � n, for every d ∈ Dm,

Λf(c)(d) = f(c, d) is in Em. Indeed, since c is in Cn ⊆ Cm.

The β-rule, the η-rule and the substitution rule are now immediate.

Nabla sets satisfy several forms of the axiom of choice. Let us call weak nabla subset

of a nabla set D any monotonic sequence A0 ⊆ A1 ⊆ · · · ⊆ An ⊆ · · · of subsets An of Dn,

n ∈ N . We do not require the inclusions An ⊆ An+1 to be proper. A weak nabla relation

R between D and E is a weak nabla subset of D × E.

Proposition 3.4 (Choice). Let D and E be two nabla sets, and R be a weak nabla relation

between D and E. If, for all n ∈ N and d ∈ Dn, there is an e ∈ En such that (d, e) ∈ Rn,
then there is a nabla map f : D → E such that, for all n ∈ N and d ∈ Dn, (d, f(d)) ∈ Rn.

Proof. Define f as follows. We use the set-theoretic axiom of choice. For each d ∈ D0,

pick some e ∈ E0 such that (d, e) ∈ R0 and define f(d) as e. For every n ∈ N , define f(d)

for d ∈ Dn+1 � Dn by picking some e ∈ En+1 such that (d, e) ∈ Rn+1, and letting f(d) be

that e.

That defines a nabla map from D to E. For every d ∈ D∞, if n is the smallest natural

number such that d ∈ Dn, f is built so that (d, f(d)) ∈ Rn. For every m � n, (d, f(d)) is also

in Rm because Rn ⊆ Rm. This shows that (d, f(d)) ∈ Rm for every d ∈ Dm, for every m ∈ N .

That implies the following, which will be our bane in Section 7.

Corollary 3.5 (Weak choice). Let D, E be two nabla sets. Fix n ∈ N , and let R ⊆ Dn×En.
If for every d ∈ Dn, there is an e ∈ En such that (d, e) ∈ R, then there is an element f of

[D → E]n such that for every d ∈ Dn, (d, fn(d)) is in R.
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Proof. Let D′ = (Dm)m�n, E
′ = (Em)m�n. Those are again nabla sets, where D′k = Dn+k

and E ′k = En+k . For every k ∈ N , let R′k be Rn ∪ ((D′k � D′0) × E ′k). Since Rn ⊆ Dn × En =

D′0 × E ′0 ⊆ D′k × E ′k , and since clearly R′k ⊆ R′k+1, (R′k)k∈N is a weak nabla relation.

For each d ∈ D′k , there is an e such that (d, e) ∈ R′k: either d ∈ D′0 = Dn, and we can

find e so that (d, e) ∈ Rn by assumption, or d ∈ D′k � D′0, in which case we can pick any e

from E ′k , which is non-empty.

We can therefore use Proposition 3.4, and obtain a nabla map f : D′ → E ′ such that,

for every k ∈ N , for every d′ ∈ D′k , (d′, f(d′)) ∈ R′k . We finally observe that f, being a

morphism from D′ to E ′, is in [D → E]n.

Seemingly related is the following result, which will however be a boon to us: it will be

used to show that our semantics of ∇ is sound. This is exactly the place where we require

the inclusion Dn ⊆ Dn+1 to be proper.

Lemma 3.6. Let D, E be two nabla sets, n ∈ N , d ∈ Dn+1 and e ∈ En+1. There is a nabla

map f : D → E such that f(d) = e. In particular, there is an f ∈ [D → E]n such that

f(d) = e.

Proof. Pick g from the set [D → E]0. That is non-empty, since [D → E] is a nabla set.

By definition, g is a nabla map from D to E. Define f by f(d) = e, and f(x) = g(x) for

every x �= d. This is again a nabla map, and one which satisfies the desired constraint.

At this point, it is useful to make a summary of the main properties that distinguish our

category of nabla sets from other categories aimed at giving meaning to names. Recall

that a topos is a Cartesian-closed category in particular, and satisfies AC!, the axiom of

unique choice. Let us write AC for the full axiom of choice.

— Our category ∇∇∇ of nabla sets is not Cartesian-closed, because it does not have a

terminal object, but every object is exponentiable. It satisfies some forms of AC, as we

have already seen, and as we shall formally demonstrate in Lemma 7.1. It also satisfies

the formula ∇x.ϕ ⊃ ∃x.ϕ.

— The category of nominal sets Gabbay and Pitts (1999), also called the Schanuel topos,

is a topos, hence satisfies AC!. It does not satisfy AC, but satisfies ∇x.ϕ ⊃ ∃x.ϕ
(confusing ∇ with N).

— ̂D (Miculan and Yemane’s 2005), ̂L (Schöpp 2007, Part I) are presheaf toposes.

— The category of contexts (Bucalo et al. 2006) is a tripos, not a topos, and satisfies

neither AC nor AC!.

At the risk of repeating ourselves, ∇∇∇ will allow us to make sense of ∇ at all types, contrarily

to the other proposals.

4. Standard and Henkin semantics for λ-terms

Let us consider simply typed λ-terms M in Church style, that is, all variables xτ have a

preassigned type τ. There are countably infinitely many variables of each type τ. We shall

sometimes omit the subscript τ when it is clear. There are base types β (at least one),

and other types are formed using the arrow type former →. Explicitly, the (simply typed)
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λ-terms are inductively defined by: xϕ is a λ-term of type ϕ; if M is of type ϕ → τ and

N is of type ϕ, then MN is of type τ; if M is of type τ, then λxϕ.M is of type ϕ→ τ.

We shall consider λ-terms modulo βη-equivalence (including α-renaming), and we shall

often confuse terms for their equivalence classes. In particular, we shall often write M = N

to say that M and N are βη-equivalent, although we shall make that explicit when there

is a risk of confusion. The = relation respects types.

If M is of type τ, then λxϕ.M is of type ϕ→ τ.

Proposition 3.3 allows us to define a standard semantics for λ-terms: we fix nabla sets

S�β� for every base type β, define S�ϕ→ τ� as the exponential object [S�ϕ� → S�τ�],
inductively; finally, we define the value of applications through App and the value of

λ-abstractions through Λ.

There is a more general construction, which we shall need to obtain completeness results

in the style of Henkin’s completeness theorems for higher order logic. The following is

imitated from the notion of typed combinatory algebra, replacing sets by nabla sets. An

apt name would be ‘typed extensional combinatory nabla algebra,’ but that would be

lengthy. Similarly, we should write Appϕ,τ, kϕ,ψ , etc., below, but we prefer to drop the

subscripts.

Definition 4.1 (Henkin universe). A Henkin universe S is the following data:

— For each type τ, a nabla-set S�τ�.
— A nabla map App : S�ϕ→ τ�× S�ϕ�→ S�τ�, one for each pair of types ϕ, τ; we shall

write f · x for App(f, x); · associates to the left.

— An element k ∈ S�ϕ→ ψ → ϕ�0, one for each pair of types ϕ, ψ.

— An element s ∈ S�(ϕ→ ψ → τ)→ (ϕ→ ψ)→ ϕ→ τ�0, one for each triple of types ϕ,

ψ, τ

satisfying

k · a · b = a, (1)

s · a · b · c = a · c · (b · c), (2)

(∀n � m, ∀u ∈ S�ϕ�n, f · a = g · a) ⇒ f = g, (3)

where a ∈ S�ϕ�m and b ∈ S�ψ�m, m ∈ N in Equation (1), a ∈ S�ϕ→ ψ → τ�m, b ∈
S�ϕ→ ψ�m, c ∈ S�ϕ�m, m ∈ N in Equation (2) and f, g ∈ S�ϕ→ τ�m, m ∈ N in Equation

(3).

A generic family new on S is a family of elements newϕ
n+1 ∈ S�ϕ�n+1 � S�ϕ�n, one for

each type ϕ and each n ∈ N .

Formula (3) means that all our Henkin universes are extensional.

Remark 4.2. Condition (3), written in a Kripke style, is equivalent to the following:

(∀a ∈ S�ϕ�∞, f · a = g · a) ⇒ f = g, (4)

for all f, g ∈ S�ϕ→ τ�m, m ∈ N . The implication (3)⇒(4) is clear. In the converse

direction, assume that for every n � m, for every a ∈ S�ϕ�n, f · a = g · a. Then, f · a = g · a
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also holds for every a ∈ S�ϕ�n with n < m, since S�ϕ�n ⊆ S�ϕ�m in that case. We can then

apply Equation (4) and conclude f = g.

Every Henkin universe S gives rise to an interpretation of simply typed λ-terms in the

expected way. Because of the way we introduced them, it is practically to make a detour

through typed combinatory terms: xϕ is a combinatory term of type ϕ; if M is of type

ϕ→ τ and N is of type ϕ, then MN is of type τ; and there are constants K of each type

of the form ϕ ⊃ ψ ⊃ ϕ and S of each type of the form (ϕ ⊃ ψ ⊃ τ) ⊃ (ϕ ⊃ ψ) ⊃ (ϕ ⊃ τ).
Write Env for the product

∏

xτ S�τ�, where xτ ranges over all variables: Envn is the set

of environments ρ at level n, namely functions mapping each variable xτ to an element

ρ(xτ) ∈ S�τ�n. For each d ∈ S�τ�n, we write ρ[xτ �→ d] for the environment that is like ρ

except that it maps xτ to d. We obtain a semantics of (simply typed) combinatory terms

u : τ, given as S�u�ρ, where

S�x�ρ = ρ(x),

S�uv�ρ = S�u�ρ · S�v�ρ, (5)

S�K�ρ = k S�S�ρ = s.

We obtain a semantics S�M�ρ for (simply typed) λ-terms M by letting S�M�ρ = S�M◦�ρ,

where M �→ M◦ is the familiar translation from λ-terms M to combinatory terms M◦:

x◦ = x, (MN)◦ = M◦N◦, (λx.M)◦ = [x]M◦, where for each combinatory term u, [x]u is

defined by [x]x = SKK, [x]u = Ku if x is not free in u, [x](vw) = S([x]v)([x]w) if x is free

in vw.

The following three lemmas are standard.

Lemma 4.3. Let S be a Henkin universe. For every n ∈ N , for every environment ρ at

level n, for every simply typed combinatory term u,

1. for every ρ′ ∈ Envn that coincides with ρ on the free variables of u, S�u�ρ = S�u�ρ′;
2. for every d ∈ S�ϕ�n, S�[xϕ]u�ρ · d = S�u�(ρ[xϕ �→ d]).

Proof. (1) is obvious. (2) is proved by induction on u. When u = xϕ, S�[xϕ]x�ρ · d =

S�SKK�ρ · d = s · k · k · d = k · d · (k · d) = d = S�xϕ�(ρ[xϕ �→ d]). When xϕ is not free in u,

S�[xϕ]u�ρ·d = S�Ku�ρ·d = k·S�u�ρ·d = S�u�ρ = S�u�(ρ[xϕ �→ d]), using (1). When u = vw

and xϕ is free in u, S�[xϕ]u�ρ · d = S�S([xϕ]v)([xϕ]w)�ρ · d = s · S�[xϕ]v�ρ · S�[xϕ]w�ρ · d =

S�[xϕ]v�ρ · d · (S�[xϕ]w�ρ · d) = S�v�(ρ[xϕ �→ d]) · S�w�(ρ[xϕ �→ d]) = S�u�(ρ[xϕ �→ d]),

using the induction hypothesis in the next-to-last equality.

Lemma 4.4. Let S be a Henkin universe. For every n ∈ N , for every environment ρ at level

n, the following holds, and characterizes the semantics S�M�ρ of simply typed λ-terms:

1. S�x�ρ = ρ(x).

2. S�MN�ρ = S�M�ρ · S�N�ρ.

3. S�λxϕ.M�ρ, where M : τ, is the unique f ∈ S�ϕ→ τ�n such that for every m � n, for

every d ∈ S�ϕ�m, f · d = S�M�(ρ[xϕ �→ d]).

Proof. (1) and (2) are obvious. For (3), we first check that S�λxϕ.M�ρ·d = S�M�(ρ[xϕ �→
d]). Indeed S�λxϕ.M�ρ · d = S�[xϕ]M◦�ρ · d = S�M◦�(ρ[xϕ �→ d]) by Lemma 4.3 (2),
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and that is equal to S�M�(ρ[xϕ �→ d]) by definition. For uniqueness, imagine there

is another f ∈ S�ϕ→ τ�n such that for every m � n, for every d ∈ S�ϕ�m, f ·
d = S�M�(ρ[xϕ �→ d]), equivalently f · d = S�λxϕ.M�ρ · d. Equation (3) then implies

f = S�λxϕ.M�ρ.

Lemma 4.5. Let S be a Henkin universe. The following hold:

1. For all λ-terms N : τ and M : ϕ, for every n ∈ N , for every environment ρ at level n,

S�N[M/xϕ]�ρ = S�N�(ρ[xϕ �→ S�M�ρ]).

2. For every λ-term M : τ, S�M�ρ does not depend on ρ(y) if y is not free in M, namely,

if ρ(z) = ρ′(z) for every z �= y, then S�M�ρ = S�M�ρ′.
3. For all βη-convertible λ-terms M,N : τ, S�M�ρ = S�N�ρ.

Proof. 1. It is well known that (N[M/xϕ])◦ = N◦[M◦/xϕ], and it is easy to check that

S�u[v/xϕ]�ρ = S�u�(ρ[xϕ �→ S�v�ρ]) for all combinatory terms u, v of the right type, from

which (1) follows.

2. is by Lemma 4.3 (1), realizing that M and M◦ have the same free variables.

3. We do this in several steps:

— (β) S�(λxϕ.M)N�ρ = S�M�(ρ[xϕ �→ S�N�ρ]) by Lemma 4.4 (3), and this is equal to

S�M[N/xϕ]�ρ by (1) above.

— (η) We check that S�λxϕ.Mxϕ�ρ = S�M�ρ, where xϕ is not free in M. For every m � n,
for every d ∈ S�ϕ�m, S�λxϕ.Mxϕ�ρ · d = S�Mxϕ�(ρ[xϕ �→ d]) (by Lemma 4.4 (3))

= S�M�(ρ[xϕ �→ d]) · d (by Lemma 4.4 (2)) = S�M�ρ · d (by (2) above). By the

uniqueness part of Lemma 4.4 (3), S�λxϕ.Mxϕ�ρ = S�M�ρ.

— (ξ) If S�M�(ρ[xϕ �→ d]) = S�N�(ρ[xϕ �→ d]) for every m � n and d ∈ S�ϕ�m, then

S�λxϕ.M�ρ = S�λxϕ.N�ρ. This is a direct consequence of the uniqueness part of

Lemma 4.4 (3).

— If S�M1�ρ = S�M2�ρ and S�N1�ρ = S�N2�ρ, then S�M1N1�ρ = S�M2N2�ρ. This is by

Lemma 4.4 (2).

If M reduces to N in one βη-reduction step, then S�M�ρ = S�N�ρ, by induction on the

depth of the contracted redex, using the remarks above. (3) follows.

The next definition is particular to our setting, and adapts Lemma 3.6 to Henkin

universes. This will be needed for soundness. We purposefully require f to be in S�ϕ→ τ�n,
not in the larger set S�ϕ→ τ�n+1.

Definition 4.6 (Enough maps). A Henkin universe S for nabla has enough maps with

respect to a generic family new if and only if, for all types ϕ and τ, for every n ∈ N , for

every d ∈ S�τ�n+1, there is an f ∈ S�ϕ→ τ�n such that f · newϕ
n+1 = d.

4.1. Standard universes

Lemma 4.7 (Standard universe). Given nabla sets Dβ , one for each base type β, there is a

Henkin universe S such that

— S�β� = Dβ for each base type β, and S�ϕ→ τ� = [S�ϕ�→ S�τ�] for all types ϕ, τ;

— App is the application morphism (f, x) �→ f(x) in ∇∇∇;
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— k : u �→ (v �→ u);

— s : u �→ (v �→ (w �→ u(w)(v(w))).

This Henkin universe S has enough maps with respect to every generic family.

We call S the standard universe on the nabla sets Dτ.

Proof. That it is a Henkin universe is obvious, except perhaps for Equation (3). We

use the equivalent Equation (4): if f, g ∈ S�ϕ→ τ�m are such that f(u) = g(u) for every

u ∈ S�ϕ�∞, then f = g as maps from S�ϕ�∞ to S�τ�∞, hence as nabla maps from S�ϕ� to

S�τ�.
We now claim that S has enough maps with respect to any generic family new. Fix

d ∈ S�τ�n+1. By Lemma 3.6, there is an f ∈ [S�ϕ�→ S�τ�]n such that f(newϕ
n+1) = d.

4.2. The term universe

We now exhibit another Henkin universe T , built from syntax. This will be useful to

show completeness. For that, we assume there is exactly one base type ι. T is built from a

variant of the λ-calculus we have considered until now, and which we call the λ-calculus

with names. The variant has infinitely many new constants ai, i � 1, of type ι, called names.

Those names are pairwise distinct; ai is the name at level i.

Explicitly, the (simply typed) λ-terms with names are defined inductively by: every

variable xτ is a λ-term with names, of type τ; every name ai is a λ-term with names, of

type ι; if M is a λ-term with names of type ϕ→ τ and N is a λ-term with names of type

ϕ, then MN is a λ-term with names of type τ; if M is a λ-term with names of type τ,

and xϕ is a variable, then λxϕ.M is a λ-term with names of type ϕ→ τ. Note that names

cannot occur bound, since they are not variables.

We consider λ-terms with names modulo βη-conversion (including α-conversion), and

by this we mean that a λ-term with names is shorthand for its β-normal η-long form. This

convention allows us to make sense of the notions of free variables, and of free names, of

a λ-term with names.

Definition 4.8. For each type τ, for every n ∈ N , T �τ�n is the set of all λ-terms with names

of type τ (up to βη-conversion) in which the only free names are of the form ai with

1 � i � n.
We let App be syntactic application, namely M ·N = MN, and define k as λxϕ.λyψ.xϕ,

s as λxϕ→ψ→τ.λyϕ→ψ.λzϕ.xz(yz).

Assume there is exactly one base type ι. The generic family a is defined by aτn+1 =

λxτ1

1 .λx
τ2

2 . · · · .λxτmm .an+1, where τ = τ1 → τ2 → · · · → τm → ι, and xτ1

1 , xτ2

2 , . . . xτmm are

distinct fresh variables.

In the definition of aτn, we use the fact that every type τ is of the form τ1 → τ2 → · · · →
τm → β, where β is a base type. The assumption that there is a unique base type ι allows

us to conclude that β = ι.

Remark 4.9. For every type τ, T �τ�0 is just the set of ordinary, not with names, λ-terms

of type τ, modulo βη-conversion.
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Lemma 4.10. T , as defined in Definition 4.8, is a Henkin universe. If there is exactly one

base type ι, then T has enough maps with respect to the generic family a.

Proof. Again the fact that this is a Henkin universe is obvious, except perhaps for

Equation (3), for which the argument is nonetheless standard. Assume that M, N are in

T �ϕ→ τ�m, and that MP = NP (modulo βη) for every P ∈ T �ϕ�n, n � m. Let P be

some fresh variable Xϕ, and note that this is in �ϕ�0 ⊆ �ϕ�n. Then, MXϕ = NXϕ, from

which we obtain M = λXϕ.MXϕ = λXϕ.NXϕ = N, using the η rule.

The enough maps property has to be given some care. Let N ∈ T �τ�n+1. We wish to

find an M ∈ T �ϕ→ τ�n such that Maϕn+1 = N (up to βη-conversion).

Write ϕ is a unique way as ϕ1 → ϕ2 → · · · → ϕm → ι, and pick some arbitrary

λ-terms M1 : ϕ1, M2 : ϕ2, . . . , Mm : ϕm – variables, for example. Build a new term
˜N by replacing all occurrences of an+1 in N by the term xϕM1M2 · · ·Mm, where xϕ

is a fresh variable of type ϕ. Finally, define M as λxϕ.˜N. The only names ai that

occur free in M are such that 1 � i � n, by construction, so M is in T �ϕ→ τ�n, and

Maϕn+1 = M(λxϕ1

1 .λx
ϕ2

2 . · · · .λxϕmm .an+1) = ˜N[λxϕ1

1 .λx
ϕ2

2 . · · · .λxϕmm .an+1/x
ϕ] = N.

For any set of variables A, a substitution θ at level n of domain A is any function

that maps every variable zψ to an element of T �ψ�n. When A is finite, we define the

capture-avoiding application Mθ of θ to the λ-term M in the usual way.

If θ and θ′ agree on the set of free variables of M, then Mθ = Mθ′. We can therefore

extend the notation Mθ to substitutions θ of arbitrary (not necessarily finite) domains, by

defining Mθ as Mθ|A, where A is any finite subset containing the free variables of M.

Such substitutions at level n are none other than the environments at level n in the

Henkin universe T .

Lemma 4.11. For every λ-term M : τ, for every substitution θ at level n, T �M�θ = Mθ,

up to βη-equivalence.

Proof. By structural induction on M, using Lemma 4.4. Only the case of abstractions

M = λxϕ.N, N : τ, is interesting. Let A be a finite subset containing the free variables

of M. By α-renaming, we make sure that xϕ is not in A, and not free in any term θ(y),

y ∈ A. By Lemma 4.4 (3), T �M�θ is the unique f ∈ T �ϕ→ τ�n such that for every

m � n, for every P ∈ T �ϕ�m, f · P = T �N�(θ[xϕ �→ P ]), namely f · P = N(θ[xϕ �→ P ]),

using the induction hypothesis. The term Mθ (modulo βη) is another such f, since

Mθ · P = (λxϕ.Nθ)P = Nθ[P/xϕ] = N(θ[xϕ �→ P ]). By uniqueness, T �M�θ = Mθ.

5. A semantics for FOλ∇ and soundness

The logic FOλ∇ was introduced by Miller and Tiu (2005), as an intuitionistic first-order

logic with predicates on higher order terms, together with the ∇ operator. Schöpp (2007)

used a classical variant of that logic. We use a close cousin of the latter: the only

differences are that ∇xτ.F will imply ∃xτ.F in our logic, and that ∇xτ.F and ∇yϕ.F will be

equivalent if xτ and yϕ are not free in F , even when τ �= ϕ.

Instead of considering all the connectives, we shall restrict ourselves to ⊥ (false),

⊃ (implication) and ∀ (universal quantification). The other connectives could be dealt

J. Goubault-Larrecq 1260

https://doi.org/10.1017/S0960129518000063 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000063


(⊥L)
Γ, (σ �⊥) −→ Δ

(Ax)
Γ, J −→ J,Δ

Γ −→ J,Δ Γ′, J −→ Δ′

(Cut)
Γ,Γ′ −→ Δ,Δ′

Γ, J, J → Δ
(cL)

Γ, J → Δ

Γ→ Δ
(wL)

Γ, J → Δ

Γ→ Δ, J, J
(cR)

Γ→ Δ, J

Γ→ Δ
(wR)

Γ→ Δ, J

Γ, J → Δ
(J ≈ J ′) (≈ L)

Γ, J ′ → Δ

Γ→ Δ, J
(J ≈ J ′) (≈ R)

Γ→ Δ, J ′

Γ −→ Δ, (σ � F) Γ, (σ � G) −→ Δ
(⊃ L)

Γ, (σ � F ⊃ G) −→ Δ

Γ, (σ � F) −→ Δ, (σ � G)
(⊃ R)

Γ −→ Δ, (σ � F ⊃ G)

M : τ Γ, (σ � F[M/xτ]) −→ Δ
(∀L)

Γ, (σ � ∀xτ.F) −→ Δ

Γ −→ Δ, (σ � F[hσ/xτ])
(hσ→τ fresh) (∀R)

Γ −→ Δ, (σ � ∀xτ.F)

Γ, (σ, x : τ � F) −→ Δ
(∇L)

Γ, (σ � ∇xτ.F) −→ Δ

Γ −→ Δ, (σ, x : τ � F)
(∇R)

Γ −→ Δ, (σ � ∇xτ.F)

Fig. 1. A sequent calculus formulation of FOλ∇.

with similarly. Alternatively, in a classical logic, those other connectives are definable:

¬F = F ⊃ ⊥, F ∨ G = (¬F) ⊃ G, F ∧ G = ¬(F ⊃ ¬G), ∃xτ.F = ¬(∀xτ.¬F).

We are given a countable set of so-called relation symbols P , each coming with an

arity, which is a finite list of types τ1, τ2, · · · , τk . Atomic formulae are of the form

P (M1,M2, · · · ,Mk) where M1 : τ1, M2 : τ2, . . . , Mk : τk are λ-terms and P is a relation

symbol of arity τ1, τ2, · · · , τk . The formulae are built from atomic formulae and ⊥ using

⊃, ∀ and the nabla quantifier ∇: if F is a formula, then ∇xτ.F is a formula.

Call a signature any finite list σ of pairwise distinct variables xτ1

1 , x
τ2

2 , · · · , xτmm . To stick

with conventional writing, we shall write that signature x1 : τ1, x2 : τ2, · · · , xm : τm.

A generic judgement (or, more simply, a judgement) J is an expression of the form σ �F

where σ is a signature (the local signature of the judgement) and F is a formula; � is a

separator. The meaning of x1 : τ1, x2 : τ2, · · · , xm : τm � F is intended to be the same as

∇xτ1

1 .∇x
τ2

2 . · · · .∇xτmm .F . We write λσ.F for λx1 : τ1, x2 : τ2, · · · , xm : τm.F . We also write σ, σ′

for the concatenation of signatures when that makes sense.

Definition 5.1. Let ≈ be the smallest equivalence relation on judgements such that

— if λσ.F and λσ′.F ′ are βη-convertible, then (σ � F) ≈ (σ′ � F ′);

— if xτ and yϕ are not free in F , then (σ, x : τ, σ′ � F) ≈ (σ, y : ϕ, σ′ � F).

The second requirement does not follow from the first one: when τ �= ϕ, λσ, x : τ, σ′.F

and λσ, y : ϕ, σ′.F have different types and are neither α-convertible nor βη-convertible.

A sequent of FOλ∇ is an expression Γ −→ Δ, where Γ and Δ are finite multisets of

judgements.
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Remark 5.2. Those are slightly different from the sequents of Miller and Tiu (2005), which

are of the form Σ; Γ −→ Δ, where Σ is a (global) signature. This makes a difference in our

way of formulating the (∀L) rule, which allows us to instantiate xτ by any term of type τ

whatsoever, including non-ground terms; hence, to prove the implication ∀xτ.F ⊃ ∇xτ.F ,

and therefore also (since ∇ commutes with negation), ∇xτ.F ⊃ ∃xτ.F .

We write Γ, J for the addition of the judgement J to Γ, and Γ,Θ for the union of the

multisets Γ and Θ. We write M : τ to state that M is a term of type τ, as in the first

premise of (∀L).

The rules of FOλ∇ are shown in Figure 5. In the rightmost premise of (∀L), one can

find a judgement σ � F[M/xτ]. F[M/xτ] denotes capture-avoiding substitution of M for

xτ in F , but M is allowed to capture variables from σ, on purpose. In (∀R), h : σ → τ

abbreviates h : τ1 → τ2 → · · · → τn → τ, and hσ abbreviates hx1x2 · · · xn.
We define a semantics of all the objects considered above, as follows.

Definition 5.3. Given a nabla set D, let a nabla predicate P on D be a family (Pn)n∈N of

subsets Pn of Dn.

Nabla predicates are not weak nabla subsets: we do not require that Pn be included in

Pn+1.

Definition 5.4. A Henkin structure is a Henkin universe S , together with nabla predicates

S�P � on S�τ1�× S�τ2�× · · · × S�τk� for each relation symbol P of arity τ1, τ2, · · · , τk .
A standard structure is a Henkin structure whose underlying Henkin universe is a

standard universe S (see Lemma 4.7).

We now define satisfaction of a formula F at level n as follows, in a Henkin structure

S , modulo a generic family new and where ρ is an environment at level n.

S, new; ρ |=n P (M1, · · · ,Mk) iff (S�M1�n(ρ), · · · , S�Mk�n(ρ)) ∈ S�P �n
S , new; ρ |=n ⊥ never

S, new; ρ |=n F ⊃ G iff (S, new; ρ �|=n F or S, new; ρ |=n G)

S, new; ρ |=n ∀xτ.F iff (for every d ∈ S�τ�n, S, new; ρ[x �→ d] |=n F)

S, new; ρ |=n ∇xτ.F iff S, new; ρ[x �→ newτ
n+1] |=n+1 F.

This extends to judgements by letting S, new; ρ |=n x1 : τ1, x2 : τ2, · · · , xm : τm � F if and

only if S, new; ρ |=n ∇xτ1

1 .∇x
τ2

2 . · · · .∇xτmm .F; then, to sequents by letting S, new; ρ |=n Γ −→
Δ if and only if S, new; ρ �|=n J for some J in Γ or S, new; ρ |=n J for some J in Δ.

Remark 5.5. It may be worth comparing our semantics to Schöpp (2007). Instead of an

index n, Schöpp uses a so-called λ-tree context σ, i.e., a signature where each variable is

mapped to a λ-tree type ι (a certain class of base types). The connection is that n is the

length of σ. Schöpp does not require a generic family new as we do to give semantics

to ∇xι.F (in some environment ρ), and instead decides to map the generic variable xι to

itself: explicitly, Schöpp’s semantics of ∇xι.F in environment ρ and λ-tree context σ is

the semantics of F in environment ρ[xι �→ xι] (and context σ, xι : ι). This is only possible

because Schöpp’s interpretation of terms at a base type ι is restricted to be a term of the
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same type (see the definition of ||ι||σ in Schöpp (2007), Section 1.3): so xι is not only a

variable, but also a value of the right type, and ρ[xι �→ xι] makes sense. We do not make

such a restriction, but soundness does not come for free: we require our models to have

enough maps for that (see the proof of Lemma 5.7 (3) below).

Lemma 5.6. For every λ-term M of type τ, for every n ∈ N ,

1. S, new; ρ |=n J[M/xτ] iff S, new; ρ[xτ �→ S�M�ρ] |=n J;

2. S, new; ρ |=n Γ[M/xτ] −→ Δ[M/xτ] iff S, new; ρ[xτ �→ S�M�ρ] |=n Γ −→ Δ.

Proof. (1) It is enough to prove the claim when J is a formula, by structural induction

on it, paying attention to α-renaming in the case of universal quantification and ∇
quantification. We describe the latter case, when J = ∇yϕ.F . By α-renaming, yϕ is

different from xτ and not free in M. Write ρ̃ for ρ[yϕ �→ newϕ
n+1]. Then, writing ρ |=n J

instead of the more formal but more cumbersome S, new; ρ |=n J:

ρ |=n J iff ρ̃ |=n+1 F[M/xτ]

iff ρ[yϕ �→ newϕ
n+1, x

τ �→ S�M�ρ̃] |=n+1 F (induction hypothesis)

iff ρ[yϕ �→ newϕ
n+1, x

τ �→ S�M�ρ] |=n+1 F (Lemma 4.5 (2))

iff ρ[xτ �→ S�M�ρ][yϕ �→ newϕ
n+1] |=n+1 F

iff ρ[xτ �→ S�M�ρ] |=n ∇yϕ.F.

(2) Immediate consequence of (1).

We say that two formulae F and G are equivalent if and only if, for every Henkin

structure S and for every generic family new on S , with enough maps, for every n ∈ N ,

for every environment ρ at level n, S, new; ρ |=n F if and only if S, new; ρ |=n G.

Lemma 5.7. The following are pairs of equivalent formulae:

1. ∇xτ.(F ⊃ G) and (∇xτ.F) ⊃ (∇xτ.G).

2. ∇xτ.F and ∇yϕ.F , if neither xτ nor yϕ is free in F .

3. ∇xτ.∀yϕ.F and ∀hτ→ϕ.∇xτ.F[hx/y].

Proof. The first equivalence is a simple verification. The second one follows from the

fact that the semantics of a formula F in an environment ρ does not depend on the values

ρ(zψ) such that zψ is not free in F . This an easy induction on F , which uses Lemma 4.5 (2).

Finally, for the third equivalence (writing again ρ |=n F instead of S, new; ρ |=n F),

ρ |=n ∇xτ.∀yϕ.F iff ρ[x �→ newτ
n+1] |=n+1 ∀yϕ.F

iff (for every d ∈ S�ϕ�n+1, ρ[x �→ newτ
n+1, y �→ d] |=n+1 F) (6)

while ρ |=n ∀hτ→ϕ.∇xτ.F[hx/y] if and only if

(for every f ∈ S�τ→ ϕ�n, ρ[h �→ f] |=n ∇xτ.F[hx/y])

iff (for every f ∈ S�τ→ ϕ�n, ρ[h �→ f][x �→ newτ
n+1] |=n+1 F[hx/y])

iff (for every f ∈ S�τ→ ϕ�n, (7)

ρ[x �→ newτ
n+1, y �→ App(f, newτ

n+1)] |=n+1 F)
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where we have used Lemma 5.6 (2), and the fact that h is not free in F in the last line.

The two are equivalent: in one direction, for every f ∈ S�τ→ ϕ�n, App(f, newτ
n+1) is a

value d in S�ϕ�n+1, so Equation (6) implies Equation (7). In the converse direction, for

every d ∈ S�ϕ�n+1, we can find an f ∈ S�τ→ ϕ�n such that App(f, newτ
n+1) = d, because

S has enough maps. Hence, Equation (7) implies Equation (6).

We write S, new |=n Γ −→ Δ if and only if S, new; ρ |=n Γ −→ Δ for every environment

ρ at level n, and we say that Γ −→ Δ is valid if and only if this holds for every n ∈ N , for

every Henkin structure S , and for every generic family new, with enough maps.

Proposition 5.8 (Soundness). Every derivable sequent Γ −→ Δ is valid.

Proof. It suffices to show that S, new; ρ |=n Γ −→ Δ by induction on the given

derivation. Again, we drop the S, new prefix, in the name of readability.

In the case of the (⊃ L)/(⊃ R) rules, we must show that ρ |=n σ � (F ⊃ G) if and only

if ρ �|=n σ � F or ρ |=n σ � G: this is an easy induction on the number of variables in σ,

using Lemma 5.7 (1).

In the case of (≈ L)/(≈ R), we must show that ρ |=n J if and only if ρ |=n J
′, assuming

J ≈ J ′. It suffices to show that this is the case when J and J ′ are βη-convertible (that

follows from Lemma 4.5 (3)), and when J = σ, x : τ, σ′ � F , J ′ = σ, y : ϕ, σ′ � F , with xτ,

yϕ not free in F; the latter follows from Lemma 5.7 (2).

In the case of (∀R), assume that ρ |=n Γ −→ Δ, (σ � F[hσ/xτ]), with h fresh of

type σ → τ. Equivalently, ρ |=n Γ −→ Δ, (�∇σ.F[hσ/xτ]), where we write ∇σ for

∇xτ1

1 .∇x
τ2

2 . · · · .∇xτmm , assuming σ = x1 : τ1, x2 : τ2, · · · , xm : τm. Trivially, this implies

ρ |=n Γ −→ Δ, (�∀hσ→τ.∇σ.F[hσ/xτ]), since h is fresh. By iterating Lemma 5.7 (3), we

obtain ρ |=n Γ −→ Δ, (�∇σ.∀xτ.F), that is, ρ |=n Γ −→ Δ, (σ � ∀xτ.F).

In the case of (∀L), letM be a λ-term of type τ, and assume ρn |=n Γ, (σ�F[M/xτ]) −→ Δ.

Assume also that ρ |=n J for every J in Γ, and ρ |=n (σ�∀xτ.F). We aim to show that ρ |=n J
′

for some J ′ in Δ. By Lemma 5.7 (3) again, the latter implies ρ |=n ∀hσ→τ.∇σ.F[hσ/xτ].

Instantiate hσ→τ by λσ.M. It follows that ρ |=n ∇σ.F[M/xτ], hence ρ |=n σ � F[M/xτ].

Since ρ |=n J for every J in Γ and ρn |=n Γ, (σ � F[M/xτ]) −→ Δ, we conclude.

The other cases are immediate.

6. Henkin completeness

We shall show that the deduction system of Figure 5 is complete for Henkin structures

(under the assumption of a unique base type ι) using a variant of the technique of

Hintikka sets, a technique used to show that tableaux calculi are complete for first-order

logic (Fitting 1996, Section 3.5). This will also show that the (Cut) rule is not needed for

completeness.

Our purpose now is, given an unprovable sequent, to find a model of it.

A signed judgement is an expression of the form +J or −J , where J is a judgement.

Semantically, we understand +J as meaning ‘J is true,’ and −J as ‘J is false.’ Syn-

tactically, we see a sequent J1, · · · , Jm → J ′1, · · · , J ′n as a collection of signed judgements

+J1, · · · ,+Jm,−J ′1, · · · ,−J ′n. We extend ≈ to signed judgements in the obvious way.
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Definition 6.1. A theory T is a set of signed judgements.

T is inconsistent if and only if there are finitely many signed judgements +J1, . . . , +Jm,

−J ′1, . . . , −J ′n in T such that the sequent J1, · · · , Jm → J ′1, · · · , J ′n is derivable in the system

of Figure 5, using all rules except the cut rule (Cut). T is consistent otherwise.

T is a Hintikka theory if and only if

1. T is consistent;

2. if J ∈ T and J ≈ J ′, then J ′ ∈ T;

3. if +σ � F ⊃ G is in T, then −σ � F or +σ � G is in T;

4. if −σ � F ⊃ G is in T, then both +σ � F and −σ � G are in T;

5. if +σ � ∀xτ.F is in T, then +σ � F[M/xτ] is in T for every λ-term M : τ;

6. if −σ � ∀xτ.F is in T, then −σ � F[hσ/xτ] is in T for some variable hσ→τ that does not

occur in σ;

7. if +σ � ∇xτ.F is in T, then +σ, x : τ � F is in T;

8. if −σ � ∇xτ.F is in T, then −σ, x : τ � F is in T.

Fact 1. A consistent theory cannot contain both +J and −J for the same judgement J;

otherwise, it would be inconsistent, using rule (Ax). It cannot contain a judgement of the

form +σ �⊥ either (rule (⊥L)).

Lemma 6.2. Let T be a consistent theory.

1. For every signed judgement +σ �F ⊃ G in T, T∪{−σ �F} or T∪{+σ �G} is consistent.

2. For every signed judgement −σ � F ⊃ G in T, T ∪ {+σ � F,−σ � G} is consistent.

3. For every signed judgement +σ � ∀xτ.F in T, for every M : τ, T ∪ {+σ � F[M/xτ]} is

consistent.

4. For every signed judgement −σ � ∀xτ.F in T, for every variable h : σ → τ that is not

free in T and does not occur in σ, T ∪ {−σ � F[hσ/xτ]} is consistent.

5. For every signed judgement +σ � ∇xτ.F in T, T ∪ {+σ, x : τ � F} is consistent.

6. For every signed judgement −σ � ∇xτ.F in T, T ∪ {−σ, x : τ � F} is consistent.

7. For every signed judgement +J in T, for every J ′ ≈ J , T ∪ {+J ′} is consistent.

8. For every signed judgement −J in T, for every J ′ ≈ J , T ∪ {−J ′} is consistent.

Proof. (1) Assume that both T∪ {−σ � F} and T∪ {+σ � G} are inconsistent. There are

cut-free derivations of sequent of the form Γ → (σ � F)
︸ ︷︷ ︸

m times

,Δ and Γ′, (σ � G)
︸ ︷︷ ︸

n times

→ Δ′, where

Γ and Γ′ consist of judgements that appear with the + sign in T, Δ and Δ′ consist of

judgements that appear with the − sign in T, and m, n ∈ N . Necessarily, m �= 0 since

otherwise T would be inconsistent. Using the contraction rule (cR), we may assume that

m = 1. Similarly, and using (cL), we may assume that n = 1. Using the weakening rules

(wL) and (wR), we may assume that Γ = Γ′ and Δ = Δ′. It now suffices to apply (∀L) to

obtain a cut-free derivation of Γ, (σ � F ⊃ G)→ Δ. However, +σ � F ⊃ G is in T, so that

contradicts the consistency of T.

(2)–(8). Similar analysis, using rule (⊃ R), (∀L), (∀R), (∇L), (∇R), (≈ L) or (≈ R) instead.

Lemma 6.3. Every finite consistent theory is contained in some Hintikka theory.
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Proof. Since there are only countably many variables and countably many relation

symbols, there are only countably many λ-terms (up to βη-conversion), and countably

many signed judgements. Call a task either: a signed judgement ±J , where J is not of the

form +σ � ∀xτ.F; or a pair (+σ � ∀xτ.F,M) where M : τ; or a pair (+J,+J ′) or (−J,−J ′)
with J ≈ J ′. Fix an enumeration of all tasks, in such a way that every task occurs infinitely

often on the list. The latter is a standard trick, and we shall explain its purpose at the

end of the proof.

Let T0 be a finite consistent theory. We define an increasing sequence of finite consistent

theories Tn, n ∈ N , starting with T0. Given that Tn has been built, we build Tn+1 by

considering the nth task Θn on the enumeration.

If Θn is of the form +σ � F ⊃ G, and is in Tn, then by Lemma 6.2 (1), Tn ∪ {−σ � F}
or Tn ∪ {+σ � G} is consistent: in the first case, let Tn+1 = Tn ∪ {−σ � F}, otherwise let

Tn+1 = Tn ∪ {+σ � G}. If Θn = +σ � F ⊃ G is not in Tn, then Tn+1 = Tn.
If Θn is of the form −σ � F ⊃ G and is in Tn, then we let Tn+1 = Tn ∪ {+σ � F,−σ � G},

using Lemma 6.2 (2). And if Θn = −σ � F ⊃ G is not in Tn, then Tn+1 = Tn.
We proceed similarly if Θn is of the form ±σ � ∇xτ.F , using Lemma 6.2 (5) or (6).

If Θn is of the form (+σ � ∀xτ.F,M) where +σ � ∀xτ.F is in T, and M is of type τ, then

we let Tn+1 = Tn ∪ {+σ � F[Mn/x
τ]}, using Lemma 6.2 (3). If +σ � ∀xτ.F is not in T, then

we let Tn+1 = Tn.
If Θn is of the form −σ � ∀xτ.F and is in Tn, then there is a variable h of type σ → τ

that is free neither in Tn nor in σ since Tn is finite. Relying on Lemma 6.2 (4), we define

Tn+1 as Tn ∪ {−σ � F[hσ/xτ]}. If Θn = −σ � ∀xτ.F is not in Tn, then Tn+1 = Tn.
Finally, if Θn is of the form (+J,+J ′) with J ≈ J ′ (and similarly if it is of the form

(−J,−J ′)), either +J ∈ Tn and we let Tn+1 = Tn∪{+J ′}, relying on Lemma 6.2 (7) and (8),

or +J �∈ Tn and we let Tn+1 = Tn.
Define T∞ as

⋃

n∈N Tn. T∞ is a Hintikka theory, as one checks easily. For example, if

+σ �∀xτ.F is in T∞, it must occur in Tn for some n ∈ N . Since each task appears infinitely

often in the enumeration, for every λ-term M : τ, the task (+σ � ∀xτ.F,M) occurs at

some rank m after n. Our construction then ensures that +σ � F[M/xτ] is in Tm+1, hence

in T∞.

Now consider the term universe T of Section 4.2. Recall that it only makes sense

provided there is a unique base type ι. For every local signature σ = x1 : τ1, x2 : τ2, . . . , xn :

τn (of length n), let θσ be the substitution [aτ1

1 /x1, a
τ2

2 /x2, . . . , a
τn
n /xn]. This is a substitution

at level n.

Lemma 6.4. Let T be a Hintikka theory, and assume there is a unique base type ι.

Define T �P �n, for each relation symbol P , of arity τ1, τ2, . . . , τk , as the set of k-tuples

(M1θσ,M2θσ, . . . ,Mkθσ) such that +σ � P (M1,M2, . . . ,Mk) ∈ T for some local signature σ

of length n. This defines a Henkin structure such that

1. for every signed judgement +J ∈ T, T , a; ε |=0 J ,

2. for every signed judgement −J ∈ T, T , a; ε �|=0 J ,

where ε is the identity substitution (at level 0).
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Proof. First look at the case where J = σ � P (M1,M2, . . . ,Mk), where σ is of length

n. If +J ∈ T, then by definition (M1θσ,M2θσ, . . . ,Mkθσ) is in T �P �n. By Lemma 4.11,

(T �M1�θσ, T �M2�θσ, . . . , T �Mk�θσ) is in T �P �n, so T , a; θσ |=n P (M1,M2, . . . ,Mk), namely

T , a; ε |=0 σ � P (M1,M2, . . . ,Mk). If −J ∈ T, then +J �∈ T (Fact 1), so (M1θσ,M2θσ, . . . ,

Mkθσ) is not in T �P �n. By a similar argument, T , a; ε �|=0 σ � P (M1,M2, . . . ,Mk).

Now assume J = σ �⊥. Since every Hintikka theory is consistent, and using Fact 1, +J

is not in T. If −J is in T, we have T , a; ε �|=0 σ �⊥ anyway.

The case where J = σ � F ⊃ G presents no difficulty. If +J ∈ T, then −σ � F or +σ � G

is in T, hence by induction hypothesis T , a; ε �|=0 σ � F or T , a; ε |=0 σ � G, meaning that

T , a; ε |=0 σ � F ⊃ G. If −J ∈ T, then +σ � F and −σ � G are in T, so by induction

hypothesis T , a; ε |=0 σ � F and T , a; ε �|=0 σ � G, meaning that T , a; ε �|=0 σ � F ⊃ G.

Now assume J = ∀xτ.F . If +J ∈ T, then +σ � F[M/xτ] is in T for every λ-term

M : τ. By induction hypothesis, this implies that T , a; ε |=0 σ � F[M/xτ] for every λ-

term M : τ. We wish to show that T , a; ε |=0 σ � ∀xτ.F . Using Lemma 5.7 (3), we

know that the latter is equivalent to T , a; ε |=0 (�∀hσ→τ.∇σ.F[hσ/xτ]). Hence, we must

show that for every N ∈ T �σ → τ�0 (i.e., for every ordinary λ-term N : σ → τ, by

Remark 4.9), T , a; ε[h �→ N] |=0 ∇σ.F[hσ/xτ]. Using Lemma 5.6, and since T �N�ε = N

(Lemma 4.11), this boils down to showing that T , a; ε |=n (∇σ.F[hσ/xτ])[h �→ N], that is,

T , a; ε |=n σ � F[Nσ/xτ] for every N : σ → τ that has no free variable in the list σ. Since

T , a; ε |=0 σ � F[M/xτ] for every λ-term M : τ, this is clear.

If −J ∈ T for J = ∀xτ.F , then −σ � F[hσ/xτ] is in T for some variable h : σ → τ that

does not occur in σ. By induction hypothesis, T , a; ε �|=0 σ � F[hσ/xτ]. We wish to show

that T , a; ε �|=0 σ � ∀xτ.F , and using the same machinery as above, this is equivalent to

showing that T , a; ε �|=n σ � F[Nσ/xτ] for some N : σ → τ that has no free variable in the

list σ: we simply take N = h.

The cases when J = ∇xτ.F are easy.

Call any Henkin structure H whose underlying Henkin universe is the term universe T

a Herbrand structure.

Proposition 6.5. Assume there is a unique base type ι. Let Γ→ Δ be a sequent such that

H, a; ε |=0 Γ → Δ for every Herbrand structure H . Then, Γ → Δ is derivable using the

rules of FOλ∇, without (Cut).

Proof. Assume Γ → Δ is not derivable. Let T0 be the theory containing the signed

judgements +J , J ∈ Γ and −J , J ∈ Δ. If T0 were inconsistent, then using the contraction

and weakening rules, we would obtain a derivation of Γ→ Δ. Therefore, T0 is consistent.

By Lemma 6.3, T0 is contained in some Hintikka theory T. Using the Henkin structure H

defined in Lemma 6.4 – this is a Herbrand structure – we obtain that H, a; ε �|=0 Γ → Δ,

a contradiction.

As a corollary, we obtain:

Theorem 1 (Henkin completeness). Assume there is a unique base type ι. FOλ∇ is complete

for the Henkin semantics: every valid sequent is derivable in FOλ∇, and even by a cut-free

proof. �

A semantics for nabla 1267

https://doi.org/10.1017/S0960129518000063 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000063


7. Incompleteness for standard structures

We shall see that FOλ∇ is incomplete for standard structures. This is due to the higher

order nature of the terms that FOλ∇ is based on, and to the fact that the category ∇∇∇
validates the weak axiom of choice (Corollary 3.5).

Consider the formula

(∀xϕ.∃yτ.F) ⊃ (∃hϕ→τ.∀xϕ.F[hx/y]), (AC)

where ∃zψ.G abbreviates ¬∀zψ.¬G and ¬G abbreviates G ⊃ ⊥. Explicitly,

S, new; ρ |=n ∃zψ.F iff (for some e ∈ S�ψ�n, S, new; ρ[z �→ e] |=n F).

Lemma 7.1. (AC) holds in every standard structure S , for every generic family new.

Proof. Assume that S, new; ρ |=n ∀xϕ.∃yτ.F , in other words, for every d ∈ S�ϕ�n, there is

an e ∈ S�τ�n such that S, new; ρ[x �→ d, y �→ e] |=n F . Let R ⊆ S�ϕ�n × S�τ�n be the set of

all pairs (d, e) such that S, new; ρ[x �→ d, y �→ e] |=n F . Corollary 3.5 applies, so there is an

element f of S�ϕ→ τ�n such that for every d ∈ S�ϕ�n, S, new; ρ[x �→ d, y �→ f(d)] |=n F .

In other words, S, new; ρ |=n ∃hϕ→τ.∀xτ.F[hx/y].

However, (AC) is not provable in FOλ∇. The following states it for the instance of (AC)

where F = P (x, y) and ϕ = τ = ι.

Lemma 7.2. The sequent → �(∀xι.∃yι.P (x, y)) ⊃ (∃hι→ι.∀xι.P (x, hx)) is not derivable using

the rules of Figure 5.

Proof. We build a Herbrand structure by a diagonal argument. For each n ∈ N , since

T �ι→ ι�n is countably infinite, we can enumerate its elements as Mj , j ∈ N . Enumerate

the elements of T �ι�n as Nj , j ∈ N , as well. Define T �P �n ⊆ T �ι�n × T �ι�n to be a set

of pairs (Nj,N
′
j), j ∈ N , where for each j ∈ N , N ′j is chosen so as to be different from

MjNj (remembering that all the terms involved are considered up to βη-conversion). By

construction, T ; ε |=0 ∀xι.∃yι.P (x, y), but T ; ε �|=0 ∃hι→ι.∀xι.P (x, hx), since the latter would

mean that there is an element Mj of T �ι→ ι�0 such that (Nk,MjNk) would be in T �P �0

for every k ∈ N , and that fails for k = j. We conclude by using Proposition 5.8.

As a consequence, FOλ∇ is incomplete for standard structures.

8. Π1-completeness

We claim that we regain completeness for the fragment consisting of Π1 formulae (which

we define in Definition 8.7 below). This requires some λ-calculus machinery to relate the

interpretation S�M� of terms M in a standard universe S and the interpretation T �M� in

the term universe T .

The standard universe S we choose is the unique standard universe such that S�β� =

T �β� for every base type β (see Lemma 4.7). Beware that S�τ� = T �τ� will fail for non-

base types τ: for arrow types, T �ϕ→ τ� is a nabla set of terms, in particular, T �β → β�n
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is countable for every n; on the contrary, S�ϕ→ τ� = [S�ϕ� → S�τ�], and in particular,

S�β → β�0 is uncountable.

We define the following Kripke logical relation.

Definition 8.1. Define the relations R[τ]n, for each type τ and each n ∈ N , between T �τ�n
and S�τ�n, by

1. R[β]n is equality, for each base type β and every n ∈ N;

2. for every n ∈ N , for every M ∈ T �ϕ→ τ�n, for every f ∈ S�ϕ→ τ�n, M R[ϕ→ τ]n f

if and only if, for every m � n, for all N ∈ T �ϕ�m and d ∈ S�ϕ�m such that N R[ϕ]m d,

MN R[τ]m f(d).

Call a weak nabla subset A0 ⊆ A1 ⊆ · · · ⊆ An ⊆ · · · of a nabla set D a nabla subset of

D if and only if An+1 ∩ Dn = An for every n ∈ N . A nabla subset is entirely determined

by A∞ =
⋃

n∈N An, since we can recover An as A∞ ∩Dn. We define nabla relations between

two nabla sets D and E as the nabla subsets of D × E.

Lemma 8.2. For every type τ, R[τ] is a nabla relation.

Proof. By induction on τ. This is obvious when τ is a base type. Assume that R[ϕ] and

R[τ] are nabla relations, and let us show that R[ϕ → τ] is a nabla relation. Fix n ∈ N ,

M ∈ T �ϕ→ τ�n and f ∈ S�ϕ→ τ�n.
If M R[ϕ→ τ]n f, then for every m � n, for all N ∈ T �ϕ�m and d ∈ S�ϕ�m such that

N R[ϕ]m d, MN R[τ]m f(d). This holds in particular for m � n+ 1, so M R[ϕ→ τ]n+1 f.

Conversely, assume M R[ϕ→ τ]n+1 f. In order to show that M R[ϕ→ τ]n f, let

m � n, and N ∈ T �ϕ�m and d ∈ S�ϕ�m be such that N R[ϕ]m d. We wish to show that

MN R[τ]m f(d). If m � n + 1, this is the assumption. If m = n, we use the fact that

N R[ϕ]n d and the fact that R[ϕ] is a weak nabla relation to obtain N R[ϕ]n+1 d. By

assumption, MN R[τ]n+1 f(d). Since MN is in T �τ�n and f(d) is in S�τ�n, we can appeal

to the fact that R[τ] is a nabla relation and infer that MN R[τ]n f(d).

The main result on logical relations is the so-called basic lemma, which we now state

and prove, in a nabla set-theoretic variant. The argument is standard.

Lemma 8.3 (Basic lemma). For every n ∈ N , for every substitution θ at level n whose

domain dom θ is finite, for every environment ρ at level n, we say that θ Rn ρ if and only

if for every variable zψ ∈ dom θ, θ(zψ) R[ψ]n ρ(zψ).

For every λ-term M : τ with free variables in dom θ, θ Rn ρ implies Mθ R[τ]n S�M�ρ.

Beware that M is an ordinary λ-term here, not a λ-term with names.

Proof. By induction on a typing derivation for M. This is clear for variables. If M is an

application M1M2 with M1 : ϕ→ τ and M2 : ϕ, then the induction hypothesis tells us that

M1θ R[ϕ→ τ]n f, where f = S�M1�ρ. It also tells us that M2θ R[ϕ]n S�M2�ρ. Using the

definition of R[ϕ→ τ]n with m = n, we obtain that M1M2 R[τ]n f(S�M2�ρ) = S�M1M2�ρ.

If M is a λ-abstraction λxϕ.P of type ϕ→ τ, then let f = S�M�ρ. We must show that,

for every m � n, for all N ∈ T �ϕ�m and d ∈ S�ϕ�m such that N R[ϕ]m d, (Mθ)N R[τ]m f(d).
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By α-renaming, we may assume that xϕ is not in dom θ, and not free in any term θ(xψ),

xψ ∈ dom θ. Let θ′ = θ[xϕ �→ N] and ρ′ = ρ[xϕ �→ d]. Those are at level m, not n. We

see that for every variable zψ ∈ dom θ′, θ′(zψ) R[ψ]m ρ
′(zψ): this follows from N R[ϕ]m d

when zψ = xϕ, and from θ Rn ρ (hence θ Rm ρ) in the other cases.

By induction hypothesis, Pθ′ R[τ]m S�P �ρ′. We conclude by noting that Pθ′ is equal

(up to βη-conversion) to (Mθ)N, and that S�P �ρ′ = f(d).

The following is the crux of our argument, and will be used in nearly every forthcoming

result.

Proposition 8.4. There are families of nabla maps sτ : T �τ�→ S�τ� and rτ : S�τ�→ T �τ�,
indexed by types τ, such that the following implications hold for all M ∈ T �τ�n and

d ∈ S�τ�n, n ∈ N:

sτ(M) = d ⇒ M R[τ]n d, (8)

M R[τ]n d ⇒ rτ(d) = M. (9)

Proof. Those are built by structural induction on τ. For a base type β, we define both sβ
and rβ as identities. We define sϕ→τ as Λ(̃sϕ→τ), where s̃ϕ→τ is the following composition:

T �ϕ→ τ�× S�ϕ�
idT�ϕ→τ�×rϕ−→ T �ϕ→ τ�× T �ϕ� App

−→T �τ� sτ−→S�τ�.

Here, App : T �ϕ→ τ�× T �ϕ�→ T �τ� is the nabla map defined by letting App(M,N) be

the term MN (modulo βη); this is application in the term structure. Using the fact that

sτ and rϕ are nabla maps by induction hypothesis, sϕ→τ is a nabla map.

We must show that (8) holds at type ϕ→ τ, that is, that for every M ∈ T �ϕ→ τ�n and

for f = sϕ→τ(M) ∈ S�ϕ→ τ�n, M R[ϕ→ τ]n f. To show this, let m � n, and N and d be

such that N R[ϕ]m d. We must show that MN R[τ]m f(d). Since f = sϕ→τ(M), f maps d

to s̃ϕ→τ(M, d), namely, to sτ(App(M, rϕ(d))) = sτ(M(rϕ(d))), where the application of M to

rϕ(d) is syntactic application. Since N R[ϕ]m d, by induction hypothesis on ϕ, rϕ(d) = N,

so fm(d) = sτ(MN). By induction hypothesis on τ, MN R[τ]m f(d).

In order to build rϕ→τ, we recall that R[ϕ→ τ] is a nabla relation (Lemma 8.2), hence

is entirely determined by R[ϕ → τ]∞ =
⋃

n∈N R[ϕ → τ]n, in the sense that R[ϕ → τ]n =

R[ϕ→ τ]∞ ∩ (T �ϕ→ τ�n × S�ϕ→ τ�n).
We claim that for every f ∈ S�ϕ→ τ�∞, there is at most one element M ∈ T �ϕ→ τ�∞

such that M R[ϕ→ τ]∞ f. Imagine there are two, M1 and M2. By abuse of language,

consider M1 and M2 as terms. Find natural numbers n, m1, m2 such that f ∈ S�ϕ→ τ�n,
M1 ∈ T �ϕ→ τ�m1

and M2 ∈ T �ϕ→ τ�m2
. Let m = max(n, m1, m2), so that f is in

S�ϕ→ τ�m, M1 and M2 are in T �ϕ→ τ�m. Since R[ϕ → τ] is a nabla relation, we have

M1 R[ϕ→ τ]m f and M2 R[ϕ→ τ]m f. Pick a variable Xϕ that is not free in M1, and not

free in M2. Let d = sϕ(Xϕ). By induction hypothesis, Xϕ R[ϕ]m d, so M1X
ϕ R[τ]m f(d)

and M2X
ϕ R[τ]m f(d). By induction hypothesis again, rτ(f(d)) is then equal to both

M1X
ϕ and to M2X

ϕ (up to βη-conversion). Therefore, λXϕ.M1X
ϕ = λXϕ.M2X

ϕ, and by

η-conversion, M1 = M2.
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Using the above claim, we may now define rϕ→τ(f), for each f ∈ S�ϕ→ τ�∞, as the

unique M ∈ T �ϕ→ τ�∞ such that M R[ϕ→ τ]∞ f, if it exists, and as zϕ→τ otherwise,

where zϕ→τ is a fixed variable.

It is clear that Equation (9) holds, but the fact that rϕ→τ(f) is a nabla map needs

some verification. Let f ∈ S�ϕ→ τ�n for some n ∈ N . If rϕ→τ(f) = zϕ→τ, then that is

in T �ϕ→ τ�0 ⊆ T �ϕ→ τ�n. Otherwise, there is a (unique) M ∈ T �ϕ→ τ�∞ such that

M R[ϕ→ τ]∞ f, and we need to show that M is in T �ϕ→ τ�n. We only know that M is

in T �ϕ→ τ�m for some m ∈ N . If m � n, we are done since T �ϕ→ τ�m ⊆ T �ϕ→ τ�n, so

assume m > n. Fix a variable Xϕ, and notice that Xϕ is in T �ϕ�0 ⊆ T �ϕ�m. By induction

hypothesis (8), Xϕ R[ϕ]0 d where d = s(Xϕ), hence also Xϕ R[ϕ]m d. By definition of

R[ϕ → τ], MXϕ R[τ]m f(d). Note that f(d) is in S�τ�n. By induction hypothesis (9),

MXϕ = rτ(f(d)), so MXϕ is in T �τ�n, using the fact that rτ is a nabla map. Recall how

we have defined T �τ�n (Definition 4.8): the set of λ-terms with names of type τ whose

β-normal η-long form contains at most a1, . . . , an as free names. The β-normal η-long

form of M, which is of type ϕ → τ, must be a lambda-abstraction, and by α-renaming

we may assume that it is of the form λXϕ.P for some β-normal η-long term P of type τ,

with the same variable Xϕ we have chosen earlier. The β-normal η-long form of MXϕ is

then P . Since MXϕ is in T �τ�n, the only free names in P are among a1, . . . , an. Therefore,

the same can be said of M, showing that M is in T �ϕ→ τ�n. Therefore, rϕ→τ is a

nabla map.

The previous proof is a modification of a classical proof (Mitchell 1985, Theorem 8.4.2)

of an equational completeness result of Friedman (1975). Showing that rϕ→τ is a nabla map

is a new difficulty in our case. We immediately obtain the following, similar completeness

result, in the category of nabla sets ∇∇∇ rather than in Set. (For a closed term M, and a

given Henkin universe S , S�M�ρ does not depend on the environment ρ at level n, and

we write S�M�n for S�M�ρ in that case.)

Corollary 8.5. The semantics of λ-terms is equationally complete: there is a standard

universe S such that the following are equivalent, for any two closed λ-terms M, N of the

same type τ:

1. M and N are βη-convertible.

2. S�M�0 = S�N�0.

3. S�M� = S�N�.

Proof. (1) ⇒ (3) ⇒ (2) is obvious, considering Lemma 4.5 (3). Assume (2). Let d =

S�M�0 = S�N�0. By the Basic Lemma 8.3, used with n = 0 and the empty substitution θ,

M R[τ]0 d and N R[τ]0 d. Apply Proposition 8.4 to obtain that M = rτ(d) and N = rτ(d)

(up to βη-conversion), so M = N.

This ends our parenthesis. We now define a specific generic family on S. The map sτ was

introduced in Proposition 8.4.

Lemma 8.6. Assume there is exactly one base type ι. The family new defined by newτ
n+1 =

sτ(a
τ
n+1), n ∈ N , is a generic family on S.
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Proof. We must check that newτ
n+1 is not in S�τ�n. As a consequence of Proposition 8.4,

rτ ◦ sτ = idT�τ�. Therefore, rτ(newτ
n+1) = aτn+1. Since that is not in T �τ�n, and rτ is a nabla

map, newτ
n+1 cannot be in S�τ�n.

Definition 8.7 (Δ0 formula, Π1 formula). A Δ0 formula of FOλ∇ is a formula whose

universal and existential quantifiers are first-order, i.e., of the form ∀xι or ∃xι, where ι is

a base type. (There is no restriction on the nabla quantifier.)

A Π1 formula is a formula of the form ∀xτ1

1 , . . . , x
τp
p .G, where G is a Δ0 formula.

Proposition 8.8. Assume there is a unique base type ι, and let H be a Herbrand structure.

Define a standard structure SH on the standard universe S by letting

SH�P �n = {(d1, d2, . . . , dk) ∈
k

∏

i=1

S�τi�n | (rτ1
(d1), rτ2

(d2), . . . , rτk (dk)) ∈ H�P �n},

for every relation symbol P of arity τ1, τ2, . . . , τk and every n ∈ N .

For every n ∈ N , for every substitution θ at level n, for every environment ρ such that

θ Rn ρ:

1. for every Δ0 formula G whose free variables are included in dom θ, SH, new; ρ |=n G if

and only if H, a; θ |=n G;

2. for every Π1-formula F whose free variables are included in dom θ, if SH, new; ρ |=n F

then H, a; θ |=n F;

where new is the generic family of Lemma 8.6.

Proof. (1) By structural induction on G.

If G is an atomic formula P (M1,M2, . . . ,Mk), where each Mi has type τi, then SH, new;

ρ |=n G if and only if (S�M1�nρ,S�M2�nρ, . . . ,S�Mk�nρ) is in SH�P �n. By the basic

Lemma (Lemma 8.3), Miθ R[τi]n S�Mi�ρ, so, using Proposition 8.4 and specifically (9),

rτi (S�Mi�ρ) = Miθ. Using the definition of SH�P �n, we obtain that SH, new; ρ |=n G if and

only if (M1θ,M2θ, . . . ,Mkθ) ∈ H�P �n. The latter is equivalent to (T �M1�nθ, T �M2�nθ, . . . ,
T �Mk�nθ) ∈ H�P �n (Lemma 4.11), hence to H, a; θ |=n G.

If G is a first-order quantified formula ∀xι.G′, then SH, new; ρ |=n G if and only if

SH, new; ρ[x �→ d] |=n G
′ for every d ∈ S�ι�n. Since S�ι� = H�ι�, and R[ι]n is the identity

relation, θ[x �→ d] Rn ρ[x �→ d] for every d ∈ S�ι�n. Hence, SH, new; ρ |=n G if and only

H, a; θ[x �→ d] |=n G
′ for every d ∈ S�ι�n = H�ι�n, if and only if H, a; θ |=n G.

The other cases follow by an easy induction, except perhaps when G is of the form

∇xτ.G′. Then, SH, new; ρ |=n G if and only if SH, new; ρ[x �→ newτ
n+1] |=n+1 G′. Let

ρ′ = ρ[x �→ newτ
n+1], θ′ = θ[x �→ aτn+1]. Since newτ

n+1 = sτ(a
τ
n+1), Proposition 8.4 (and

specifically (8)) implies that aτn+1 R[τ]n+1 newτ
n+1. Hence, θ′ Rn+1 ρ

′, and we can apply the

induction hypothesis: SH, new; ρ′ |=n+1 G
′ if and only if H, a; θ′ |=n+1 G

′, and therefore

SH, new; ρ |=n G if and only if H, a; θ |= G.

(2) Let now F be a Π1 formula ∀xτ1

1 , . . . , x
τp
p .G, where G is a Δ0 formula. If SH, new; ρ |=n

F , then SH, new; ρ[x1 �→ d1, . . . , xp �→ dp] |=n G for all values d1 ∈ S�τ1�n, . . . , dp ∈ S�τp�n.
This is in particular true if we pick d1 = sτ1

(N1), . . . , dp = sτp(Np) for arbitrary elements

N1 ∈ T �τ1�n, . . . , Np ∈ T �τp�n. Let ρ′ = ρ[x1 �→ d1, . . . , xp �→ dp], and θ′ = θ[x1 �→
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N1, . . . , xp �→ Np]. By Proposition 8.4, and specifically (8), θ′ Rn ρ
′. By part 1 of the

Proposition, we conclude that H, a; θ[x1 �→ N1, . . . , xp �→ Np] |=n G for all N1 ∈ T �τ1�n,
. . . , Np ∈ T �τp�n, that is, that H, a; θ |=n F .

Write S, new |=0 F if S, new; ρ |=0 F , where F is a closed formula; in that case, the

environment ρ is irrelevant.

Proposition 8.9 (Π1-completeness). Assume there is a unique base type ι. Let F be a closed

Π1 formula. If S, new |=0 F for every standard structure S and every generic family new

on S , then → �F is derivable in FOλ∇, by a cut-free proof.

Proof. Let ρ be any environment at level 0: then ε R0 ρ. Hence, we can use Proposi-

tion 8.8 (2) and conclude that H, a; ε |=n F . By Proposition 6.5, → �F has a cut-free proof

in FOλ∇.

Remark 8.10. Proposition 8.9 in particular implies that FOλ∇ is complete for all first-

order formulae F in standard structures. This is because every first-order formula is a Δ0

formula, hence a Π1-formula.

9. Open questions

(1) Is FOλ∇ plus (AC) complete for standard models? (2) What would happen if there

were more than one base type ι? (3) Can we extend the present results to the logic of

Abella (Gacek 2008), which includes such proof principles as the equivalence of ∇x.F and

F when x is not free in F , and of ∇x.∇y.F(x, y) and ∇y.∇x.F(x, y)? (4) Does all this extend

to intuitionistic versions of FOλ∇? I would say (4) is easy, (3) should be doable, (2) is

irritatingly difficult and I have no idea about (1) – although I thought I had one, once.

10. Conclusion

Happy 60th, Dale!

I would like to thank the anonymous referees. In particular, one suggested that I include

a list of differences between the various categories used to give semantics to fresh name

creation in the literature (end of Section 3).
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