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SUMMARY
Image stitching is important for the perception and manipulation of undersea robots. In spite of
a well-developed technique, it is still challenging for undersea images because of their inevitable
appearance ambiguity caused by the limited light in the undersea environment, and local disturbance
caused by moving objects, ocean current, etc. To get a clean and stable background panorama in
the undersea environment, this paper proposes an undersea image-stitching method by introduc-
ing graph-based registration and blending procedures. Specifically, in the registration procedure,
matching the features in each undersea image pair is formulated and solved by graph matching, to
incorporate the structural information between features. In the blending procedure, an energy func-
tion on the indirect graph Markov random field is proposed, which takes both image consistency
and neighboring consistency into consideration. Coincidentally, both graph matching and energy
minimization can be mathematically formulated by integer quadratic programming problems with
different constraints; the recently proposed graduated nonconvexity and concavity procedure is used
to optimize both problems. Experiments on both synthetic images and real-world undersea images
witness the effectiveness of the proposed method.

KEYWORDS: Undersea image stitching; Feature correspondence; Graph matching; Energy
minimization; Nonsubmodular function.

1. Introduction
Image stitching aims at combining two or more images with overlapped areas into a wide viewing
composite, or a panorama. It offers help for robot tasks in inaccessible places for human beings, such
as extraterrestrial celestial body, disaster, and deep sea environments, as it can provide a larger field
of view over the operating areas by integrating images shot from different locations. In this paper,
we focus on the stitching problem in the undersea environment.

Image stitching itself has long been an important topic in image processing and robot vision. It
can be roughly divided into two main procedures, that is, registration and blending. The registration
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procedure searches for the image alignment based on the overlapped area, by selecting and esti-
mating a proper transformation model, for example, rigid transformation, affine transformation, and
projective transformation. The key component is the matching of the overlapped area, of which the
methods can be further divided into two categories, that is, the area-based methods and the feature-
based methods. The area-based methods search and match the overlapped area through the area
appearance cues, for example, intensity information or related statistics, and typical methods include
the correlation method and mutual information method. These methods find applications in tasks
with rigid transformation such as the medical imaging, but they are usually less robust to occlusions
and geometric distortions which are common in robot vision. Therefore, the feature-based methods
are more popular in robot vision-related image stitching, which rely on local features dedicated to
tackling the above changing factors. And the related works are discussed in Section 2. The blend-
ing procedure combines the registered images into a smooth panorama with minimization of visual
differences across the overlapped area. Apparently the key component is blending the overlapped
area, by synthesizing the redundant information in the overlapped area from associated images into
a visually optimal part of the panorama. Early methods use the (weighted) average, also known as
the feathering operation, to blend the overlapped area, which is useful in, for example, static land-
scape panorama. In robot vision, the blended area often contains exposure artifacts caused by the
robot motion and ghosting caused by moving objects. In the last decade, researchers resort to the
energy minimization-based pixel-labeling technique to tackle these problems. Specifically, searching
the optimal value for each pixel is elegantly defined by the pixel labeling problem on Markov random
field (MRF), which is solved by energy minimization methods such as graph cuts and loopy belief
propagation. Their effectiveness has been shown in tackling the seam and ghosting in the overlapped
area.

These advances make image stitching to some extent a solved problem in many daily tasks, which
is even widely used on current smart phones. However, different from these daily usage, it is still
a challenging problem to stitch undersea images. The main obstacles are the inevitable appearance
ambiguity and local disturbance in undersea images. The appearance ambiguity is mainly caused
by the limited light in the undersea environment, which is further scattered or absorbed by water
molecules, plankton, or sands. The local disturbance of undersea images is mainly caused by mov-
ing objects (e.g. fish and other aquatic organisms), ocean current, or motion of the robot body.
These obstacles would significantly deteriorate the performance of image-stitching methods, even
the feature-based registration and energy minimization-based blending.

For the feature-based registration, the ambiguous appearance would lead to the poor discrim-
inant ability of the feature descriptor. Therefore, it is intuitive to incorporate additional cues or
constraints to make up the inadequate appearance information. The structural constraint, which
requires that the corresponding features should keep structural consistency beyond maintaining the
appearance similarity, could offer help to avoid abnormal feature assignments.36 For the energy
minimization-based blending, though the popular methods, for example, graph cuts, own the abil-
ity to tackle the seam and ghosting, they have problems in getting a clean and stable background
panorama from undersea images with local disturbance, which in essence is due to their specific
energy function requirement, as discussed in Sections 2 and 3. Therefore, a novel energy function
is necessary for the undersea image-stitching problem, together with the corresponding optimization
algorithm.

Based on these considerations, this paper proposes a novel undersea image-stitching method by
introducing graph-based registration and blending procedures. Specifically, in the registration proce-
dure, matching the features in each undersea image pair is formulated and solved by graph matching,
to incorporate the structural information between features. In the blending procedure, an energy
function on the indirect graph MRF is proposed, which takes both image consistency and neighbor-
ing consistency into consideration. The previous consistency is to remove the seam and ghosting
and the latter one is to remove the local disturbance. Note the proposed energy function has a non-
submodular form and is inappropriate to be optimized by, for example, the graph cuts algorithm.
Coincidentally, both graph matching and energy minimization can be mathematically formulated by
integer quadratic programming (IQP) problems with different constraints. Therefore, a recently pro-
posed general-purpose combinatorial optimization framework, named by the graduated nonconvexity
and concavity procedure (GNCCP), is used to optimize both problems, which has rare restriction on
the energy form or graph structure.
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The remaining paper is organized as follows: After the discussions of related works in Section 2,
the proposed undersea image-stitching method is introduced in Sections 3–5, which is followed by
the experimental evaluation in Section 6. Finally Section 7 concludes the paper.

2. Related Works
In this section, we first give some discussions on the image-stitching algorithms and then introduce
their applications to undersea images.

2.1. Image-stitching algorithms
The related works can also be roughly divided into two categories according to the emphasis proce-
dure, that is, the registration procedure and the blending procedure, which are, respectively, discussed
in the following.

For the front one, the feature-based methods have generally overtaken the area-based methods,
ever since the seminal work5 based on scale-invariant feature transform (SIFT) feature.25 And one
main advantage of the feature-based methods is the robustness to changing factors,12, 32 such as the
geometric distortions. Besides the SIFT feature, researchers have applied many types of local fea-
tures to image stitching, of which some representative features include the speeded-up robust feature
(SURF),1, 31 the binary robust independent elementary features (BRIEF),6 the shape context feature,2

etc. These methods are for general-purpose image-stitching tasks, which achieve superior perfor-
mance on common natural images, especially images on land. A few works apply them in to the
undersea images, which will be introduced in the next subsection.

For the latter one, early methods usually resort to the feathering technique [49] to blend the over-
lapped area, which is a pixel-wise operation using the weighted average. The multiband blending
technique, which is widely used after the SIFT-based image-stitching work,5 is essentially also a
weighted average method. The feathering methods suffer from blurring and ghosting. Some other
early methods utilize pixel labeling to model the image blending problem, such as the optimal seam
method8, 26 and the method based on regions of difference.35 These pixel labeling methods could well
address the blurring and ghosting, but meanwhile they may further introduce incomplete objects in
the panorama. Then the pixel labeling problem is elegantly formulated by Boykov et al.4 as a pixel
labeling problem on the MRF, and solved by graph cuts, a type of energy minimization methods.
Later loopy belief propagation29 and tree-reweighted message passing,17 together with classic iter-
ated conditional model,30 are applied to the energy function. But these energy minimization methods
are usually limited to specific graph structures or energy formulations (e.g. submodular function).
In the last decade, many researchers turn to the continuous method, which is especially appropriate
for robot vision due to its high efficiency. Various continuous optimization techniques have been
applied to the relaxed continuous optimization problem, including those based on semi-definite pro-
gramming,33 convex relaxation QP (CQP),28 L2 norm constraint QP (L2QP),21 spectral relaxation
QP with affine constraints (SQP),7 and our previous work.22 Inspired by these works, the proposed
method designs a stitching method specially for undersea images.

2.2. Undersea image applications
In the undersea image-stitching method proposed by Leone et al.,19 the Harris corner point detector
with certain specific improvements is used to extract the feature points, and the texture informa-
tion is used to built the feature point descriptor. Then the correspondence between two feature
point sets representing two undersea images is established by matching the feature point descriptors.
The homography transformation, that is, the translations, rotations, and scaling effects, between two
undersea images is estimated based on the correspondence, and then the stitched image is obtained
by feathering-based blending. A similar scheme is used by Elibol et al.,10 which is named by under-
sea optical mapping in their work. Differently, they adopted the SIFT feature point and descriptor
extracted from the undersea images, of which the outlier assignments are refined by the famous ran-
dom sample consensus (RANSAC) technique. In the real-time image-stitching method proposed by
Ferreira et al.,11 after the BRIEF-based motion estimation, the SURF is used in the feature correspon-
dence step. Garcia-Fidalgo et al.15 in their undersea image-stitching method used a feature which is a
variant of BRIEF in the framework of bags of words, and the multiband blending is adopted to create
the final undersea panorama.

https://doi.org/10.1017/S0263574719000699 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574719000699


Graph-Based Registration and Blending for Undersea Image Stitching 399

Table I. Notations.

G, H Weighted graphs representing the feature sets.
G, H Weighted adjacency matrices associated with the weighted graphs.
A Cost matrix between vertex attributes in two graphs.
X, Y Assignment matrix for registration and labeling matrix for blending.
D, S Discrete domains, respectively, for registration and blending.
C, T Relaxed continuous domains, respectively, for registration and blending.
U (Yke) pixel-wise potential function.
V (Yke Neighbor-wise potential function.
B Energy matrix for blending.
‖ · ‖F Matrix Frobenius norm.
tr(·) Matrix trace.
vec(·) Row-wise vectorization of a matrix.

Fig. 1. Undersea image-stitching framework. The components in maroon are related to the main technical
contributions of the paper.

Generally, most undersea image-stitching methods adopt the framework of the general-purpose
SIFT-based image-stitching work,5 which further design different local features for robustness or
efficiency purposes. Few of them use the graph-based model to tackle the ambiguous appearance
problem in the registration procedure, or the local disturbance problem in the blending procedure,
which by contrast illustrates the novelty of the proposed method.

3. Undersea Image-Stitching Framework
First the general framework for undersea image stitching is briefly introduced, and then two main
technical contributions of this paper are presented, as shown in Fig. 1. The main novelty of this
paper is the introduction of graph algorithms into both the registration procedure and the blending
procedure. Specifically, in Fig. 1 it can be observed that both the registration and blending proce-
dures consist of a number of components, and the main technical contributions of this paper are,
respectively, related to the component feature correspondence by graph matching in the registration
procedure, and the component pixel labeling by MRF maximum a posteriori (MAP) in the blending
procedure, which both take advantage of graph models in Fig. 1.

To avoid any confusion, a list of the main notations used in this paper is given in Table I.

4. Registration Based on Graph Matching
To integrate the appearance information and the structural relations, the feature points extracted from
an undersea image are first represented by a weighted attributed graph G, which is abbreviated as the
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term graph below. Note in this case any type of local feature could be used as the feature extractor and
descriptor, for example, Harris corner detector, SIFT extractor and descriptor, SURF extractor and
descriptor, and BRIEF extractor and descriptor, which implies that the incorporation of structural cue
lowers the demand of discriminant feature extractor and descriptor. It is straightforward to represent
the feature set by a graph, by representing each feature point by a graph vertex, representing the
link between a pair of feature points by a graph edge, describing the vertex by a so-called attribute
using the feature descriptor, and describing the edge by a so-called weight using the spatial relation
measures, for example, length and orientation of the link. Then feature correspondence can by defined
by graph matching, that is, assigning the vertices in two graphs.

Mathematically, the collection of the weights in a graph G can be represented by weighted adja-
cency matrices Gi , i = 1 · · · d. The number of weighted adjacency matrices d depends on the weight
dimension. For instance, when using the distance between feature points, that is, the link length, as
the edge weight, only one adjacency matrix G1 is enough for a graph, where each non-diagonal entry
G1

i j denotes the distance between the i th and j th vertices in G. Given two graphs G and H of sizes
M and N , respectively, their matching can be represented by an assignment matrix X ∈ {0, 1}M×N ,
where Xia = 1 means that the i th vertex in G is assigned to the ath vertex in H. If the one-to-one
matching assumption is adopted, then the assignment matrix becomes a partial permutation matrix,
and the domain can be defined by

D :=
{

X|
∑

i

Xia ≤ 1,
∑

a

Xia = 1, Xia = {0, 1}
}

. (1)

Without loss of generality, it is assumed that M ≤ N hereafter. The pre-calculated differences
between vertex attributes are stored in an attribute cost matrix A ∈R

M×N , where Aia denotes the dis-
tance between the attribute of the i th vertex in G and that of the ath vertex in H. Based on the above
mathematical representations, the correspondence between features can be found by minimizing the
following graph matching objective function:

X∗ = min
X

α

d∑
i=1

‖Gi − XHi XT ‖2
F + (1 − α)tr(AT X), (2)

s.t X ∈D.

The weight parameter α ∈ [0, 1] is used to balance the pairwise terms
∑d

i=1 ‖Gi − XHi XT ‖F and the
unary term tr(AT X). The above optimization problem is a non-deterministic polynomial (NP) hard
high-order combinatorial optimization problem with factorial computational complexity, for which
the approximate method is necessary. We use the GNCCP,23 a combinatorial optimization framework
based on the continuous method, to approximately solve the problem. To use the GNCCP, first the
discrete domain D needs to be relaxed to its convex hull C, which is defined by

C :=
{

X|
∑

i

Xia ≤ 1,
∑

a

Xia = 1, Xia ∈ [0, 1]
}

. (3)

And the GNCCP also makes use of the property that D is exactly the extreme point set of its convex
hull C. An extreme point in a convex set is the point which does not locate in any open line seg-
ment between two points in the set; for more introduction, please refer to ref. [3]. First the original
optimization problem (2) is approximated by a relatively simple convex optimization problem over
the continuous domain C, and step by step it is implicitly transformed to be a concave optimization
problem over C. Note by a clever design, both the above convex optimization problem and concave
optimization problem have exactly the same global optimum as (2) over the discrete domain D. And
the optimum point of the concave optimization problem over C lies in its extreme point set, that is,
D by the property mentioned above. Therefore, a discrete assignment matrix could be automatically
obtained when the GNCCP terminates at the concave optimization problem.

In each step of the GNCCP process, the subproblem is optimized by the conditional gradient
descent method,14, 16 also known as the Frank–Wolfe algorithm. The gradient of the original function
(2) can be deduced following ref. [27], which takes the following form:
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∇ = α

d∑
i=1

(2X(HiT XT XHi + Hi XT XHiT ) − 2(Gi XHiT + GiT XHi )) + (1 − α)A. (4)

The solution X∗ indicates the assignments between feature points in two undersea images. As
mentioned in Sections 1 and 2, once these assignments are obtained, the projective transforma-
tion between the images can be estimated. Before the projective transformation estimation, we first
employ the maximum-likelihood estimation sample consensus (MLESAC)34 to refine the assign-
ments, or say to remove the outlier assignments. The MLESAC is a generalization of the famous
RANSAC.13 Different from RANSAC, it aims at the solution which maximizes the likelihood instead
of the number of inliers, and is particularly appropriate for the estimation of complex surfaces or more
general manifolds from points.34 Then the projective transformation matrix between two images is
estimated based on the refined inlier assignments. If a frame sequence sampled from, for example, a
video clip is provided, the projective transformation matrices are estimated sequentially following a
similar way in our previous work.22

5. Blending Based on MRF MAP
After the projective transformation estimation, the undersea images are then warped and blended
together to get a clean and stable background panorama, which at the same time contains no seam
and ghosting. The blending is defined on the MRF by a pixel labeling problem, which means assign-
ing each pixel in the panorama a label from a limited discrete set. All the pixels together with
their neighboring relations are represented by an MRF, and two pixels k, l ∈ {1, 2, . . . , P} with a
neighborhood relationship are denoted by kl ∈N , where P is the pixel number and N denotes the
neighborhood set. The label used in this paper is the undersea image sequence number, and it is
denoted by e ∈ {1, 2, . . . , Q}, where Q is the label number. The assignments between the pixels
and the labels are represented by a labeling matrix Y ∈ {0, 1}P×Q , where Yke = 1 denotes labeling
the pixel k by the label e. Under certain assumptions on the panorama, the labeling matrix can be
obtained by minimizing the following energy function, which is widely used in energy minimization
problems4, 7

E(Y) =
∑

k

U (Yke)Yke +
∑
kl∈N

V (Yke, Yl f )YkeYl f . (5)

The pixel-wise energy U (Yke)Yke penalizes labeling the pixel k by the label e, where

U (Yke) =
{

0 if the eth image is available for pixel k,
∞ otherwise.

(6)

The term implies that the labels for the pixels in the non-overlapped area are directly determined by
the pixel-wise term, and for the overlapped area the labels only need to be chosen from the sequence
numbers of associated undersea images, which are further determined by V (Yke, Yl f )YkeYl f . The
neighbor-wise potential V (Yke, Yl f ) is designed based on the abovementioned assumptions, and one
most popular way for its construction is as follows:

V ′(Yke, Yl f ) =
{

Dist(I (k, e), I (k, f )) + Dist(I (l, e), I (l, f )) if kl ∈N ,
0 otherwise,

(7)

where I (k, e) means the appearance descriptor, such as the gray value or RGB value, of pixel k in
the eth image, and Dist(·, ·) denotes the distance measure between two pixel appearance descriptors.
Note if using proper distance measure, for example, the Euclidean distance, V ′(Yke, Yl f ) is known
to be a submodular function, which is appropriate to be minimized by the state-of-the-art graph
cuts algorithm. Generally, this potential prefers the neighborhood from the same image and seam
area from the most similar images, and thus its main advantages are removal of ghosting and least
visible seam. An interesting characteristic is that the potential considers the discontinuity between
neighboring pixels to be reasonable, which helps to include more foreground objects in the panorama.
However, as mentioned in Section 1, it can hardly deal with the local disturbance, for example,
moving object and ocean current, in the undersea image. Therefore, in this paper, the energy function
is given by
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V (Yke, Yl f ) = V ′(Yke, Yl f ) + V ′′(Yke, Yl f ), (8)

with the additional term V ′′(Yke, Yl f ) defined by

V ′′(Yke, Yl f ) =
{

Dist(I (k, e), I (l, f )) if kl ∈N ,
0 otherwise.

(9)

By the way, it is set V ′′(Yke, Yl f ) = 0 when kl /∈N , but actually no matter 0 or any other constant
all imply that the labels of k and l are independent. An advantage of using 0 is the highly sparse form
of the matrix B in (11). Minimizing only the potential V ′′(Yke, Yl f ) means that the neighboring pix-
els in the panorama should have coherent appearance descriptors, which helps to suppress the local
disturbance and result in a clean and stable background panorama. However, with V ′′(Yke, Yl f ),
the energy function V (Yke, Yl f ) is no longer a submodular function, even when Dist(·, ·) adopts
the Euclidean distance measure. Though graph cuts can be applied to the non-submodular energy
function,18, 30 by truncating nonsubmodular terms, that is, replacing them by submodular approxi-
mations and minimizing the latter terms. But this technique in practice only works when there are
few violating submodular terms, and with more nonsubmodular terms, the performance of the graph
cuts would significantly deteriorate. Therefore, similar to the above graph matching problem, we
also resort to the GNCCP because of its generality. Before introducing the optimization process, first
E(Y) is transformed to the following IQP problem in the matrix form:

Y∗ = arg min E(Y) = arg min vec(Y)T Bvec(Y), (10)

s.t. Y ∈ S, S :=
{∑

e

Yke = 1, Yke = {0, 1}
}

,

where vec(Y) denotes the row-wise vectorized Y and the matrix B ∈R
P Q×P Q is defined by

B(k−1)Q+e,(l−1)Q+ f =
⎧⎨
⎩

U (Yke) if k = l and e = f,
1

2
V (Yke, Yl f ) if k 
= l or e 
= f.

(11)

Note the pixel-wise energy
∑

k U (Yke)Yke is actually vec(Y)T diag(B), where the operation diag(B)

means transforming the diagonal entries in B to a vector. When Yke takes value from {0, 1}, there is
vec(Y)T diag(B) = vec(Y)T diag(B)vec(Y)1, and it is the reason why the unary terms are located in
the diagonal entries of B. In the definition of S , it means by

∑
e Yke = 1 that each pixel is assigned

to only one label.
To apply the GNCCP, the IQP problem (10) is first relaxed to a continuous optimization problem

as follows:

Y∗ = arg min E(Y) = arg min vec(Y)T Bvec(Y), (12)

s.t. Y ∈ T :=
{∑

e

Yke = 1, Yke = [0, 1]
}

,

where the continuous domain T is the convex hull of S . Then similar to graph matching, the GNCCP
starts from a convex optimization problem, which is a convex approximation of (12), and gradually
transforms it to a concave optimization problem, of which the optimal point over T is exactly the
optimal point of (12). Consequently, a final discrete solution is automatically obtained when the
GNCCP terminates. Each subproblem in the GNCCP process is also optimized by the conditional
gradient descent method, with the gradient function given by

∇E(Y) = 2Bvec(Y). (13)

6. Experimental Evaluation
The proposed method is first evaluated on the synthetic images by comparing it with some popular
methods, and then applied to real-world undersea images.

1Note the equation does not hold when Y is relaxed to the continuous domain introduced in (12).
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Fig. 2. Feature correspondence accuracy on manually labeled undersea images.

6.1. On synthetic images
Before the application to real-world images, it is necessary to assess some claimed properties of the
proposed method.

The first simulation on the synthetic images is to assess the feature correspondence performance
based on graph matching in the registration procedure. The methods for comparison include the
unary method using only the SURF descriptor, the spectral matching (SM) method,20 the probabilistic
spectral graph matching (PGM) method,9 and the proposed method denoted by OUR. The latter three
methods are all graph matching-based methods, for which the SURF descriptor is used as the vertex
attribute, the distance between feature points is used as edge weight, and the graph structure is built
by the Delaunay triangulation technique. The weight parameter in Eq. (2) is set to be 0.5. Note there
are no ground truth assignments for feature points automatically extracted from the undersea images
by instance the Laplacian of Gaussian (LOG) operator. Therefore, for a quantitative comparison, an
undersea image data set with manually labeled points36 is used. This data set consists 9 undersea
image pairs, which are labeled with 20 ground truth inlier points and 10 outliers as shown in Fig. 3.

The matching accuracies of different methods are compared with respect to the outlier number,
which is increased from 0 to 10 by a step size of 1. The quantitative comparison result is illustrated
in Fig. 2, from which it can be observed that the proposed method outperforms the other ones. By
incorporating the structure cues into the SURF unary descriptor, the three graph-matching algorithms
all improve the performance compared with the unary method. Some matching instances by the four
methods are given in Fig. 3.

The second simulation is to assess whether the proposed method could result in a clean and stable
background panorama, which is mainly related to the blending procedure. Therefore, the methods
included for comparison include the feathering method, the multiband blending method, the graph
cuts method, and the proposed one denoted by OUR. The feathering method is implemented by our-
selves, while the multiband blending method and the graph cuts method are implemented by publicly
available codes. For all these methods, the synthetic images are registered by the graph-matching-
based procedure. For the synthetic images, as shown in Fig. 4, they are generated by placing an
additional portunid crab image patch, respectively, in two undersea images fetched from an undersea
image sequence data set15 which is also used in the following experiment.

The stitching results are illustrated in Fig. 5. The ghosting and artifact phenomena are observed by
the feathering method in the two portunid crab image patches related areas, which is consistent with
our prediction. Despite also taking a weighted average way, the multiband blending method over-
comes the ghosting and artifact problems, but leaves one portunid crab image patch in the panorama.
Though a different one, the panorama by the graph cuts method also contains a portunid crab image
patch. The latter observation is reasonable because the submodular energy for the graph cuts method,
that is (7), prefers neighboring pixels from the same images and allows the discontinuity, but this
idea is inconsistent with our goal of a clean and stable background panorama. Last, the proposed
method avoids the influence of the “moving portunid crab” and obtains a relatively clean background
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Fig. 3. Feature correspondence instances on manually labeled undersea images. The manually labeled points
are shown in yellow, the correct assignments are shown in green, and the incorrect assignments are shown in
red.

Fig. 4. Synthetic images. An additional portunid crab image patch is placed in two undersea images, with
different locations and orientations.

panorama. And it should be noted that its cost is some residual pixels of the portunid crab image
patch, which are similar to the background, together with some blurring pixels in the seam areas.

6.2. On real-world undersea images
In this experiment, the proposed method is evaluated on two real-world undersea image data sets.
The widely used stitching system, that is, SURF-based registration and multiband blending, is
used as a comparison method, which is denoted by CM standing for classical method. Before the
final computational performance comparison, the visual performance of the two methods are first
compared.

The first real-world data set is an undersea image sequence shot at the Valldemossa harbor seabed
(Mallorca, Spain).15 This total data set contains 201 images with 320 × 180 pixels, which forms a
loop around a central point. In each image, the key points are extracted by SURF1 together with the
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Fig. 5. Synthetic image-stitching results.

descriptors. The graphs are constructed as described in Section 4. Specifically, the key points are
represented by the graph vertices, with the SURF descriptor as the vertex labels. The graph structure,
that is, the set of the graph edges, is built by the Delaunay triangulation technique.24 The length and
orientation of each link in the graph structure are used as the two-dimensional edge weight. After the
registration procedure, all the images are blended in a batch manner for convenience, which would
lead to high storage expense. Therefore, as illustrated in Figs. 6, eight image samples in the sequence
are selected and stitched in this simulation, with sequence number interval to be five.

The stitching result is shown in Fig. 7. Obvious seam can be observed for the CM method, together
with slight displacements of certain component images in the corresponding panorama. The displace-
ment is mainly due the less robust feature correspondence using only the unary information, while the
visible seam is related to the multiband blending which is essentially based on the weighted average
idea. On the other hand, despite a large sequence number interval, the proposed method illustrates
smooth transition across the images, which is attributed to the two graph-based procedures. Note
some distortions can be observed in some parts of the panorama, which are because of the projection
transformation model in the image registration procedure.

Then the two methods are applied to another undersea data set2 sampled from the video released
by the French Research Institute for Exploitation of the Sea (IFREMER), which is shot along the
Mid-Atlantic Ridge in the North Atlantic Ocean. The samples to be stitched are illustrated in Fig. 8.
The experimental setting are the same with the above simulation. The stitching results are given in
Fig. 9, which validate the effectiveness of the proposed method.

Finally the computational performance of the proposed method is evaluated by comparing the run-
ning time with respect to the number of images to be stitched. The comparison platform is a desktop
computer with Intel i5 CPU (dual cores and 2.2 GHz for one core) and 8 GB RAM. The classical
method, that is, the abovementioned SURF-based registration and multiband blending, is imple-
mented by publicly available C++ codes, while the proposed method is implemented by Matlab.
The comparison result is shown in Table II, from which it can be observed that the proposed method
spends more time, and neither of the two methods is real time, especially the proposed method. As
the two methods are implemented by different programming languages, the running time is further

2 The data set is named by ODEMAR, which is available at https://github.com/emiliofidalgo/bimos
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Fig. 6. Eight samples selected from undersea image sequence shot at Valldemossa harbor seabed.

Fig. 7. Stitching result on undersea image sequence shot at Valldemossa harbor seabed.

compared in a logarithmic manner and the result is shown in Fig. 10. The slope rates indicate the
changing trend and speed with respect to the number of images. It can be observed that the pro-
posed method involves a higher computation complexity than the competitor, which is mainly due
the adoption of the graph-based models.
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Table II. Running time comparison result. CM1 and CM2 denote the results obtained by the classical method,
respectively, on the two real-world undersea image data sets, while OUR1 and OUR2 denote those by the

proposed method. The running time is measured in seconds.

Number of
images 2 3 4 5 6 7 8

CM1 15.87 44.31 72.74 167.65 258.03 273.70 381.06
OUR1 2.18 3.10 3.17 3.97 4.89 6.39 7.10
CM2 2.32 6.90 7.66 9.06 11.80
OUR2 33.24 90.01 165.67 278.26 542.96

Fig. 8. Six samples selected from undersea images shot by IFREMER.

Fig. 9. Stitching result on the undersea images shot by IFREMER.
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Fig. 10. Running time comparison in logarithmic manner. The running time is measured in seconds, and Q
denotes the number of images to be stitched. CM1 and CM2 denote the results obtained by the classical method,
respectively, on the two real-world undersea image data sets, while OUR1 and OUR2 denote those by the
proposed method.

7. Conclusion and Future Works
This paper aims at a clean and stable background panorama in the undersea environment, and pro-
poses to introduce graph-based registration and blending procedures to, respectively, address the
appearance ambiguity and local disturbance problems. Experiments are performed on both synthetic
images and real-world undersea images. It has been shown that the goal of a clean and stable back-
ground panorama is generally realized by the proposed method. The future works may focus on two
aspects, with the first one to deal with the blurring phenomenon in the seam areas and the second
one to reduce the computational complexity and storage expense of the proposed method. Besides,
the proposed method could be generalized to other environments with less discriminative appearance
descriptors.
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