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We consider a single-server queuing system with two job classes under service
policies of threshold type+The server switches from type 1 to type 2 when either the
former queue is empty or the latter reaches sizeT; it switches from type 2 to type 1
when the former queue size drops belowT and the latter is not empty+ The joint
queue-length distribution is determined for preemptive and nonpreemptive imple-
mentations using both analytic techniques and the power series algorithm+

1. INTRODUCTION

An important problem that must be addressed in current telecommunication net-
works is the provision of different levels of service to different types of traffic+ The
standard mechanism for achieving such discrimination relies on the use of priority
scheduling+Thus, the short-delay requirements of real-time packets~e+g+, voice! can
be met by assigning a higher priority to them than to other traffic~e+g+, data!+ How-
ever, pure priority policies, whether preemptive or nonpreemptive, have the disad-
vantage that the lower-priority traffic is very heavily penalized in terms of the quality
of service it receives+ It is, therefore, desirable to devise and implement policies that
satisfy the requirements of higher-priority traffic while offering acceptable perfor-
mance for the lower-priority one+
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In order to make some progress toward the above objective, we define and
analyze a class of threshold policies for a single server with two types of demand:
type 1 has high priority, except when the queue size of type 2 exceeds a certain level+
The idea is to “soften” the effect of assigning strict priorities+ This contrasts with the
introduction of thresholds in the context of polling policies~Lee and Sengupta@6# ,
Boxma et al+ @3# !, where the intention is to “enhance” the effect of servicing each
queue exhaustively+

Both the preemptive and the nonpreemptive versions of the threshold policies
are examined+ In each case, the aim is to determine the joint distribution of the
two-dimensional queue size process+Two solution methods are presented: one using
generating functions and one based on the power series algorithm~PSA! ~Blanc
@2# !+ The former approach is efficient for small threshold values but suffers from
numerical difficulties when the threshold is large+ That solution, in the case of pre-
emptive thresholds, was used by Ansell et al+ @1# to study an optimization problem
subject to variance constraints+ The PSA is applicable to a wider range of models,
particularly when used in conjunction with techniques for improving its convergence+

The model is described in Section 2+ The analysis of the preemptive and non-
preemptive threshold policies by means of generating functions is presented in Sec-
tions 3 and 4, respectively+ Section 5 deals with the power series solution and with
the epsilon and conformal mapping convergence enhancing techniques+ Section 6
contains the results of several numerical experiments, including an additional ex-
amination of the problem introduced in@1# +

2. THE MODEL

We consider a model of twoM0M01 queues served by a single server+ The service
policy is assumed to be nonanticipative and work-conserving+ Arrivals to queuek
form independent Poisson streams with parameterslk and have exponentially dis-
tributed service times with mean 10µk+ If the loadr 5 l10µ1 1 l20µ2 is assumed to
be less than unity, then we satisfy the ergodicity condition+ Figure 1 illustrates the
system+

We shall study two service policies, which are of the threshold type: one pre-
emptive and the other nonpreemptive+ In the preemptive case, the service policy
depends on an integer thresholdT+ Nk~t ! denotes the number of customers in queue

Figure 1. Two unbounded Markovian queues served by a single server+
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k ~waiting and in service! at timet+ If N1~t ! . 0 andN2~t ! , T, then a type 1 customer
is served; if N2~t ! $ T or N1~t ! 5 0, a type 2 customer is served+ More simply, the
server switches from type 1 to type 2 when either the former queue is empty or the
latter reaches sizeT+ It switches from type 2 to type 1 when the former queue size
drops belowT and the latter is not empty+ Preemptions and server reallocations do
not result in any delay or any penalty cost+ Note that whenT 5 1, the policy gives
preemptive priority to type 2 customers, and whenT 5`, it gives preemptive pri-
ority to type 1 customers+ The nonpreemptive case depends on the same integer
threshold parameterT, but prohibits preemptions+Thus, the server can only switch at
a service completion+

Consider a linear cost functionC 5 c1E~N1! 1 c2E~N2! where theE~Nk!,
k 5 1,2, are the expected queue lengths and theck, k 5 1,2, are holding costs+ The
policy which minimizesC over all admissible preemptive service policies is one
which gives strict preemptive priority to the class with the larger value ofckµk:
the so-calledcµ rule+ Similarly, the policy which minimizes the cost function over
all nonpreemptive service policies is one which gives “head of the line” priority
according to thecµ rule ~see Gelenbe and Mitrani@4# !+ Although these policies
are optimal for the linear holding cost problems, they are often unacceptable in
practice because of the heavy penalties imposed on the low-priority customers+
These customers suffer from large queue lengths and, perhaps more significantly,
large variances in these quantities+ Thus, our ultimate aim is to obtain a readily
implementable family of service policies which simultaneously minimize the lin-
ear cost function and satisfy prescribed constraints on, say, the second moments
or the variances of the queue lengths~see Ansell et al+ @1# !+ It is such problems
which motivated this study of our class of threshold policies and the discussion in
Section 6 gives grounds for believing that these policies perform well+

3. ANALYTIC SOLUTION OF THE PREEMPTIVE MODEL

Our aim in this section is to determine the joint steady-state distribution

pi, j 5 lim
tr`

P@N1~t ! 5 i,N2~t ! 5 j #

for the preemptive version of our model+ These probabilities satisfy the balance
equations

@l1 1 l2 1 µ1d~i . 0, j , T ! 1 µ2d~ j $ T ! 1 µ2d~i 5 0,0 , j , T !# pi, j

5 l1 pi21, j 1 l2 pi, j21 1 µ1d~ j , T !pi11, j 1 µ2d~ j $ T 2 1!pi, j11

1 µ2d~i 5 0, j , T 2 1!pi, j11, (1)

where probabilities with negative indices are 0 by definition and whered~A! 51 if
the conditionAholds, and 0 otherwise+ In addition,we have the normalizing equation

(
i50

`

(
j50

`

pi, j 5 1+ (2)
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The solution of these equations requires the following generating functions:

gj ~x! 5 (
i50

`

pi, j x
i, j 5 0,1, + + + ,T 2 1, (3)

g~x, y! 5 (
i50

`

(
j5T

`

pi, j x
i y j2T+ (4)

The first step in our method of solution is to transform~1!, for j , T 2 1, into the
following set of recurrence relations between the functionsgj ~x!:

b~x!gj ~x! 5 l2 xgj21~x! 2 @µ1~12 x! 1 µ2 xd~ j . 0!# p0, j

1 µ2 xp0, j11, j 5 0,1, + + + ,T 2 2, (5)

where all functions with negative indices are, by definition, zero, and

b~x! 5 l1 x~12 x! 1 l2 x 2 µ1~12 x!+

Using~5!,we can then determine the functionsg0~x!, g1~x!, + + + , gT22~x!, in terms of
the constantsp0,0, p0,1, + + + , p0,T21+

The probability of an empty systemp0,0 is equal to 12 r1 2 r2+ This can be
established via the balance and normalizing equations, or more simply by direct
application of Little’s result+ This means that we haveT21 unknown probabilities
to be determined+Note that the quadraticb~x!,which appears in the left-hand side of
~5! is negative atx5 0, positive atx51, and negative in the limit asxr`+ Hence,
b~x! has exactly one zero, x0, in the interval~0,1! and one zero, x1, in the interval
~1,`!+ Since the functionsgj ~x! are finite atx 5 x0, the right-hand side of~5! must
vanish at that point for everyj 5 0,1, + + + ,T 2 2+ Settingx 5 x0 in ~5!, for j 5 0, and
equating the right-hand side to zero determines the value ofp0,1+ Since both sides of
~5! now divide byx 2 x0, the functiong0~x! is of the form

g0~x! 5
a0,0

x1 2 x
,

wherea0,0 is a known constant andx1 is the second zero ofb~x!+ Further, setting
x5x0 in ~5! for j 51 and equating the right-hand side to zero determinesp0,2+We can
now express the functiong1~x! in terms of elementary fractions,

g1~x! 5
a1,0

x1 2 x
1

a1,1

~x1 2 x!2 ,

wherea1,0 anda1,1 are known constants+ By iterating this process, we can establish
values for all of the unknown constantsp0, j , j 5 1, + + + ,T 2 1, and thus obtain the
gj ~x!, j 5 0,1, + + + ,T 2 2+ The functionsgj ~x! can be written as a sum of elementary
fractions:

gj ~x! 5 (
k50

j aj, k

~x1 2 x!k11 , j 5 0,1, + + + ,T 2 2+ (6)
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This simple form of the generating functions implies that whenj , T 2 1, the
probabilitiespi, j are given by

pi, j 5 (
k50

j

aj, kSi 1 k

i Dx1
2~i1k11! , i 5 0,1, + + + , j 5 0,1, + + + ,T 2 2+

The only generating functions now left to determine aregT21~x! andg~x, y!+ To
do this, we use the balance equations, ~1!, for j 5 T 2 1 andj $ T, leading to the
following relations:

b~x!gT21~x! 5 l2 xgT22~x! 1 µ2 xg~x,0! 2 @µ1~12 x! 1 µ2 x# p0,T21, (7)

k~x, y!g~x, y! 5 l2 ygT21~x! 2 µ2g~x,0!, (8)

where

k~x, y! 5 l1 y~12 x! 1 l2 y~12 y! 2 µ2~12 y!+

Again,we note that for everyx in the interval@0,1# , there is exactly one value of
y in the same interval, y5 b~x!, such thatk~x,b~x!! 5 0+ Sinceg~x,b~x!! is finite,
the right-hand side of~7! vanishes wheny5b~x!+ This allows us to eliminateg~x,0!
from ~7! and~8! to obtain

gT21~x! 5
l2 xgT22~x! 2 @µ1~12 x! 1 µ2 x# p0,T21

b~x! 2 l2 xb~x!
, (9)

g~x, y! 5
l2 @ y 2 b~x!#gT21~x!

k~x, y!
+ (10)

The denominator in~9! is zero atx51, but so is the numerator+ It can be shown that
when the ergodicity condition holds, the functiongT21~x! has no singularities in the
unit disk+ This remark also applies to~10!+

We now have all the unknowns specified and can evaluate the performance
measuresE~N1!, E~N2!, Var~N1!, and Var~N2! from the above generating functions
in the usual way+

The derivatives of the generating functions atx 5 1, y 5 1 involve indetermi-
nacies of the type 000 which are resolved by L’Hôpital’s rule+ In this problem, the
unknown quantities are found by successive substitutions rather than by solving a
set of simultaneous equations+ The computational complexity of this solution is
thereforeO~T 2!, rather thanO~T 3!+

4. ANALYTIC SOLUTION OF THE NONPREEMPTIVE MODEL

In this section, we prohibit preemptions; thus, switching decisions are only made at
service completions+ Let S~t ! be a random variable equal tok if the server is pro-
cessing queuek at timet+We introduce the steady-state probabilities
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pi, j
1 5 lim

tr`
P~N1~t ! 5 i,N2~t ! 5 j,S~t ! 5 1!, i $ 1, j $ 0,

pi, j
2 5 lim

tr`
P~N1~t ! 5 i,N2~t ! 5 j,S~t ! 5 2!, i $ 0, j $ 1,

p00 5 lim
tr`

P~N1~t ! 5 0,N2~t ! 5 0!

wherep0, j
1 5 0, j $ 1, andpi,0

2 5 0, i $ 1+ These probabilities satisfy the following
balance equations:

~l1 1 l2 1 µ1!pi, j
1 5 l1 pi21, j

1 1 l2 pi, j21
1 1 µ1d~ j # T 2 1!pi11, j

1

1 µ2d~ j # T 2 1!pi, j11
2 1 l1d~i 5 1, j 5 0!p00,

i . 0, j $ 0, (11)

~l1 1 l2 1 µ2!pi, j
2 5 l1 pi21, j

2 1 l2 pi, j21
2 1 µ2d~i 5 0, j # T 2 1!pi, j11

2

1 µ2d~ j $ T 2 1!pi, j11
2 1 µ1d~ j $ T !pi11, j

1

1 l2d~i 5 0, j 5 1!p00 1 µ1d~ j # T 2 1!p1, j
1 ,

i $ 0, j . 0, (12)

~l1 1 l2!p00 5 µ1 p1,0
1 1 µ2 p0,1

2 , (13)

where, once again, d~A! 5 1 if the conditionA holds, and 0 otherwise+ In addition,
the following normalizing equation holds:

p00 1 (
i51

`

(
j50

`

pi, j
1 1 (

i50

`

(
j51

`

pi, j
2 5 1+ (14)

To solve this problem, we introduce the generating functions

g1~x, y! 5 (
i51

`

(
j5T

`

pi, j
1 xi21y j2T,

g2~x, y! 5 (
i50

`

(
j5T

`

pi, j
2 xi y j2T,

gj
1~x! 5 (

i51

`

pi, j
1 xi21, 0 # j # T 2 1,

gj
2~x! 5 (

i50

`

pi, j
2 xi, 1 # j # T 2 1+
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Equations~11! and~12! are then transformed into

b~x!gj
1~x! 5 l2 xgj21

1 ~x! 2 µ1gj
1~0! 1 l1 xp00d~ j 5 0!

1 µ2 @gj11
2 ~x! 2 gj11

2 ~0!#d~ j , T 2 1!

1 µ2 @g2~x,0! 2 g2~0,0!#d~ j 5 T 2 1!, 0 # j # T 2 1, (15)

c~x!gj
2~x! 5 l2gj21

2 ~x! 1 µ2g2~0,0!d~ j 5 T 2 1! 1 µ2gj11
2 ~0!d~ j , T 2 1!

1 l2 p00d~ j 5 1! 1 µ1gj
1~0!, 1 # j # T 2 1, (16)

d~x, y!g1~x, y! 5 l2gT21
1 ~x! (17)

k~x, y!g2~x, y! 5 2u2g2~x,0! 1 u1 yg1~x, y! 1 l2 ygT21
2 ~x!, (18)

whereg21
m ~x! 5 0, m5 1,2, by definition, and the functionsb~x!, c~x!, d~x!, and

k~x, y! are defined as

b~x! 5 l1 x~12 x! 1 l2 x 2 µ1~12 x!,

c~x! 5 l1~12 x! 1 l2 1 µ2,

d~x, y! 5 l1~12 x! 1 l2~12 y! 1 µ1,

k~x, y! 5 l1 y~12 x! 1 l2 y~12 y! 2 µ2~12 y!+

We note that we need to evaluate 2T unknown constants in order to fully deter-
mine the generating functions+ To do this, we use recurrence relation~15! for gj

1~x!,
j # T 2 1, giving

b~x!T21gT22
1 ~x! 5 ~l2 x!T22$2µ1g0

1~0! 1 l1 xp00 1 µ2 @g1
2~x! 2 g1

2~0!#%

1 (
i51

T22

b~x! i ~l2 x!T222i

3 $2µ1gi
1~0! 1 µ2 @gi11

2 ~x! 2 gi11
2 ~0!#%+ (19)

Further to this,we substitute~16! involving thegi11
2 ~x!, 1# j # T21, into ~19!+Note

that the functionb~x! has one zerox0 [ ~0,1! and the other zerox1 [ ~1,`!+ The
functionsgj

1~x!, j , T 2 1, are finite in the unit disk+ At the pointx0, the left-hand
side of~19! vanishes, which, in turn, implies that atx0, the right-hand side of~19!
must also vanish+ Note also that the firstT 2 2 derivatives of the left-hand side of
~19! are also zero atx0, so the firstT 2 2 derivatives of the right-hand side of~19!
must also vanish at this point+ These observations lead toT21 equations+A further
T21 equations are obtained by substitutingx5 0 in ~16!+ This leaves us two equa-
tions to find+ The first of these is obtained from the balance equation~13! relating to
the empty system, namely

~l1 1 l2!p00 5 µ1g0
1~0! 1 µ1g1

2~0!, (20)

and the following argument gives the final equation+We note that for everyx in the
interval@0,1# , there is exactly one value ofy in the same interval, y5a~x!, such that
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k~x,a~x!! 5 0+ Sinceg2~x,a~x!! is finite, the right-hand side of~18! must also
vanish+ Thus, we have

2µ2g2~x,0! 1 µ1a~x!g1~x, y! 1 l2a~x!gT21
2 ~x! 5 0+ (21)

Moreover, the equation forg1~x, y! is directly related to the functiongT21
1 ~x!, and so

at the pointx 5 0, we have that

2µ2g2~0,0! 1
µ1a~0!l2gT21

1 ~0!

d~0,a~0!!
1 l2a~0!gT21

2 ~0! 5 0+ (22)

We now have 2T equations in terms of the 2T unknown constants and, there-
fore, can fully determine the generating functionsgj

1~x!, j 5 0, + + + ,T 2 2 and
gj

2~x!, j 5 1, + + + ,T 2 1+ This leaves us with three functions to evaluate, namely
g1~x, y!, g2~x, y!, andgT21

1 ~x!+ To do this, we solve the remaining equations, ~21!,
~17!, and ~15! ~for j 5 T 2 1!+ Having done this, we have all the generating
functions specified and can proceed to calculate the moments+

Unlike the method used in the preemptive case, here we have to solve the system
of simultaneous equations; thus, the computational complexity of the solution of
O~T 3!+

5. POWER SERIES ALGORITHM

The methods proposed in Sections 3 and 4 are computationally expensive, espe-
cially in the nonpreemptive case, because of the large number of derivatives and
limits that need to be evaluated+This means that obtaining the moments of the queue
lengths becomes increasingly difficult asT gets larger~.5, say!+ Moreover, the
methods are not easily extended to models with three or more queues+ The power
series algorithm~PSA! is a numerical method for evaluating performance measures
for multidimensional Markov processes~see Blanc@2# !+ It approximates the steady-
state distribution of a general Markov process by computing the coefficients of a
simple recursion, which is obtained as a result of introducing an artificial param-
eterx+

We consider first the preemptive model and introduce an artificial parameterx
by replacing the arrival ratel i by l i x+ The service parameters are left unchanged+ If
we express the balance equations~1! in terms of the artificial parameter, we obtain

@~l1 1 l2!x 1 µ1d~i . 0, j , T ! 1 µ2d~ j $ T ! 1 µ2d~i 5 0,0 , j , T !# pi, j

5 @l1 pi21, j 1 l2 pi, j21#x 1 µ1d~ j , T !pi11, j 1 µ2d~ j $ T 2 1!pi, j11

1 µ2d~i 5 0, j , T 2 1!pi, j11+ (23)

We now write

pi, j 5 x i1j (
k50

`

[pk, i, j x
k+ (24)
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Now, if we replace thepi, j according to~24! in ~23!, eliminate the factorx i1j,
and equate terms with equal powers ofx, we obtain the following recursion for the
coefficients [pk, i, j :

@µ1d~i . 0, j , T ! 1 µ2d~ j $ T ! 1 µ2d~i 5 0,0 , j , T !# [pk, i, j

5 2~l1 1 l2!d~k . 0! [pk21, i, j 1 l1 [pk, i21, j 1 l2 [pk, i, j21

1 µ1d~ j , T, k . 0! [pk21, i11, j

1 µ2d~ j $ T 2 1, k . 0! [pk21, i, j11

1 µ2d~i 5 0, j , T 2 1, k . 0! [pk21, i, j11+ (25)

To determine the coefficients, we also need to use the normalizing equation, which
we express as

(
k50

`

(
i50

`

(
j50

`

[pk, i, j x
k1i1j 5 1+

From this, we obtain

[p000 5 1 (26)

and

(
i1j1k5l

[pk, i, j 5 0, l $ 1+ (27)

We can now calculate the coefficients from~25!–~27!+ By settingx to 1, we return
to the original formulation+ To obtain an approximation, we truncate the number of
coefficients to those with a power ofx less than a valueK+

The nonpreemptive case is analyzed in an analogous manner+Again,we replace
l i by l i x and write

pi, j
m 5 x i1j (

k50

`

[pk, i, j
m xk, m5 1,2, (28)

to obtain the following recursions:

µ1 [pk, i, j
1 5 2~l1 1 l2!d~k . 0! [pk21, i, j

1 1 l1 [pk, i21, j
1 1 l2 [pk, i, j21

1

1 µ1d~ j # T 2 1, k . 0! [pk21, i11, j
1 1 µ2d~ j # T 2 1, k . 0! [pk21, i, j11

2

1 l1d~i 5 1, j 5 0! [pk00, i . 0, j $ 0,

µ2 [pk, i, j
2 5 2~l1 1 l2!d~k . 0! [pk21, i, j

2 1 l1 [pk, i21, j
2 1 l2 [pk, i, j21

2

1 µ2d~i 5 0, j # T 2 1, k . 0! [pk21, i, j11
2

1 µ2d~ j $ T 2 1, k . 0! [pk21, i, j11
2

1 µ1d~ j $ T, k . 0! [pk21, i11, j
1 1 l2 [pk00d~i 5 0, j 5 1!

1 µ1d~ j # T 2 1, k . 0! [pk21,1, j
1 , i $ 0, j . 0+
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The normalizing equation is again used to completely determine the coefficients+

5.1. Convergence

The procedure just described does not in itself guarantee convergence of the power
series obtained by the recursion+ In fact, in both models, the method only converges
for values ofr less than about 0+6 ~i+e+, lightly loaded systems!+ To overcome this
problem, we employ two methods:

• Conformal Mapping Technique
• Epsilon Algorithm+

5.2. Conformal Mapping Technique

In ~24! and~28!, we expand the steady-state probabilities about zero+ The radius of
convergence for such a power series is the distance between the origin and the near-
est singularity+To enlarge the radius of convergence,we must move the singularities
further away from the origin+ One method of doing this is to use origin-preserving
bilinear mapping:

u 5 GG~x! 5
~11 G!x

11 Gx
, x 5 GG

21~u! 5
u

11 G 2 Gu
, G $ 0+

We obtain another recursive computational scheme by expanding the steady-state
probabilities as a function ofu:

pi, j 5 u i1j (
k50

`

uk [pk, i, j ~preemptive!+

pi, j
m 5 u i1j (

k50

`

uk [pk, i, j
m , m5 1,2 ~nonpreemptive!+

The choice ofG is by rule of thumb+ In much of the literature, a value of 1+5 is
recommended; however, in some cases, we found a slightly larger value to be a
better choice+

5.3. Epsilon Algorithm

The aim of the epsilon algorithm is to accelerate the convergence of a slowly con-
verging sequence+ To do this, the epsilon algorithm converts a polynomial into quo-
tients of two polynomials+ The following scheme is used:

ek11
~m! 5 ek21

~m11! 1 @ek21
~m11! 2 ek

~m! #21, e21
~m! 5 0, e0

~m! 5 (
k50

m

ck bk,

where theck, k5 0,1,2, + + + , stand for coefficients of a series such as the ones defined
in ~24! and~28!+ The even sequences$e2k

~m! ,m5 0,1, + + + %, k51,2, + + + ,may converge
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faster to a limit than the initial sequence+ The odd sequences are intermediate steps
in the calculation+ For further details, see van den Hout@7# +

6. NUMERICAL RESULTS

In this section, we present numerical results for two examples+ The first of these is
used to confirm that the PSA provides us with accurate approximations of the per-
formance measures of interest+ In the second example, attention is focused on the
stochastic optimization problem alluded to in Section 2+

Note that we could also define adual family of policies with parameterT ' by
placing the threshold on type 1 jobs instead of on type 2; settingT '51 in this family
would give priority to type 1 andT '5`would lead to priority being given to type 2+
The analysis of this policy is carried out simply by swappingl1 with l2 andµ1 with
µ2 and then using the techniques described in Sections 3–5+ This policy will be used
in the second example+

Example 1: In this example, we present the results of the model when the arrival
rates are both 1 and the service rates are both 3+ The load on the system is fairly low
with r 5 2

3
_ + For this example, we restricted the computation to all coefficients[pk, i, j

such thatk1 i 1 j # 200+ The value ofG used was 1+5 and the epsilon algorithm was
invoked to increase the convergence properties of the resultant power series+ To
ensure the accuracy of the numerical method, we computed coefficients until the
sum of the steady-state probabilities was sufficiently close to 1~six decimal places
were deemed enough!+ Tables 1 and 2 contain the expected queue lengths and queue
length variances for the preemptive and nonpreemptive variants of the threshold
policy+ These were obtained using the PSA+ To check the accuracy of our results,we
compared them with the exact results obtained by implementing~using Maple! the
analytical techniques of Sections 3 and 4+ Because of the computational demands of
the exact methods, only a relatively small number of policies can be compared in this
way+ In all cases, the PSAapproximated all performance measures~both mean queue
lengths and variances! to at least three decimal places+

Figure 2 shows how the achievable variance pairs behave as the value of the
threshold parameter increases+ Both preemptive and nonpreemptive results are il-
lustrated+ If , as has been conjectured, the true boundary of variance pairs is a convex
curve passing through the variance pairs of the priority policies~T 5 1 andT 5`!
and the FIFO policy, which is ~2,2! in this case, then this picture gives us some
encouragement to believe that the variances achievable by threshold policies might
be quite close to this boundary+

Example 2:Consider now the model with parametersl5 ~1,5! andm5 ~3,12!+This
system can be thought of as being unbalanced in the sense that the type 1 jobs arrive,
on average, five times less often than type 2 jobs but their service requirements are,
on average, four times longer+ We employed the conformal mapping technique of
Section 5 with the value ofG equal to 2+5+ The epsilon algorithm enhanced the
convergence properties of the resulting power series+
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Tables 3 and 4 contain the expected queue lengths and variance pairs for both
the preemptive and nonpreemptive variants of the threshold policy+ Figure 3 illus-
trates the property that as the expected queue length of typei increases so does its
variance~we only plot the threshold policies with odd values ofT !+

Consider now the problem~alluded to at the end of Section 2! of minimizing the
linear cost functionC subject to some prescribed variance constraints expressed as

Var~N1! # B1, (29)

Var~N2! # B2+ (30)

Table 1. Queue Lengths for the Models withl 5 ~1,1!, m 5 ~3,3! for Example 1

T EP~N1! EP~N2! ENP~N1! ENP~N2!

1 1+500 0+500 1+333 0+667
2 1+151 0+849 1+101 0+899
3 0+923 1+077 0+949 1+051
4 0+776 1+224 0+850 1+150
5 0+680 1+320 0+787 1+213
6 0+618 1+382 0+745 1+258
7 0+577 1+423 0+718 1+282
8 0+551 1+450 0+701 1+300
9 0+534 1+467 0+689 1+311

10 0+522 1+478 0+681 1+319
20 0+500 1+500 0+667 0+333
` 0+500 1+500 0+667 1+333

Table 2. Variance of Queue Lengths for the Models withl 5 ~1,1!, m 5 ~3,3!
for Example 1

T VarP~N1! VarP~N2! VarNP~N1! VarNP~N2!

1 4+500 0+750 3+944 1+000
2 3+492 0+977 3+067 1+256
3 2+670 1+450 2+414 1+667
4 2+063 1+997 1+953 2+109
5 1+636 2+518 1+638 2+510
6 1+344 2+971 1+424 2+850
7 1+146 3+344 1+282 3+123
8 1+014 3+638 1+187 3+337
9 0+925 3+866 1+124 3+499

10 0+866 4+037 1+082 3+621
20 0+753 4+490 1+001 3+934
` 0+750 4+500 1+000 3+944
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We shall discuss this for the preemptive version of our model+ If c1µ1 . c2µ2, we
would most naturally impose thresholds on type 2 jobs and find the optimal thresh-
old policy by identifying the policy with the largest value ofT which satisfies both
constraints~29! and ~30!+ Alternatively, if c2µ2 . c1µ1, we would use thedual
family of threshold policies and find the optimal threshold policy by identifying the
policy which has the largest value ofT ' satisfying~29! and~30!+ By this route, the
minimized cost available from the class of threshold policies could then be found by
substituting the respective expected queue lengths into the cost functionC+

To assess the quality of threshold policies for the variance constrained problem,
we compare them with a more commonly studied family of policies+ This latter
family, which we shall call a mixed-priority family, is dependent on a single param-
etera: At the beginning of each busy period, a random decision is made giving
preemptive priority to type 1 jobs with probabilitya, and to type 2 with probability
12 a+ Plainly, asa ranges from 0 to 1, the mixed-priority policies range from strict
priority to type 2, to strict priority to type 1:The corresponding set of expected queue

Figure 2. Achievable variance pairs for Example 1+
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length pairs coincides with the complete set of performances achievable by all
admissible policies+ The first two moments of the number of type 1 jobs in the
system under the mixed policy with parametera are given by

Ea~N1! 5 aE1,2~N1! 1 ~12 a!E2,1~N1!,
(31)

Ea~N1
2! 5 aE1,2~N1

2! 1 ~12 a!E2,1~N1
2!,

Table 3. Queue Lengths for the Models withl 5 ~1,5!, m 5 ~3,12!
for Example 2

T EP~N1! EP~N2! ENP~N1! ENP~N2!

1 1+571 0+714 1+333 1+667
2 1+442 1+230 1+240 2+039
3 1+330 1+681 1+160 2+359
4 1+232 2+072 1+091 2+635
5 1+147 2+412 1+031 2+876

10 0+857 3+571 0+821 3+716
20 0+616 4+535 0+641 4+437
30 0+539 4+843 0+582 4+671
40 0+514 4+946 0+563 4+750
50 0+505 4+981 0+556 4+777
` 0+500 5+000 0+552 4+792

Table 4. Variance of Queue Lengths for the Models withl 5 ~1,5!, m 5 ~3+12!
for Example 2

T VarP~N1! VarP~N2! VarNP~N1! VarNP~N2!

1 4+157 1+224 3+587 4+444
2 3+945 1+474 3+366 5+210
3 3+720 2+159 3+154 6+284
4 3+492 3+207 2+953 7+602
5 3+268 4+548 2+763 9+112

10 2+323 13+734 2+008 18+079
20 1+317 32+460 1+238 34+478
30 0+950 44+221 0+959 44+274
40 0+821 50+182 0+861 49+136
50 0+775 52+931 0+826 51+347
` 0+750 55+000 0+801 53+012
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Figure 3. Mean of queuei against variance of queuei for Example 2+
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where the subscripts$1,2% and $2,1% mean “under the preemptive priority policy
giving top priority to type 1” and “under the preemptive priority policy giving top
priority to type 2,” respectively+ The moments on the right-hand side of~31! are
obtained from the known solution to theM0M01 priority queue~see Jaiswal@5# !+
Related expressions exist for type 2 jobs+

Using the Maple package, it is a fairly simple task to show the following, using
the exact algebraic forms of Vara~N1! and Vara~N2!, for 0 # a # 1,

1+ Vara~N1! is decreasing ina+
2+ Vara~N2! is increasing ina+

Thus, substituting~31! into ~29! and solving fora yields an inequalitya $ a1,where
0 # a1 # 1, if there are mixed policies that satisfy~29!+ Similarly, ~30! implies
a # a2, where 0# a2 # 1, if there are mixed-priority policies that satisfy~30!+ If
a1 # a2, then both variance constraints can be satisfied by a mixed-priority policy
and one of the two extreme values provides the best policy for the variance con-
strained problem from this family+

More specifically, let the variance constraints be, say,

Var~N1! # 3+268, (32)

Var~N2! # 32+460, (33)

where the constraints are chosen to correspond to specific threshold policies+ The
variance pairs achievable by the preemptive threshold policies, dual threshold
policies, and the mixed-priority policies are shown in Figures 4 and 5+ Figures 4
and 5 also illustrate how the variance constraints~32! and ~33! restrict the set of
achievable policies+ It is clear that there is a narrow range of performance pairs
achievable by the randomized policies, and a much wider one achievable by
the threshold policies+ Indeed, there will be pairs of constraints that cannot be
achieved by any mixed priority policy that can be achieved by one or more thresh-
old policies+

Let c 5 ~10,1!+ Note thatc1µ1 . c2µ2 and so we concentrate on the original
type of threshold policy for this problem+ We find that the best policy hasT 5 20
~see Fig+ 4!+ The cost of employing this policy is 10+695+ The best mixed-priority
policy has an optimal cost of 13+243, 24% worse than the cost of the optimal
threshold policy+ However, if c1µ1 , c2µ2 @e+g+, if c 5 ~1,1!# , then we concentrate
on the dual family of threshold policies+ The best of these hasT ' 5 6 ~see Fig+ 5!
and a cost of 2+577+ The cost of the best mixed-priority policy has an optimal cost
of 3+366+ Thus, the best threshold policy is doing more than 30% better than the
best mixed-priority policy in cost terms+ For this system, without constraints, the
set of achievable performance pairs is a line segment defined by the conservation
law and inequalities
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whereµk andrk are the service rate and traffic intensity for typek ~k 5 1,2!+ The
extreme points of the line segment are the performance pairsP12 andP21, corre-
sponding to the policies which give strict preemptive priority to type 1 and type 2
jobs, respectively~see Gelenbe and Mitrani@4# !+ Figure 6 illustrates the results
given above in relation to the performance region for mean pairs+Section A is the set
of expected queue lengths achievable by the threshold policies satisfying the con-
straints,whereas Section B is the set of expected queue lengths achievable by mixed-
priority policies+We have looked at many different parameter values and imposed a

Figure 4. Achievable variance pairs for Example 2 using the threshold family of
policies+
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wide variety of variance constraints+ The example presented here is typical of the
results obtained+

We can carry out similar calculations and obtain similar results when consider-
ing nonpreemptive service policies+

7. CONCLUSION

We have provided analyses of both preemptive and nonpreemptive threshold poli-
cies+ These seem to offer a realistic means of scheduling jobs in a way that mitigates
the effect of excessive and unpredictable queue lengths+ Such considerations are
important if they are to be implemented in a real system+Moreover,we have used the
power series algorithm to solve both the models+ This will be advantageous when
extending the approach to more than two queues+ Computational evidence is given
to show that the family of threshold policies outperforms a family of mixed-priority
policies for a stochastic optimization problem in which policies must satisfy con-
straints on the variances of the queue lengths+

Figure 5. Achievable variance pairs for Example 2 using the dual family of thresh-
old policies+
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