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We consider a single-server queuing system with two job classes under service
policies of threshold typd he server switches from type 1 to type 2 when either the
former queue is empty or the latter reaches iz switches from type 2 to type 1
when the former queue size drops beldvand the latter is not emptfhe joint
queue-length distribution is determined for preemptive and nonpreemptive imple-
mentations using both analytic techniques and the power series algorithm

1. INTRODUCTION

An important problem that must be addressed in current telecommunication net-
works is the provision of different levels of service to different types of trafflee
standard mechanism for achieving such discrimination relies on the use of priority
schedulingThus the short-delay requirements of real-time packets, voice) can

be met by assigning a higher priority to them than to other traéig., datg. How-

evet pure priority policieswhether preemptive or nonpreemptivave the disad-
vantage that the lower-priority traffic is very heavily penalized in terms of the quality
of service it receivedt is, therefore desirable to devise and implement policies that
satisfy the requirements of higher-priority traffic while offering acceptable perfor-
mance for the lower-priority one
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In order to make some progress toward the above objectreedefine and
analyze a class of threshold policies for a single server with two types of demand
type 1 has high priorityexcept when the queue size of type 2 exceeds a certain level
The ideais to “soften” the effect of assigning strict prioriti€kis contrasts with the
introduction of thresholds in the context of polling policié®e and Sengupt®],
Boxma et al[3]), where the intention is to “enhance” the effect of servicing each
gueue exhaustively

Both the preemptive and the nonpreemptive versions of the threshold policies
are examinedin each casethe aim is to determine the joint distribution of the
two-dimensional queue size procebso solution methods are presentede using
generating functions and one based on the power series algaiiRB#) (Blanc
[2]). The former approach is efficient for small threshold values but suffers from
numerical difficulties when the threshold is largéat solutionin the case of pre-
emptive thresholdsvas used by Ansell et d11] to study an optimization problem
subject to variance constrainfBhe PSA is applicable to a wider range of modlels
particularly when used in conjunction with techniques for improving its convergence

The model is described in SectionThe analysis of the preemptive and non-
preemptive threshold policies by means of generating functions is presented in Sec-
tions 3 and 4respectivelySection 5 deals with the power series solution and with
the epsilon and conformal mapping convergence enhancing technisgeeson 6
contains the results of several numerical experimentiuding an additional ex-
amination of the problem introduced ith].

2. THE MODEL

We consider a model of twh/M/1 queues served by a single servidre service
policy is assumed to be nonanticipative and work-conserAngvals to queuek
form independent Poisson streams with parametgend have exponentially dis-
tributed service times with mearnif,. If the loadp = A1 /p; + A»/H, is assumed to
be less than unifythen we satisfy the ergodicity conditioRigure 1 illustrates the
system

We shall study two service policiewhich are of the threshold typene pre-
emptive and the other nonpreemptive the preemptive cas¢he service policy
depends on an integer threshdld\,(t) denotes the number of customers in queue

e
s

Ficure 1. Two unbounded Markovian queues served by a single server
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k (waiting and in serviceat timet. If Ny(t) > 0 andN,(t) < T, then atype 1 customer
is servedlif No(t) = T or Ny(t) = 0, a type 2 customer is servelllore simply the
server switches from type 1 to type 2 when either the former queue is empty or the
latter reaches siz& It switches from type 2 to type 1 when the former queue size
drops belowT and the latter is not emptiPreemptions and server reallocations do
not result in any delay or any penalty colibte that whenl = 1, the policy gives
preemptive priority to type 2 customeend whenT = oo, it gives preemptive pri-
ority to type 1 customersThe nonpreemptive case depends on the same integer
threshold parametdt but prohibits preemption3 hus the server can only switch at
a service completian

Consider a linear cost functio@ = ¢;E(N;) + c,E(N,) where theE(N,),
k= 1,2, are the expected queue lengths anddh& = 1,2, are holding costsThe
policy which minimizesC over all admissible preemptive service policies is one
which gives strict preemptive priority to the class with the larger value,pf:
the so-callectprule. Similarly, the policy which minimizes the cost function over
all nonpreemptive service policies is one which gives “head of the line” priority
according to thecp rule (see Gelenbe and Mitraf#]). Although these policies
are optimal for the linear holding cost problentisey are often unacceptable in
practice because of the heavy penalties imposed on the low-priority customers
These customers suffer from large queue lengths pedhaps more significantly
large variances in these quantiti@$us our ultimate aim is to obtain a readily
implementable family of service policies which simultaneously minimize the lin-
ear cost function and satisfy prescribed constraintssay the second moments
or the variances of the queue lengflsee Ansell et al[1]). It is such problems
which motivated this study of our class of threshold policies and the discussion in
Section 6 gives grounds for believing that these policies perform well

3. ANALYTIC SOLUTION OF THE PREEMPTIVE MODEL
Our aim in this section is to determine the joint steady-state distribution
p; = lim PINy(1) = i, Ny(t) = ]

for the preemptive version of our moddlhese probabilities satisfy the balance
equations

A1+ A+ (>0, <T)+ 8(j=T) + K6(i =0,0<]j <T)]p

= APyt APt WS < TPy + (=T —-1)p;j41
+ 18 =0,) <T—=1)pj+1, (1)

where probabilities with negative indices are 0 by definition and whéfg = 1 if
the conditiom holds and 0 otherwisdn addition we have the normalizing equation

Ms

pij = 1 ()

j=0

Il
o
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The solution of these equations requires the following generating functions

g(x)=>p;x, j=01..T-1 (3)
i=0
a(x,y) = EOE Py X'y (4)
i=0j=T

The first step in our method of solution is to transfof), for j < T — 1, into the
following set of recurrence relations between the functigKs):

b(X)g;(X) = A2Xg-1(X) = [Ha(1 = X) + P2 X3 (] > 0)]po
+ W XPoj+1, ] =0,1...,T—2, (5)
where all functions with negative indices aby definition zerg and
b(X) = A1 X(1—X) + A, X — Yy (1 — X).

Using(5), we can then determine the functioggx), 9:(X), ..., gr_»(X), in terms of
the constantgg o, Po.1; - - - » Po, T-1-

The probability of an empty systepy o is equal to 1— p; — p,. This can be
established via the balance and normalizing equationsnore simply by direct
application of Little’s resultThis means that we havie— 1 unknown probabilities
to be determined\ote that the quadratiz( x), which appears in the left-hand side of
(5) is negative ak = 0, positive atx = 1, and negative in the limit as— co. Hence
b(x) has exactly one zera, in the interval(0,1) and one zerox,, in the interval
(1,00). Since the functiong;(x) are finite atx = xo, the right-hand side of5) must
vanish at that point for every=0,1,...,T — 2. Settingx = xqin (5), for j = 0, and
equating the right-hand side to zero determines the valpg,0fSince both sides of
(5) now divide byx — xg, the functiongy(x) is of the form

Ao,0
X = —
gO( ) Xl _ X,

whereag o is a known constant and, is the second zero df(x). Further setting
X=Xoin (5) forj =1 and equating the right-hand side to zero determppgs\We can
now express the functiogy(x) in terms of elementary fractions

Ao iz
24

9:(x) = X=X (X — X2

wherea, o anda, ; are known constant8y iterating this processve can establish
values for all of the unknown constargg;,j = 1,...,T — 1, and thus obtain the
gi(x),j=0,1,...,T— 2. The functiongy;(x) can be written as a sum of elementary
fractions

]

g(x) = >

oo (Xg — X))

aj k .
j=01,....T—2 (6)
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This simple form of the generating functions implies that whenT — 1, the
probabilitiesp; ; are given by

i i+k ‘
pi=2au| o et i=01...,j=01...T-2
k=0
The only generating functions now left to determinegyre, (x) andg(x, y). To
do this we use the balance equatioii¥), for j = T — 1 andj = T, leading to the
following relations

b(X)gr-1(X) = A2Xgr_2(X) + H2Xg(X,0) — [H1(1 — X) + o X]Po -1, (7)
K(X, ¥Y)9(X,¥) = A2ygr_1(X) — H29(x,0), (8)

where

K(X,y) = A y(1—=X) + 2,y(1—y) — H(1—y).

Again, we note that for everyin the interval 0,1], there is exactly one value of
yin the same intervay = B(x), such thak(x, 8(x)) = 0. Sinceg(x, B(x)) is finite,
the right-hand side df7) vanishes wheg = B(x). This allows us to eliminatg(x,0)
from (7) and(8) to obtain

A2XGr—2(X) — [H1(1— X) + Mo X]Po -1
b(X) — A2xB(X) ’

ALy — B(X)]gr-1(X)
k(x,y)

The denominator if9) is zero atk = 1, but so is the numeratdt can be shown that
when the ergodicity condition holgihe functiongr_1(x) has no singularities in the
unit disk This remark also applies {d.0).

We now have all the unknowns specified and can evaluate the performance
measure& (N,), E(N,), Var(N,), and Vai(N,) from the above generating functions
in the usual way

The derivatives of the generating functionsxat 1, y = 1 involve indetermi-
nacies of the type [ which are resolved by L'Hépital’s rulén this problemthe
unknown quantities are found by successive substitutions rather than by solving a
set of simultaneous equatianBhe computational complexity of this solution is
thereforeO(T?), rather tharO(T 3).

Or-1(x) = 9)

9(x,y) = (10)

4. ANALYTIC SOLUTION OF THE NONPREEMPTIVE MODEL

In this sectionwe prohibit preemptionghus switching decisions are only made at
service completiond_et S(t) be a random variable equal kaf the server is pro-
cessing queuk at timet. We introduce the steady-state probabilities
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H
|

Py = lim P(N.(1) =i, No(t) =, S(1) =1), i=1j=0,

p?) = lim P(N,(1) =1,Ny(1) =}, 8(1) =2), 1=0,j=1,

Poo = lim P(Ny(t) = 0, N;(t) = 0)

wherepg; =0, j =1, andp?, = 0, i = 1. These probabilities satisfy the following
balance equations

(A1 + A2+ )Pt = Aaphoj + APt + 8 (j =T —1)phy
+ W8() =T = 1)p?j1+ A18(i =1,j = 0)poo,
i>0j=0, (11
(A1 + As+ Wo)P? = Aaplia + A2pPo1 t 8(i=0,j = T —1)p?j.s
T 8(J=T—Dpfjer+ Wb (j=T)phy
+A28(i=0,j=Dpoo+ ld(j =T—-1)pi},
i=0,j>0 (12
(A1 + A2)Poo = M1Pio + H2P1, (13)

where once againd (A) = 1 if the conditionA holds and 0 otherwiseln addition
the following normalizing equation holds

Poo + 2 2 P+ 2 E p? = 1. (14)

i=1j=0 i=0j=1

To solve this problegwe introduce the generating functions

ai(x,y) =2 > phx Tty T,

i=1j=T

G(Xy) = > > pZxyl T,

i=0j=T

g (x) = 2 pij,-jxiil, 0=j=T-1,
i=1

g2(x) = X, pZx, 1=j=T-1
i=0
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Equationg11) and(12) are then transformed into
b(X)g"(X) = A2XgL1(X) = K1 GH(0) + A1 XPood(j = 0)
+ U975 (%) — g2 1(0)]6() <T—1)
+ Ua[92(%,0) — 0,(0,0]8(j=T—1), 0=j=T-1, (15)
C(X)GZ(X) = 2,02 1(X) + K0>(0,0)8(j = T—1) + P02 1(0)8(j < T—1)

+ A2P0od(j =1) + pigt(0), 1=j=T-1, (16)
d(X, ¥)0:1(X, y) = A,07-1(X) (17)
K(X,Y)02(X,y) = —U202(X,0) + Uy YGi (X, y) + A, ygF_1(X), (18)

whereg™, (x) = 0, m = 1,2, by definition and the function®(x), c(x), d(x), and
k(x,y) are defined as

b(x) = A1 X(1—X) + A, X — Hy(1— X),
c(X) = A1 (1—X) + Ay + Mo,
d(x,y) = A1(1=X) + A(1—y) + Wy,
k(X y) = A1y(1=%) + 2,y(1—y) = k(1 ).
We note that we need to evaluaf€ @nknown constants in order to fully deter-

mine the generating functior®o do this we use recurrence relati¢h5) for g;'(x),
j=T-1,giving

b(X) T 197 2(X) = (A2%) T 2{—195(0) + A1 Xpoo + H2[ 9F(X) — g (0)]}

+ 2 b)) (Ax) T2

X {=H 6M(0) + o[ 9% 1(x) — g2 1 (0]} (19)

Further to thiswe substitut¢16) involving theg? ;(x), 1=j =T—1,into (19). Note
that the functiorb(x) has one zera, € (0,1) and the other zerg, € (1,00). The
functionsg'(x), j < T — 1, are finite in the unit diskAt the pointx,, the left-hand
side of(19) vanisheswhich, in turn, implies that atx,, the right-hand side of19)
must also vanishNote also that the firsT — 2 derivatives of the left-hand side of
(19) are also zero aty, so the firstT — 2 derivatives of the right-hand side f9)
must also vanish at this pointhese observations leadTo- 1 equationsA further

T — 1 equations are obtained by substituting 0 in (16). This leaves us two equa-
tions to find The first of these is obtained from the balance equati@relating to
the empty systepmamely

(A1 + A2)Poo = M193(0) + p197(0), (20)

and the following argument gives the final equatidve note that for everyin the
interval[0,1], there is exactly one value gin the same interval = «(x), such that
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k(x,a(x)) = 0. Sinceg,(x, a(x)) is finite, the right-hand side of18) must also
vanish Thus we have

—H202(%,0) + Py (X)g1(X, y) + A (X)gF_1(x) = 0. (21)

Moreoverthe equation fog, (X, y) is directly related to the functiogyt_, (x), and so
at the pointx = 0, we have that

M1 (0)A207-1(0)
d(0,a(0))

We now have Z equations in terms of theT2unknown constants andhere-
fore, can fully determine the generating functiogs(x), j = 0,...,T — 2 and
gjz(x), j =1,...,T — 1. This leaves us with three functions to evalyatamely
0:1(X, Y), 92(X, y), andg_,(x). To do this we solve the remaining equatigri&1),
(17), and (15) (for j = T — 1). Having done thiswe have all the generating
functions specified and can proceed to calculate the moments

Unlike the method used in the preemptive csee we have to solve the system
of simultaneous equationthus the computational complexity of the solution of
O(T3).

—H202(0,0) + + A,a(0)g-41(0) = 0. (22)

5. POWER SERIES ALGORITHM

The methods proposed in Sections 3 and 4 are computationally expeespe
cially in the nonpreemptive casbecause of the large number of derivatives and
limits that need to be evaluatethis means that obtaining the moments of the queue
lengths becomes increasingly difficult asgets largen>5, say. Moreover the
methods are not easily extended to models with three or more gquEuepower
series algorithniPSA) is a numerical method for evaluating performance measures
for multidimensional Markov processesee Blang¢2]). It approximates the steady-
state distribution of a general Markov process by computing the coefficients of a
simple recursionwhich is obtained as a result of introducing an artificial param-
etery.

We consider first the preemptive model and introduce an artificial parangeter
by replacing the arrival ratg by A; y. The service parameters are left unchandfed
we express the balance equatighsin terms of the artificial parametewre obtain

[(AL+ ) x (i >0, <T)+8(j=T) + H6(i=0,0<j<T)]p;
=[Apioy + 2P j—alx + 8 () < T)pisyj + 6(j =T = 1)pi jus
+ 1831 =0,] <T—-1)p 1. (23)

We now write

pi,j = X' kZO l5k,i,ij- (24)
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Now, if we replace thep; j; according ta(24) in (23), eliminate the facto ',
and equate terms with equal powersyofve obtain the following recursion for the
coefficientsp; ;:

[M18(i>0,) <T)+ 8(J=T) + 6( = 0,0 <j < T)]Py;
= —(A1+22)0(K>0)P—rij T A1Pxi-vj T A2Pcij-1
+ 16() <T,k>0)Pu—rir1
+Wo(j=T—1LKk>0)Pvij+1
+ 0 =0,j <T—1Kk> 0P s (25)

To determine the coefficienta/e also need to use the normalizing equatiehich
we express as

> 22 P X =1
k=0i=0j=0
From this we obtain
Pooo = 1 (26)
and
2 r)k,i,j = 0, I = 1. (27)
i+j+k=I

We can now calculate the coefficients fr¢@b)—(27). By settingy to 1, we return
to the original formulationTo obtain an approximatignve truncate the number of
coefficients to those with a power gfless than a valuk.

The nonpreemptive case is analyzed in an analogous ma&wsen, we replace
A; by A; y and write

pr o= X" Y Pl X m=12, (28)

to obtain the following recursions

HiPicij = —(A T A)8(k> 0P i+ AaPii-vj T A2P8i -1
+WS(J=T—-LKk>0P1ive; T H0(] =T —Lk>0)pZ 141
+ A,6(i=1]=0)Pxoo, 1>0,j=0,

HaPZi ;= —(A1+ 22)8(k>0)PEvij+ A1PEi—1; + A2PEi -1
+ W8 =0,j=T—Lk>0)pPZ 11
+W8(j=T—1Lk>0)pPe 11
T H8(j =T, k> 0)pi_yivejt A2Prood(i=0,j=1)
+ é(j=T—-1Lk> O)f)&_]ﬂl’j, i=0,j>0.
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The normalizing equation is again used to completely determine the coefficients

5.1. Convergence

The procedure just described does not in itself guarantee convergence of the power
series obtained by the recursidn fact, in both modelsthe method only converges

for values ofp less than about.6 (i.e., lightly loaded systemsTo overcome this
problem we employ two methods

e Conformal Mapping Technique
» Epsilon Algorithm

5.2. Conformal Mapping Technique

In (24) and(28), we expand the steady-state probabilities about.ZEre radius of
convergence for such a power series is the distance between the origin and the near-
est singularityTo enlarge the radius of convergena® must move the singularities
further away from the originOne method of doing this is to use origin-preserving
bilinear mapping

w :Ffl(e):L G=0
1+Gy X 7'e 1+G-Go'

We obtain another recursive computational scheme by expanding the steady-state
probabilities as a function df:

0 =Ts(x)=

Py =0" > 6%0;; (preemptive.
k=0

pr = 60""1 > 0%, m= 1,2 (nonpreemptive
k=0
The choice ofG is by rule of thumbIn much of the literaturea value of 15 is

recommendedhowevery in some casesve found a slightly larger value to be a
better choice

5.3. Epsilon Algorithm

The aim of the epsilon algorithm is to accelerate the convergence of a slowly con-
verging sequencdo do this the epsilon algorithm converts a polynomial into quo-
tients of two polynomialsThe following scheme is used

m
(m _ _(m+1) (m+1) - (m _ (m _
6KT1 - Knjl + [EKT]. - Et((m)] 1’ 6:‘2 - 0’ EOrn - 2 CkBk’
k=0
where theg,, k=0,1,2,..., stand for coefficients of a series such as the ones defined

in (24) and(28). The even sequencésé’,’]), m=0,1,...},k=1,2,..., may converge
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faster to a limit than the initial sequencéhe odd sequences are intermediate steps
in the calculationFor further detailssee van den Houf].

6. NUMERICAL RESULTS

In this sectionwe present numerical results for two examplBse first of these is
used to confirm that the PSA provides us with accurate approximations of the per-
formance measures of interebt the second examplattention is focused on the
stochastic optimization problem alluded to in Section 2

Note that we could also definedaal family of policies with parameter’ by
placing the threshold on type 1 jobs instead of on typse®ingT’' = 1 in this family
would give priority to type 1 and’ = co would lead to priority being given to type 2
The analysis of this policy is carried out simply by swappingvith A, andp, with
Mo and then using the techniques described in Sectionsi3#$ policy will be used
in the second example

Example 1:In this examplewe present the results of the model when the arrival
rates are both 1 and the service rates are botih&load on the system is fairly low
with p = £. For this examplgwe restricted the computation to all coefficiefs ;
such thak +i +j = 200 The value ofG used was b and the epsilon algorithm was
invoked to increase the convergence properties of the resultant power. Jeries
ensure the accuracy of the numerical methed computed coefficients until the
sum of the steady-state probabilities was sufficiently close(gixldecimal places
were deemed enougiTables 1 and 2 contain the expected queue lengths and queue
length variances for the preemptive and nonpreemptive variants of the threshold
policy. These were obtained using the PSA check the accuracy of our resylige
compared them with the exact results obtained by implemeftisigg Maple the
analytical techniques of Sections 3 andBécause of the computational demands of
the exact methodsnly a relatively small number of policies can be compared in this
way. In all casesthe PSA approximated all performance meas(reth mean queue
lengths and variancgso at least three decimal places

Figure 2 shows how the achievable variance pairs behave as the value of the
threshold parameter increas@&woth preemptive and nonpreemptive results are il-
lustratedIf, as has been conjectutghde true boundary of variance pairs is a convex
curve passing through the variance pairs of the priority poli€Tes 1 andT = o)
and the FIFO policywhich is (2,2) in this casethen this picture gives us some
encouragement to believe that the variances achievable by threshold policies might
be quite close to this boundary

Example 2: Consider now the model with parametars (1,5) andu = (3,12). This
system can be thought of as being unbalanced in the sense that the type 1 jobs arrive
on averaggfive times less often than type 2 jobs but their service requirements are
on averaggefour times longerWe employed the conformal mapping technique of
Section 5 with the value o6 equal to 25. The epsilon algorithm enhanced the
convergence properties of the resulting power series
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TaBLE 1. Queue Lengths for the Models with= (1,1), p = (3,3) for Example 1

T Ep(Ny) Er(N2) Enp(N1) Enp(N2)
1 1500 Q500 1333 Q667
2 1151 0849 1101 Q0899
3 0.923 1077 0949 1051
4 0.776 1224 0850 1150
5 0.680 1320 Q787 1213
6 0.618 1382 Q745 1258
7 0.577 1423 Q718 1282
8 0.551 1450 Q701 1300
9 0.534 1467 0689 1311

10 0522 1478 0681 1319

20 0500 1500 Q667 Q0333
o 0.500 1500 Q667 1333

TABLE 2. Variance of Queue Lengths for the Models wihk= (1,1), u = (3,3)
for Example 1

T Varp(Ny) Varp(Ny) Varyp(Np) Varyp(Nz)
1 4.500 Q750 3944 1000
2 3492 Q977 3067 1256
3 2670 1450 2414 1667
4 2.063 1997 1953 2109
5 1636 2518 1638 2510
6 1344 2971 1424 2850
7 1146 3344 1282 3123
8 1014 3638 1187 3337
9 0.925 3866 1124 3499

10 0.866 4037 1082 3621

20 0753 4490 1001 3934

o0 0.750 4500 1000 3944

Tables 3 and 4 contain the expected queue lengths and variance pairs for both
the preemptive and nonpreemptive variants of the threshold péligyre 3 illus-
trates the property that as the expected queue length of ippecases so does its
variance(we only plot the threshold policies with odd valuesTot

Consider now the problefalluded to at the end of Section@ minimizing the
linear cost functiorC subject to some prescribed variance constraints expressed as

Var(N,) = By, (29)
Var(N,) = B,. (30)
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FIGURE 2. Achievable variance pairs for Example 1

We shall discuss this for the preemptive version of our madled, u; > c,p,, we
would most naturally impose thresholds on type 2 jobs and find the optimal thresh-
old policy by identifying the policy with the largest value Bfwhich satisfies both
constraints(29) and (30). Alternatively, if ¢, > ¢4, we would use thedual
family of threshold policies and find the optimal threshold policy by identifying the
policy which has the largest value ©f satisfying(29) and(30). By this route the
minimized cost available from the class of threshold policies could then be found by
substituting the respective expected queue lengths into the cost fuction

To assess the quality of threshold policies for the variance constrained ptoblem
we compare them with a more commonly studied family of policigss latter
family, which we shall call a mixed-priority familys dependent on a single param-
etera: At the beginning of each busy period random decision is made giving
preemptive priority to type 1 jobs with probability, and to type 2 with probability
1— a. Plainly, asa ranges from 0 to lthe mixed-priority policies range from strict
priority to type 2 to strict priority to type 1The corresponding set of expected queue
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TaBLE 3. Queue Lengths for the Models with= (1,5), u = (3,12)
for Example 2

T Ep(Ny) Ep(N2) Enp(N2) Enp(N2)
1 1571 Q714 1333 1667
2 1.442 1230 1240 2039
3 1.330 1681 1160 2359
4 1.232 2072 1091 2635
5 1.147 2412 1031 2876

10 0857 3571 Q821 3716

20 0616 4535 Q641 4437

30 0539 4843 Q582 4671

40 0514 4946 Q563 4750

50 0505 4981 Q556 4777

[ee) 0.500 5000 Q552 4792

TABLE 4. Variance of Queue Lengths for the Models wihk= (1,5), u = (3.12)
for Example 2

T Varp(N;) Varp(N,) Varyp(Na) Varyp(N,)
1 4157 1224 3587 4444
2 3.945 1474 3366 5210
3 3720 2159 3154 6284
4 3492 3207 2953 7602
5 3268 4548 2763 9112

10 2323 13734 2008 18079

20 1317 32460 1238 34478

30 0950 44221 Q959 44274

40 0821 50182 Q861 49136

50 Q775 52931 Q0826 51347

o) 0.750 55000 Q801 53012

length pairs coincides with the complete set of performances achievable by all
admissible policiesThe first two moments of the number of type 1 jobs in the
system under the mixed policy with parameteare given by

E.(N)) = aELZ(Nl) +(1- a)Ez,l(Nl),

(31)
Ea(le) = aEl,Z(NlZ) + (1_ Q)Ez,l(le),
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where the subscriptfl,2} and{2,1} mean “under the preemptive priority policy
giving top priority to type 1” and “under the preemptive priority policy giving top
priority to type 2" respectively The moments on the right-hand side (8fl) are
obtained from the known solution to ti/M/1 priority queue(see Jaiswal5]).
Related expressions exist for type 2 jobs

Using the Maple packagd is a fairly simple task to show the followingsing
the exact algebraic forms of VAIN;) and Vaf,(N,), forO0=a <1,

1. Var,(N,) is decreasing im.
2. Var,(N,) is increasing in.

Thus substituting31) into (29) and solving for yields an inequalityr = a4, where
0 = a; = 1, if there are mixed policies that satist®29). Similarly, (30) implies
a = a,, Where 0= a, = 1, if there are mixed-priority policies that satisfg80). If
a1 = ay, then both variance constraints can be satisfied by a mixed-priority policy
and one of the two extreme values provides the best policy for the variance con-
strained problem from this family

More specifically let the variance constraints say

Var(N,) = 3.268 (32)
Var(N,) = 32.460Q (33)

where the constraints are chosen to correspond to specific threshold pdiioges
variance pairs achievable by the preemptive threshold palicieal threshold
policies and the mixed-priority policies are shown in Figures 4 ané&igures 4
and 5 also illustrate how the variance constrai3® and (33) restrict the set of
achievable policieslt is clear that there is a narrow range of performance pairs
achievable by the randomized policieend a much wider one achievable by
the threshold policiesindeed there will be pairs of constraints that cannot be
achieved by any mixed priority policy that can be achieved by one or more thresh-
old policies

Let c = (10,1). Note thatc,u; > c, 4, and so we concentrate on the original
type of threshold policy for this probleriVe find that the best policy has= 20
(see Fig4). The cost of employing this policy is 1895 The best mixed-priority
policy has an optimal cost of 1343 24% worse than the cost of the optimal
threshold policyHowever if ¢, < ¢, [e.9., if ¢ = (1,1)], then we concentrate
on the dual family of threshold policie$he best of these has' = 6 (see Fig5)
and a cost of 577. The cost of the best mixed-priority policy has an optimal cost
of 3.366. Thus the best threshold policy is doing more than 30% better than the
best mixed-priority policy in cost term&or this systemwithout constraintsthe
set of achievable performance pairs is a line segment defined by the conservation
law and inequalities
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FiGURE 4. Achievable variance pairs for Example 2 using the threshold family of
policies

1 1 it popgt
—E(N,) + —E(N,) = P11 T pallo”
Ha Ho 1=pi—p>
E(Ny = 2,
1-ps

P2
1-p2
wherep, andp, are the service rate and traffic intensity for tylpék = 1,2). The
extreme points of the line segment are the performance pairandP,,, corre-
sponding to the policies which give strict preemptive priority to type 1 and type 2
jobs respectively(see Gelenbe and Mitrafi#t]). Figure 6 illustrates the results
given above inrelation to the performance region for mean ga@stion Ais the set
of expected queue lengths achievable by the threshold policies satisfying the con-
straintswhereas Section B is the set of expected queue lengths achievable by mixed-
priority policies We have looked at many different parameter values and imposed a

E(N;) =
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FIGURE 5. Achievable variance pairs for Example 2 using the dual family of thresh-
old policies

wide variety of variance constraint§he example presented here is typical of the
results obtained

We can carry out similar calculations and obtain similar results when consider-
ing nonpreemptive service policies

7. CONCLUSION

We have provided analyses of both preemptive and nonpreemptive threshold poli-
cies These seem to offer a realistic means of scheduling jobs in a way that mitigates
the effect of excessive and unpredictable queue len@tsh considerations are
important if they are to be implemented in a real systeloreoverwe have used the
power series algorithm to solve both the mod@lsis will be advantageous when
extending the approach to more than two que@esnputational evidence is given

to show that the family of threshold policies outperforms a family of mixed-priority
policies for a stochastic optimization problem in which policies must satisfy con-
straints on the variances of the queue lengths
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