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The switching between a damped and an undamped Inertial Navigation System (INS) is an
important technical method to ensure its long-term accuracy. The stability of switching is of
great importance. This paper studies the switching stability problem between a damped and an
undamped INS. A model of an inertial navigation switching system is established by introducing
switched control. The average dwell time method is used to analyse stability and a sufficient
condition of exponential stability is given. The condition is also extended to the switched system
containing constant disturbance and the sufficient condition of exponential stability. The effect of
introducing switched control for the smooth operation of the system is verified and the accuracy
of a long-term INS is improved effectively.
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1. INTRODUCTION. Inertial Navigation Systems (INS) are widely applied in land,
marine and aircraft navigation owing to their characteristics of complete independency
from outside navigation transmissions, potential for stealthy operation and relative inde-
pendence from the environment they are operated in (Titterton and Weston, 2004). An
INS generates Shuler, Foucault and Earth periodic oscillation errors motivated by error
sources when it works in an undamped mode. For long-term INS, oscillation errors greatly
affect the precision of navigation, so it is essential to suppress them. Damping technology
is an effective way to suppress INS oscillation errors. By introducing damping, an INS
can be transformed from a critical but stable system to a stable system. Thus, the goal
of suppressing oscillation errors is achieved. A Kalman filter can also be used to com-
pensate the oscillation errors (Zhao et al., 2016). After introducing damping, the original
Shuler tuning condition of the INS is destroyed. When a vehicle carrying an INS oper-
ates in a manoeuvring condition, damping will have a negative influence on the output of
the INS. Thus, damping technology can only be used in the non-manoeuvring condition.
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To counter this problem, it is common to switch modes according to the carrier’s oper-
ating state. In other words, if the carrier operates in a manoeuvring condition, the INS is
switched to an undamped mode. If the carrier operates in a non-manoeuvring condition, the
INS is switched to a damped mode. However, overshoot is an inevitable phenomenon in
the process of switching and needs to be decreased as much as possible to ensure accuracy.

In order to improve this situation, two main categories of methods are used (Jiang et al.,
2014; He et al., 2012; Cheng et al., 2005a; Qin et al., 2011). The first method is mainly
based on qualitative analysis, and the overshoot generated by switching is related to the
closed-loop damping ratio of the system. By gradually increasing the damping ratio of the
system from zero to a steady state value, the overshoot process can be reduced. However,
increasing the damping ratio of the system will also slow down the convergence rate of
oscillation error, which is not good for the system. Changing the damping ratio essentially
means switching between systems with different damping ratios. If the damping ratio is
not properly selected, the accuracy of the INS is reduced. The second method is based on
the command rate before and after the switching. Through introduction of compensation,
the command rate will not change before and after the switching, thereby weakening the
overshoot. However, the second method needs accurate position and related information
provided by external devices such as Global Navigation Satellite Systems (GNSS) and this
can limit its application fields.

These methods compensate errors but do not focus on the cause of the problem. Switch-
ing is the essence of this problem. Therefore, this paper aims at solving the problem from
the perspective of a switched system without external information. The switching process
plays a decisive role in the stability of the system. In order to apply the switching system
to the actual project, stability analysis is an indispensable step.

A switched system is a typical hybrid system which consists of several subsystems and
a switching law coordinating the operation of each subsystem. Many control theories and
methods have been established in the switching field (Hu et al., 2000). Many researchers
have investigated switched systems, which have broad application in real life systems such
as for robot control (Tan et al., 2004), electrical power systems (Williams and Hoft, 1991)
and spacecraft control (Oishi and Tomlin, 1999). Switched systems can achieve good per-
formance by switching control regimes. INS also have a problem of switching between two
operating modes, but published work into similar research from the perspective of switched
systems is difficult to find.

In this paper, the damped and undamped modes of an INS as a switched system con-
trolled by a switching controller is investigated, with the first aspect considered being
stability. The stability of a switched system is divided into three basic problems (Liberzon
and Morse, 1999). Lyapunov functions (Branicky, 1994; Dayawansa and Martin, 1999;
Mancilla-Aguilar, 2000; Mason and Shorten, 2007; King and Shorten, 2004; Cheng, 2004)
and dwell time method (Lee et al., 2000; Zhai et al., 2001; Mancilla-Aguilar and Garcia,
2006; Hespanha et al., 2005) are the main methods used to solve the stability of the sys-
tem. For stability under arbitrary switching signals, the main research method is the single
Lyapunov function method. The idea of the single Lyapunov function method is that if all
subsystems exist within a common Lyapunov function, then the switched system is sta-
ble under an arbitrary switching signal. In practical applications, the switching signal is
often constrained. The multi-Lyapunov function method and the dwell time method are
common ways to deal with the system under a constraint switching signal. The idea of
the multiple Lyapunov function method is that if there exist different Lyapunov functions
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for different subsystems, the corresponding Lyapunov function value will become smaller
when each subsystem is working properly and then the switching system is stable under the
constrained switching signal. The idea of the dwell time method is that if the dwell time
on a stable subsystem is long enough so that the energy decay of the stable subsystem can
completely offset and exceed the energy increase caused by the switching, then the switch-
ing system is stable under a constrained switching signal. The average dwell time method
proposed by Hespanha (1999) is based on the dwell time method. The main idea here is that
allowing the action time of some of the subsystems to be less than a certain dwell time, but
ensuring the average dwell time of all subsystems is not less than this certain dwell time,
then the switched system under constrained switching signals is stable. An INS works in
damping mode most of the time. When it is necessary, it is switched to the undamped mode.
The average dwell time method is used here to analyse the stability.

In this paper, a switched control is introduced into the damped and undamped INS
switching problem. A model of a switching problem is established, and sufficient con-
ditions for system stability are obtained. Under the condition of stability, the overshoot
causes are analysed, and switched control is introduced to verify the effectiveness of the
controller.

This paper is organised as follows: the model of INS operating in damped and undamped
modes is established in Section 2. Section 3 analyses stability and gives the sufficient con-
dition of exponential stability. The switching compensation controller is designed for a
long-term INS in Section 4 and Section 5 verifies the effectiveness of the switched control.
Section 6 gives the conclusions.

2. FORMULATION. Generally, the model of a switched system is described as:

ẋ = fσ (x(t), u(t), w(t)) (1)

where x(t) ∈ R
n is the system state, u(t) ∈ R

m is the control input, w(t) is the disturbance,
ẋ = fi(x(t), u(t), w(t)) is the i-th subsystem, i ∈ I = {1, 2, . . . , N }, N is the total number
of subsystems and the switching law σ : [t0, ∞) → I is a right continuous segmentation
constant function. A typical switched system diagram is shown in Figure 1.

For INS, the switched system has two operating modes, the damped inertial navi-
gation mode and the undamped inertial navigation mode corresponding to two different
subsystems. We take the north loop as an example to derive the INS model.

A north loop error block diagram of an undamped INS is shown in Figure 2. In Figure 2,
∇E is the bias of east accelerometer, φN is the north misalignment angle, εN is the north
gyro drift, δVE is the east velocity error, g is the gravitational acceleration and R is Earth’s
radius.

From Figure 2, we can obtain the relationship of φN and εN :

φN (s)
εN (s)

=
s

s2 + g
R

(2)

Equation (2) indicates that the roots of the north loop characteristic equation of an
undamped system is a pair of conjugate complex roots. Therefore, the north loop is a crit-
ical but stable system. In order to eliminate oscillation, the horizontal damping network
H (s) is added to the damped north loop.
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Figure 1. A typical switched system diagram.

Figure 2. North loop error block diagram of an undamped INS.

Figure 3. North loop error block diagram of horizontal damping system.
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Figure 4. Error block diagram of north loop switching controller where u is the output of the controller.

A north loop error block diagram with a horizontal damping system is shown in Figure 3.
After adding H (s), the characteristic equation of the north loop becomes:

s2 +
g
R

H (s) = 0 (3)

If H (s) is designed properly, the north loop will be damped so that the oscillation is
eliminated.

In order to solve the switching problem, the idea of using a switched system is proposed.
These two subsystems must be described in a unified form to construct the switched system.

In the north loop error block diagram of the undamped INS, H (s) is equal to 1. These
two block diagrams can be combined, and this is shown in Figure 4.

Using Figure 4, we can obtain the model of the switched system:⎧⎨
⎩

δV̇E = −φN g + ∇E

φ̇N =
1
R

u + εN
(4)

Changing it to matrix form:[
δV̇E

φ̇N

]
=

[
0 −g
0 0

] [
δVE
φN

]
+

[
0
1
R

]
u +

[∇E
εN

]
(5)

u = K
[
δVE
φN

]
(6)

where K is the controller.
Therefore, we can establish the state space error model of INS:

ẋ = Ax + Bu + w

y = Cx
(7)

where A =
[

0 −g
0 0

]
, B =

[
0
1
R

]
, C =

[
0 1

]
, x =

[
δVE
φN

]
, u = K

[
δVE
φN

]
, w =

[∇E
εN

]
.
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In order to analyse the controllability of the system, the controllability matrix Qc is
calculated:

Qc =
[
B AB

]
=

⎡
⎣ 0 − g

R
1
R

0

⎤
⎦ (8)

From Equation (8), we can see that rankQc = 2 and the controllability matrix of the system
is full rank. Therefore, the system is completely controllable. The expression u is the form
of state feedback. Therefore, if we consider the damped and undamped problem of an INS
with respect to control, it can be described as: The operating state of the INS is determined
by the switching controller. The switching controller determines the operating mode of the
whole system and directly determines the performance of the system, that is, the accuracy
of the system.

Substituting u into Equation (7), we have:

ẋ = (A + BK)x + w (9)

For an undamped INS, the eigenvalue of matrix A + BK is a pair of conjugate imaginary
roots, which makes the system critical but stable. While for a damped INS, the real part
of the eigenvalue of matrix A + BK can be made negative by designing K properly which
makes the system stable.

The model of the switched system of the problem is described as follows.
Consider the switched system:

ẋ(t) = Aσ (t)(t)x(t) + Bσ (t)(t)u(t) + Dw, x(t0) = x0 (10)

y = Cσ (t)(t)x(t) (11)

where x(t) ∈ R
n is the system state, t0 is the initial time, x0 is the initial state, u(t) ∈ � ⊂ R

m

is the control input constrained to the convex and compact set �, y(t) ∈ R
q is the output,

w ∈ R
p is the constant disturbance and D ∈ R

n×p , σ (t) : [t0, ∞) → {1, 2, . . . , N } is a
piecewise constant function called the switching law. Thus Aσ (t)(t) ∈ R

n×n, Bσ (t)(t) ∈ R
n×m

and Cσ (t)(t) ∈ R
q×n are piecewise functions since Aσ (t)(t) : [t0, ∞) → {A1(t), A2(t), . . . , AN (t)},

Bσ (t)(t) : [t0, ∞) → {B1(t), B2(t), . . . , BN (t)} and Cσ (t)(t) : [t0, ∞) → {C1(t), C2(t), . . . ,
CN (t)}. Here, {A1(t), A2(t), . . . , AN (t)}, {Bi(t), B2(t), . . . , BN (t)} and {C1(t), C2(t), . . . , CN (t)}
are matrices describing the subsystems.

A function u(t) = Kσ (t)x(t) is called the state feedback law. Kσ (t) is a set of feedback gain
matrices {K1(t), K2(t), . . . , KN (t)} such that the switched linear system becomes a closed
loop system:

ẋ(t) = (Aσ (t)(t) + Bσ (t)(t)Kσ (t)(t))x(t) + Dw (12)

In switched system Equation (10), we make Assumption 1:

Assumption 1: Let N = 2, A1(t) + B1(t)K1(t) is a system that is unstable from state feedback
and A2(t) + B2(t)K2(t) is a system that is stable from state feedback.

If Assumption 1 is satisfied, system Equation (10) is the model of the damped and
undamped INS problem.

Since the entire system needs to be switched between the two modes, the stability of
the system Equation (10) is now analysed in order to ensure stability during the switching
process.
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3. STABILITY ANALYSIS OF AN INERTIAL NAVIGATION SWITCHED SYSTEM.
In this section, we analysed the stability of switched system Equation (10). First, we give
the definition of exponential stability. The switched system Equation (10) is said to be
exponentially stable if there exists a positive number c and a positive number λ such that
the equation:

‖x(t)‖ ≤ ce−λ(t−t0)‖x(0)‖, t ≥ t0 (13)

holds.
For ease of analysis, we first analyse the stability of the system without disturbance.
3.1. Stability analysis without disturbance. The system without disturbance can be

described as:
ẋ(t) = Aσ (t)(t)x(t) + Bσ (t)(t)u(t), x(t0) = x0 (14)

where the symbols have the same meaning as system Equation (10).
In order to analyse the stability of the system, the concept of average dwell time, pro-

posed by Hespanha (1999) is introduced. For each switching law σ (t) and each t > τ ≥ t0,
let Nσ (τ , t) denote the number of switchings of σ over the interval (τ , t). For given
N0, τa > 0, let Sa[τa, N0] denote the set of all switching signals satisfying:

Nσ (τ , t) ≤ N0 +
t − τ

τa
(15)

where the constant τa is called the average dwell time and N0 denotes the chatter bound.
Denote b1 as the number of activated unstable subsystems over [t0, t], and denote b2 as

the number of activated stable subsystems over [t0, t]. Thus:

b1 + b2 = Nσ (t0, t) (16)

For any switching signal σ (t), denote T+(t0, t) as the total activation time of uncontrol-
lable subsystems on [t0, t), and denote T−(t0, t) as the total activation time of controllable
subsystems on [t0, t). It can be seen that:

T+(t0, t) + T−(t0, t) = t − t0 (17)

The condition:
T−(t0, t)
T+(t0, t)

> β (18)

holds for some β > 0 and arbitrary t > t0 ≥ 0. From Equations (17) and (18), we have:

T+(t0, t) ≤ 1
1 + β

(t − t0), T−(t0, t) ≥ β

1 + β
(t − t0) (19)

In order not to lose generality, we make the following assumptions:

Assumption 2:

(1) Assume that after introducing state feedback, (A1, B1, K1), . . . , (Ap , Bp , Kp ) are unsta-
ble and (Ap+1, Bp+1, Kp+1), . . . , (AN , BN , KN ) are stable.

(2) Average dwell time is no less than τa.
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Define:

λ+ = max
1≤i<p

λp (20)

To prove the stabilisation of the closed loop system, we make use of the following lemma.

LEMMA 1 (Cheng et al., 2005b): Let A ∈ R
n×n and B ∈ R

n×m be two matrices such that
the pair (A, B) is controllable. Let τ > 0, then for δ > 0, there exists a positive number λ

and a matrix K ∈ R
m×n such that:

‖e(A+BK)t‖ ≤ δe−λ(t−τ ), t ≥ 0 (21)

Lemma 1 shows that through the state feedback, we can arbitrarily configure the poles
of the system so that they are located at the left half of the s plane. This is applicable
for (Ap+1, Bp+1, Kp+1), . . . , (AN , BN , KN ) that are stable subsystems after introducing state
feedback. However, for (A1, B1, K1), . . . (Ap , Bp , Kp ), this is not applicable. For the latter,
we need to consider it separately. From Lemma 1, Lemma 2 can be obtained:

LEMMA 2: Let A ∈ R
n×n and B ∈ R

n×m be two matrices such that the pair (A, B) is con-
trollable. If matrix K ∈ R

m×n makes matrix A + BK have non-negative eigenvalues, let
τ > 0 and there exists c > 0 and λ > 0 such that:

‖e(A+BK)t‖ ≤ ceλ(t−τ ), t ≥ 0 (22)

Proof. A is a n dimension matrix, n distinct numbers λ1, λ2, . . . , λn are chosen, where
the number of the conjugate virtual root is m. α(s, λ) = �n

i=1(s + λi) is a monic polyno-
mial of degree n in s. Since (A, B) is controllable, there exists a polynomial matrix H (λ)
corresponding with A + BK which makes the characteristic polynomial α(s, λ).

Therefore, there exists a matrix T such that matrix A + BK is diagonalisable (T−1(A +
BK)T = � = diagonal). T−1 has the same character. Let λ = max{λ1, λ2, . . . , λn}, according
to e(A+BK)t = T−1e�tT and |e�t| ≤ (

√
2)mneλt, we have:

|e�t| ≤ ρeλt, t ≥ 0 (23)

where ρ = (
√

2)mn|T−1||T|.

Remark: Lemma 1 uses state feedback to attenuate the controllable at the rate of e−λt and
Equation (21) holds. Lemma 2 estimates the condition that the controllable system still has
non-negative eigenvalues by state feedback.

THEOREM 1: Let Assumptions 1 and 2 hold for the closed loop system Equation (12), and
there exists a set of feedback gain matrices {K1(t), K2(t), . . . , KN (t)} which makes the system
Equation (12) exponentially stable under state feedback and the switching law.
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Proof. Set:

L = max{c, δ} (24)

For any τ ∗
a > 0 and β > 0, choose λ sufficiently large such that:

c1 =
λβ − λ+

1 + β
− ln L

τ ∗
a

> 0 (25)

For t ≥ t0, assume that tk ≤ t < tk+1 and σ (t) = ik. If ik ∈ {p + 1, p + 2, . . . , N }, we have:

‖x(t)‖ ≤ δe−λ(t−tk)‖x(tk)‖
≤ Le−λ(t−tk)‖x(tk)‖

(26)

If ik ∈ {1, 2, . . . , p}, we have:

‖x(t)‖ ≤ ceλ(t−tk)‖x(tk)‖
≤ Leλ(t−tk)‖x(tk)‖

(27)

Similarly, there exist a series of feedback matrices {Kij −1} for j ∈ {1, 2, . . . k} such that:

‖x(tj )‖ ≤
{

Le−λ(t−tk)‖x(tk)‖, σ (tj −1) ∈ {p + 1, . . . , N }
Leλ(t−tk)‖x(tk)‖, σ (tj −1) ∈ {1, 2, . . . , p} (28)

Therefore, under the feedback law u(t) = Kij x(t)for j ∈ {1, 2, . . . k}, from Equations (26)–
(28) we obtain Equation (29) by induction:

‖x(t)‖ ≤ Lj2 e−λT−(t0,t)Lj1 eλ+T+(t0,t)‖x0‖
≤ Lj1+j2 e−λT−(t0,t)+λ+T+(t0,t)‖x0‖
= eNσ (t0,t) ln L+λ+T+(t0,t)−λT−(t0,t)‖x0‖

(29)

Noting that:

Nσ (t0, t) ≤ t − t0
τ ∗

a
(30)

From Equations (18), (20), (28) and (29), we get:

‖x(t)‖ ≤ e
ln L
τ∗
a

(t−t0)+ λ+
1+β

(t−t0)− λβ

1+β
(t−t0)‖x0‖

= e−( λβ−λ+
1+β

− ln L
τ∗
a

)(t−t0)‖x0‖
= e−c1(t−t0)‖x0‖

(31)

where c1 > 0 is defined by Equation (25).

Remark: System Equation (10), can be stabilised by the average dwell time method, which
provides theoretical principles for further study of system switching.
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3.2. Stability analysis with disturbance. In this section, we consider the stability of
the system with disturbance.

The plant is described as:

ẋ(t) = Aσ (t)(t)x(t) + Bσ (t)(t)u(t) + Dw, x(t0) = x0 (32)

where the symbols have the same meaning as in system Equation (10).
In this section, we make the following assumption:

Assumption 3: There exists μ such that:

‖Dw‖ ≤ μ‖x‖ (33)

where μ ≥ 0.

The stability of a system with disturbance is calculated by solving the differential
equation directly.

For an arbitrary t > 0, let t0 < t1 < · · · < ti ≤ t < ti+1, where tj (j = 1, 2, . . . , i) is the
switching time. Assuming that in [tj −1, tj ), the pj th subsystem is active. Solving the
differential Equation (32), we have:

x(t1) = e(A1+B1K1)(t1−t0)x(t0) +
∫ t1

t0
e(A1+B1K1)(t1−s)f1(x(s))ds

x(t2) = e(A2+B2K2)(t2−t1)x(t1) +
∫ t2

t1
e(A2+B2K2)(t2−s)f2(x(s))ds

· · ·

x(t) = e(Ai+1+Bi+1Ki+1)(t−ti)x(ti) +
∫ t

ti
e(Ai+1+Bi+1Ki+1)(t−s)fi+1(x(s))ds

(34)

According to (34), we have:

x(t) = e(Ai+1+Bi+1Ki+1)(t−ti) · · · e(A2+B2K2)(t2−t1)x(t1)e(A1+B1K1)(t1−t0)x(t0)x(t0)

+
∫ t1

t0
e(Ai+1+Bi+1Ki+1)(t−ti) · · · e(A2+B2K2)(t2−t1)e(A1+B1K1)(t1−s)f1(x(s))ds

+
∫ t2

t1
e(Ai+1+Bi+1Ki+1)(t−ti) · · · e(A2+B2K2)(t2−s)f2(x(s))ds

+ · · ·

+
∫ ti

ti−1

e(Ai+1+Bi+1Ki+1)(t−ti)e(Ai+BiKi)(ti−s)fi(x(s))ds

+
∫ t

ti
e(Ai+1+Bi+1Ki+1)(ti−s)fi+1(x(s))ds

(35)

The first item on the right side of Equation (35), e(Ai+1+Bi+1Ki+1)(t−ti) · · · e(A2+B2K2)(t2−t1)

e(A1+B1K1)(t1−t0)x(t0) corresponds to the non-disturbed switching system in [t0, t), while
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the item e(Ai+1+Bi+1Ki+1)(t−ti) · · · e(Aj +Bj Kj )(t−s) corresponds to the switching system in [s, t).
Equation (36) can be obtained:

‖e(Ai+1+Bi+1Ki+1)(t−ti) · · · e(A2+B2K2)(t2−t1)e(A1+B1K1)(t1−t0)x(t0)x(t0)‖
≤ e−c1(t−t0)‖e(Ai+1+Bi+1Ki+1)(t−ti) · · · e(Aj +Bj Kj )(t−s)‖
≤ e−c1(t−s)

(36)

where c1 is defined as in Equation (25). According to Equations (33) and (36), we have:

‖x(t)‖ ≤ e−c1(t−t0)‖x0‖ +
∫ t

t0
e−c1(t−s)(μ‖x‖)ds (37)

Therefore:

‖x(t)‖ec1t ≤ ec1t0‖x0‖ +
∫ t

t0
μe−c1s‖x‖ds (38)

In order to prove the stability, we need the following lemma.

LEMMA 3 (Dragomir, 2003): Let y(t) and h(t) be real continuous function defined on [a, b]
with b > a > 0, h(t) ≥ 0 for t ∈ [a, b], c ≥ 0 is a constant. Then:

y(t) ≤ c +
∫ t

a
h(s)y(s)ds, t ∈ [a, b] (39)

implies that:

y(t) ≤ ce
∫ t

a h(s)ds, t ∈ [a, b] (40)

THEOREM 2: Let Assumptions 1–3 hold, if there exists a positive number μ such that c1 >

μ, where:

c1 =
λβ − λ+

1 + β
− ln L

τ ∗
a

> 0

then the system Equation (32) is stable.

Proof. According to Equation (38) and Lemma 3, the following can be obtained:

‖x(t)‖ec1t ≤ ec1t0‖x0‖ +
∫ t

t0
μe−c1s‖x‖ds

≤ ec1t0 e
∫ t

t0
μds‖x0‖

= ec1t0 eμ(t−t0)‖x0‖

(41)

Multiply both sides of the equation with e−c1t:

‖x(t)‖ ≤ e−c1tec1t0 eμ(t−t0)‖x0‖
= e−(c1−μ)(t−t0)‖x0‖

(42)

Thus, when c1 − μ > 0, that is c1 > μ, the system is exponentially stable.
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Figure 5. Error block diagram of north loop of switching controller with switching compensation controller.

4. SWITCHING COMPENSATION CONTROL OF LONG-TERM INERTIAL NAV-
IGATION. Under the condition of system stability, the overshooting error caused by
switching is only determined by the calculation of the speed at the switching moment (Feng,
2016):

φN (s) =
Hx(s) − 1

rs2 + gHx(s)
vc

E1 (43)

where φN (s) is the north misalignment angle, Hx(s) is the horizontal damping network and
vc

E1 is the calculated eastward speed.
When switching happens, in order to reduce the overshoot caused by switching, the

switching compensation controller is added at different speeds to reduce overshoot at the
corresponding speed by switched control. The switching compensation controller consists
of three parts: dead-zone, differential part and proportional part. The dead zone part con-
trols the start moment. The differential part and the proportional part control the overshoot
magnitude. After adding a switching compensation controller, the system diagram is shown
in Figure 5.

In Figure 5, k du
dt is the differential part and proportional part, the second part is the

dead-zone.

Remark: The switching compensation controller is available only when switching happens.
When the system operates steadily, the controller makes no difference to the system.

5. EXPERIMENT.
5.1. Verification of switching stability. Consider the actual damped and undamped

INS, where:

A1 =
[

0 −9.8
0 0

]
, B1 =

[
0
1
R

]

A2 =
[

0 −9.8
0 0

]
, B2 =

[
0
1
R

]

D =
[

1 0
0 1

]
, w =

[
10−5

0.01

]
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Table 1. Sensor Parameters.

Gyro Drift(◦/h) Accelerometer Bias(μg)

Axes Constant Random Constant Random

x-axis 0·1 0·01 500 100
y-axis 0·1 0·01 500 100
z-axis 0·1 0·01 500 100

Figure 6. North misalignment angle at different speeds.

According to the practical model of damping and undamped system, the switching
controller K1 =

[−1 0
]

, K2 =
[−52.17 114806.47

]
can be obtained. Under the state

feedback u(t) = Kσ x(t), the closed loop system is obtained. Then:

‖Dw‖∞ = 0.01

In an INS, states of the system are bounded, then:

‖x‖ ≤ M

where M is the supremum of the system. If ‖x‖ ≤ 1, let ‖x‖ = 1 in case ‖x‖ is too small
which will influence the choice of other parameters.

Choosing μ = max{ 2×0.01
‖x‖ , 1}, then Assumption 2 holds.
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Figure 7. Comparison of north misalignment angles at different speeds.

Let c = δ = 30, then L = 30. According to A1, A2, λ+ = 0 can be obtained. Let τ ∗
a = 2,

β = 1 and λ = 6, then:

c1 =
λβ − λ+

1 + β
− ln L

τ ∗
a

=
6 − 0
1 + 1

− ln 30
2

= 1.30 > μ = 1

By Theorem 2, the switched system is exponentially stable.
5.2. Switched control simulation experiment. The simulation time was 10 hours.

The carrier sailed at a constant velocity of [5m/s 0 0]T, [10m/s 0 0]T and
[15m/s 0 0]Trespectively. The initial attitude was [0 0 0]T. The initial position was
[30◦ 120◦ 0]T. Sensor parameters are shown in Table 1. The initial north misalignment
angle was 1 ’. At 2 h, the inertial navigation system enters the damping mode.

The experimental results are shown in Figure 6.
At time 2 h, the east output speed of the inertial navigation system was 21·68 m/s,

26·68 m/s and 31·68 m/s, respectively. The results show that the overshoot of the switch-
ing is proportional to the solution of the speed at the switching moment. After adding the
switching compensation controller, the results for the north misalignment angle are shown
in Figure 7.

As can be seen from Figure 7, the maximum overshoots of the north misalignment
angles at 5 m/s, 10 m/s and 15 m/s without compensation were 3·49’, 4·53’ and 5·57’,
respectively. The maximum overshoot of the north misalignment angle with the switch-
ing compensation controller was 2·69’, 3·43’ and 4·16’. The accuracy was improved by
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22%, 24% and 25%. It can be seen that the overshoot has obviously decreased after using
the compensation controller. The greater the speed, the more obvious the effect.

6. CONCLUSION. A new switched control method for the damped and undamped
switching problem has been proposed in this paper. A model of the switched control prob-
lem of inertial navigation system has been established. The average dwell time method was
used to prove the exponential stability of the system. Sufficient conditions of exponential
stability are given with constant disturbance and without disturbance. When the system
is stable, the switching compensation controller is designed to reduce the overshoot. Sig-
nificant results have been achieved. By properly adjusting the switching controller, the
overshoot caused by the switching could be reduced further. This provides a theoretical
basis for studying the optimal control problem under the condition of system stability and
provides theoretical guidance for damped and undamped state optimal control of an inertial
navigation system.
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