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The stability of a thin falling film with both surface elasticity and surface viscosities
induced by insoluble surfactants on its free surface is studied. Based on the full
Navier–Stokes equations and surfactant concentration equation with corresponding
boundary conditions, a weighted residual model (WRM) is derived to investigate the
long-wave instability of the thin film incorporating the influence of surfactants. The
Chebyshev spectral collocation method is employed to solve the linear stability of
the film. The results show good agreement between the WRM and full equations.
It is found that surface elasticity decreases the temporal growth rate and increases
the critical Reynolds number, showing a stabilizing impact on the film. And the
surface viscosity effect slightly reduces the growth rate and cutoff wavenumber while
it does not alter the critical Reynolds number. Nonlinear travelling wave solutions are
obtained using the WRM equations. As the surface elasticity is enhanced, the speed of
travelling waves gradually approaches the corresponding linear neutral value, implying
that the dispersion effect is damped; and the amplitudes of both fast waves and slow
waves are suppressed by surface elasticity. Moreover, the bifurcation diagram of
travelling waves is influenced by the surface viscosity, which basically promotes the
speed of travelling waves with relatively large wavelengths. As the surface viscosity
effect becomes stronger, for fast waves the amplitude of the humps slightly increases
while that of the troughs becomes smaller for slow waves.

Key words: thin films

1. Introduction
Falling liquid films have received much attention from researchers in recent

decades (Chang 1994; Oron, Davis & Bankoff 1997; Weinstein & Ruschak 2004;
Craster & Matar 2009; Ruyer-Quil et al. 2014). As examples of open-flow systems,
they are encountered in many industrial fields, like coating processes (Alekseenko,
Nakoryakov & Pokusaev 1994), heat exchangers (Salvagnini & Taqueda 2004),
cooling microelectronic devices (Squires & Quake 2005), chemical reactors (Bender,
Stephan & Gambaryan-Roisman 2017), food processing and thermal protection design
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of combustion chambers in rocket engines (Shine & Nidhi 2018). Investigation of
this subject was pioneered by the experimental work of Kapitza & Kapitza (1949).
Theoretical studies were later carried out by Benjamin (1957) and Yih (1963),
where the threshold value of Reynolds number when the film is unstable with
long-wave perturbations was shown to depend on the inclination angle. Alekseenko,
Nakoryakov & Pokusaev (1985) experimentally measured the growth rate of the
waves and compared that with theoretical results. Smith (1990) carefully scrutinized
the mechanism of this long-wave instability and concluded that the inertial stress
associated with the Reynolds number is the key factor that destabilizes the film.
Later, Liu, Paul & Gollub (1993) conducted decisive experiments and confirmed
the theoretical predictions of the critical Reynolds number of Benjamin (1957) and
Yih (1963). Over the years, experimental efforts have been made continually to
validate and complement the theoretical studies on falling films (Liu, Schneider &
Gollub 1995; Alekseenko et al. 2005; Kharlamov et al. 2015; Adebayo et al. 2017;
Charogiannis et al. 2017; Charogiannis & Markides 2019).

Since the full treatment of the Navier–Stokes equations together with boundary
conditions on the free surface and solid bottom remains a cumbersome task, many
efforts have been made to seek a simplified model based on the long-wave nature
of the film instability. Benney (1966) first devised a single evolution equation
of the film thickness h using an expansion method in a small film parameter.
Following this procedure, a number of researches have been performed that showed
its effectiveness in the prediction of the instability threshold (Lin 1974; Joo, Davis
& Bankoff 1991; Sadiq & Usha 2008; Samanta 2008; Ogden, Pascal & D’Alessio
2011; Dávalos-Orozco 2012). However, several authors have pointed out that the
Benney-type equation blows up and yields unphysical solutions at moderate Reynolds
numbers (Pumir, Manneville & Pomeau 1983; Scheid et al. 2005). On the other
hand, an integral-boundary-layer (IBL) model was first developed by Shkadov (1967)
which couples the film thickness h and local flow rate q. Then, a weighted residual
technique was proposed which is able to remove the inconsistency between the
original IBL model and the full Navier–Stokes equations in determining the instability
threshold (Ruyer-Quil & Manneville 2000, 2002). After that, this method has been
adopted to model the film flow in many other situations (Trevelyan et al. 2007;
Samanta, Ruyer-Quil & Goyeau 2011; Amaouche, Djema & Ait Abderrahmane 2012;
Ruyer-Quil, Chakraborty & Dandapat 2012; Ding & Wong 2015; D’Alessio & Pascal
2016; Ellaban, Pascal & D’Alessio 2017; Fu, Hu & Yang 2018).

Surfactants could be used to induce a variation in surface tension (known as
Marangoni effect or surface elasticity) and surface viscosity, which can thus adjust the
surface dynamics (Scriven & Sternling 1960). The influence of insoluble surfactants on
a falling film was first studied theoretically by Benjamin (1964) and Whitaker (1964).
They both found an increase of the critical Reynolds number when surface elasticity
is included, concluding that there was a stabilizing effect of surfactants, which was
qualitatively in accordance with several earlier experimental observations (Emmert
1954; Stirba & Hurt 1955; Tailby & Portalski 1961). Blyth & Pozrikidis (2004)
identified a new Marangoni mode when surfactants are present and concluded that
there was a stabilizing effect of surfactants overall. Using a perturbation expansion
method, Oron & Edwards (1993) derived a nonlinear evolution equation for the
free-surface displacement of the film in the presence of interfacial viscous stress.
Pereira & Kalliadasis (2008) considered the problem in both linear and nonlinear
regimes. They solved the Orr–Sommerfeld eigenvalue problem of the full equations
and obtained three different modes in linear instability, where they stated that the
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Falling film with insoluble surfactants 889 A16-3

Marangoni stress caused by surfactants reduces the domain of film instability. On the
basis of the weighted residual model (WRM), they also found that the amplitude and
velocity of travelling waves on the film are decreased by the Marangoni effect. Ji &
Setterwall (1994) studied the case where surfactants are soluble and volatile, which
they claimed is necessary to destabilize the Marangoni mode.

Karapetsas & Bontozoglou (2014) focused on the influence of arbitrary solubility
of the surfactants and found that the interfacial concentration gradient decreases with
increasing surfactant solubility; higher-order calculations showed that the speed of
adsorption/desorption at the interface plays a role at finite wavelength. Meanwhile,
experiments were also carried out where an attenuation influence of soluble surfactants
on inlet disturbances were observed (Georgantaki, Vlachogiannis & Bontozoglou 2012,
2016). In some recent relative research, Bhat & Samanta (2018) considered a falling
film down a slippery plane in the presence of insoluble surfactants and showed
that insoluble surfactants stabilize the shear mode at high Reynolds number. Also,
they found that when the Péclet number exceeds its critical value, the surfactant
mode becomes unstable, while the inertia force does not affect the surfactant mode
significantly (Bhat & Samanta 2019). Pascal, D’Alessio & Ellaban (2019) developed
a model accounting for the transport of surfactants between the surface and the bulk
of the film layer where the variation of the fluid density was also incorporated. Their
results depict a non-monotonic relation between the critical Reynolds number and the
variation of density.

In this paper we study the effect of insoluble surfactants on a falling film when both
surface elasticity and surface viscosities are taken into account, which has not been
clearly clarified in the literature up to now. Next, § 2 gives the governing equations
of the film flow and derives a WRM which accounts for the effects of both surface
elasticity and surface viscosities. In § 3, we examine the linear stability characteristics
and compare the results of full equations and the WRM. Travelling wave solutions
are discussed in § 4, and finally we summarize the main conclusions in § 5.

2. Problem formulation
2.1. Governing equations

We consider a two-dimensional incompressible liquid film flowing down an inclined
plane. As depicted in figure 1, the interface between the film and the ambient gas is
covered with insoluble surfactants. A Cartesian coordinate system (x, y) is established
so that the x axis is parallel to the solid bottom and points in the downstream
direction while y is normal to the bottom and points outwards. The density, viscosity
and surface tension of the fluid are ρ, µ and σ , respectively, g is the gravitational
acceleration and θ denotes the inclination angle.

In the film layer, we have the continuity and Navier–Stokes equations:

∂U
∂x
+
∂V
∂y
= 0, (2.1)

ρ

(
∂U
∂t
+U

∂U
∂x
+ V

∂U
∂y

)
=−

∂P
∂x
+µ

(
∂2U
∂x2
+
∂2U
∂y2

)
+ ρg sin θ, (2.2)

ρ

(
∂V
∂t
+U

∂V
∂x
+ V

∂V
∂y

)
=−

∂P
∂y
+µ

(
∂2V
∂x2
+
∂2V
∂y2

)
− ρg cos θ, (2.3)

where U and V are velocity components in the x and y directions, respectively,
and P is the pressure. Introducing F1 = 1 + (∂H/∂x)2 and F2 = 1 − (∂H/∂x)2, the
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FIGURE 1. Schematic of a thin falling film covered with insoluble surfactants.

concentration Γ of the insoluble surfactants obeys the following transport equation at
the interface y=H(x, t) (Pereira & Kalliadasis 2008):

∂Γ

∂t
+U

∂Γ

∂x
+
Γ

F1

[(
∂U
∂x
+
∂H
∂x
∂V
∂x

)
+
∂H
∂x

(
∂U
∂y
+
∂H
∂x
∂V
∂y

)]
=

Ds
√

F1

∂

∂x

(
1
√

F1

∂Γ

∂x

)
.

(2.4)
Here the first two terms on the left-hand side of (2.4) denote the material derivative of
Γ ; while the third term represents the change of the concentration resulting from the
stretching of the surface. The term on the right-hand side accounts for the diffusion of
surfactants on the surface, with Ds being the surface diffusivity. At the solid bottom
y= 0, the non-slip boundary condition requires

U = V = 0. (2.5)

The kinematic condition at the free surface y=H(x, t) is

V =
∂H
∂t
+U

∂H
∂x
. (2.6)

In the present formulation, we consider the case where the surfactant induces both
surface elasticity and viscosities on the free surface. Namely, it not only reduces the
surface tension but also induces extra viscous stresses at the interface, as described by
Martínez-Calvo & Sevilla (2018), where the free-surface stresses are modelled by two
surface viscosities: the surface shear viscosity µs(Γ ) and dilatational viscosity κs(Γ ).
Following their procedure, we introduce Us = Un n+ Ut t to denote the film velocity
at the surface with

n=
1
√

F1

(
−
∂H
∂x
, 1
)
,

t=
1
√

F1

(
1,
∂H
∂x

)
,

and


Un =

1
√

F1

(
V −

∂H
∂x

U
)
,

Ut =
1
√

F1

(
U +

∂H
∂x

V
) (2.7a,b)

being the unit normal and tangential vectors and the corresponding velocity
components at the surface. If we let T and T g be the stress tensors of the fluid
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Falling film with insoluble surfactants 889 A16-5

and the surrounding gas, respectively, the surface equation of motion is given by
(Martínez-Calvo & Sevilla 2018)

(T g − T ) · n+∇sσ − n · (∇s · n)σ +∇s[(κs −µs)(∇s ·Us)]

−n · (∇s · n)(κs −µs)(∇s ·Us)+∇s · {µs[(∇sUs) · I s + I s · (∇sUs)
T
]} = 0, (2.8)

where I s = I − nn is the surface projection operator and ∇s = I s · ∇ is the surface
gradient operator, with I being the identity tensor. Note that the pressure of the
surrounding gas is assumed to be constant and thus T g =−PgI . Evaluating the inner
product of (2.8) with n and t, we obtain two dynamical boundary conditions at
y=H(x, t):

(P− Pg)−
2µ
F1

[
∂V
∂y
+

(
∂H
∂x

)2
∂U
∂x
−
∂H
∂x

(
∂U
∂y
+
∂V
∂x

)]

=−
∂2H
∂x2

[
σ

F1
3/2 +

1
F1

2 (µs + κs)

(
∂Ut

∂x
−
∂2H
∂x2

Un

F1

)]
(2.9)

and

µ
√

F1

[(
∂U
∂y
+
∂V
∂x

)
F2 + 2

∂H
∂x

(
∂V
∂y
−
∂U
∂x

)]
=
∂σ

∂x
+
∂

∂x

[
(µs + κs)

(
1
√

F1

∂Ut

∂x
−

Un

F1
3/2

∂2H
∂x2

)]
. (2.10)

Here, as noted by Martínez-Calvo & Sevilla (2018), the velocity components U and
V in Ut and Un are interface quantities, which are previously evaluated at the free
surface. Considering this fact, for example, the derivative of U with respect to x at
the interface is

∂U(x, y=H(x, t), t)
∂x

=
∂U
∂x

∣∣∣∣
y=H(x,t)

+
∂H
∂x

∂U
∂y

∣∣∣∣
y=H(x,t)

. (2.11)

It is obvious that the two surface viscosities are indistinguishable from each other and
act like a single parameter; thus we introduce β =µs+ κs to denote the overall effect
of surface viscosities for simplicity. Moreover, according to Ponce-Torres et al. (2017),
the surface viscosities depend on the concentration and can be expressed as β(Γ )=
β∗Γ , with β∗ being a surfactant constant. Besides, the surface elasticity represents the
surface tension gradient caused by surfactants with the relation σ(Γ )=σ0−γ (Γ −Γ0)
(γ being positive here).

We now apply the following scaling procedure to the above equations:

x= l x, y=HNy, U =U0u, V = δU0v, H =HNh,

t=
l

U0
t, Γ = Γ0φ, P− Pg = ρU2

0p.

 (2.12)

Here HN is the Nusselt thickness given by

HN =

(
3µQ
ρg sin θ

)1/3

, (2.13)
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889 A16-6 T. Hu, Q. Fu and L. Yang

where Q is the flow rate, and U0 = Q/HN is the average velocity of the basic
flow. Note that in (2.12) a thin-film parameter δ = HN/l is formulated and δ � 1
is considered a small number. After implementing the non-dimensionalization and
dropping the bar on the dimensionless variables for convenience, the governing
equations (2.1)–(2.10) become

∂u
∂x
+
∂v

∂y
= 0, (2.14)

δRe
(
∂u
∂t
+ u

∂u
∂x
+ v

∂u
∂y

)
=−δRe

∂p
∂x
+ 3+ δ2 ∂

2u
∂x2
+
∂2u
∂y2

, (2.15)

δ2Re
(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)
=−Re

∂p
∂y
− 3 cot θ + δ3 ∂

2v

∂x2
+ δ

∂2v

∂y2
, (2.16)

∂φ

∂t
+ u

∂φ

∂x
+
φ

f1

[(
∂u
∂x
+ δ2 ∂h

∂x
∂v

∂x

)
+
∂h
∂x

(
∂u
∂y
+ δ2 ∂h

∂x
∂v

∂y

)]
=

δ

Pes
√

f1

∂

∂x

(
1
√

f1

∂φ

∂x

)
, (2.17)

where Re=ρU0HN/µ is the Reynolds number and Pes=U0HN/Ds is the surface Péclet
number.

The dimensionless non-slip condition at y= 0 is

u= v = 0, (2.18)

while the kinematic condition at y= h(x, t) can be written as

v =
∂h
∂t
+ u

∂h
∂x
. (2.19)

The dynamic boundary conditions (2.9)–(2.10) are transformed to

p−
2δ

Ref1

[
∂v

∂y
+ δ2

(
∂h
∂x

)2
∂u
∂x
−
∂h
∂x

(
∂u
∂y
+ δ2 ∂v

∂x

)]

=−
δ

Re
∂2h
∂x2

[
3δ[We−Ma(φ − 1)]

f1
3/2 +

δ2Bo
f1

2 φ

(
∂ut

∂x
− δ

∂2h
∂x2

un

f1

)]
(2.20)

and
1
√

f1

[(
∂u
∂y
+
∂v

∂x

)
f2 + 2δ2 ∂h

∂x

(
∂v

∂y
−
∂u
∂x

)]
=−3δMa

∂φ

∂x
+ δ2Bo

∂

∂x

[
φ

(
1
√

f1

∂ut

∂x
−
δun

f1
3/2

∂2h
∂x2

)]
, (2.21)

where We = σ0/ρgH2
N sin θ is the Weber number, Ma = γΓ0/ρgH2

N sin θ denotes the
Marangoni number and Bo=β∗Γ0/µHN is the Boussinesq number. The other variables
are given by

un =
δ
√

f1

(
v −

∂h
∂x

u
)

and ut =
1
√

f1

(
u+

∂h
∂x
v

)
, (2.22a,b)

where

f1 = 1+ δ2

(
∂h
∂x

)2

and f2 = 1− δ2

(
∂h
∂x

)2

. (2.23a,b)
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2.2. Weighted residual model
Now we employ the WRM to derive a set of reduced equations that incorporates
the effect of insoluble surfactants. As done in previous works (Ogden et al. 2011;
D’Alessio & Pascal 2016; Ellaban et al. 2017; Fu et al. 2018), we discard terms
of orders higher than O(δ2) in (2.14)–(2.21) and begin by assuming a profile of the
velocity

u=
3q
2h3

b1 +
δMa
4h

b2
∂φ

∂x
, (2.24)

where b1 = y(2h− y), b2 = y(2h− 3y) and q=
∫ h

0 u dy is the flow rate. Note that the
prescribed velocity u satisfies the non-slip condition (2.18) and the tangential stress
condition (2.21) to the first order in δ:

∂u
∂y

∣∣∣∣
y=h

=−3δMa
∂φ

∂x
. (2.25)

Given (2.24), we can readily obtain the velocity v through (2.14) and (2.18). First,
equation (2.16) is integrated from y = h to y, combining with the condition (2.20),
which yields

p=
3 cot θ

Re
(h− y)−

δ

Re
∂u
∂x

∣∣∣∣
h

−
δ

Re
∂u
∂x
−

3δ2

Re
[We−Ma(φ − 1)]

∂2h
∂x2

. (2.26)

Equation (2.26) can be used to eliminate the pressure in (2.15) with terms of O(δ2)

being dropped since p is multiplied with δ in (2.15); while We is assumed to be of
O(1/δ) or larger to retain the effect of surface tension. Integrating (2.14) over the film
thickness and applying the conditions (2.18) and (2.19), one arrives at

∂h
∂t
+
∂q
∂x
= 0. (2.27)

Here, in accordance with the idea of the Galerkin method, we choose b1 as the
weighted function and multiply it with (2.15), then integrate from y= 0 to y= h and
utilize (2.21). Moreover, substituting u and v into (2.17) and collecting terms up to
O(δ2), we finally obtain the following equations for h, q and φ:

∂q
∂t
+
∂

∂x

(
9q2

7h
+

5 cot θ
4Re

h2
+

15Ma
4Re

φ

)
=

q
7h
∂q
∂x
+

5
2δRe

(
h−

q
h2

)
+

5δ2We
2Re

h
∂3h
∂x3

−
15δBo
8Reh2

[
φ
∂

∂x

(
q
∂h
∂x

)
− h

∂

∂x

(
φ
∂q
∂x

)
+
∂h
∂x

∂

∂x
(qφ)−

2qφ
h

(
∂h
∂x

)2
]

+
δMa
16

[
h2 ∂

2φ

∂x∂t
+

45
14

hq
∂2φ

∂x2
+

19h
7
∂q
∂x
∂φ

∂x
+

15q
7
∂h
∂x
∂φ

∂x

]
+
δ

Re

[
9
2
∂2q
∂x2
−

9
2h
∂q
∂x
∂h
∂x
+

4q
h2

(
∂h
∂x

)2

−
6q
h
∂2h
∂x2

]
, (2.28)
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889 A16-8 T. Hu, Q. Fu and L. Yang

∂φ

∂t
+
∂

∂x

(
3qφ
2h

)
=

δ

Pes

∂2φ

∂x2
+

3δMah
4

[(
∂φ

∂x

)2

+ φ
∂2φ

∂x2

]

+
3δMaφ

4
∂h
∂x
∂φ

∂x
− δ2

(
3q
2h
∂2h
∂x2
−
∂2q
∂x2

)
∂h
∂x
φ. (2.29)

Equations (2.27)–(2.29) constitute a second-order WRM for a falling film with both
surface elasticity and surface viscosities induced by the insoluble surfactants on the
free surface. In deriving (2.27)–(2.29), it is assumed that the parameters Re, Ma, Bo,
Pes and cot θ are of O(1). By setting Bo = 0, dropping the second-order terms and
using the same scaling, equations (2.27)–(2.29) can recover the first-order weighted
IBL equations of Pereira & Kalliadasis (2008) where only the surface elasticity is
considered.

3. Linear stability analysis
To study the linear stability of the film, we impose small disturbances on the basic

flow, which can be expressed in the form of a normal mode:

(h, q, φ)= (hs, qs, φs)+ (ĥ, q̂, φ̂) exp(ikx+ωt)+ c.c., (3.1)

where c.c. represents the complex conjugate of the second term. Substituting (3.1) into
(2.27)–(2.29) and linearizing the equations, a dispersion relation is obtained as follows:∣∣∣∣∣∣

D11 D12 D13
D21 D22 D23
D31 D32 D33

∣∣∣∣∣∣= 0, (3.2)

where D11–D33 are given by

D11 =ω, D12 = ik, D13 = 0,

D21 =
−420+ 140iWeδ3k3

− 21(5Bo+ 16)δ2k2
− 4i(18Re− 35 cot θ)δk

56δRe
,

D22 =
140+ 21(5Bo+ 12)δ2k2

+ 8(17ik+ 7ω)δRe
56δRe

,

D23 =
Mak
16Re

[
60i−

(
iω−

45
14

k
)
δRe
]
, D31 =−

3
2

ik, D32 =
3
2

ik,

D33 =ω+
3
2

ik+
3Maδk2

4
+
δk2

Pes
.


(3.3)

After assuming ω = ωr + iωi and setting the temporal growth rate ωr = 0 in (3.2),
we can obtain the neutral stability cases, where one can finally determine the critical
Reynolds number as

Rec =
5
6 cot θ + 5

2 Ma. (3.4)

Here we note that, as long as the same scaling is adopted, equation (3.4) agrees with
the result of Pereira & Kalliadasis (2008) where only the effect of surface elasticity
is considered, which means that surface elasticity increases the critical Reynolds
number while the existence of surface viscosity actually does not affect the instability
threshold.
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Meanwhile, we also solve the linear stability based on full equations (2.14)–(2.21).
After linearization and assuming the disturbances of the variables in (2.14)–(2.21) to be

(u′, v′, p′, φ′, h′)= (û, v̂, p̂, φ̂, ĥ) exp(ikx+ωt)+ c.c., (3.5)

the system is actually reduced to an ordinary differential equation eigenvalue problem,
with ω being the eigenvalue. A Chebyshev spectral collocation method is employed to
solve this problem, which is a well-known technique to study hydrodynamic stability
(Khorrami, Malik & Ash 1989). Applying the Chebyshev spectral collocation method
and upon discretization, the problem is then converted to a generalized eigenvalue
problem

A s=ωB s, (3.6)

where A and B are square matrices, with s being a column vector that contains the
values of û, v̂, p̂, φ̂ and ĥ at the collocation points. The computer program is based
on a universal software package which has been developed by the authors to analyse
hydrodynamic stability problems (Ye, Yang & Fu 2016).

Note that in experiments it is generally convenient to control the film thickness
or the Reynolds number through the flow rate. Hence we introduce a set of flow
parameters that only depend on the physical properties:

Ka=
σ0

ρg1/3υ4/3
, M =

γΓ0

ρg1/3υ4/3
, Sc=

υ

Ds
, Bo0 =

β∗Γ0

ρg−1/3υ5/3
, (3.7)

where Ka is the Kapitza number, M is a modified Marangoni number representing the
magnitude of the surface elasticity, Sc is the Schmidt number and Bo0 corresponds to
the modified Boussinesq number characterizing the effect of surface viscosities, with
υ = µ/ρ denoting the kinematic viscosity of the fluid. Given χ = gH3

N/υ
2 as the

modified Reynolds number, equations (3.7) are related to previous parameters by

Re=
χ

3
sin θ, We=

Ka
χ 2/3 sin θ

, Ma=
M

χ 2/3 sin θ
, Pes =

χ

3
Sc sin θ, Bo=

Bo0

χ 1/3
.

(3.8a−e)

Figure 2 depicts the three least stable modes in the linear regime. Following
the notation of Pereira & Kalliadasis (2008), they belong to the Kapitza mode
due to classical long-wave instability, the concentration mode due to the diffusion
and advection of surface species, and the shear mode due to the velocity profile,
respectively. It is obvious that the growth rates of the concentration mode and shear
mode are negative and are thus stable modes, while the Kapitza mode is unstable
for small wavenumber; note that the shear mode could be unstable at some finite
wavenumber when χ is very large (Pereira & Kalliadasis 2008). Moreover, the surface
viscosities show a stabilizing effect on the Kapitza mode and shear mode while they
slightly increase the growth rate of the concentration mode which still remains stable.
Here we shall mainly focus on the Kapitza mode in the following parts since it is
the only unstable mode in the long-wave region.

Figure 3 displays the influence of the surface elasticity on the film instability.
Clearly, as the modified Marangoni number increases, both the growth rate and the
cutoff wavenumber decrease remarkably while the wave speed increases at the same
time. Moreover, as shown in figure 3(b), one can see that the instability threshold
becomes larger and the unstable region diminishes when M increases, which shows

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

89
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2020.89


889 A16-10 T. Hu, Q. Fu and L. Yang
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0
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0 0.2 0.4 0.6

FIGURE 2. Growth rates of the three least stable modes calculated from the full equations
when χ = 15 and M = 1. The solid, dashed and dot-dashed lines correspond to the
Kapitza, concentration and shear modes, respectively. Two different values of modified
Boussinesq numbers are presented: Bo0 = 0 for thick lines and Bo0 = 20 for thin lines.
Other parameters are θ = π/2, Ka = 3376 and Sc = 100, which are fixed in the present
study.

ør
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FIGURE 3. Effect of surface elasticity on the linear stability when Bo0= 10: (a) temporal
growth rate and wave speed when χ = 15, and (b) neutral stability curves. The solid,
dashed and dot-dashed lines correspond to three modified Marangoni numbers 0, 3 and 6.
Thick and thin lines represent the results of full equations and WRM, respectively (the
same notation is adopted in figure 4).

a stabilizing effect of the surface elasticity on the film. In fact, a larger modified
Marangoni number leads to stronger surface elasticity, which means the surface
tension is more sensitive to the change of the surfactant concentration. Given the
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FIGURE 4. Effect of surface viscosities on the linear stability when M = 3: (a) temporal
growth rate and wave speed when χ = 15, and (b) neutral stability curves. The solid,
dashed and dot-dashed lines correspond to three modified Boussinesq numbers 0, 10
and 20.

expression in (3.1) or (3.5), the small disturbances of film thickness h and surfactant
concentration φ are in phase, which means the value of surface tension is out of
phase with the film thickness in the case M > 0 considered here. This results in a
larger value of surface tension in the troughs and a smaller value in the crests, which
tends to drive the fluid flowing from the crests to the troughs, thus dampening the
surface undulation and stabilizing the film.

The influence of surface viscosities is depicted in figure 4. It can be seen that
the temporal growth rate, cutoff wavenumber and wave speed decrease as Bo0

becomes larger, which implies that surface viscosities basically act to stabilize the
film. However, as shown in figure 4(b), though the unstable region becomes smaller
when Bo0 increases, the instability threshold remains the same, which is in accordance
with (3.4). Furthermore, unlike the surface elasticity, the effect of surface viscosities
gradually decreases as k→0 or Re→Rec, showing almost no impact in the long-wave
limit, which also supports the result that the instability threshold is not altered when
the surface viscosities come into play. From figure 4 we can see that the impact of
surface viscosities here is similar to that of the bulk viscosity, which attenuates the
linear waves and enhances the dispersion effect, especially for wavenumbers close
to the neutral value. Note that in figures 3 and 4, the results of the WRM nicely
coincide with those of the full equations.

4. Travelling wave solutions

It has been observed in experiments that small initial disturbances generally evolve
into travelling waves on the free surface, which propagate at a constant speed c and
wave shape (Alekseenko et al. 1985; Liu, Gollub & Aarts 1994). In this section, we
will make an effort to determine the travelling wave solutions based on the model
equations (2.27)–(2.29). First we apply a coordinate transformation ξ = x − ct, so
that (2.27) becomes

− ch′ + q′ = 0, (4.1)
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FIGURE 5. (a) The speed of the travelling wave and (b) the difference between the
maximum and minimum amplitudes as functions of normalized wavenumber k/kn at
different modified Marangoni numbers when Bo0 = 10 and χ = 15. Solid, dashed and
dot-dashed lines are for M = 0, M = 3 and M = 6.

where a prime represents the derivative with respect to ξ . Integrating (4.1) leads to
q= ch+ q0 with q0 being an integral constant. Substituting this into (2.28) and (2.29)
and implementing the transformation, we have

A1h′′′ + A2h′′ + A3φ
′′
+ A4h′2 + A5h′φ′ + A6h′ + A7φ

′
+ A8 = 0, (4.2)

B1φ
′′
+ B2h′′ + B3φ

′2
+ B4φ

′
+ B5φ = 0, (4.3)

where expressions for A1–A8 and B1–B5 are given in appendix A. A closed flow
condition is imposed,

1
L

∫ L

0
h dξ = 1, (4.4)

where L= 2π/k is the wavelength, and a phase condition, h(0)= φ(0)= 1, is applied.
After discretization by the Fourier spectral method, equations (4.2) and (4.3) are
converted into a nonlinear algebra system, with k being a parameter. We solve this
problem by the Newton–Kantorovich method together with the continuation method.
An initial guess of the wave speed and profiles could be obtained from the neutral
stability solutions.

Presented in figure 5 is the effect of the surface elasticity on the bifurcation diagram.
The fast-wave family γ2 emerges from the trivial solution at the cutoff wavenumber
kn through a Hopf bifurcation. The slow-wave family γ1 originates from the γ2 family
through a period-doubling bifurcation. This bifurcation diagram is not altered when
surface elasticity exists. We can see that, as the modified Marangoni number M
increases, the wave speed gradually approaches that of the linear kinematic waves;
and the gap 1hm = hmax − hmin between the maximum and minimum amplitudes is
significantly reduced. Specifically, on the γ2 branches the speed decreases remarkably
when k/kn < 0.5, while it slightly increases when k/kn > 0.6 with M. In other
words, the surface elasticity decelerates the fast-wave family, while it accelerates the
slow-wave family, thus weakening the dispersion effect. This is consistent with the
result of linear stability analysis in figure 3, where the Marangoni effect is shown to
promote the speed of linear waves and attenuate the dispersion of the system.
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FIGURE 6. Wave profiles of film thickness h and surfactant concentration φ: (a) fast γ2
family and (b) slow γ1 family. Solid, dashed and dot-dashed lines are for M = 0, M = 3
and M = 6. The wavenumber is chosen to be k= 0.02.

Figure 6 displays the corresponding profiles of fast γ2 waves and slow γ1 waves
of figure 5. The fast waves consist of one hump following a series of small capillary
waves; the slow waves are made of one trough preceding the capillary waves. The
wave shape of the surfactant concentration φ is similar to that of the film thickness h
while its amplitude is obviously larger. For fast waves, the amplitudes of both humps
and capillary ripples are dampened markedly as the surface elasticity becomes stronger.
Consequently, the height of the flat portion of travelling waves is promoted due to the
conservation of mass. A similar suppressing effect on the troughs and capillary waves
is also observed for slow waves. Physically, the surface elasticity acts like a restoring
force which resists the deformation of the free surface from the basic state.

We now explore the effect of surface elasticity on the γ2 wave, since only the one-
hump wave could be obtained during the simulation (Pumir et al. 1983). From figure 7
we can observe that, as the modified Reynolds number increases, both the wave speed
and the maximum amplitude are promoted, showing the destabilizing effect of the
inertia, which also implies that waves with large amplitude travel faster than those
with small amplitude. For a given χ , both the maximum amplitude and the wave
speed are reduced when the surface elasticity becomes stronger, again manifesting its
stabilizing impact on the film flow.

The influence of the surface viscosities on the bifurcation diagram is demonstrated
in figure 8. First we notice that the surface viscosities can modify the bifurcation
behaviour of the system. Specifically, in figure 8(c,d), when Bo0 is relatively
large, the bifurcation diagram is similar to that in figure 5; whereas the opposite
situation happens when the surface viscosity effect is very weak, as shown in
figure 8(a,b), which is also the case when surface viscosities are absent (Bo0 = 0).
Similar modification of the bifurcation diagram was also identified for the effect of
bulk viscous diffusion (Scheid, Ruyer-Quil & Manneville 2006). In both cases, for
k/kn < 0.5 (waves with typical humps or troughs), surface viscosities slightly promote
the speed c and the amplitude gap 1hm of the fast γ2 waves; as for slow γ1 waves,
increasing the value of Bo0 leads to a minor increase of the wave speed with a small
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FIGURE 7. Variation of properties of γ2 waves with modified Reynolds number χ :
(a) speed c, and (b) maximum amplitude hmax when Bo0= 10 and k= 0.02. Solid, dashed
and dot-dashed lines are for M = 0, M = 3 and M = 6.

reduction of the amplitude gap. When k/kn > 0.6, the surface viscosity effect tends
to decrease the wave speed and dampen the amplitude gap. Thus, we may say that
surface viscosities have exerted some additional dispersion effect in the system.

Similarly, we present the wave profiles for different values of Bo0 in figure 9. It
can be seen that, for fast waves, the surface viscosity effect dampens the capillary
ripples while it augments the height of the humps. On the other hand, it decreases
the amplitude of troughs and amplifies that of the capillary ripples for slow waves. In
fact, figures 6 and 9 both show that γ2 waves with steeper humps travel faster while
γ1 waves with shallower troughs propagate at a lower speed.

5. Conclusions
We investigate the effect of insoluble surfactants on the stability of a thin film

falling down an inclined plate and consider the case where surfactants induce both
elasticity and viscosities on the free surface. The tangential and normal stress
conditions are derived on the two-dimensional free surface of the film under the
current Cartesian coordinate system. Both surface elasticity and viscosities are
assumed to vary with the concentration of surfactants in a linear relation. The
weighted residual method (WRM) is adopted to obtain a reduced model to study
the film instability. In the linear analysis, it is found that the surface elasticity
remarkably decreases the temporal growth rate and increases the instability threshold,
showing a stabilizing role on the film instability; and though the surface viscosity
effect does not modify the critical Reynolds number, it decreases the growth rate
and cutoff wavenumber. The results of the WRM agree with those of the full
equations satisfactorily. Travelling wave solutions are obtained from the reduced
model. Surface elasticity reduces the speed of the fast-wave family while it increases
that of the slow-wave family, thus damping the dispersion effect. And it suppresses
the amplitude of both large-amplitude humps (troughs) and small-amplitude capillary
waves, causing an effect to resist the deformation of the free surface. On the other
hand, the surface viscosity effect can modify the bifurcation diagram. Moreover, it
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FIGURE 8. Effect of the surface viscosities on the bifurcation diagram when M = 3 and
χ = 15: (a,c) speed of the travelling waves, and (b,d) difference between maximum and
minimum amplitudes.

acts to slightly increase the amplitude of the fast-wave family, decrease that of the
slow-wave family and promote the wave speed of both families when the wavelengths
are relatively large. Overall, surface viscosities tend to damp the linear waves, modify
the bifurcation diagram and add some dispersion effect to the system, which is
somewhat similar to the role of bulk viscosity.
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Appendix A. Coefficients of the governing equations in a moving frame

A1 =−
5

2Re
δ2Weh, A2 =

3δ
2Reh2

[
ch2
+ q0

(
4h+

5
4

Boφ
)]

,

A3 =−
δMah
224
[45q0 + 31ch], A4 =

δ

2Reh3

[
ch2
− q0

(
8h+

15
2

Boφ
)]

,

A5 =−
δ

112Reh2
[ReMa(15q0h2

+ 34ch3)− 210Boq0],

A6 =
1

14Reh2
[35 cot θh3

+ 2c2Reh2
− 2Recq0h− 18Req2

0],

A7 =
15Ma
4Re

, A8 =−
5

2δReh2
(h3
− ch− q0).



(A 1)

B1 =−

(
δ

Pes
+

3δMa
4

hφ
)
, B2 =

[
3(ch+ q0)

2h
− c
]
δ2h′φ, B3 =−

3δMa
4

h,

B4 =

[
−

3δMa
4

h′φ +
ch+ 3q0

2h

]
, B5 =−

3q0h′

2h2
.


(A 2)
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