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THE EFFECTS OF SYSTEMATIC
SAMPLING AND TEMPORAL
AGGREGATION ON DISCRETE TIME
LONG MEMORY PROCESSES AND
THEIR FINITE SAMPLE PROPERTIES

SOOSUNG HWANG
University of Cambridge

This study investigates the effects of varying sampling intervals on the long mem-
ory characteristics of certain stochastic procesgéésfind that although different
sampling intervals do not affect the decay rate of discrete time long memory auto-
correlation functions in large lagthe autocorrelation functions in short lags are
affected significantlyThe level of the autocorrelation functions moves upward
for temporally aggregated processes and downward for systematically sampled
processesand these effects result in a bias in the long memory paranteiethe
ARFIMA (0, d,0) processthe absolute magnitude of the long memory parameter
|d|, of the temporally aggregated process is greater thandhef the true pro-
cesswhich is greater than thiel| of the systematically sampled proce¥ée also

find that the true long memory parameter can be obtained if we use a decay rate
that is not affected by different sampling intervals

1. INTRODUCTION

An important class of time series models is the so-called long memory pro-
cesseswhich were introduced by Mandelbrot and Van Né%968, Granger
and Joyeux(1980, and Hosking(1981). A simple property of long memory
processes is that whereas the autocorrelations decrdase decrease very
slowly. Therefore the past influences the future in a manner reminiscent of
chaotic processes

It is interesting to notice that many of the empirical studies use temporally
aggregated datauch as monthly time serigfor the test of long memory pro-
cess We now have available financial data that are sampled on many different
frequenciesConsider foreign exchange data for exampleese are now avail-
able on a quote-by-quote or trade-by-trade habigey are also available on
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daily, weekly and even much lower frequenci@is availability naturally raises
questions of temporal aggregation in long memory processes

Ding, Grangerand Engle(1992 conjectured that temporal aggregation does
not change the long memory property of the return seResently Chambers
(1998 showed that at low frequenciethe decay rate of the spectral density
functions of long memory processes is not affected by sampling intefvadse-
fore, the true long memory parameter can be estimated by considering low fre-
guencies regardless of the sampling interval

A sampling interval that is different from the dynamics of the true process
affects the model specification of long memory processisvever both the
frequencies of the true process and the effects of the sampling interval on the
model specification of long memory processes are not kndmvthis situation
an appropriate long memory model that takes into account the sampling inter-
val is impossible Most empirical studies that use long memory processes do
not consider changes in model specification from varying sampling intervals
For this reasoywe assume that the sampling interval does not change the model
specification for a long memory procesnd we investigate changes in the
long memory parametefhus our focus is on whether or not there is a change
in the long memory parameter when different sampling intervals are used

In what follows we extend the results of Chambdi&998 by using both
time and frequency domain analysis in discrete time long memory processes
First the effects of systematic sampling and temporal aggregation on discrete
time long memory processes are presented in an analytical awgcovari-
ance autocorrelationand spectral density functions are derived for the system-
atically sampled and temporally aggregated long memory procédsers Monte
Carlo simulations using frequency domain maximum likelihood estimation meth-
ods are used for the finite sample properties of systematic sampling and tem-
poral aggregation effects on discrete time long memory processes

Our study confirms the results of Chamb¢t998), in that the decay rate of
discrete time long memory spectral density functions at low frequenoies
equivalently the decay rate of discrete time long memory autocorrelation func-
tions in large lagsis not affected by systematic sampling or temporal aggrega-
tion. Howevey significant effects of systematic sampling or temporal aggregation
are found in the autocorrelation functions at short Jagsich result in either
upward or downward movements in the level of autocorrelation funcidm
find that the effects are different for systematically sampled and temporally ag-
gregated long memory process&he absolute value of the autocorrelation co-
efficient of systematically sampled long memory processes becomes smaller as
the sampling interval increaseshereas the absolute value of the autocorrela-
tion coefficient of temporally aggregated long memory processes becomes larger
as the sampling interval increas@hese effects result in a bias in the long
memory parametérin systematically sampled long memory procestaslong
memory parameter is always biased toward zero as the sampling interval in-
creaseswhereas in temporally aggregated long memory processes the absolute
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value of the long memory parametéd|, is larger than its true valuélthough
it is not reported in this papewe find that there is no temporal aggregation
effect on continuous time long memory processes

We also investigate whether or not the true long memory parameter can be
obtained from the decay rate of long memory spectral density functions at low
frequencies in finite sample§or this purposewe use the semiparametric re-
gression model suggested by Geweke and Porter-H(®2&3. Our simula-
tion results using the semiparametric regression for discrete time long memory
processes show that the estimation biases are much less than the biases of max-
imum likelihood (ML) estimatesTherefore the true long memory parameter
can be estimated in temporally aggregated long memory procddsegver
the standard deviation of the estimates is very laagel significant estimation
bias still exists in systematically sampled long memory processes

2. DISCRETE TIME LONG MEMORY PROCESSES

A model appears to be more attractive when just one parameter is used for long
range dependencé long memory process is characterized as a process that
should explain long range dependence between observations more effectively
than conventional short memory processtsere are two major models for
long memory procesgontinuous time models such as the fractional Gaussian
noise (FGN) model introduced by Mandelbrot and Van N€4968 and dis-
crete time models such as the autoregressive fractionally integrated moving av-
erage(ARFIMA) model introduced by Granger and Joy€t280 and Hosking
(1981). Although the FGN model has the benefit that it can be used together
with ordinary Brownian motionthe ARFIMA model is generally preferred to
the FGN modelThe main reason is that the former can describe economic and
financial time series better than the lattstoreover the ARFIMA model is a
generalization of the more familiar autoregressive integrated moving average
(ARIMA) model it captures both long and short mempand it is easier to
use than the FGN model

Discrete time long memory processes have much more flexibility than
ARIMA (p,d,q) models The order of integration in the ARIMA process is
confined only to integer values such as O orld this process a shock has
mean-reversion with an exponential decay rate when 0 but has infinite
persistence whed = 1. This knife-edge distinction between ARIMA,0,q)
and ARIMA(p,1,q) may be too narrowLong memory processes add more
flexibility by allowing for fractional orders of integration such ass0d = 1.

A discrete time long memory proceésactionally integrated procegsvhich
was introduced by Granger and Joygd®80 and Hosking(1981), is defined
to be a discrete time stochastic process that is represented as

Vix, = (1— L)%, = u,, (1)
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whereL is the lag operatory, is an independent and identically distributed
random variablgand —0.5 < d < 0.5.2 Using the binomial series expansjon
the fractional difference operat® can be represented as

Vi=(@1-L)¢
_y U= d @

= I'(j+1I'(=d)

wherel'(-) is the gamma functiarThe infinite moving average representation
of x, may be denoted by

L)St E '//] ut j’ (3)

wherey; =T'(j +d)/I'(j +1)I'(d) andy; ~j97YT(d) asj — oo via Stirling’s
approximation

The autocovariancautocorrelationand spectral density functions of the frac-
tionally integrated process far= 0 and 0< w < 7 are®

T'(1-2d)I(s+d) ,

r(d)r1—drs+1-d) "

~ % s?971g2, ass— oo, 4)
r'(1—d)I'(s+d)
I'(d)(s+1-d)
r(1-d)

~ — 7 Sdel

r(d) ’

O.UZ [ w\)H
S:,(w) = ;{2 SII’](E)}

‘TUZ —2d
~ 0w %% asw — 0, (6)
2T
wheresis a lag between observatignsis a frequencyands? is a variance of
U;. We can see that the autocorrelations of the fractionally integrated series de-
cline at a slower rate than that of the autoregressive moving avéA®jdA )
model The autocorrelation functiofb) decays at a hyperbolic rateshereas
that of the ARMA model decays exponentially
Fractionally integrated processes show different characteristics depending on
the parameted. A fractionally integrated process is covariance stationary and
invertible when—0.5 < d < 0.5, and it is a long memory process whdties
between 0 and.B. The fractional differencing parametdris defined by the
behavior of the series up to infinite cycless d goes to (6, the decay rate of
the impact of a unit innovation becomes slowdence the fractional differ-

Yr(S) =

pri(S)

ass — oo, %)
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encing parameted decides the decay of the system’s response to the innova-
tion. Sowell (1990 showed thatalthough the variance of the partial sums of
variables grows linearly with number of observations wltks O, it grows
faster than a linear rate when<Q d < 0.5. On the other handvhen—0.5 <
d < 0, the process has short memory because each shock is negatively corre-
lated with the otherghus making the variance of the partial sums of variables
less than the variance of the individual shock

Fractionally integrated processes can easily be generalized to the
ARFIMA (p,d,q) processMore formally,

(L)(1—-L)% = 6(L)u, (7)

whered(L) =1 — ¢1L — L2 — -+ — p,LP, O(L) =1+ ;L + 6,L2 + --- +
6,L% —0.5 < d < 0.5, and all the roots ofp(L) and®(L) lie outside of the
unit circle In the ARFIMA mode] d may be chosen to describe the autocorre-
lation structure of distant observations of a time senesereas the and ¢
parameters can be chosen to describe the low lag autocorrelation striibene
fore, the ARFIMA model not only overcomes the drawbacks that Mcleod and
Hipel (1978 point out but also generalizes the Box—Jenkins ARIMA model
where only integral differencing is allowed

3. THE EFFECTS OF SYSTEMATIC SAMPLING AND TEMPORAL
AGGREGATION ON DISCRETE TIME LONG MEMORY PROCESSES

The sampling interval of observed economic and financial time sexigsdaily,
weekly and monthly does not necessarily correspond to the true unknown in-
terval We conjecture that the sampling interval is longer than the true interval
resulting in temporal aggregation in flow time series and systematic sampling
in stock time series/Ve next investigate the effects of systematic sampling and
temporal aggregation on discrete time long memory processes under the as-
sumption that the sampling interval is longer than the true interval

This section shows the effects of systematic sampling and temporal aggre-
gation on discrete time long memory processassystematically sampled
ARFIMA (0,d,0) process and a temporally aggregated ARFI(@Al,0) pro-
cess For these two processgsroperties such as autocovarianeatocorrela-
tion, and spectral density functions are derived

Assumption 1 The dynamics of the true underlying discrete time process
xC take place at every unknown/sd period wheren is a positive integer
whereas the observations of the process take place at every unit time.period

The underlying process is simply thought of as a series of logarithmic changes
of the original positive time series at discrete time intervBlsr exampleit is
a return in financial markets or a growth rate in economics
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In the preceding assumptipn is a sampling intervaMore specifically n is
the number of times the dynamics of the true underlying process take place
between observation$Vhenn = 1, the observed time series is equivalent to
the true processWhenz is a positive integer greater than then the time
series is observed less frequently than the frequency of the true process

The true underlying process can be partially observed in two yssem-
atic sampling and temporal aggregatidnsystematically sampled process is a
sequence of the true process at observation pointsthog consists of every
othern of the true proces® temporally aggregated process is a sequence of
the aggregated true process between sampling interVaéyefore if the dy-
namics of the true process take place every, day example the systemati-
cally sampled process is like observing a daily process every Monday but not
on other daysand the temporally aggregated process is a weekly return process

DEFINITION 1. A discrete systematically sampled procegsose true pro
cess had/n dynamic periodsconsists of xPS= xP; t =1,2,3,...}. A discrete
aggregated processvhose true process hdgrn dynamic periodsconsists of
{XPA = SP120x2 gom t = 1,2,3,...1

When the true process has/7l dynamic periods the discrete true
ARFIMA (0,d,0) processxPF, is defined as

(1—LYM)9xPF = ¢, t=11+1/n, 1+ 2/, 1+ 3/n,..., 8)

wheree, is a white noise sequence with variancé Note that the variance?
is measured with time interval/4. When we assume that the frequency of the
process defined in Section 2 ig7l the variance of the white noise?, in
Section 2 is identical to-2 in equation(8). Thus without loss of generalitywe
assumer? = o2 throughout this sectian

We represent a theorem concerning autocovarisaut®correlationand spec-
tral density functions of a systematically sampled ARFINAI,0) processThis
generalizes Theorem(d) of Chamberg1998, where he derives the spectral
density functions of a systematically sampled ARFIKA,0) process

THEOREM 1 (Systematically sampled ARFIM®,d,0) proces$ Under
Assumption 1 and Definition 1, the discrete systematically sampled
ARFIMA (0,d,0) processxPSF, is represented as

& T(k+d)

DSF — — & t=2123.... 9
Xt gor(d)r(k_’_l) &t (k/n) 1’ ) ( )

The autocoariance ypse(S, 1), autocorrelation ppse(s, 1), and spectral den
sity functions Syse(w, 1), of xPSFfors= 0, p = 1, and0 < w = 7 are given
by
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T(1— 2d)T(5s+ d)
r(dr@-drnps+1-d) 7

~ % o?n?971s2d"L asnors— oo, (10)
r(1—d)r(ns+d)

rd)r(ns+1-d)

ra-d)

2d—1o2d-1
A~ S , asmors— oo, 11
) " U] (11)

2

Yose(S1M) =

Pose(S 1) =

o2 (2 o )‘2“
= _—|2sin—
SDSF((X),W) 277_ 27’

~ Py 7%%w 24 asw — 0, (12)

wheren is a sampling interal, s is a lag between obsations w is a fre-
guency and o ? is avariance of g;.

Proof See the Appendix

The properties of the discrete systematically sampled ARHIOI& 0) pro-
cess have a sampling intervalthat the true discrete ARFIM, d,0) process
does not havésee equation&4)—(6)). The true process is observed differently
by the sampling intervalAs pointed out in Chamber4998), the decay rate in
the spectral density function at low frequencie®d, is the same as that of the
true ARFIMA(O, d,0) processThe autocorrelation function for largealso con-
firms that the decay rate is not changed by systematic sam@orgpare equa-
tion (11) with equation(5)).

However the absolute value of the autocorrelation function of the systemat-
ically sampled process is always less than that of the true ARRIVIRO) pro-
cess because for any positive integer > 1, 2% is less than 1 when
—0.5 < d < 0.5. This decreased autocorrelation function is expected to make
the estimated biased toward zerd-igures 1-4 show the changes of the auto-
correlation functions for systematically sampled and aggregated ARFOMIZ0)
processes whed = 0.35(n = 5) andd = —0.35(n = 5), respectivelyIn Fig-
ures 1 and 3we can see that the absolute values of the autocorrelation func-
tions are decreased by systematic sampliigures 2 and 4 show the ratios of
the autocorrelations ofPSF to those of the true process in various laghich
are always less than Therefore although we may estimate the trddoy con-
sidering low frequencies or equivalently remote autocorrelafiars/stemati-
cally sampled ARFIMAQO,d,0) process becomes less persistent than the true
ARFIMA (0,d,0) process
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Autocorrelation
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FiGure 1. Autocorrelation functions of tryesystematically sampled and aggregated
ARFIMA (0,d,0) processe$d = 0.35 andy = 5). The upper line represents the autocor-
relation function of the aggregated ARFIM®, d,0) processthe middle line represents

the autocorrelation function of the true ARFIM®, d,0) processand the lower line rep-
resents the autocorrelation function of the systematically sampled ARFOMA0) pro-

cess The autocorrelations up to 30 lags are calculated using exact autocorrelation
functions and autocorrelations from 31 to 200 lags are calculated using limited autocor-
relation functiongsee equationgll) and(16)).

Ratio

0.6 F

02+

Lags

FIGURE 2. Ratio of autocorrelation of systematically sampled and aggregated
ARFIMA (0,d,0) processes to that of the true ARFIM®@, d,0) process(d = 0.35 and

n = 5). The upper line represents the ratio of autocorrelations of the aggregated
ARFIMA (0,d,0) process to those of its true ARFIMAB, d,0) process The lower line
represents the ratio of autocorrelations of the systematically sampled AR®IMA)
process to those of the true ARFIM®, d,0) process

https://doi.org/10.1017/50266466600163030 Published online by Cambridge University Press


https://doi.org/10.1017/S0266466600163030

EFFECTS OF TEMPORAL AGGREGATION 355

0.05 +

Autocorrelation

Lags (1-20)

FiGcure 3. Autocorrelation functions of tryesystematically sampled and aggregated
ARFIMA (0,d,0) processesd = —0.35 andn = 5). The thick line represents the auto-
correlation function of the aggregated ARFINI&\d,0) processthe middle line repre-
sents the autocorrelation function of the true ARFINAJ,0) processand the thinuppe)
line represents the autocorrelation function of the systematically sampled ARBINIA)
processThe autocorrelations are calculated using exact autocorrelation functions

0.8 +

Ratio

06+
044

0.2 T

Lags

FIGURE 4. Ratio of autocorrelation of systematically sampled and aggregated
ARFIMA (0,d,0) processes to that of the true ARFIM®@,d,0) procesgd = —0.35 and

n = 5). The upper line represents the ratio of autocorrelations of the aggregated
ARFIMA (0,d,0) process to those of its true ARFIMA, d,0) process The lower line
represents the ratio of autocorrelations of the systematically sampled AR®IMA)
process to those of the true ARFIM®, d,0) process
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A discrete aggregated ARFIMA, d,0) process xPAF, can be obtained by
summing a discrete true ARFIMA, d,0) processxP", up to(n — 1)/n lags

n—1
DAF _ DF
xPAF = XitZi/m
j=0
= L+ LY+ L2 LDy (1 — LY) g,

=(1-L)(1—LY")"91g, (13)

We present a theorem concerning autocovariaacéocorrelationand spec-

tral density functions of a temporally aggregated ARFIW®A,0) processThis
generalizes Theorem(li) of Chamberg1998, where he only derives spectral
density functions of temporally aggregated and systematically sampled
ARFIMA (0,d,0) processes

THEOREM 2 (Temporally aggregated ARFIM@®, d,0) process Under As
sumptionl and Definitionl, the discrete aggregate®lRFIMA (0, d,0) process
xPAF, is defined as

e Tr(k+d)

— T &_ (i t=123,.... 14
= k:ol"(k+1)l“(d) Et—(k/m)—(i/m) 2 &9 ( )

The autocoariance ypar(S 1), autocorrelation ppar(S, 1), and spectral den
sity functions Soar(w,n), of xPAF for s=0, 7 =1, and0 < w =< 7 are gwen

by
(1) = o?T(1-2d)
YortST) = S ¥ 2d) (L + d)I(1—d)
[F(l-i—ns-i—d-l—n) rA+mns+d—-mn)
F(ps—d+n) F(ns—d—mn)
ra+mns+ d)}
2 Fps—d) | (15)
ri+xs+d+n) TI(@A+ns+d—n) rA+mns+d)
F(ns—d+n) F(ns—d—n) I'(ns—d)
poar(SM) =
rA+d+mn ra+d)
r(=d+mn) r'(—=d)
B nl+2d[(s+1)l+2d + (5_1)1+2d _ 251+2d] f |
~ Ta+d) or largen
2771+2d_2—
r(=d)
1*+2dg(1+ 2d
~ ( ) 5291 a5 5 00, (16)
1i2a_ LA+
r(—d)
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using Taylor series up to second order

o2 (2 W )—2(d+1) <2 _ a)>2
= — SIn— Sin—
SDAF((IM?) o 2n 2

2

o
~ — 22,24 asw -0, a7)

2w
wheren is a sampling interal, s is a lag between obsations o is a fre-
quency and o2 is avariance of ;.

Proof See the Appendix

The limiting spectral density and autocorrelation functions show that the de-
cay rate of the ARFIMAQO, d,0) process is not changed by temporal aggrega-
tion, identical to results in Theorem(ll) of Chamberg1998. However as we
can see in Figure,.whend = 0.35 andn = 5, the autocorrelation function of
the aggregated process is always larger than that of the true précegsosi-
tive d, ppar(S,m) in equation(16) is always larger than its true val@e(1 — d))/
(T'(d)) in (5). This is shown in Figure 2 by the ratio of the autocorrelation of
the aggregated ARFIMA, d,0) process to that of the true ARFIMA, d,0) pro-
cess wherd = 0.35 and»n = 5. Therefore although the limiting autocorrelation
and spectral density functions do not show any change in the decaythate
level of the autocorrelation function moves upwandaking the aggregated
ARFIMA (0,d,0) process more persistent than the true ARFI{@AL,O0)
process On the other handwhen —0.5 < d < 0, the ratio of the autocor-
relation function of the aggregated ARFIM®, d,0) process to that of the
true ARFIMA(0O,d,0) process does not show a consistent pat{see Fig-
ure 4. However the pattern of the autocorrelation function of the aggregated
ARFIMA (0,d,0) process in Figure 3 is typical for a larger negativealue
Therefore for negatived, temporal aggregation makes the true ARFIKAD, 0)
process have a higher negatisieAs a resulf we conclude that the absolute
value of the discrete time long memory paramejtéf of the aggregated
ARFIMA (0,d,0) process is larger than that of its true procéde present our
conclusions in Proposition. 1

PROPOSITION 1

(1) Systematic Sampling Effett the discrete systematically samplsBFIMA (0, d,0)
processesthe absolutevalues of d are biased toward zeras the sampling in
terval n increases

(2) Temporal Aggregation Effectin the discrete temporally aggregated
ARFIMA (0,d,0) processthe absolutevalue of d increases as the sampling in
terval n increases

A referee suggests that the ARFIMA,d,q) model rather than the
ARFIMA (0,d,0) model would be better to specify the autocorrelation func-
tions of systematically sampled or temporally aggregated discrete time
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long memory processe&igures 2 and 4 support this suggestidne ratios
of autocorrelation of systematically sampled and temporally aggregated
ARFIMA (0,d,0) processes are not constant over lagsat is the ratios vary
for short lags but they approach a constant for larger lalgs addition the
major changes in the levels of the autocorrelation of systematically sampled
and temporally aggregated ARFIM®,d,0) processes occur in the first lag
Therefore although the autocorrelation functions of systematically sampled and
temporally aggregated ARFIM®,d,0) processes ar®(s?? ') ass — oo,
autocorrelation levels of systematically sampled and temporally aggregated
ARFIMA (0,d,0) processes are changed in short Jagmerating a short mem-
ory processin these case®A\RFIMA (0, d,0) processes together with appropri-
ate short memory processes may be better specified than ARBMA)
processes for systematically sampled and temporally aggregated ARB)W¥)8)
processesHowever we do not know what the exactly specified model is or
the dynamic period of the true underlying procelsthis study we investi-
gate the effects of sampling interval on the long memory parameter when sam-
pling intervals are disregarded

Although the preceding analysis reflects the impact of temporal aggregation
on the true modelit does not deal with issues of estimatidife consider this
problem in the next section

4. FINITE SAMPLE PROPERTIES OF THE EFFECTS OF SYSTEMATIC
SAMPLING AND TEMPORAL AGGREGATION ON DISCRETE TIME
ARFIMA(O, d,0) PROCESSES

4.1. Maximum Likelihood Estimation

Many studies of long memory processes have used the frequency domain ap-
proach because the spectral generating function is generally easy to evaluate
Time domain maximum likelihood is computationally difficult to use for large
sample sizes because of the inversion of The T covariance matrixThe fre-
quency domain approximate log-likelihood is represented as follows

B 1. 1 } I H(wy)
InL(8) = — 5 kglln S(wy) — 5 Zl @)’ (18)

where

2

.
> et (X, — Xq)

t=1

Hen) = 27T ’

s(wy) is a spectral density functiom, = (27k)/T, andk = 1,2,...,T — 1.
Fox and Taqquy1986 proved that the estimates obtained using only the last
term of equation(18) are consistent and asymptotically normBhese results
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were extended by Dahlhai989 as in equation(18). Cheung and Diebold
(1994 compared the exact time domain ML estimates of SowiP23 with
the approximate frequency domain ML estimates of Fox and Tat@fe. When
the mean of a process is knowthe time domain ML estimates are superior
However time domain ML estimates with a known mean are not feasible in
practice Time domain ML estimates with a sample mean do not seem to be
preferred to frequency domain ML estimatesaddition when the sample size
is more than 150 and > 0, there is little difference between the tywand the
frequency domain ML estimates are less biased than the time domain ML esti-
mates Therefore Cheung and Diebold1 994 suggested that the frequency do-
main ML estimation method is an attractive and efficient alternative when large
sample sizes are usddausen1992 and Lee(1994) also found similar results
The recursive Levinson—-Durbin algorithm is used for the generation of the
ARFIMA (0, d,0) processThe Cholesky decomposition is not a suitable method
here becausgas noted in Geweke and Porter-HuddR83), it needs memaory
proportional toT2 and computation time proportional ©°. Therefore when
as in this studyT = 1,000 it becomes impractical to use the Cholesky
decomposition
The GAUSS computer package is used for all computatidrfesuse the same
GAUSS code as Le€l9949 for the generation of fractionally integrated pro-
cessesFor the numerical optimization methpthe Broyden Fletcher Gold-
farb, and Shanno algorithm is usedowever when that algorithm cannot find
the optimum the Davidon Fletcher and Powell algorithmor the Newton—
Raphson algorithgor the steepest descent method are used in that.aZder
vergence tolerance for the gradient of estimated coefficients is setto 10
Sampling intervals ofy = 1,5, 10, 15, 20 are exploredFirst, a sample size
of T= 1,000 is generated and then the original time series are transformed into
systematically sampled or temporally aggregated proceSgegeematically sam-
pled processes are obtained by using the following formulation

Xt?‘r] = X-r]t’ (19)

wherexf,, is a systematically sampled process with a sampling intejvahd

X; is the originally generated seried/henn = 1, the frequencies of the true
process are the same as the observation frequehtiegever whenn > 1, the
transformed process becomes a systematically sampled process with sampling
intervaln. To explore temporal aggregation effedtse original process is tem-
porally aggregated as followfs

Xty = > Xyt (20)

Because the sample size decreases according to the increase in the sampling
interval the sample sizes for the sampling intervals= 1,5, 10, 15,20 are
1,000, 200, 100, 66, 50, respectively
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For the ARFIMA(0, d,0) processequation(18) is used for the likelihood func-
tion. The spectral density functions for the ARFIM® d,0) process are

0_2

S(wk) = 22d+1,n.(1 —TICOS(a)k)) 2d’ (21)

wherecr,72 is the variance of the white noise variables of systematically sampled
or temporally aggregated ARFIMA, d,0) processesBecause the exact values

of the variance are not known for systematically sampled and temporally aggre-
gated processgswe estimated, anz} for the ARFIMA(0O, d,0) model for alln.

As shown in Section 3the autocorrelations of systematically sampled and
aggregated processes are also a function of the parantet@iserefore 10
points in both the parameterb of the ARFIMA process are explored =
+0.05, £0.15, +0.25, +£0.35, +0.45. For each{d,n} set 1,000 Monte Carlo
replications are performedror the starting values d, the trued values are
used Sample variances of systematically sampled or temporally aggregated
processes are used for the starting values,pfThe bias standard deviatian
and mean-squared err@MSE) of the estimated! are computed

The results of D00 replications of the ML estimation of the ARFIM®, d,0)
processes are reported in Tables .IF&ble 1 shows the finite sample proper-
ties of the frequency domain approximate ML estimation for the original
ARFIMA (0,d,0) process at sample sizes Df= 1,000 200, 100, 66, 50, respec-
tively. The results for the ARFIMAO, d,0) process are consistent with those
of Hauser(1992 and Lee(1994. As expectedthe estimation bias and stan-
dard deviation of estimates tend to increase as the sample size becomes smaller

Table 2 shows the simulation results for the finite sample properties of the
systematically sampled procegss explained in the previous sectiofor the
systematically sampled procedsng memory parameters are biased toward
zera The finite sample properties of the systematic sampling effects can be
summarized as followsFirst, the systematic sampling effect appears in the
ARFIMA (0,d,0) process When the dynamics of the true process are more
frequent than the observations of the procdhs estimates of the observed
systematically sampled process are always biased toward Taote 2 shows
that the bias is larger in-0.5 < d < 0 than in 0< d < 0.5. This is because
of —0.5 < d < 0, long memory processes have similar properties to those of
short memory processes

Our second investigation looks at the temporal aggregation efisets
Table 3. As expectedin the aggregated ARFIM), d,0) processthe aggre-
gation effect has upward biaBhe simulation results support what we found in
Section 3 that is the absolute magnitude of the long memory paramétgr
of the aggregated ARFIMK, d,0) process is greater than thd| of the true
ARFIMA (0,d,0) process

Table 3 shows that the magnitude of the bias depends on the sampling inter-
val; the bias of the aggregated ARFIM®, d,0) process increases agin-
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TaBLE 1. Finite sample properties of the frequency domain approximate max-
imum likelihood estimation of ARFIMAQ, d,0) processes

Sample size
Trued 1,000 200 100 66 50
Bias
0.45 00015 —0.0015 -—0.0084 —0.0124 -—0.0173
0.35 00000 —0.0041 —-0.0103 -—0.0141 -0.0188
0.25 —-0.0010 -0.0068 —-0.0132 —-0.0165 —0.0216
0.15 -0.0017 —-0.0083 —0.0154 —-0.0187 —0.0249
0.05 —-0.0020 -0.0089 —0.0163 —0.0199 -0.0261
—0.05 —-0.0019 -0.0087 —0.0161 —0.0199 —0.0258
-0.15 —-0.0015 —-0.0077 —-0.0146 —0.0186 —0.0239
-0.25 —-0.0007 —-0.0056 —0.0117 —-0.0157 —0.0203
-0.35 00008 —0.0022 —-0.0072 —0.0111 —0.0146
—0.45 00035 00032 —-0.0006 —0.0045 —0.0066
Standard deviation
0.45 00268 00671 01036 Q01267 01544
0.35 00264 00662 00995 Q1259 01546
0.25 00261 00656 00993 01264 01543
0.15 00260 00655 00989 01266 01529
0.05 00259 00655 00990 Q1267 01532
-0.05 00258 00655 00992 01268 01534
-0.15 00258 00656 00995 Q1270 01538
-0.25 00258 00657 Q1000 Q1274 01546
-0.35 00260 00661 01008 01282 01558
—0.45 00265 00671 01024 01296 01574
Mean-squared error
0.45 00007 00045 00108 00162 00241
0.35 00007 00044 00100 Q0161 00243
0.25 00007 00043 00100 00162 00243
0.15 00007 00044 00100 00164 00240
0.05 00007 00044 Q0101 Q0164 00242
—0.05 00007 00044 Q0101 00165 00242
-0.15 00007 00044 00101 00165 00242
-0.25 00007 00044 00101 00165 00243
-0.35 00007 00044 00102 00166 00245
—0.45 00007 00045 00105 00168 00248

Note: The results are based orD0O replications of frequency domain ML estimates

https://doi.org/10.1017/50266466600163030 Published online by Cambridge University Press


https://doi.org/10.1017/S0266466600163030

362 SOOSUNG HWANG

TABLE 2. Finite sample properties of the frequency domain approximate max-
imum likelihood estimation of systematically sampled ARFINOAd,0) pro-

cesses
Sampling intervalr)
Trued 1 5 10 15 20
Bias
0.45 00015 —0.1188 —0.1638 —0.2001 —0.2200
0.35 Q0000 —0.1320 —0.1798 —0.2159 —0.2335
0.25 -0.0010 -0.1289 —-0.1690 —0.1996 —0.2114
0.15 -0.0017 -0.1007 —0.1244 -0.1472 —0.1518
0.05 —0.0020 —0.0441 —0.0512 —0.0679 —0.0684
—0.05 —0.0019 00355 00390 00251 00261
-0.15 —0.0015 01289 01370 01238 01248
-0.25 —0.0007 02289 02379 02243 02249
-0.35 00008 03315 03396 03253 03255
—0.45 00035 04348 04411 04262 04262
Standard deviation
0.45 00268 00623 00981 01263 01523
0.35 00264 00609 00959 01258 01509
0.25 00261 00601 00951 01243 01499
0.15 00260 00606 00955 01238 01490
0.05 00259 00622 00961 01226 01495
—0.05 00258 00631 00965 01217 01510
—0.15 00258 00632 00967 01212 01529
—0.25 00258 00628 00965 01209 01548
-0.35 00260 00623 00963 01208 01562
—0.45 00265 00618 00962 01209 01571
Mean-squared error
0.45 00007 00180 00364 00560 00716
0.35 00007 00211 Q0415 00624 Q0773
0.25 Q0007 00202 00376 00553 00672
0.15 Q0007 00138 00246 00370 00452
0.05 00007 00058 Q0119 00196 00270
—-0.05 00007 00052 00108 Q0154 00235
-0.15 00007 00206 00281 Q0300 00390
—0.25 Q0007 00564 00659 00649 00746
—0.35 Q0007 01138 01246 01204 01304
-0.45 00007 01929 02038 01963 02063

Notes:The results are based orD0O0 replications of frequency domain ML estimat8ample sizes for sampling
intervals 1 5, 10, 15, and 20 are ,00Q 200, 100, 66, and 5Q respectively
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TaBLE 3. Finite sample properties of the frequency domain approximate max-
imum likelihood estimation of temporally aggregated ARFINAD,0) pro-

cesses
Sampling interval )
Trued 1 5 10 15 20
Bias
0.45 00015 00916 01041 Q0977 00909
0.35 Q0000 00694 00802 Q0776 00687
0.25 —0.0010 Q0480 00562 00540 00463
0.15 —0.0017 00267 Q0307 00262 Q0177
0.05 —0.0020 00052 00046 —0.0030 —0.0119
—0.05 —0.0019 —0.0165 —0.0224 —0.0335 —0.0427
-0.15 -0.0015 -0.0380 —0.0500 —0.0651 —0.0745
-0.25 —-0.0007 —0.0587 —0.0774 —0.0968 —0.1068
-0.35 00008 —0.0773 —0.1028 —0.1259 —0.1370
—0.45 00035 —0.0910 —0.1223 —0.1473 —0.1598
Standard deviation
0.45 00268 Q0708 01038 01348 01603
0.35 00264 00673 00995 01288 01530
0.25 00261 00655 00969 01280 01530
0.15 00260 00652 00962 01272 01520
0.05 00259 00652 00963 01265 01532
—0.05 00258 00651 00962 01267 01542
—0.15 00258 00651 00961 01271 01554
—0.25 00258 00652 00965 01278 01568
-0.35 00260 Q0657 Q0976 01290 01584
—0.45 00265 Q0675 01004 01314 01599
Mean-squared error
0.45 00007 Q0134 00216 Q0277 00340
0.35 00007 00093 00163 00226 00281
0.25 Qo007 00066 00125 00193 00255
0.15 Qaooo7 Q0050 00102 00169 00234
0.05 00007 Q0043 00093 00160 00236
—-0.05 00007 00045 Q0097 Q0172 00256
-0.15 00007 Q0057 Q0117 00204 Q0297
—0.25 Qo007 Q0077 00153 00257 00360
—0.35 Qo007 00103 00201 00325 00439
-0.45 00007 Q0129 00250 00390 00511

Notes:The results are based orD0O0 replications of frequency domain ML estimat8ample sizes for sampling
intervals 1 5, 10, 15, and 20 are ,00Q 200, 100, 66, and 5Q respectively
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creasesHowever after some sampling intervalis shows little differenceThis
can be explained by the autocorrelation function(). As n becomes infi-
nitely large the limiting autocorrelation function can be represented as

n1+2dd(1 + Zd)Sdel

DAF
p " (sm,d) ~
12a_ LA+ d)
r'(—d)
~d(1+2d)s??"L asn — oo. (22)

Therefore for an infinitely largen the autocorrelation is not a function gf

Note that the preceding limiting autocorrelation function is the same as that of
the discrete time fractional Gaussian noise prodesge Mandelbrot and Van
Ness 1968. The dynamics of the true process which have an infinitesimal in-
terval in continuous time long memory processes are equivalent to an infinitely
largen in discrete time long memory processes

4.2. Further Considerations

Chamberg1998 showed that the true long memory parameteran be esti-
mated regardless of sampling intervbhécause the decay rates of the spectral
density function are not affected by systematic sampling or temporal aggrega-
tion. Our results agree with his for both spectral density and autocorrelation
functions(see equationéll), (12), (16), and(17)).

To further investigate whether or not estimates obtained using low frequen-
cies reflect the true long memory parametgrwe use simulations with the
semiparametric regression analysis of Geweke and Porter-Ha888. These
researchers concentrated on low frequencies becduseletermined by the
spectral density near zero frequenci€keir equation can be represented as

In1(w,) =c—d|n<25in<%>>2+sj, (23)

wherec is a constantThe long memory parametércan be estimated with=

12,...,9(T), where limr_,,,g(T) = o0 and limy_,..g(T)/T = 0. That is g(T)

should be sufficiently small compared wilh Herg g(T)? is set equal tar °°,

As presented in equatid@3), the semiparametric method of Geweke and Porter-

Hudak (1983 uses only the decay rate of fractionally integrated proce&ses

cause systematic sampling and temporal aggregation do not affect the decay rate

of the true long memory procesthe Geweke and Porter-Hudak method may

be a more appropriate method to estimate the true unobserved long memory pa-

rameter than parametric methods such as those used in the previous subsection
Four pointsd = £0.15,+0.35 at sampling intervalg = 1,5, 10, 15, 20, are

considered in both the systematically sampled and temporally aggregated

ARFIMA (0,d,0) processesOther simulation conditions are the same as those

of the ML estimation of Section.4.
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Tables 4—6 show the results of0DO0 replications of Geweke and Porter-
Hudak’s semiparametric estimatiomable 4 represents finite sample proper-
ties of their estimated he estimation bias is small and seems robust to changes
in sample size and.!° The standard deviation is also robust to the changes in
the value of the true parametddowever the standard deviations are larger
than those of the ML estimates in Table 1 and seem very large for small sam-
ples This is because the number of periodograms used in the Geweke and
Porter-Hudak estimation is only %5 Therefore the MSE’s of the Geweke
and Porter-Hudak estimates are high compared with those of ML estimates
and the estimates are not efficient for small samptes

Let us first consider the finite sample properties of systematically sampled
processesTable 5 shows that the estimation bias is still presafihough the
estimation biases are less than that of the ML estim@tes Table 2 they are
still very large In addition for negatived values there is little difference be-
tween the Geweke and Porter-Hudak and the ML estimdteis may be be-
cause for negativd, the discrete time long memory process has the properties
of a short memory process rather than those of a long memory prdd¢ess
ever as expectedor a temporally aggregated long memory processng low
frequencies gives estimates close to the true long memory paramaiée 6

TABLE 4. Finite sample properties of the semiparametric regression analysis
of Geweke and Porter-Hudak 983 for ARFIMA (0, d,0) processes

Sample size

Trued 1,000 200 100 66 50
Bias

0.35 00023 00087 00134 00168 Q0065

0.15 —0.0038 —0.0021 00026 00061 —0.0044
-0.15 —0.0051 Q0045 Q0055 00003 —0.0065
—0.35 00084 00268 00252 00186 00132
Standard deviation

0.35 01378 02360 02921 03546 03908

0.15 01372 02426 02946 03495 03981
—0.15 01404 02384 02943 Q3577 04045
—-0.35 01415 02365 02909 03484 03976
Mean-squared error

0.35 00190 00558 00855 01260 01528

0.15 00189 00589 00868 01222 01585
-0.15 00197 00569 00866 01279 01637
-0.35 00201 Q0567 00853 01217 01582

Note: The results are based orD00 replications of Geweke and Porter-Hudak semiparametric regression esti-
mates
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TABLE 5. Finite sample properties of semiparametric regression analysis of
Geweke and Porter-Huddk 983 for systematically sampled ARFIM®, d,0)

processes
Sampling interval )

Trued 1 5 10 15 20
Bias

0.35 00023 —0.0567 —-0.1212 —-0.1533 —0.2013

0.15 —-0.0038 —0.0796 —0.1101 —-0.1229 -—0.1355
—-0.15 —0.0051 01374 01413 01539 Q1477
—-0.35 00084 03413 03422 03489 03527
Standard deviation

0.35 01378 02311 03067 03508 03976

0.15 01372 02332 02842 03438 03924
-0.15 01404 02362 02871 03399 03935
—0.35 Q1415 02472 02852 Q03454 Q3773
Mean-squared error

0.35 00190 00567 01088 01466 01986

0.15 00189 00607 00929 01333 01723
—-0.15 00197 00747 01024 01392 Q1767
—0.35 00201 Q1776 01984 02410 02668

Notes:The results are based orD00 replications of semiparametric regression estim&asmple sizes for sam-
pling intervals 15, 10, 15, and 20 are ,00Q, 200, 100, 66, and 5Q respectively

shows that the bias of estimates obtained using low frequencies is small in the
aggregated long memory process
Therefore for the finite samples considered in this stuthe trued may not
be obtained when observed time series are systematically sarpiete other
hand for the temporally aggregated time serigge may obtain the true by
considering low frequencie$iowever note that standard deviations are rela-
tively very high in the Geweke and Porter-Hudak semiparametric estimates
Chamberg1998 concentrated only on the decay rate of long memory pro-
cesses near the zero frequency and suggested that the true long memory param-
eter can be estimated using the decay rate of the spectral density function at
low frequenciesOur finite sampling simulations show that Geweke and Porter-
Hudak semiparametric estimates using only low frequencies may fail to obtain
the true long memory parameter when the observed time series is systemati-
cally sampled or the number of observations is smalhddition the true long
memory parameter may not be obtained whel5 < d < 0.

5. CONCLUSION
This study investigated the effects of systematic sampling and temporal aggre-

gation on long memory processes under the assumption that there was no change
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TABLE 6. Finite sample properties of semiparametric regression analysis of
Geweke and Porter-Hudgk 983 for temporally aggregated ARFIM@, d,0)

processes
Sampling intervalr)

Trued 1 5 10 15 20
Bias

0.35 00023 00033 00019 00125 00105

0.15 —0.0038 —0.0061 —-0.0073 —0.0043 —0.0071
-0.15 —-0.0051 —0.0145 -0.0238 -—0.0276 —0.0377
—-0.35 00084 —0.0036 —0.0229 —0.0382 —0.0493
Standard deviation

0.35 01378 02351 02918 03562 04002

0.15 01372 02342 02904 03650 03973
-0.15 01404 02377 03041 03627 04132
—-0.35 01415 02423 02954 03545 03970
Mean-squared error

0.35 00190 00553 00851 01270 01603

0.15 00189 00549 00844 01332 Q1579
-0.15 00197 00567 00930 01323 Q01722
-0.35 00201 00587 00878 01271 01601

Notes:The results are based orD00 replications of semiparametric regression estim&asmple sizes for sam-
pling intervals 1, 5, 10, 15, and 20 are ;D0Q 200 100, 66, and 50 respectively

in model specification caused by systematic sampling or temporal aggregation
From the theoretical explanation in Section 3 and the simulations conducted in
Section 4 the following results are obtainetbr the ARFIMA(O, d,0) process
the absolute value of the long memory paramd), of the temporally aggre-
gated process is larger than th of the true processvhich is larger than the
|d| of the systematically sampled process

Our results are consistent with those of Chambd&98 and Ding et al
(1992, who conjecture that temporal aggregation does not change the decay
rate of autocorrelation®©ne of the interesting properties of discrete time long
memory processes is that although the autocorrelation level is affected by sys-
tematic sampling or temporal aggregatidthe decay rate of the autocorrela-
tions in remote lags oequivalently the decay rate of spectral densities at low
frequencies is not affected by the sampling intertralr the finite samples used
in this study Geweke and Porter-Hudak’s semiparametric regression gives a
long memory parameter close to its true value for the temporally aggregated
processwhereas the estimates are still biased toward zero for the systemati-
cally sampled long memory process

However it is worth pointing out that the autocorrelation function of dis-
crete time long memory processes shifts downward or upward by systematic
sampling or temporal aggregatiolm this respectalthough we may estimate
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the true long memory parameter using the decay ratesconclude that the
sampling interval does affect the long memory parameter if we do not consider
the changes in model specificatidBmpirical studies on the existence of long
memory processes in economic and financial time series may be affected by
the sampling intervalThe probability that we find evidence of a long memory
process increases as the sampling interval increases for a temporally aggre-
gated time serigsf there exists long memoryur results in Section 4 do sug-
gest that for a large number of observations such as in financial time gbees

true long memory parameter may be estimated using the semiparametric regres-
sion of Geweke and Porter-Hud@k983.

NOTES

1. The results for continuous time long memory processes can be obtained from the author on
request

2. We use “bias” for the difference between the true long memory parameter values and the
long memory parameter values of the systematically sampled or temporally aggregated long mem-
ory processes'Bias” used in this study means a model misspecification.Biés use “estimation
bias” for the difference between the true values and the estimated parameter values to differentiate
the “bias” in this study

3. Although d may be any real numbed is assumed to lie in the intervét-0.5, 0.5) with a
finite number of difference

4. Moving average(MA) representation will be used for our explanatidine autoregressive
(AR) representation can be inferred from the MA representafidrat is the d of the MA repre-
sentation is equal te-d of the AR representation

5. See Granger and Joyegk980 and Hosking(1981) for proof.

6. Sample size of both systematically sampled and aggregated processes whénis 66 and
only the first 990 observations from the original sample size,00Q are used

7. Only whenn =1, o2 is known to be 1

8. This equation is a logarithmic transformation of equati6n

9. The Geweke and Porter-Hudak method has some difficulties in selegting(see Sowell
1992h and Hurvich and Beltracl993. Geweke and Porter-Hudak suggested th@t) = T is
appropriateand Diebold and Rudebus¢h989 and Cheund1993 also showed that the exponent
(0.5) is appropriate

10. The biases of the Geweke and Porter-Hudak estimates are found in the presence of AR or
MA processesAgiaklogloy Newbold and Wohar1993 and in either noninvertibléd = —0.5) or
nonstationaryd = 0.5) ARFIMA (0,d,0) processe$Hurvich and Ray1994).

11. See Sowell(19923 for the simulation results of the finite sample properties of Geweke
and Porter-Hudaktime domain ML and frequency domain ML estimateAlso see Robinson
(1994 1995 and Hidalgo and Yajimd1996 for further discussion of the Geweke and Porter-
Hudak estimation and its modification
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APPENDIX

Proof of Theorem 1. (Systematically sampled ARFIM®, d,0) proces$ The spec-
tral density function o&PSF in equation(12) is easily obtained from equatid8). The
autocovariance function of®SF,ypse(s, 1), has amygs lag between observations in the
true processThat is a lag of magnitude between observations in systematically sam-
pled ARFIMA(0, d,0) is equivalent to a lag of magnitudgs in the true ARFIMA(O, d,0)
processTherefore we can use equatiof®) to deriveypse(s,77) by simply replacings
with ns. Mathematically
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Yose(Sm) = Cov(xP5F, x2%N)

~¢[(+ o _Tstd)
|: &+ F(d)F(Z) Et—(1/n) + .-+ F(d)F(»,;s+ 1 &g
rd)r(ns+2) Si—s—m T -

( ra+d) r2+d) )
X |e_gt F(d)F(Z) Et—s—(1/n) + I‘(d)F(3) Et—s—(2/n) +oe ]

o? [r(ns+d)r(d) I(ps+1+d)r(1+d)
r(d)2| T(ns+ 1T (1) T'(ns+2)T(2)

I'(ns+2+d)r2+d ]
I'(ns+3)T'(3)

_o? F(ns+d)r(d)[ (pgs+d)d  (ns+d)(gps+1+d)d(1+d) ]
T r(d)?2  T(gs+1) (ps+ 11! (ps+1)(ns+ 2)2!
02 T(ns+d)T(d)

= F(d,ns+ d;ms+ 1;1
Td)?  Ts+) (d,ps+d;ins+1;1)

_ 0? T(gs+d)r(d) T(ns+1Hr1-2d)
T T(d)? T(ps+1) T(gs+1-d)T1—d)

I(nps+d)r(1—2d)
r(d)r@—drns+1-d) s (A1)

whereF (a, B;v;1) is a hypergeometric function and

o aXpB ala+D)B(B+1D ala+)(a+2)B(B+1)(B+2)
F(’)""—”’“”1)_1+7><1!+ yy+nx2 y(y + ) (y +2) X 3!

+ ...

Ty —a-p)

“Th-—wry_p Y7t (A-2)

(Gradshteyn and Ryzhjki994 9.122 p. 1068) The autocorrelation function in equa-
tion (11) follows straightforwardly u

Proof of Theorem 2. (Temporally aggregated ARFIM@®, d,0) proces$ Let us de-

fine ype(s) as the autocovariance function of the true underlying fractionally integrated
procesPF, wheres is a lag between observatiarEhat is

Yor(S) = COV(XtDF, XBFs/T,)

. r(-2d)r(s+d) ,
T Trdra-drs+1-d 7
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This is actually the same as equati@ as explained following Definition.1Then the
autocovariance function ofPAF is

n—1 n—1
Yoar(SM) = COV( Z Xttli/m E XtDFsk/n>
k=0 k=0

n—1 n—1
= —nype(ns) + 'go (n—1)ype(ns—i) + _;O (m—1)ype(ns+1i)

n—1n—i n—1n—i

= —nYoe(ns) + ;} Zlyolz(”’ls_ i)+ _;0 Zlyolr(ﬂs"‘ i)

_o’r(1-2d) 3= r(d+ns) +" K T(d+ns—1i)
S T(ATr1-d) & TA-d+ns) S5TA—d+ns—i)

>

X I'(d+ns+i)
i=0 F(l—d+ns+|)

o?I'(1-2d)
21+2d)r(1+d)r(1—d)

[F(1+ns+d+n) rAd+xs+d-mn) F(1+ns+d)]

F(ns—d+mn) F(ns—d-mn) I'(ns—d)
(A.3)
using the following lemma of Sowe(l1990 twice:
N T'(a+k) 1 rd+a+N) T(1+a)
2 = [ - ] (A.4)
=1 T(b+k) 1+a—b| TI'(b+N) I'(b)
The variance function ofPA" is
(O) = o?T(1-2d)
YoarOm) = o r T dr A= d)
[r(1+d+n) F(1+d—n)_ F(l-i—d)] (AS5)
I(=d+mn) Ir(=d-mn) r-d) J’ '
Using the following equatiofisee Gradshteyn and Ryzhik994 8.334 p. 946),
r1—x)r(x) = m, (A.6)
we have
r(1+d—mT(-d+7) = ————— A7
K M sin(r(—d+ 1))’ A7
ra+d+mr(—d—n=— A8
" " St (-d— )’ (A8)
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Because, is a positive integerequation(A.7) is the same as equatidA.8). Equating
and rearranging the two equationge have

rl+d-n T(+d+n

- ) A.
FCd-m  Td+m (A9
Therefore we have

3 o?T(1-2d) ra+d+mn) ra+d)
voar 0 = S T d)F(l—d)[ r—d+7n) ° TI'(=d) } (A-10)

The autocorrelation function ofPA" is obtained using autocovariance functioh.3)
and variance functiofA.10) of xPA%, and the spectral density function xPAF follows
from equation(13). u
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