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This study investigates the effects of varying sampling intervals on the long mem-
ory characteristics of certain stochastic processes+We find that although different
sampling intervals do not affect the decay rate of discrete time long memory auto-
correlation functions in large lags, the autocorrelation functions in short lags are
affected significantly+ The level of the autocorrelation functions moves upward
for temporally aggregated processes and downward for systematically sampled
processes, and these effects result in a bias in the long memory parameter+ For the
ARFIMA ~0,d,0! process, the absolute magnitude of the long memory parameter,
6d6, of the temporally aggregated process is greater than the6d6 of the true pro-
cess, which is greater than the6d6 of the systematically sampled process+We also
find that the true long memory parameter can be obtained if we use a decay rate
that is not affected by different sampling intervals+

1. INTRODUCTION

An important class of time series models is the so-called long memory pro-
cesses, which were introduced by Mandelbrot and Van Ness~1968!, Granger
and Joyeux~1980!, and Hosking~1981!+ A simple property of long memory
processes is that whereas the autocorrelations decrease, they decrease very
slowly+ Therefore, the past influences the future in a manner reminiscent of
chaotic processes+

It is interesting to notice that many of the empirical studies use temporally
aggregated data, such as monthly time series, for the test of long memory pro-
cess+ We now have available financial data that are sampled on many different
frequencies+ Consider foreign exchange data for example+ These are now avail-
able on a quote-by-quote or trade-by-trade basis+ They are also available on
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daily, weekly, and even much lower frequencies+ This availability naturally raises
questions of temporal aggregation in long memory processes+

Ding, Granger, and Engle~1992! conjectured that temporal aggregation does
not change the long memory property of the return series+ Recently, Chambers
~1998! showed that at low frequencies, the decay rate of the spectral density
functions of long memory processes is not affected by sampling intervals+ There-
fore, the true long memory parameter can be estimated by considering low fre-
quencies regardless of the sampling interval+

A sampling interval that is different from the dynamics of the true process
affects the model specification of long memory processes+ However, both the
frequencies of the true process and the effects of the sampling interval on the
model specification of long memory processes are not known+ In this situation,
an appropriate long memory model that takes into account the sampling inter-
val is impossible+ Most empirical studies that use long memory processes do
not consider changes in model specification from varying sampling intervals+
For this reason, we assume that the sampling interval does not change the model
specification for a long memory process, and we investigate changes in the
long memory parameter+ Thus, our focus is on whether or not there is a change
in the long memory parameter when different sampling intervals are used+

In what follows, we extend the results of Chambers~1998! by using both
time and frequency domain analysis in discrete time long memory processes+1

First, the effects of systematic sampling and temporal aggregation on discrete
time long memory processes are presented in an analytical way; autocovari-
ance, autocorrelation, and spectral density functions are derived for the system-
atically sampled and temporally aggregated long memory processes+ Then,Monte
Carlo simulations using frequency domain maximum likelihood estimation meth-
ods are used for the finite sample properties of systematic sampling and tem-
poral aggregation effects on discrete time long memory processes+

Our study confirms the results of Chambers~1998!, in that the decay rate of
discrete time long memory spectral density functions at low frequencies~or,
equivalently, the decay rate of discrete time long memory autocorrelation func-
tions in large lags! is not affected by systematic sampling or temporal aggrega-
tion+ However, significant effects of systematic sampling or temporal aggregation
are found in the autocorrelation functions at short lags, which result in either
upward or downward movements in the level of autocorrelation function+ We
find that the effects are different for systematically sampled and temporally ag-
gregated long memory processes+ The absolute value of the autocorrelation co-
efficient of systematically sampled long memory processes becomes smaller as
the sampling interval increases, whereas the absolute value of the autocorrela-
tion coefficient of temporally aggregated long memory processes becomes larger
as the sampling interval increases+ These effects result in a bias in the long
memory parameter+2 In systematically sampled long memory processes, the long
memory parameter is always biased toward zero as the sampling interval in-
creases, whereas in temporally aggregated long memory processes the absolute
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value of the long memory parameter, 6d6, is larger than its true value+ Although
it is not reported in this paper, we find that there is no temporal aggregation
effect on continuous time long memory processes+

We also investigate whether or not the true long memory parameter can be
obtained from the decay rate of long memory spectral density functions at low
frequencies in finite samples+ For this purpose, we use the semiparametric re-
gression model suggested by Geweke and Porter-Hudak~1983!+ Our simula-
tion results using the semiparametric regression for discrete time long memory
processes show that the estimation biases are much less than the biases of max-
imum likelihood ~ML ! estimates+ Therefore, the true long memory parameter
can be estimated in temporally aggregated long memory processes+ However,
the standard deviation of the estimates is very large, and significant estimation
bias still exists in systematically sampled long memory processes+

2. DISCRETE TIME LONG MEMORY PROCESSES

A model appears to be more attractive when just one parameter is used for long
range dependence+ A long memory process is characterized as a process that
should explain long range dependence between observations more effectively
than conventional short memory processes+ There are two major models for
long memory process, continuous time models such as the fractional Gaussian
noise~FGN! model introduced by Mandelbrot and Van Ness~1968! and dis-
crete time models such as the autoregressive fractionally integrated moving av-
erage~ARFIMA ! model introduced by Granger and Joyeux~1980! and Hosking
~1981!+ Although the FGN model has the benefit that it can be used together
with ordinary Brownian motion, the ARFIMA model is generally preferred to
the FGN model+ The main reason is that the former can describe economic and
financial time series better than the latter+ Moreover, the ARFIMA model is a
generalization of the more familiar autoregressive integrated moving average
~ARIMA ! model; it captures both long and short memory, and it is easier to
use than the FGN model+

Discrete time long memory processes have much more flexibility than
ARIMA ~ p,d,q! models+ The order of integration in the ARIMA process is
confined only to integer values such as 0 or 1+ In this process a shock has
mean-reversion with an exponential decay rate whend 5 0 but has infinite
persistence whend 5 1+ This knife-edge distinction between ARIMA~ p,0,q!
and ARIMA~ p,1,q! may be too narrow+ Long memory processes add more
flexibility by allowing for fractional orders of integration such as 0# d # 1+

A discrete time long memory process~fractionally integrated process!, which
was introduced by Granger and Joyeux~1980! and Hosking~1981!, is defined
to be a discrete time stochastic process that is represented as

¹dxt 5 ~12 L!dxt 5 ut , (1)
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where L is the lag operator, ut is an independent and identically distributed
random variable, and20+5 , d , 0+5+3 Using the binomial series expansion,
the fractional difference operator¹d can be represented as

¹d 5 ~12 L!d

5 (
j50

` G~ j 2 d!

G~ j 1 1!G~2d!
L j, (2)

whereG~{! is the gamma function+ The infinite moving average representation
of xt may be denoted by4

xt 5 C~L!«t 5 (
j50

`

cj ut2j , (3)

wherecj 5 G~ j 1 d!0G~ j 1 1!G~d! andcj ' j d210G~d! asj r ` via Stirling’s
approximation+

The autocovariance, autocorrelation, and spectral density functions of the frac-
tionally integrated process fors $ 0 and 0, v # p are5

gFI ~s! 5
G~12 2d!G~s1 d!

G~d!G~12 d!G~s1 1 2 d!
su

2

'
G~12 2d!

G~d!G~12 d!
s2d21su

2, assr `, (4)

rFI ~s! 5
G~12 d!G~s1 d!

G~d!G~s1 1 2 d!

'
G~12 d!

G~d!
s2d21, assr `, (5)

SFI ~v! 5
su

2

2p
H2 sinSv

2DJ22d

'
su

2

2p
v22d, asv r 0, (6)

wheres is a lag between observations, v is a frequency, andsu
2 is a variance of

ut + We can see that the autocorrelations of the fractionally integrated series de-
cline at a slower rate than that of the autoregressive moving average~ARMA !
model+ The autocorrelation function~5! decays at a hyperbolic rate, whereas
that of the ARMA model decays exponentially+

Fractionally integrated processes show different characteristics depending on
the parameterd+ A fractionally integrated process is covariance stationary and
invertible when20+5 , d , 0+5, and it is a long memory process whend lies
between 0 and 0+5+ The fractional differencing parameterd is defined by the
behavior of the series up to infinite cycles+ As d goes to 0+5, the decay rate of
the impact of a unit innovation becomes slower+ Hence, the fractional differ-
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encing parameterd decides the decay of the system’s response to the innova-
tion+ Sowell ~1990! showed that, although the variance of the partial sums of
variables grows linearly with number of observations whend 5 0, it grows
faster than a linear rate when 0, d , 0+5+ On the other hand, when20+5 ,
d , 0, the process has short memory because each shock is negatively corre-
lated with the others, thus making the variance of the partial sums of variables
less than the variance of the individual shock+

Fractionally integrated processes can easily be generalized to the
ARFIMA ~ p,d,q! process+ More formally,

F~L!~12 L!dxt 5 Q~L!ut , (7)

whereF~L! 5 1 2 f1L 2 f2L2 2 {{{ 2 fpLp, Q~L! 5 1 1 u1L 1 u2L2 1 {{{ 1
upLq, 20+5 , d , 0+5, and all the roots ofF~L! andQ~L! lie outside of the
unit circle+ In the ARFIMA model, d may be chosen to describe the autocorre-
lation structure of distant observations of a time series, whereas theu and f
parameters can be chosen to describe the low lag autocorrelation structure+ There-
fore, the ARFIMA model not only overcomes the drawbacks that Mcleod and
Hipel ~1978! point out but also generalizes the Box–Jenkins ARIMA model
where only integral differencing is allowed+

3. THE EFFECTS OF SYSTEMATIC SAMPLING AND TEMPORAL
AGGREGATION ON DISCRETE TIME LONG MEMORY PROCESSES

The sampling interval of observed economic and financial time series~e+g+, daily,
weekly, and monthly! does not necessarily correspond to the true unknown in-
terval+We conjecture that the sampling interval is longer than the true interval,
resulting in temporal aggregation in flow time series and systematic sampling
in stock time series+We next investigate the effects of systematic sampling and
temporal aggregation on discrete time long memory processes under the as-
sumption that the sampling interval is longer than the true interval+

This section shows the effects of systematic sampling and temporal aggre-
gation on discrete time long memory processes: a systematically sampled
ARFIMA ~0,d,0! process and a temporally aggregated ARFIMA~0,d,0! pro-
cess+ For these two processes, properties such as autocovariance, autocorrela-
tion, and spectral density functions are derived+

Assumption 1+ The dynamics of the true underlying discrete time process
xt

D take place at every unknown 10h period whereh is a positive integer,
whereas the observations of the process take place at every unit time period+

The underlying process is simply thought of as a series of logarithmic changes
of the original positive time series at discrete time intervals+ For example, it is
a return in financial markets or a growth rate in economics+
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In the preceding assumption, h is a sampling interval+ More specifically, h is
the number of times the dynamics of the true underlying process take place
between observations+ When h 5 1, the observed time series is equivalent to
the true process+ When h is a positive integer greater than 1, then the time
series is observed less frequently than the frequency of the true process+

The true underlying process can be partially observed in two ways, system-
atic sampling and temporal aggregation+ A systematically sampled process is a
sequence of the true process at observation points and, thus, consists of every
otherh of the true process+ A temporally aggregated process is a sequence of
the aggregated true process between sampling intervals+ Therefore, if the dy-
namics of the true process take place every day, for example, the systemati-
cally sampled process is like observing a daily process every Monday but not
on other days, and the temporally aggregated process is a weekly return process+

DEFINITION 1+ A discrete systematically sampled process, whose true pro-
cess has10h dynamic periods, consists of$xt

DS5 xt
D ; t 5 1,2,3, + + + %+ A discrete

aggregated process, whose true process has10h dynamic periods, consists of
$xt

DA 5 (k50
h21 xt2~k0h!

D ; t 5 1,2,3, + + + %+

When the true process has 10h dynamic periods, the discrete true
ARFIMA ~0,d,0! process, xt

DF , is defined as

~12 L10h !dxt
DF 5 «t , t 5 1, 11 10h, 11 20h, 11 30h, + + + , (8)

where«t is a white noise sequence with variances2+ Note that the variances2

is measured with time interval 10h+ When we assume that the frequency of the
process defined in Section 2 is 10h, the variance of the white noise, su

2, in
Section 2 is identical tos2 in equation~8!+ Thus, without loss of generality, we
assumesu

2 5 s2 throughout this section+
We represent a theorem concerning autocovariance, autocorrelation, and spec-

tral density functions of a systematically sampled ARFIMA~0,d,0! process+ This
generalizes Theorem 1~a! of Chambers~1998!, where he derives the spectral
density functions of a systematically sampled ARFIMA~0,d,0! process+

THEOREM 1+ ~Systematically sampled ARFIMA~0,d,0! process! Under
Assumption 1 and Definition 1, the discrete systematically sampled
ARFIMA ~0,d,0! process, xt

DSF, is represented as

xt
DSF 5 (

k50

` G~k 1 d!

G~d!G~k 1 1!
«t2~k0h! t 5 1,2,3, + + + + (9)

The autocovariance, gDSF~s,h!, autocorrelation, rDSF~s,h!, and spectral den-
sity functions, SDSF~v,h!, of xt

DSF for s $ 0, h $ 1, and 0 , v # p are given
by
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gDSF~s,h! 5
G~12 2d!G~hs1 d!

G~d!G~12 d!G~hs1 1 2 d!
s2

'
G~12 2d!

G~d!G~12 d!
s2h2d21s2d21, ash or sr `, (10)

rDSF~s,h! 5
G~12 d!G~hs1 d!

G~d!G~hs1 1 2 d!

'
G~12 d!

G~d!
h2d21s2d21, ash or sr `, (11)

SDSF~v,h! 5
s2

2p
S2 sin

v

2h
D22d

'
s2

2p
h2dv22d, asv r 0, (12)

whereh is a sampling interval, s is a lag between observations, v is a fre-
quency, and s2 is a variance of«t +

Proof+ See the Appendix+
The properties of the discrete systematically sampled ARFIMA~0,d,0! pro-

cess have a sampling intervalh that the true discrete ARFIMA~0,d,0! process
does not have~see equations~4!–~6!!+ The true process is observed differently
by the sampling interval+ As pointed out in Chambers~1998!, the decay rate in
the spectral density function at low frequencies, 22d, is the same as that of the
true ARFIMA~0,d,0! process+ The autocorrelation function for larges also con-
firms that the decay rate is not changed by systematic sampling~compare equa-
tion ~11! with equation~5!!+

However, the absolute value of the autocorrelation function of the systemat-
ically sampled process is always less than that of the true ARFIMA~0,d,0! pro-
cess, because for any positive integerh . 1, h2d21 is less than 1 when
20+5 , d , 0+5+ This decreased autocorrelation function is expected to make
the estimatedd biased toward zero+ Figures 1–4 show the changes of the auto-
correlation functions for systematically sampled and aggregated ARFIMA~0,d,0!
processes whend 5 0+35~h 5 5! andd 5 20+35~h 5 5!, respectively+ In Fig-
ures 1 and 3, we can see that the absolute values of the autocorrelation func-
tions are decreased by systematic sampling+ Figures 2 and 4 show the ratios of
the autocorrelations ofxt

DSF to those of the true process in various lags, which
are always less than 1+ Therefore, although we may estimate the trued by con-
sidering low frequencies or equivalently remote autocorrelations, a systemati-
cally sampled ARFIMA~0,d,0! process becomes less persistent than the true
ARFIMA ~0,d,0! process+
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Figure 1. Autocorrelation functions of true, systematically sampled and aggregated
ARFIMA ~0,d,0! processes~d 5 0+35 andh 5 5!+ The upper line represents the autocor-
relation function of the aggregated ARFIMA~0,d,0! process, the middle line represents
the autocorrelation function of the true ARFIMA~0,d,0! process, and the lower line rep-
resents the autocorrelation function of the systematically sampled ARFIMA~0,d,0! pro-
cess+ The autocorrelations up to 30 lags are calculated using exact autocorrelation
functions and autocorrelations from 31 to 200 lags are calculated using limited autocor-
relation functions~see equations~11! and~16!!+

Figure 2. Ratio of autocorrelation of systematically sampled and aggregated
ARFIMA ~0,d,0! processes to that of the true ARFIMA~0,d,0! process~d 5 0+35 and
h 5 5!+ The upper line represents the ratio of autocorrelations of the aggregated
ARFIMA ~0,d,0! process to those of its true ARFIMA~0,d,0! process+ The lower line
represents the ratio of autocorrelations of the systematically sampled ARFIMA~0,d,0!
process to those of the true ARFIMA~0,d,0! process+
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Figure 3. Autocorrelation functions of true, systematically sampled and aggregated
ARFIMA ~0,d,0! processes~d 5 20+35 andh 5 5!+ The thick line represents the auto-
correlation function of the aggregated ARFIMA~0,d,0! process, the middle line repre-
sents the autocorrelation function of the true ARFIMA~0,d,0! process, and the thin~upper!
line represents the autocorrelation function of the systematically sampled ARFIMA~0,d,0!
process+ The autocorrelations are calculated using exact autocorrelation functions+

Figure 4. Ratio of autocorrelation of systematically sampled and aggregated
ARFIMA ~0,d,0! processes to that of the true ARFIMA~0,d,0! process~d 5 20+35 and
h 5 5!+ The upper line represents the ratio of autocorrelations of the aggregated
ARFIMA ~0,d,0! process to those of its true ARFIMA~0,d,0! process+ The lower line
represents the ratio of autocorrelations of the systematically sampled ARFIMA~0,d,0!
process to those of the true ARFIMA~0,d,0! process+
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A discrete aggregated ARFIMA~0,d,0! process, xt
DAF, can be obtained by

summing a discrete true ARFIMA~0,d,0! process, xt
DF , up to ~h 2 1!0h lags+

xt
DAF 5 (

j50

h21

xt2j0h
DF

5 ~11 L10h 1 L20h 1, + + + , L~h21!0h !~12 L10h !2d«t

5 ~12 L!~12 L10h !2d21«t + (13)

We present a theorem concerning autocovariance, autocorrelation, and spec-
tral density functions of a temporally aggregated ARFIMA~0,d,0! process+ This
generalizes Theorem 1~b! of Chambers~1998!, where he only derives spectral
density functions of temporally aggregated and systematically sampled
ARFIMA ~0,d,0! processes+

THEOREM 2+ ~Temporally aggregated ARFIMA~0,d,0! process! Under As-
sumption1 and Definition1, the discrete aggregatedARFIMA ~0,d,0! process,
xt

DAF, is defined as

xt
DAF 5 (

j50

h21

(
k50

` G~k 1 d!

G~k 1 1!G~d!
«t2~k0h!2~ j0h! t 5 1,2,3, + + + + (14)

The autocovariance, gDAF~s,h!, autocorrelation, rDAF~s,h!, and spectral den-
sity functions, SDAF~v,h!, of xt

DAF for s $ 0, h $ 1, and 0 , v # p are given
by

gDAF~s,h! 5
s2G~12 2d!

2~11 2d!G~11 d!G~12 d!

3 F G~11 hs1 d 1 h!

G~hs2 d 1 h!
1

G~11 hs1 d 2 h!

G~hs2 d 2 h!

2 2
G~11 hs1 d!

G~hs2 d!
G , (15)

rDAF~s,h! 5

G~11 hs1 d 1 h!

G~hs2 d 1 h!
1

G~11 hs1 d 2 h!

G~hs2 d 2 h!
2 2

G~11 hs1 d!

G~hs2 d!

2
G~11 d 1 h!

G~2d 1 h!
2 2

G~11 d!

G~2d!

'
h112d @~s1 1!112d 1 ~s2 1!112d 2 2s112d#

2h112d 2 2
G~11 d!

G~2d!

for large h

'
h112dd~11 2d!

h112d 2
G~11 d!

G~2d!

s2d21, as sr `, (16)

356 SOOSUNG HWANG

https://doi.org/10.1017/S0266466600163030 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466600163030


using Taylor series up to second order,

SDAF~v,h! 5
s2

2p
S2 sin

v

2h
D22~d11!S2 sin

v

2D2

'
s2

2p
h2d12v22d, asv r 0, (17)

whereh is a sampling interval, s is a lag between observations, v is a fre-
quency, and s2 is a variance of«t +

Proof+ See the Appendix+
The limiting spectral density and autocorrelation functions show that the de-

cay rate of the ARFIMA~0,d,0! process is not changed by temporal aggrega-
tion, identical to results in Theorem 1~b! of Chambers~1998!+ However, as we
can see in Figure 1, whend 5 0+35 andh 5 5, the autocorrelation function of
the aggregated process is always larger than that of the true process+ For posi-
tive d, rDAF~s,h! in equation~16! is always larger than its true value~G~12 d!!0
~G~d!! in ~5!+ This is shown in Figure 2 by the ratio of the autocorrelation of
the aggregated ARFIMA~0,d,0! process to that of the true ARFIMA~0,d,0! pro-
cess whend 5 0+35 andh 5 5+ Therefore, although the limiting autocorrelation
and spectral density functions do not show any change in the decay rate, the
level of the autocorrelation function moves upward, making the aggregated
ARFIMA ~0,d,0! process more persistent than the true ARFIMA~0,d,0!
process+ On the other hand, when 20+5 , d , 0, the ratio of the autocor-
relation function of the aggregated ARFIMA~0,d,0! process to that of the
true ARFIMA~0,d,0! process does not show a consistent pattern~see Fig-
ure 4!+ However, the pattern of the autocorrelation function of the aggregated
ARFIMA ~0,d,0! process in Figure 3 is typical for a larger negatived value+
Therefore, for negatived, temporal aggregation makes the true ARFIMA~0,d,0!
process have a higher negatived+ As a result, we conclude that the absolute
value of the discrete time long memory parameter6d6 of the aggregated
ARFIMA ~0,d,0! process is larger than that of its true process+ We present our
conclusions in Proposition 1+

PROPOSITION 1+

~1! Systematic Sampling Effect+ In the discrete systematically sampledARFIMA ~0,d,0!
processes, the absolutevalues of d are biased toward zero, as the sampling in-
terval h increases+

~2! Temporal Aggregation Effect+ In the discrete temporally aggregated
ARFIMA ~0,d,0! process, the absolutevalue of d increases as the sampling in-
terval h increases+

A referee suggests that the ARFIMA~ p,d,q! model rather than the
ARFIMA ~0,d,0! model would be better to specify the autocorrelation func-
tions of systematically sampled or temporally aggregated discrete time
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long memory processes+ Figures 2 and 4 support this suggestion; the ratios
of autocorrelation of systematically sampled and temporally aggregated
ARFIMA ~0,d,0! processes are not constant over lags+ That is, the ratios vary
for short lags, but they approach a constant for larger lags+ In addition, the
major changes in the levels of the autocorrelation of systematically sampled
and temporally aggregated ARFIMA~0,d,0! processes occur in the first lag+
Therefore, although the autocorrelation functions of systematically sampled and
temporally aggregated ARFIMA~0,d,0! processes areO~s2d21! as s r `,
autocorrelation levels of systematically sampled and temporally aggregated
ARFIMA ~0,d,0! processes are changed in short lags, generating a short mem-
ory process+ In these cases, ARFIMA ~0,d,0! processes together with appropri-
ate short memory processes may be better specified than ARFIMA~0,d,0!
processes for systematically sampled and temporally aggregated ARFIMA~0,d,0!
processes+ However, we do not know what the exactly specified model is or
the dynamic period of the true underlying process+ In this study, we investi-
gate the effects of sampling interval on the long memory parameter when sam-
pling intervals are disregarded+

Although the preceding analysis reflects the impact of temporal aggregation
on the true model, it does not deal with issues of estimation+ We consider this
problem in the next section+

4. FINITE SAMPLE PROPERTIES OF THE EFFECTS OF SYSTEMATIC
SAMPLING AND TEMPORAL AGGREGATION ON DISCRETE TIME
ARFIMA(0,d,0) PROCESSES

4.1. Maximum Likelihood Estimation

Many studies of long memory processes have used the frequency domain ap-
proach, because the spectral generating function is generally easy to evaluate+
Time domain maximum likelihood is computationally difficult to use for large
sample sizes because of the inversion of theT 3 T covariance matrix+ The fre-
quency domain approximate log-likelihood is represented as follows:

ln L~u! 5 2
1

2 (
k51

T21

ln s~vk! 2
1

2 (
k51

T21 I ~vk!

s~vk!
, (18)

where

I ~vk! 5

*(
t51

T

eivk t~Xt 2 XT!*
2

2pT
,

s~vk! is a spectral density function, vk 5 ~2pk!0T, andk 5 1,2, + + + ,T 2 1+
Fox and Taqqu~1986! proved that the estimates obtained using only the last

term of equation~18! are consistent and asymptotically normal+ These results
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were extended by Dahlhaus~1989! as in equation~18!+ Cheung and Diebold
~1994! compared the exact time domain ML estimates of Sowell~1992a! with
the approximate frequency domain ML estimates of Fox and Taqqu~1986!+When
the mean of a process is known, the time domain ML estimates are superior+
However, time domain ML estimates with a known mean are not feasible in
practice+ Time domain ML estimates with a sample mean do not seem to be
preferred to frequency domain ML estimates+ In addition, when the sample size
is more than 150 andd . 0, there is little difference between the two, and the
frequency domain ML estimates are less biased than the time domain ML esti-
mates+ Therefore, Cheung and Diebold~1994! suggested that the frequency do-
main ML estimation method is an attractive and efficient alternative when large
sample sizes are used+ Hauser~1992! and Lee~1994! also found similar results+

The recursive Levinson–Durbin algorithm is used for the generation of the
ARFIMA ~0,d,0! process+ The Cholesky decomposition is not a suitable method
here, because, as noted in Geweke and Porter-Hudak~1983!, it needs memory
proportional toT 2 and computation time proportional toT 3+ Therefore, when
as in this studyT 5 1,000, it becomes impractical to use the Cholesky
decomposition+

The GAUSS computer package is used for all computations+We use the same
GAUSS code as Lee~1994! for the generation of fractionally integrated pro-
cesses+ For the numerical optimization method, the Broyden, Fletcher, Gold-
farb, and Shanno algorithm is used+ However, when that algorithm cannot find
the optimum, the Davidon, Fletcher, and Powell algorithm, or the Newton–
Raphson algorithm, or the steepest descent method are used in that order+ Con-
vergence tolerance for the gradient of estimated coefficients is set to 1025+

Sampling intervals ofh 5 1, 5, 10, 15, 20 are explored+ First, a sample size
of T 5 1,000 is generated and then the original time series are transformed into
systematically sampled or temporally aggregated processes+ Systematically sam-
pled processes are obtained by using the following formulation:

xt,h
S 5 xht , (19)

wherext,h
S is a systematically sampled process with a sampling intervalh and

xt is the originally generated series+ When h 5 1, the frequencies of the true
process are the same as the observation frequencies+ However, whenh . 1, the
transformed process becomes a systematically sampled process with sampling
intervalh+ To explore temporal aggregation effects, the original process is tem-
porally aggregated as follows:6

xt,h
A 5 (

k50

h21

xht2k+ (20)

Because the sample size decreases according to the increase in the sampling
interval, the sample sizes for the sampling intervalsh 5 1, 5, 10, 15, 20 are
1,000, 200, 100, 66, 50, respectively+
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For the ARFIMA~0,d,0! process, equation~18! is used for the likelihood func-
tion+ The spectral density functions for the ARFIMA~0,d,0! process are

S~vk! 5
sh

2

22d11p~12 cos~vk!!
2d , (21)

wheresh
2 is the variance of the white noise variables of systematically sampled

or temporally aggregated ARFIMA~0,d,0! processes+ Because the exact values
of the variance are not known for systematically sampled and temporally aggre-
gated processes,7 we estimate$d,sh

2% for the ARFIMA~0,d,0! model for allh+
As shown in Section 3, the autocorrelations of systematically sampled and

aggregated processes are also a function of the parametersd+ Therefore, 10
points in both the parametersd of the ARFIMA process are explored: d 5
60+05, 60+15, 60+25, 60+35, 60+45+ For each$d,h% set, 1,000 Monte Carlo
replications are performed+ For the starting values ofd, the trued values are
used+ Sample variances of systematically sampled or temporally aggregated
processes are used for the starting values ofsh

2+ The bias, standard deviation,
and mean-squared error~MSE! of the estimatedd are computed+

The results of 1,000 replications of the ML estimation of the ARFIMA~0,d,0!
processes are reported in Tables 1–3+ Table 1 shows the finite sample proper-
ties of the frequency domain approximate ML estimation for the original
ARFIMA ~0,d,0! process at sample sizes ofT 5 1,000, 200, 100, 66, 50, respec-
tively+ The results for the ARFIMA~0,d,0! process are consistent with those
of Hauser~1992! and Lee~1994!+ As expected, the estimation bias and stan-
dard deviation of estimates tend to increase as the sample size becomes smaller+

Table 2 shows the simulation results for the finite sample properties of the
systematically sampled process+ As explained in the previous section, for the
systematically sampled process, long memory parameters are biased toward
zero+ The finite sample properties of the systematic sampling effects can be
summarized as follows+ First, the systematic sampling effect appears in the
ARFIMA ~0,d,0! process+ When the dynamics of the true process are more
frequent than the observations of the process, the estimates of the observed
systematically sampled process are always biased toward zero+ Table 2 shows
that the bias is larger in20+5 , d , 0 than in 0, d , 0+5+ This is because
of 20+5 , d , 0, long memory processes have similar properties to those of
short memory processes+

Our second investigation looks at the temporal aggregation effects~see
Table 3!+ As expected, in the aggregated ARFIMA~0,d,0! process, the aggre-
gation effect has upward bias+ The simulation results support what we found in
Section 3, that is, the absolute magnitude of the long memory parameter, 6d6,
of the aggregated ARFIMA~0,d,0! process is greater than the6d6 of the true
ARFIMA ~0,d,0! process+

Table 3 shows that the magnitude of the bias depends on the sampling inter-
val; the bias of the aggregated ARFIMA~0,d,0! process increases ash in-
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Table 1. Finite sample properties of the frequency domain approximate max-
imum likelihood estimation of ARFIMA~0,d,0! processes

Sample size

True d 1,000 200 100 66 50

Bias

0+45 0+0015 20+0015 20+0084 20+0124 20+0173

0+35 0+0000 20+0041 20+0103 20+0141 20+0188

0+25 20+0010 20+0068 20+0132 20+0165 20+0216

0+15 20+0017 20+0083 20+0154 20+0187 20+0249

0+05 20+0020 20+0089 20+0163 20+0199 20+0261

20+05 20+0019 20+0087 20+0161 20+0199 20+0258

20+15 20+0015 20+0077 20+0146 20+0186 20+0239

20+25 20+0007 20+0056 20+0117 20+0157 20+0203

20+35 0+0008 20+0022 20+0072 20+0111 20+0146

20+45 0+0035 0+0032 20+0006 20+0045 20+0066

Standard deviation

0+45 0+0268 0+0671 0+1036 0+1267 0+1544

0+35 0+0264 0+0662 0+0995 0+1259 0+1546

0+25 0+0261 0+0656 0+0993 0+1264 0+1543

0+15 0+0260 0+0655 0+0989 0+1266 0+1529

0+05 0+0259 0+0655 0+0990 0+1267 0+1532

20+05 0+0258 0+0655 0+0992 0+1268 0+1534

20+15 0+0258 0+0656 0+0995 0+1270 0+1538

20+25 0+0258 0+0657 0+1000 0+1274 0+1546

20+35 0+0260 0+0661 0+1008 0+1282 0+1558

20+45 0+0265 0+0671 0+1024 0+1296 0+1574

Mean-squared error

0+45 0+0007 0+0045 0+0108 0+0162 0+0241

0+35 0+0007 0+0044 0+0100 0+0161 0+0243

0+25 0+0007 0+0043 0+0100 0+0162 0+0243

0+15 0+0007 0+0044 0+0100 0+0164 0+0240

0+05 0+0007 0+0044 0+0101 0+0164 0+0242

20+05 0+0007 0+0044 0+0101 0+0165 0+0242

20+15 0+0007 0+0044 0+0101 0+0165 0+0242

20+25 0+0007 0+0044 0+0101 0+0165 0+0243

20+35 0+0007 0+0044 0+0102 0+0166 0+0245

20+45 0+0007 0+0045 0+0105 0+0168 0+0248

Note: The results are based on 1,000 replications of frequency domain ML estimates+
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Table 2. Finite sample properties of the frequency domain approximate max-
imum likelihood estimation of systematically sampled ARFIMA~0,d,0! pro-
cesses

Sampling interval~t!

True d 1 5 10 15 20

Bias

0+45 0+0015 20+1188 20+1638 20+2001 20+2200
0+35 0+0000 20+1320 20+1798 20+2159 20+2335
0+25 20+0010 20+1289 20+1690 20+1996 20+2114
0+15 20+0017 20+1007 20+1244 20+1472 20+1518
0+05 20+0020 20+0441 20+0512 20+0679 20+0684

20+05 20+0019 0+0355 0+0390 0+0251 0+0261
20+15 20+0015 0+1289 0+1370 0+1238 0+1248
20+25 20+0007 0+2289 0+2379 0+2243 0+2249
20+35 0+0008 0+3315 0+3396 0+3253 0+3255
20+45 0+0035 0+4348 0+4411 0+4262 0+4262

Standard deviation

0+45 0+0268 0+0623 0+0981 0+1263 0+1523
0+35 0+0264 0+0609 0+0959 0+1258 0+1509
0+25 0+0261 0+0601 0+0951 0+1243 0+1499
0+15 0+0260 0+0606 0+0955 0+1238 0+1490
0+05 0+0259 0+0622 0+0961 0+1226 0+1495

20+05 0+0258 0+0631 0+0965 0+1217 0+1510
20+15 0+0258 0+0632 0+0967 0+1212 0+1529
20+25 0+0258 0+0628 0+0965 0+1209 0+1548
20+35 0+0260 0+0623 0+0963 0+1208 0+1562
20+45 0+0265 0+0618 0+0962 0+1209 0+1571

Mean-squared error

0+45 0+0007 0+0180 0+0364 0+0560 0+0716
0+35 0+0007 0+0211 0+0415 0+0624 0+0773
0+25 0+0007 0+0202 0+0376 0+0553 0+0672
0+15 0+0007 0+0138 0+0246 0+0370 0+0452
0+05 0+0007 0+0058 0+0119 0+0196 0+0270

20+05 0+0007 0+0052 0+0108 0+0154 0+0235
20+15 0+0007 0+0206 0+0281 0+0300 0+0390
20+25 0+0007 0+0564 0+0659 0+0649 0+0746
20+35 0+0007 0+1138 0+1246 0+1204 0+1304
20+45 0+0007 0+1929 0+2038 0+1963 0+2063

Notes:The results are based on 1,000 replications of frequency domain ML estimates+ Sample sizes for sampling
intervals 1, 5, 10, 15, and 20 are 1,000, 200, 100, 66, and 50, respectively+
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Table 3. Finite sample properties of the frequency domain approximate max-
imum likelihood estimation of temporally aggregated ARFIMA~0,d,0! pro-
cesses

Sampling interval~t!

True d 1 5 10 15 20

Bias

0+45 0+0015 0+0916 0+1041 0+0977 0+0909
0+35 0+0000 0+0694 0+0802 0+0776 0+0687
0+25 20+0010 0+0480 0+0562 0+0540 0+0463
0+15 20+0017 0+0267 0+0307 0+0262 0+0177
0+05 20+0020 0+0052 0+0046 20+0030 20+0119

20+05 20+0019 20+0165 20+0224 20+0335 20+0427
20+15 20+0015 20+0380 20+0500 20+0651 20+0745
20+25 20+0007 20+0587 20+0774 20+0968 20+1068
20+35 0+0008 20+0773 20+1028 20+1259 20+1370
20+45 0+0035 20+0910 20+1223 20+1473 20+1598

Standard deviation

0+45 0+0268 0+0708 0+1038 0+1348 0+1603
0+35 0+0264 0+0673 0+0995 0+1288 0+1530
0+25 0+0261 0+0655 0+0969 0+1280 0+1530
0+15 0+0260 0+0652 0+0962 0+1272 0+1520
0+05 0+0259 0+0652 0+0963 0+1265 0+1532

20+05 0+0258 0+0651 0+0962 0+1267 0+1542
20+15 0+0258 0+0651 0+0961 0+1271 0+1554
20+25 0+0258 0+0652 0+0965 0+1278 0+1568
20+35 0+0260 0+0657 0+0976 0+1290 0+1584
20+45 0+0265 0+0675 0+1004 0+1314 0+1599

Mean-squared error

0+45 0+0007 0+0134 0+0216 0+0277 0+0340
0+35 0+0007 0+0093 0+0163 0+0226 0+0281
0+25 0+0007 0+0066 0+0125 0+0193 0+0255
0+15 0+0007 0+0050 0+0102 0+0169 0+0234
0+05 0+0007 0+0043 0+0093 0+0160 0+0236

20+05 0+0007 0+0045 0+0097 0+0172 0+0256
20+15 0+0007 0+0057 0+0117 0+0204 0+0297
20+25 0+0007 0+0077 0+0153 0+0257 0+0360
20+35 0+0007 0+0103 0+0201 0+0325 0+0439
20+45 0+0007 0+0129 0+0250 0+0390 0+0511

Notes:The results are based on 1,000 replications of frequency domain ML estimates+ Sample sizes for sampling
intervals 1, 5, 10, 15, and 20 are 1,000, 200, 100, 66, and 50, respectively+
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creases+ However, after some sampling intervals, it shows little difference+ This
can be explained by the autocorrelation function of~16!+ As h becomes infi-
nitely large, the limiting autocorrelation function can be represented as

rDAF~s,h,d! '
h112dd~11 2d!s2d21

h112d 2
G~11 d!

G~2d!

' d~11 2d!s2d21, ash r `+ (22)

Therefore, for an infinitely largeh the autocorrelation is not a function ofh+
Note that the preceding limiting autocorrelation function is the same as that of
the discrete time fractional Gaussian noise process~see Mandelbrot and Van
Ness, 1968!+ The dynamics of the true process which have an infinitesimal in-
terval in continuous time long memory processes are equivalent to an infinitely
largeh in discrete time long memory processes+

4.2. Further Considerations

Chambers~1998! showed that the true long memory parameterd can be esti-
mated regardless of sampling interval, because the decay rates of the spectral
density function are not affected by systematic sampling or temporal aggrega-
tion+ Our results agree with his for both spectral density and autocorrelation
functions~see equations~11!, ~12!, ~16!, and~17!!+

To further investigate whether or not estimates obtained using low frequen-
cies reflect the true long memory parameterd, we use simulations with the
semiparametric regression analysis of Geweke and Porter-Hudak~1983!+ These
researchers concentrated on low frequencies becaused is determined by the
spectral density near zero frequencies+ Their equation can be represented as8

ln I ~vj ! 5 c 2 d lnS2 sinSvj

2 DD2

1 «j , (23)

wherec is a constant+ The long memory parameterd can be estimated withj 5
1,2, + + + , g~T !, where limTr` g~T ! 5 ` and limTr` g~T !0T 5 0+ That is, g~T !
should be sufficiently small compared withT+ Here, g~T !9 is set equal toT 0+5+
As presented in equation~23!, the semiparametric method of Geweke and Porter-
Hudak~1983! uses only the decay rate of fractionally integrated processes+ Be-
cause systematic sampling and temporal aggregation do not affect the decay rate
of the true long memory process, the Geweke and Porter-Hudak method may
be a more appropriate method to estimate the true unobserved long memory pa-
rameter than parametric methods such as those used in the previous subsection+

Four points, d 5 60+15,60+35 at sampling intervalsh 5 1, 5, 10, 15, 20, are
considered in both the systematically sampled and temporally aggregated
ARFIMA ~0,d,0! processes+ Other simulation conditions are the same as those
of the ML estimation of Section 4+1+
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Tables 4–6 show the results of 1,000 replications of Geweke and Porter-
Hudak’s semiparametric estimation+ Table 4 represents finite sample proper-
ties of their estimates+ The estimation bias is small and seems robust to changes
in sample size andd+10 The standard deviation is also robust to the changes in
the value of the true parameter+ However, the standard deviations are larger
than those of the ML estimates in Table 1 and seem very large for small sam-
ples+ This is because the number of periodograms used in the Geweke and
Porter-Hudak estimation is onlyT 0+5+ Therefore, the MSE’s of the Geweke
and Porter-Hudak estimates are high compared with those of ML estimates,
and the estimates are not efficient for small samples+11

Let us first consider the finite sample properties of systematically sampled
processes+ Table 5 shows that the estimation bias is still present+ Although the
estimation biases are less than that of the ML estimates~see Table 2!, they are
still very large+ In addition, for negatived values, there is little difference be-
tween the Geweke and Porter-Hudak and the ML estimates+ This may be be-
cause for negatived, the discrete time long memory process has the properties
of a short memory process rather than those of a long memory process+ How-
ever, as expected, for a temporally aggregated long memory process, using low
frequencies gives estimates close to the true long memory parameter+ Table 6

Table 4. Finite sample properties of the semiparametric regression analysis
of Geweke and Porter-Hudak~1983! for ARFIMA ~0,d,0! processes

Sample size

True d 1,000 200 100 66 50

Bias
0+35 0+0023 0+0087 0+0134 0+0168 0+0065
0+15 20+0038 20+0021 0+0026 0+0061 20+0044

20+15 20+0051 0+0045 0+0055 0+0003 20+0065
20+35 0+0084 0+0268 0+0252 0+0186 0+0132
Standard deviation

0+35 0+1378 0+2360 0+2921 0+3546 0+3908
0+15 0+1372 0+2426 0+2946 0+3495 0+3981

20+15 0+1404 0+2384 0+2943 0+3577 0+4045
20+35 0+1415 0+2365 0+2909 0+3484 0+3976
Mean-squared error

0+35 0+0190 0+0558 0+0855 0+1260 0+1528
0+15 0+0189 0+0589 0+0868 0+1222 0+1585

20+15 0+0197 0+0569 0+0866 0+1279 0+1637
20+35 0+0201 0+0567 0+0853 0+1217 0+1582

Note: The results are based on 1,000 replications of Geweke and Porter-Hudak semiparametric regression esti-
mates+
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shows that the bias of estimates obtained using low frequencies is small in the
aggregated long memory process+

Therefore, for the finite samples considered in this study, the trued may not
be obtained when observed time series are systematically sampled+ On the other
hand, for the temporally aggregated time series, we may obtain the trued by
considering low frequencies+ However, note that standard deviations are rela-
tively very high in the Geweke and Porter-Hudak semiparametric estimates+

Chambers~1998! concentrated only on the decay rate of long memory pro-
cesses near the zero frequency and suggested that the true long memory param-
eter can be estimated using the decay rate of the spectral density function at
low frequencies+ Our finite sampling simulations show that Geweke and Porter-
Hudak semiparametric estimates using only low frequencies may fail to obtain
the true long memory parameter when the observed time series is systemati-
cally sampled or the number of observations is small+ In addition, the true long
memory parameter may not be obtained when20+5 , d , 0+

5. CONCLUSION

This study investigated the effects of systematic sampling and temporal aggre-
gation on long memory processes under the assumption that there was no change

Table 5. Finite sample properties of semiparametric regression analysis of
Geweke and Porter-Hudak~1983! for systematically sampled ARFIMA~0,d,0!
processes

Sampling interval~t!

True d 1 5 10 15 20

Bias
0+35 0+0023 20+0567 20+1212 20+1533 20+2013
0+15 20+0038 20+0796 20+1101 20+1229 20+1355

20+15 20+0051 0+1374 0+1413 0+1539 0+1477
20+35 0+0084 0+3413 0+3422 0+3489 0+3527
Standard deviation

0+35 0+1378 0+2311 0+3067 0+3508 0+3976
0+15 0+1372 0+2332 0+2842 0+3438 0+3924

20+15 0+1404 0+2362 0+2871 0+3399 0+3935
20+35 0+1415 0+2472 0+2852 0+3454 0+3773
Mean-squared error

0+35 0+0190 0+0567 0+1088 0+1466 0+1986
0+15 0+0189 0+0607 0+0929 0+1333 0+1723

20+15 0+0197 0+0747 0+1024 0+1392 0+1767
20+35 0+0201 0+1776 0+1984 0+2410 0+2668

Notes:The results are based on 1,000 replications of semiparametric regression estimates+ Sample sizes for sam-
pling intervals 1, 5, 10, 15, and 20 are 1,000, 200, 100, 66, and 50, respectively+
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in model specification caused by systematic sampling or temporal aggregation+
From the theoretical explanation in Section 3 and the simulations conducted in
Section 4, the following results are obtained: for the ARFIMA~0,d,0! process,
the absolute value of the long memory parameter, 6d6, of the temporally aggre-
gated process is larger than the6d6 of the true process, which is larger than the
6d6 of the systematically sampled process+

Our results are consistent with those of Chambers~1998! and Ding et al+
~1992!, who conjecture that temporal aggregation does not change the decay
rate of autocorrelations+ One of the interesting properties of discrete time long
memory processes is that although the autocorrelation level is affected by sys-
tematic sampling or temporal aggregation, the decay rate of the autocorrela-
tions in remote lags or, equivalently, the decay rate of spectral densities at low
frequencies is not affected by the sampling interval+ For the finite samples used
in this study, Geweke and Porter-Hudak’s semiparametric regression gives a
long memory parameter close to its true value for the temporally aggregated
process, whereas the estimates are still biased toward zero for the systemati-
cally sampled long memory process+

However, it is worth pointing out that the autocorrelation function of dis-
crete time long memory processes shifts downward or upward by systematic
sampling or temporal aggregation+ In this respect, although we may estimate

Table 6. Finite sample properties of semiparametric regression analysis of
Geweke and Porter-Hudak~1983! for temporally aggregated ARFIMA~0,d,0!
processes

Sampling interval~t!

True d 1 5 10 15 20

Bias
0+35 0+0023 0+0033 0+0019 0+0125 0+0105
0+15 20+0038 20+0061 20+0073 20+0043 20+0071

20+15 20+0051 20+0145 20+0238 20+0276 20+0377
20+35 0+0084 20+0036 20+0229 20+0382 20+0493
Standard deviation

0+35 0+1378 0+2351 0+2918 0+3562 0+4002
0+15 0+1372 0+2342 0+2904 0+3650 0+3973

20+15 0+1404 0+2377 0+3041 0+3627 0+4132
20+35 0+1415 0+2423 0+2954 0+3545 0+3970
Mean-squared error

0+35 0+0190 0+0553 0+0851 0+1270 0+1603
0+15 0+0189 0+0549 0+0844 0+1332 0+1579

20+15 0+0197 0+0567 0+0930 0+1323 0+1722
20+35 0+0201 0+0587 0+0878 0+1271 0+1601

Notes:The results are based on 1,000 replications of semiparametric regression estimates+ Sample sizes for sam-
pling intervals, 1, 5, 10, 15, and 20 are 1,000, 200, 100, 66, and 50, respectively+
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the true long memory parameter using the decay rates, we conclude that the
sampling interval does affect the long memory parameter if we do not consider
the changes in model specification+ Empirical studies on the existence of long
memory processes in economic and financial time series may be affected by
the sampling interval+ The probability that we find evidence of a long memory
process increases as the sampling interval increases for a temporally aggre-
gated time series, if there exists long memory+ Our results in Section 4 do sug-
gest that for a large number of observations such as in financial time series, the
true long memory parameter may be estimated using the semiparametric regres-
sion of Geweke and Porter-Hudak~1983!+

NOTES

1+ The results for continuous time long memory processes can be obtained from the author on
request+

2+ We use “bias” for the difference between the true long memory parameter values and the
long memory parameter values of the systematically sampled or temporally aggregated long mem-
ory processes+ “Bias” used in this study means a model misspecification bias+ We use “estimation
bias” for the difference between the true values and the estimated parameter values to differentiate
the “bias” in this study+

3+ Although d may be any real number, d is assumed to lie in the interval~20+5, 0+5! with a
finite number of difference+

4+ Moving average~MA ! representation will be used for our explanation+ The autoregressive
~AR! representation can be inferred from the MA representation+ That is, the d of the MA repre-
sentation is equal to2d of the AR representation+

5+ See Granger and Joyeux~1980! and Hosking~1981! for proof+
6+ Sample size of both systematically sampled and aggregated processes whenh 5 15 is 66 and

only the first 990 observations from the original sample size of 1,000 are used+
7+ Only whenh 5 1, s1

2 is known to be 1+
8+ This equation is a logarithmic transformation of equation~6!+
9+ The Geweke and Porter-Hudak method has some difficulties in selectingg~T ! ~see Sowell,

1992b, and Hurvich and Beltrao, 1993!+ Geweke and Porter-Hudak suggested thatg~T ! 5 T 0+5 is
appropriate, and Diebold and Rudebusch~1989! and Cheung~1993! also showed that the exponent
~0+5! is appropriate+

10+ The biases of the Geweke and Porter-Hudak estimates are found in the presence of AR or
MA processes~Agiakloglou, Newbold, and Wohar, 1993! and in either noninvertible~d 5 20+5! or
nonstationary~d 5 0+5! ARFIMA ~0,d,0! processes~Hurvich and Ray, 1994!+

11+ See Sowell~1992a! for the simulation results of the finite sample properties of Geweke
and Porter-Hudak, time domain ML, and frequency domain ML estimates+ Also see Robinson
~1994, 1995! and Hidalgo and Yajima~1996! for further discussion of the Geweke and Porter-
Hudak estimation and its modification+
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APPENDIX

Proof of Theorem 1. ~Systematically sampled ARFIMA~0,d,0! process! The spec-
tral density function ofxDSF in equation~12! is easily obtained from equation~8!+ The
autocovariance function ofxDSF,gDSF~s,h!, has anhs lag between observations in the
true process+ That is, a lag of magnitudes between observations in systematically sam-
pled ARFIMA~0,d,0! is equivalent to a lag of magnitudehs in the true ARFIMA~0,d,0!
process+ Therefore, we can use equation~4! to derivegDSF~s,h! by simply replacings
with hs+ Mathematically,
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gDSF~s,h! 5 Cov~xt
DSF, xt2s

DSF!

5 EFS«t 1
G~11 d!

G~d!G~2!
«t2~10h! 1 {{{ 1

G~hs1 d!

G~d!G~hs1 1!
«t2s

1
G~hs1 d 1 1!

G~d!G~hs1 2!
«t2s2~10h! 1 {{{D

3 S«t2s 1
G~11 d!

G~d!G~2!
«t2s2~10h! 1

G~2 1 d!

G~d!G~3!
«t2s2~20h! 1 {{{DG

5
s2

G~d!2 F G~hs1 d!G~d!

G~hs1 1!G~1!
1

G~hs1 11 d!G~11 d!

G~hs1 2!G~2!

1
G~hs1 2 1 d!G~2 1 d!

G~hs1 3!G~3!
1 {{{G

5
s2

G~d!2

G~hs1 d!G~d!

G~hs1 1!
F11

~hs1 d!d

~hs1 1!1!
1

~hs1 d!~hs1 1 1 d!d~11 d!

~hs1 1!~hs1 2!2!
1 {{{G

5
s2

G~d!2

G~hs1 d!G~d!

G~hs1 1!
F~d,hs1 d;hs1 1;1!

5
s2

G~d!2

G~hs1 d!G~d!

G~hs1 1!

G~hs1 1!G~12 2d!

G~hs1 1 2 d!G~12 d!

5
G~hs1 d!G~12 2d!

G~d!G~12 d!G~hs1 1 2 d!
s2, (A.1)

whereF~a,b;g;1! is a hypergeometric function and

F~a,b;g;1! 5 11
a 3 b

g 3 1!
1

a~a 1 1!b~b 1 1!

g~g 1 1! 3 2!
1

a~a 1 1!~a 1 2!b~b 1 1!~b 1 2!

g~g 1 1!~g 1 2! 3 3!

1 {{{

5
G~g!G~g 2 a 2 b!

G~g 2 a!G~g 2 b!
@g . a 1 b# (A.2)

~Gradshteyn and Ryzhik, 1994, 9+122, p+ 1068+! The autocorrelation function in equa-
tion ~11! follows straightforwardly+ n

Proof of Theorem 2. ~Temporally aggregated ARFIMA~0,d,0! process! Let us de-
fine gDF~s! as the autocovariance function of the true underlying fractionally integrated
processxt

DF , wheres is a lag between observations+ That is,

gDF ~s! 5 Cov~xt
DF , xt2s0h

DF !

5
G~12 2d!G~s1 d!

G~d!G~12 d!G~s1 1 2 d!
s2+
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This is actually the same as equation~4! as explained following Definition 1+ Then the
autocovariance function ofxt

DAF is

gDAF~s,h! 5 CovS(
k50

h21

xt2k0h
DF , (

k50

h21

xt2s2k0h
DF D

5 2hgDF ~hs! 1 (
i50

h21

~h 2 i !gDF ~hs2 i ! 1 (
i50

h21

~h 2 i !gDF ~hs1 i !

5 2 hgDF ~hs! 1 (
i50

h21

(
k51

h2i

gDF ~hs2 i ! 1 (
i50

h21

(
k51

h2i

gDF ~hs1 i !

5
s2G~12 2d!

G~d!G~12 d! (
k51

h F2
G~d 1 hs!

G~12 d 1 hs!
1 (

i50

h2k G~d 1 hs2 i !

G~12 d 1 hs2 i !

1 (
i50

2k G~d 1 hs1 i !

G~12 d 1 hs1 i !G
5

s2G~12 2d!

2~11 2d!G~11 d!G~12 d!

3 F G~11 hs1 d 1 h!

G~hs2 d 1 h!
1

G~11 hs1 d 2 h!

G~hs2 d 2 h!
2 2

G~11 hs1 d!

G~hs2 d!
G ,

(A.3)

using the following lemma of Sowell~1990! twice:

(
k51

N G~a 1 k!

G~b 1 k!
5

1

11 a 2 b
F G~11 a 1 N!

G~b 1 N!
2

G~11 a!

G~b!
G + (A.4)

The variance function ofxt
DAF is

gDAF~0,h! 5
s2G~12 2d!

2~11 2d!G~11 d!G~12 d!

3 F G~11 d 1 h!

G~2d 1 h!
1

G~11 d 2 h!

G~2d 2 h!
2 2

G~11 d!

G~2d!
G + (A.5)

Using the following equation~see Gradshteyn and Ryzhik, 1994, 8+334, p+ 946!,

G~12 x!G~x! 5
p

sin~px!
, (A.6)

we have

G~11 d 2 h!G~2d 1 h! 5
p

sin~p~2d 1 h!!
, (A.7)

G~11 d 1 h!G~2d 2 h! 5
p

sin~p~2d 2 h!!
+ (A.8)
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Becauseh is a positive integer, equation~A+7! is the same as equation~A+8!+ Equating
and rearranging the two equations, we have

G~11 d 2 h!

G~2d 2 h!
5

G~11 d 1 h!

G~2d 1 h!
+ (A.9)

Therefore, we have

gDAF~0,h! 5
s2G~12 2d!

2~11 2d!G~11 d!G~12 d!
F2

G~11 d 1 h!

G~2d 1 h!
2 2

G~11 d!

G~2d!
G (A.10)

The autocorrelation function ofxt
DAF is obtained using autocovariance function~A+3!

and variance function~A+10! of xt
DAF, and the spectral density function ofxt

DAF follows
from equation~13!+ n
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