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Only limited information is currently available on the evolution of waves generated
by wind that varies in time, and in particular on the initial stages of wind–wave
growth from rest under a suddenly applied wind forcing. The emerging wind–wave
field varies in time as well as in space. Detailed knowledge of wave parameter
distributions under those conditions contributes to a better understanding of the
mechanisms of wind wave generation. In the present study, the instantaneous surface
elevation and two components of the instantaneous surface slope were recorded at
various fetches in a small-scale experimental facility under nearly impulsive wind
forcing. Numerous independent realizations have been recorded for each selection
of operational conditions. Sufficient data at a number of fetches were accumulated
to calculate reliable ensemble-averaged statistical parameters of the evolving random
wind–wave field as a function of the time elapsed from activation of wind forcing.
Distinct stages in the wave evolution process from appearance of initial ripples to
emergence of a quasi-steady wind–wave field were identified. The experimental results
during each stage of evolution were analysed in view of the viscous instability theory
by Kawai (J. Fluid Mech., vol. 93, 1979, pp. 661–703) and the resonance model by
Phillips (J. Fluid Mech., vol. 2, 1957, pp. 417–445).
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1. Introduction

The process of generation of sea waves by wind has enthralled human mind since
ancient times and remains at the centre of scientific interest. Quantitative analysis
of various mechanisms describing the interaction of wind and waves started more
than a century ago. von Helmholtz (1868) and Kelvin (1871) treated excitation
of water waves by wind as an instability problem. Jeffreys (1925) presented the
sheltering theory that assumes separation of the air flow above the waves on the
leeward side of the wave crest, leading to a phase shift between the surface elevation
and the air pressure fluctuations. Major progress was made when simultaneous
ground-breaking works of Miles (1957) and Phillips (1957) presented two different
possible mechanisms of water-wave generation by wind: the resonant pressure
fluctuations model by Phillips and the shear-flow model by Miles. Only very limited
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460 A. Zavadsky and L. Shemer

efforts have been made so far to validate the Phillips model. The outcome of an
attempt in this direction by Giovanangeli & Memponteil (1985), who introduced
strong periodic vortices into the air flow over the water surface, remains inconclusive.
The resonant model of Phillips was used by Teixeira & Belcher (2006) to study
theoretically the initial excitation of waves by turbulent shear flow.

Miles (1957) considered interaction between surface waves and shear flow in the air
and employed the concept of the ‘critical layer’, where the local wind velocity equals
to the phase velocity of water waves; this layer plays a crucial role in wind–wave
excitation. In subsequent works, Benjamin (1959) and Miles (1959, 1962, 1993,
2001) updated the critical layer model, in particular incorporating the wave-induced
perturbations of the Reynolds stresses. However, Miles (1993) stressed that the model
remains unreliable at the initial stages of wind–wave generation. Valenzuela (1976),
Kawai (1979), van Gastel, Janssen & Komen (1985), among others, demonstrated
that considering coupled viscous shear flow at the gas–liquid interface leads to a
significant increase in growth rates. More recently, advanced theoretical modelling
and direct numerical simulation (DNS) of turbulent air flow were applied to study
coupling between wind and waves (Belcher & Hunt 1993, 1998; Kudryavtsev &
Makin 2002; Druzhinin, Troitskaya & Zilitinkevich 2012; Troitskaya et al. 2012;
Yang, Meneveau & Shen 2013; Kudryavtsev, Chapron & Makin 2014; Kudryavtsev
& Chapron 2016).

Kahma & Donelan (1988) found experimentally that the friction velocity threshold
above which the wind waves emerge is 2 cm s−1 (corresponding to free wind velocity
below 1 m s−1). The growth rates measured by them at very low wind speeds were
significantly larger than those predicted by various treatments of the coupled shear-
flow instability theory. The experimental results on wind–wave growth rates exhibit
significant scatter around the predictions by Miles theory (Plant 1982). The spatial
growth rates at the steady wind forcing for fixed Fourier frequency harmonics were
measured directly in the experimental facility used in the present study by Liberzon &
Shemer (2011); the results fall into the domain of data scatter in the Plant plot. The
balance between energy input by wind, dissipation and wave growth has been studied
in detail in two experimental facilities of different size by Grare et al. (2013). Fedorov
& Melville (1998) demonstrated that dissipation due to the parasitic capillaries excited
on short wind waves is essential and can affect significantly the wave growth rates.

Wu (1975) emphasized the role of the mean water shear current that plays an
important role in momentum transfer across the interface. The current results from the
wind-induced shear, as well as from the Stokes drift due to wind–wave nonlinearity.
Wu measured vertical velocity profiles under an air–water interface; the velocity
profile in water was related to the independently measured friction velocity in air. It
was estimated in this study that the total drift is less than 5 % of the wind velocity
and saturates to the value of 3.5 % for very long fetches. Kawai (1979), van Gastel
et al. (1985), Janssen (1986), Caulliez, Makin & Kudryavtsev (2008), Liberzon &
Shemer (2011) stressed that the water shear current also modifies the short-wave
gravity–capillary dispersion relation due to the Doppler shift effect. Zavadsky &
Shemer (2012) performed high-resolution measurements of turbulent velocity profiles
in the air above wind waves. The existence of a logarithmic velocity profile at
all operational conditions was demonstrated. The friction velocity at the air–water
interface determined by two independent methods was shown to be a function
solely of wind forcing and practically independent of fetch. Ebuchi, Kawamura &
Toba (1987), Caulliez & Collard (1999), Zavadsky, Benetazzo & Shemer (2017)
and Zavadsky & Shemer (2017) emphasized the three-dimensional structure of the
wind–wave field and studied its spatial evolution.
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Temporal evolution of wind–wave field 461

It should be stressed that the theories of Miles, Phillips and most subsequent
theoretical and numerical studies consider the evolution of the wind–wave field in time
(the duration-limited case), often assuming spatial homogeneity. In the experiments
surveyed above, however, the spatial (fetch-limited) evolution of waves is measured.
The wave field in this case is statistically steady but spatially inhomogeneous.
Hwang & Wang (2004) stressed the problems associated with comparison of the
experimentally determined characteristics of wave field evolution in space under
effectively steady wind forcing, with the theoretically predicted temporal variation
and suggested a space–time conversion procedure to relate fetch- and duration-limited
results.

Unsteadiness of wind forcing introduces additional complexity to the problem of
excitation of water waves by wind, rendering the statistical characteristics of waves
dependent on time as well as on space. It is impossible to control the unsteady wind
in field experiments, thus data recorded in such experiments are rare; the works
by Hwang & Wang (2004) and Hwang, García-Nava & Ocampo-Torres (2011) are
among the few examples. To gain a better understanding of wind–wave development
under time-dependent wind forcing, laboratory experiments are thus needed. Such
experiments are necessarily limited in scale, but they have the potential to provide
quantitative results on very short gravity–capillary and gravity wind waves. These
results are relevant to phenomena at much larger scales since water surface roughness
associated with ripples and short waves excited on the see surface by wind gusts
plays an important role in momentum, mass and heat transfer between the atmosphere
and ocean.

However, even at laboratory scale only limited experimental data are currently
available of waves under a time-dependent wind that were acquired under controlled
conditions in wind–wave facilities. Since short ripples on the water surface are key
elements in microwave remote sensing, radars were used extensively in early studies
of waves generated by an abruptly started wind (Larson & Wright 1975; Plant
& Wright 1977). The radar measurements provide reasonable temporal and spatial
resolution; however, the data are limited to the growth of waves with fixed lengths
only that are defined by the Bragg resonance conditions. The exponential growth rates
in time recorded in those experiments were thus presented for few fixed harmonics of
the wind–wave field. These wavelengths are defined by the radar characteristics rather
than by the evolving wave field. The radar data thus do not necessarily represent the
dominant part of the wave spectra that may vary during the evolution process and
therefore are only capable of providing parts of the global wave evolution pattern.
Nevertheless, radar measurements proved to be effective in determination of threshold
values of the friction velocity for wind–wave growth (Donelan & Plant 2009).

Extensive experimental and theoretical study of the initial stage of ripple excitation
under an abruptly started wind forcing by Kawai (1979) provided evidence of
exponential temporal growth that was related to a viscous instability mechanism.
Time-dependent results were presented for short segments assuming quasi-steady
conditions within each segment. Exponential growth in time was also reported by
Mitsuyasu & Rikiishi (1978) who studied evolution of the wind–wave field in a
laboratory tank under a rapidly accelerating wind. The quasi-steady analysis of short
segments was applied in this work, as well as in a later study by Waseda, Toba &
Tulin (2001) of the effect of wind gusts on the developed wind–wave field.

Veron & Melville (2001) applied a number of sensors to study waves driven by
a slowly accelerating wind. Visualization of the water surface in their experiments
demonstrates three-dimensionality of the surface with the wave pattern varying with
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time and thus with the instantaneous wind forcing. The spectral information was
obtained in this study by applying a quasi-steady assumption. Uz et al. (2002,
2003) investigated wind stress under steady, abruptly starting and varying wind in
a laboratory tank using a scanning laser slope gauge and hot-film anemometer. The
variation of the stress with time under time-dependent wind forcing was estimated
from the measured three-dimensional spectra; these were derived from the laser slope
gauge results and the turbulent stress measured at a fixed location by the hot film.
The variation of the instantaneous stress at an air–water interface was estimated from
these data effectively invoking the quasi-steady assumption.

It thus transpires that not only the available body of results on waves excited by a
wind varying in time is limited, the results in those studies were obtained mostly by
applying some kind of quasi-steady approximation. Theoretical studies of nonlinear
random wind waves, however, suggest that for the situations where wind forcing is
sharply increased, the evolution of statistical characteristics of the wave field differs
qualitatively from the predictions of quasi-steady models (Annenkov & Shrira 2011,
2013). The validity of these theoretical predictions has not yet been verified due to
the absence of reliable measurements of wave field evolution in such conditions.

The present work is aimed at time-resolved characterization of evolution of the
wind–wave field under a rapidly increasing wind. The goal of the experiments is
to provide quantitative statistically reliable information on the important parameters
characterizing short random gravity–capillary and gravity wind waves with sufficiently
high temporal resolution. The accumulated results are then analysed to define different
stages of the evolution of waves in the framework of theoretical models by Phillips
(1957) and Kawai (1979) describing wind–wave evolution in time. To this end,
experiments employing diverse measuring techniques are carried out in a small-scale
wind–wave tank. Advantage is taken of two unique features of our facility: (i) its
modest size and thus relatively short characteristic time scales of the phenomena
under investigation and (ii) availability of an automated experimental procedure
that allows running of prolonged experiments without human intervention. These
features make it possible to record multiple independent realizations of a spatially
and temporally varying wind–wave field for each selection of operational conditions.
The large ensembles of data accumulated in these experiments allow for the first
time determination of statistically representative ensemble-averaged wave parameters
as a function of time and space and to follow closely the evolution of wind waves
from appearance of first disturbances on an initially calm water surface, to a fully
developed quasi-steady wind–wave field.

2. The experimental facility, data acquisition and processing

The measurements were carried out in the small-scale Tel-Aviv University
wind–wave flume shown schematically in figure 1(a). This closed-loop facility
consists of a wind tunnel over a 5 m long water tank with the cross-section 0.4 m
by 0.5 m. Side walls and the bottom of the test section are made of clear glass
to enable visualization of the wave field from all directions. The test section is
covered by transparent removable plates with a partially sealed slot along the centre
line to facilitate positioning of sensors. Water depth in the test section was kept
at approximately 0.2 m, satisfying deep-water conditions for wind–wave lengths
observed in this study. A computer-controlled blower enables maximum wind
speed in the test section that may exceed 15 m s−1. The rectangular air inlet and
outlet openings in the tank are 0.4 m wide and 0.25 m high, thus limiting the
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FIGURE 1. (Colour online) Schematic view of the experimental facility and LSG: 1 –
blower; 2 – inflow settling chamber; 3 – outflow settling chamber; 4 – test section; 5 –
contraction with a honeycomb; 6 – beach; 7 – Pitot tube driven by a stepper motor; 8 –
wave gauge driven by a stepper motor; 9 – PSD; 10 – screen; 11 – Fresnel lens; 12 –
laser.

maximum water depth to 0.25 m. In the inlet settling chamber that has a volume of
approximately 1 m3, the air flow comes virtually to rest and is guided through a 5 cm
thick honeycomb, with 5 mm hexagon cells into a nozzle with an area reduction ratio
of approximately 4, yielding an essentially parallel and uniform flow at the entrance
to the test section. To eliminate water flow into the settling chamber, the lower edge
of the nozzle is located approximately 7 cm above the designed water level; a 40 cm
long flap provides smooth expansion of the air flow cross-section between the nozzle
and the mean water surface. The 1 m3 outlet settling chamber effectively eliminates
fluctuations of back pressure. The coordinate system adopted in this study is such that
x is in the wind direction, with the fetch x= 0 corresponding to the inlet of the test
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464 A. Zavadsky and L. Shemer

section, y is in the cross-wind direction, with y = 0 corresponding to the centreline
of the test section, and z is pointing up, with z= 0 at the mean water surface.

A capacitance-type wave gauge made of 0.3 mm anodized tantalum wires is used
for measuring instantaneous surface elevation η(t), while a 3 mm Pitot tube was used
for determination of the local mean air velocity in the centre of the air flow part of
the cross-section, U(t). The wave gauge is mounted on a computer-controlled vertical
stage to enable its static calibration. The laser slope gauge (LSG) is installed in the
system on a separate frame that can be positioned at any desired location along the
tank. The instrument is capable of measuring the surface slope without disturbing the
water surface; it measures two components of the slope simultaneously, thus providing
information on the angular distribution of wind-generated waves.

The LSG consists of four main parts: a laser diode, a Fresnel lens, a diffusive
screen and a two-dimensional position sensing detector (PSD) PDP90A; the LSG
assembly is depicted schematically in figure 1(b). The cover plates at the measuring
location were removed and replaced by the framed diffusive screen; the remaining
gaps in the test section cover were carefully sealed. The laser diode generates a
650 nm (red), 200 mW focusable laser beam, with a focused beam diameter of
approximately 0.5 mm. It was estimated that the smallest wavelength the instrument
can resolve is approximately 2 mm.

The diffusive screen is located in the back focal plane of the Fresnel lens. Both
the Fresnel lens and the diffusive screen were centred and levelled horizontally. For
the LSG configuration shown in figure 1(b), the coordinates of the beam image on
the screen are functions of the instantaneous water slope only (Lange et al. 1982).
The 10.4′′ (26.4 cm) diameter Fresnel lens has a focal length of 9′′ (22.9 cm) and
light transmission coefficient of approximately 92 %. The laser beam passing through
the water is refracted by the surface waves and then collimated by the Fresnel lens
forming an image on the 25 by 25 cm2 diffusive screen in its focal plane. The image
on the diffusive screen is recorded by PSD; the objective lens of the PSD has a focal
length of 25 mm. Calibration of the PSD enables determination of the coordinates of
the beam spot location on the screen and thus calculation of the instantaneous local
surface slope components in the along-wind, ∂η/∂x, and cross-wind, ∂η/∂y, directions.
In each recording session, the wave gauge and the LSG were positioned at the same
fetch and at some lateral distance (1y≈ 7 cm) to eliminate interference of the wave-
gauge assembly with the optical path. For additional information on the experimental
facility and instrumentation available see Liberzon & Shemer (2011) and Zavadsky,
Liberzon & Shemer (2013); the description of the LSG calibration procedure and data
processing is given in greater detail in Zavadsky et al. (2017) and Zavadsky & Shemer
(2017).

In a series of preliminary experiments, variation of wind velocity with the output
voltage of the blower controller was examined using a Pitot tube that measured wind
velocity in the central part of the air flow cross-section where the flow is close to
uniform (Liberzon & Shemer 2011). These wind velocity values are referred to as
wind velocity U. Once the blower is activated, its output voltage varies linearly at the
rate 1 V s−1 until the prescribed steady state is attained. The temporal variation of
wind velocity and of the blower control voltage for the prescribed steady conditions
is plotted in figure 2. Time in this and in the following figures is measured relative to
the instant of the blower activation by the computer. The duration of the ramp signal
varies with the blower settings, ranging from 3 s to 5 s. At each instant, the wind
velocity in general corresponds to the instantaneous blower control output value; the
prescribed velocity lags slightly behind the blower output, the delay, however, does
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FIGURE 2. (Colour online) Temporal variation of mean wind velocity (empty symbols)
and output voltage from blower controller (filled symbols) during the activation.

not exceed 1 s. Note that increasing velocities below approximately 1.5 m s−1 are not
adequately measured by the pressure transducer connected to the Pitot tube, resulting
in an apparent jump in the Pitot tube velocity records at approximately 2 s after
activation of the blower.

Measurements were carried out at three distances from the inlet, at fetches
x = 120 cm, 220 cm and 340 cm. At the beginning of each experimental run there
was no wind and the water surface was undisturbed (mirror smooth). The blower
then was switched on to attain the prescribed wind velocity in the test section. At
each fetch, experiments were performed for five blower settings corresponding to
wind velocities in the test section U = 6.5 m s−1, 7.5 m s−1, 8.5 m s−1, 9.5 m s−1,
10.5 m s−1. For all target wind velocities applied in this study, the air flow in the
test section is turbulent. The friction velocities, u∗, at the air–water interface under
steady forcing were measured in our facility and presented in Zavadsky & Shemer
(2012). Two methods for determination of u∗ were applied in that study: using the
fitted logarithmic velocity profile measured at numerous vertical locations close to the
interface by 1 mm Pitot tube; and by independently measuring the vertical distribution
of the Reynolds stress by an x-hot film. Measurements by both methods yield close
results; the values of u∗ remain nearly constant along the test section. The values of
u∗ for the range of wind velocities U employed in the present study are given in
table 1. Note that the values of u∗ constitute approximately 6 % of the reference wind
velocity for all blower settings, thus the following relation is adopted in the present
study: u∗= 0.06 ·U. The instantaneous surface elevation η, surface slopes components
∂η/∂x and ∂η/∂y, the Pitot tube output monitoring the mean wind velocity U and the
voltage variation from the blower controller were simultaneously sampled at sampling
frequency fs = 300 Hz.

Upon attaining the assigned controller voltage, the blower continued to provide
constant air flow rate for 120 s and then was shut down. After completion of
sampling in every run, sufficient time (approximately 6 min) was given to bring the
water surface to an undisturbed condition prior to the initiation of the next run. The
duration of a single realization, including the calm-off period, thus exceeds 8 min.
Preliminary measurement sessions were carried out for several sets of operational
parameters (wind velocity U and fetch x); in those sessions up to 1000 independent
runs for a single set of parameters were performed. No significant changes in the
ensemble-averaged quantities were detected for ensemble sizes that exceeded 100.
This number of independent realizations was found therefore to be adequate for
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U (m s−1) u∗ (m s−1)

6.5 0.35
7.5 0.47
8.5 0.53
9.5 0.6

10.5 0.74

TABLE 1. Reference values of friction velocities.

the determination ensemble-averaged values locked to the blower operational phase.
Ensemble averaging was carried out for the whole set of realizations as a function
of time elapsed since the blower activation.

Thus, at each fetch and for each blower setting, 100 independent runs were
performed. The total duration of data accumulation for 100 realizations at a single
mean wind velocity and at a given fetch using a fully automated LabView-controlled
procedure exceeds 13 h. The computer software also controls the static calibration
of the wave gauge that is carried out before and after the measuring session at each
wind velocity.

As seen in figure 2, the instantaneous wind-forcing conditions in the test section
that are determined by the wind velocity are defined by the time elapsed from the
instant of the blower activation. The characteristic amplitudes at each instant can
be represented by the ensemble-averaged root-mean-square (r.m.s.) values of water
surface elevation, η, and of the surface slope components, ηx and ηy. These values
are therefore calculated over the whole set of realizations at each instant relative to
the reference.

The ensemble-averaged instantaneous dominant wave frequency was determined
using continuous wavelet transform (CWT) that decomposes a time-varying function
into wavelets and offers good time and frequency localization. For a given wavelet
function ψ( t̃), where t̃ is the time rendered dimensionless by an arbitrary time
scale (1 s was used for this purpose for convenience), the transform of a continuous
function x( t̃) at a scale a> 0 and instant t̃ is defined as

F(a, t̃0)=
1
√
|a|

∫
+∞

−∞

f (t̃)ψ
(

t̃− t̃0

a

)
dt̃. (2.1)

A continuous real Morlet wavelet transform applicable for periodic or continuously
varying data defined as

ψ( t̃)= e−(t̃
2/2) cos (5t̃) (2.2)

was used. The wavelet ‘spectrum’, or map, F(a, t̃) is calculated for each realization;
an example of the resulting scale-time map of the surface elevation record η(t) at the
fetch x= 120 cm and wind velocity U= 10.5 m s−1 is plotted in figure 3(a); the grey
scale intensity of each pixel in the map corresponds to the wavelet ‘spectral’ value
F(a, t̃). The resulting pixel values for each scale a and instant t0 are then averaged
over the whole set of realizations resulting in a smoother map plotted in figure 3(b).
The instantaneous ensemble-averaged dominant pseudofrequency f (t0) is determined
from the scale a corresponding to the maximum pixel intensity at this instant as

fa =
f̃c

a · Ts
, (2.3)
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FIGURE 3. (a) Scale-time Morlet wavelet map of a single realization of the surface
elevation variation η(t); (b) the ensemble averaged scale-time map (x = 120 cm; U =
10.5 m s−1).

where Ts = 1/fs is the sampling period corresponding to the sampling frequency fs =

300 Hz; f̃c = 0.8125 is the dimensionless peak frequency of wavelet given by (2.2).
It can be seen in figure 3(b) that the scaling factor corresponding to the maximum
pixel intensity in quasi-steady wave regime is around 50–60, which according to (2.3)
corresponds to the dominant frequency of the stationary random wind–wave field of
approximately 4–4.5 Hz, in agreement with Zavadsky et al. (2013).

3. Results
3.1. Water surface response to activation of the blower

The variation of the surface drift velocity during the initial stage of the wind–wave
field evolution, with the wind starting to blow over an initially smooth water surface,
is presented first. The drift velocity excited by shear stress at the air–water interface
due to wind constitutes the boundary condition for determination of the wind velocity
profile and is thus essential for the wind–wave momentum exchange (Caulliez et al.
2008; Liberzon & Shemer 2011). The rate of adjustment of the current at the water
surface to the varying wind velocity was measured in a separate series of experiments.
At each fetch, measurements were performed while the wind velocity in the test
section grows from zero to one of the prescribed steady-state values, U = 6.5, 8.5
and 10.5 m s−1. Following Liberzon & Shemer (2011), particle tracking velocimetry
(PTV) technique was used for this purpose. Black 6 mm diameter paper disks were
spread over the still water surface; a video camera operating at 60 frames per second
with resolution of 1280 pixel × 720 pixel located above the water surface recorded
the position of the floaters which move with water surface following activation of the
blower. The camera imaged water surface area of approximately 15 cm in the wind
direction and approximately 10 cm across the test section. The initiation of video
recording was synchronized with the instant of the blower activation. For each fetch
and wind velocity, from 5 to 7 independent experimental runs were performed, with
approximately 200 floaters tracked in each run.

The PTV results are shown in figure 4. It can be seen that the time needed for
the drift velocity to attain a quasi-steady value does not vary significantly with fetch
and with wind velocity, and is approximately 4–5 s. In all cases, in the course
of the initial 4 s or so, the wind velocity increases nearly linearly with time and
attains the value of approximately 6–7 m s−1 (see figure 2). During this time interval,
the surface drift velocity is apparently independent of fetch, attaining a value of
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FIGURE 4. (Colour online) Variation of the PTV-measured surface drift velocity with the
increasing wind velocity U. Different curves correspond to different duration t0 of the
wind acceleration stage.

approximately 13 cm s−1, i.e. approximately 2 % of the wind velocity. At longer
times that correspond to higher wind velocities, the surface drift velocity ceases
to grow monotonically. Note that at those wind velocities, in particular at larger
fetches, the PTV measurements become less accurate, with the orbital motion of
the emerged wind–wave system becoming a significant factor in the movement of
the floaters; moreover, some floaters get submerged resulting in spurious recorded
velocities. Nevertheless, it is apparent that once the wind velocity in the test section
exceeds approximately 6 m s−1, the surface drift velocity attains quasi-steady values
that are scattered in the range of 15–25 cm s−1 corresponding to steady forcing,
with an obvious trend to faster drift velocities at higher values of U. Fluctuations in
surface drift velocity are discussed in greater detail in § 3.5.

The temporal variation of the surface drift velocity can be estimated theoretically
assuming that during the initial stages, the water flow induced by wind shear is
laminar. As can be seen in figure 2, the temporal variation of U can be approximated
as U (m s−1) ≈ 2.1 · t′ (s), where in order to reflect the delay of the air flow in
the test section relative to the blower driving signal due to the system inertia, the
effective time t′ is shifted relative to the elapsed time t by tsh= 1 s, so that t′= t− tsh.
It is assumed that the behaviour of the boundary layer in the air above the water
is quasi-steady, and thus the interfacial shear stress τ0 at any instant is adjusted
to the instantaneous mean wind velocity U. Under this assumption, the interfacial
shear stress τ0 = ρairu2

∗
, where ρair is air density; the friction velocity u∗ corresponds

to the wind velocity U under steady forcing, see § 2. Thus, the interfacial shear is
a quadratic function of the shifted elapsed time t′ during wind acceleration stage,
0< t′< t0, and retains a constant value τ0= τ0(t′= t0) at t′> t0. For spatially constant
interfacial shear stress τ0(t′), the temporal variation of the induced current in water at
depth z, uw(z, t), is described by one-dimensional diffusion equation (see, e.g. Veron
& Melville 2001). The solution of this problem for arbitrary time dependent τ0 is
given by Carslaw & Jaeger (1959) in the form of Duhamel’s integral. The surface
drift velocity Ud = uw(z= 0, t) is obtained from this solution as

Ud(t′)=
u2
∗
√
νπ

16
15
ρa

ρw

(
t′

t′0

)2√
t′, t′ 6 t′0 (3.1a)
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Ud(t′)=
u2
∗
√
νπ

ρa

ρw

(
2
√

t′ −
14
15

√
t′0

)
, t′ > t′0. (3.1b)

In (3.1), ν and ρw are respectively kinematic viscosity and density of water. The
solution (3.1a) for the surface drift velocity Ud during the wind acceleration stage is
identical to the expression derived by Veron & Melville (2001) for interfacial shear
stress growing quadratically with time.

It thus can be concluded that during the initial stage of wind acceleration, the
water flow induced by shear stress is laminar, whereas the boundary layer in the air
indeed adjusts fast to the instantaneous wind velocity, so that the interfacial shear
stress induced by the turbulent air flow above the water surface at each instant
can be determined from the value of U at that instant. The solution (3.1) that
predicts continuous increase in time of the surface velocity ceases to agree with the
experimental results when the surface drift velocity increases beyond approximately
15–20 cm s−1 and the mean velocity does not grow anymore. These results are
consistent with measurements of drift velocity Ud in field experiments where it was
estimated as approximately 3 % of the wind velocity (Kudryavtsev et al. 2008). The
termination of the mean drift velocity growth in the laboratory experiments may be
attributed to different reasons, one of them being the finite length of the experimental
facility that leads to stagnation at the far end of the test section and accompanied by
surface set-up.

It is instructive to examine representative time variation records of the simultaneously
acquired surface elevation η and of the two components of surface slope, ∂η/∂x and
∂η/∂y, plotted in figure 5. The records were made at x= 220 cm and wind velocity
U = 8.5 m s−1. The values of the slope components are multiplied by a factor
of 10 and shifted vertically for convenience. Visible fluctuations of the surface
elevation, as well as of the surface slope components, appear in figure 5 only after
approximately 3.5 s elapse since the activation of the blower. Comparison of wind
velocity U(t) shown in figure 2 with the variation of the water surface characteristics
in figure 5 demonstrates that it can be assumed that detectable development of the
wave field starts only after the constant wind velocity in the test section has been
attained. For target wind velocities not exceeding approximately U = 8.5 m s−1,
the wind forcing in the present study can thus effectively be presented by a step
function. The quasi steady-state level of the fluctuations of the surface elevation η in
figure 5 is only attained at t> 9 s, more than 5 s after the appearance of the initial
visible disturbances at the water surface. Contrary to that, the quasi-steady level of
fluctuations of ∂η/∂x is attained already at t≈ 4 s, only approximately 1 s after the
inception of disturbances. The fluctuations of ∂η/∂y attain their quasi steady level at
comparable times.

While the quasi-steady levels of the range of fluctuations in all records plotted in
figure 5 are attained relatively fast, the characteristic frequencies of those oscillations
appear to vary over substantially longer times. The decrease in the characteristic
frequency of ∂η/∂t is clearly visible in this figure; the records of ∂η/∂x and ∂η/∂y
seem to have somewhat higher frequencies.

Prior to emergence of wind waves, appearance of longitudinal streaks can be
identified at the water surface along the whole tank. A snapshot of these streaks
taken at the fetch of x = 220 cm at approximately 3 s after the initiation of the
blower is given in figure 6. Fast video imaging indicates that the longitudinal streaks
remain visible for less than 1 s. The existence of those streaks was noticed before
(see e.g. Caulliez, Ricci & Dupont 1998). Melville, Shear & Veron (1998) and Veron
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FIGURE 5. (Colour online) Single realization records of the surface elevation η(t) and
the instantaneous surface slope components, ηx(t) and ηy(t) acquired at x = 220 cm and
U = 8.5 m s−1.

FIGURE 6. Snapshot of the lengthwise streaks at the pre-growing stage at x = 220 cm
(image size approximately 30 by 10 cm2).

& Melville (2001) studied the appearance of the streaks within the general framework
of Langmuir circulation (LC) excited in water by a slowly accelerating wind.
Phillips (2005) demonstrated theoretically that the preferred LC cross-wind streak
spacing agrees well with their observations. Recently, similar streaks on the surface
of a viscous liquid were studied in greater detail by Paquier, Moisy & Rabaud (2015).

3.2. Characterization of the evolving wind–wave field by ensemble-averaged
parameters

Synchronous temporal records of the surface variation provided by different sensors
in each realization enable estimates of the instantaneous characteristic frequency for
each signal independently. The variation of the dominant wave frequency with the
time elapsed from the blower activation was performed separately using wavelet
analysis of the surface elevation, η(t), and of the two components of the surface
slope, ηx(t) and ηy(t). The representative results for two extreme cases corresponding
to the shortest fetch and lowest wind velocity, and the longest fetch and highest wind
velocity, are presented in figure 7(a) for the initial stages of the wind–wave evolution.
There are considerable similarities between all curves in this figure. At both locations
and both wind velocities, reliable results can be obtained starting from approximately
3.5–4 s after the blower activation. The response of the surface slope sensor precedes
somewhat the response of the wave gauge. When waves in the records of η(t),
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FIGURE 7. (Colour online) (a) The ensemble-averaged wavelet-derived dominant
frequency at x = 120 cm, U = 6.5 m s−1 and x = 340 cm, U = 10.5 m s−1 during the
initial stage of wind wave emergence based on the records of different parameters. (b)
Comparison of the dominant frequency during the quasi-steady stage retrieved by two
methods.

ηx(t) and ηy(t) first become detectable, their dominant frequency is in the range
of 16–20 Hz, with no pronounced dependence on fetch or wind velocity. Veron &
Melville (2001) reported on similar frequencies of the first detectable waves in a
notably larger experimental facility. During the initial few seconds of the evolution
process, the dominant frequencies of the surface slope components are higher to
some extent than those obtained from the surface elevation records. Note that for the
fetch x= 340 cm and U = 10.5 m s−1, water surface disturbances with frequency of
approximately 14 Hz were identified in the ηy(t) record at 3.1 s < t < 3.4 s. This
period is within the interval when the longitudinal streaks shown in figure 6 were
observed. Those streaks have very small amplitudes and their existence can only
occasionally be detected. Due to their orientation, the longitudinal streaks are usually
seen in ηy(t) records.

One can see in figure 7(a) that within 8–9 s following the activation of the blower,
the variation of the dominant frequency with time practically depends neither on
fetch nor on the wind velocity. The differences between the curves during this time
interval can be attributed at least partially to inevitable inaccuracies associated with
the weakness of the signals produced by those very young wind waves. The low
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intensities in the wavelet map corresponding to dominant frequencies for t < 9 s
as seen in figure 3(b) lead to a considerable scatter of results. Nevertheless, it is
important to stress that different sensors yield a consistent pattern of frequency
variation, which decreases from the initial maximum around f = 18 Hz at t ≈ 4 s
to approximately f = 7 Hz at t ≈ 8–9 s. This duration-limited stage then terminates,
and the dominant frequencies at different fetches start to diverge. The frequencies
eventually attain their corresponding fetch- and wind velocity-dependent steady-state
values, however, the differences between the frequencies obtained at every fetch and
wind velocity from the two slope components and from the surface elevation signal
nearly vanish. To examine the accuracy of the wavelet-derived dominant frequencies,
Fourier analysis was also applied for the quasi-steady stage of the wave evolution.
The fast Fourier transform (FFT) was used to compute the surface elevation spectra
during the 60 s long segments recorded at 60 s < t < 120 s. The resulting power
spectra were averaged over all realizations to determine the frequency of the spectral
peak. The peak frequencies for all fetches and wind velocities are compared in
figure 7(b) with the dominant frequencies obtained applying the wavelet procedure on
the same records. The wavelet-derived dominant frequencies in this figure represent
the mean values over the whole duration of the segment. The discrepancy between
the frequencies obtained by the two methods does not exceed a few per cent.

For a given dominant frequency, the dominant wavelength at each stage of the
evolution can be determined provided the dispersion relation is known. For the
range of wave frequencies in figure 7(a), the Doppler shift due to the presence
of the induced shear current cannot be neglected. Since the surface drift current
follows faithfully the instantaneous wind velocity with no dependence on fetch, and
attains steady values prior to development of notable waves in the tank, figure 4,
application of the empirical dispersion relation suggested for wind–wave field under
steady forcing in the presence of induced shear current is justified. By measuring
independently wave frequency and phase velocity, Liberzon & Shemer (2011)
suggested empirical dispersion relation in the following form:

kgc

k
= 1+ a · k+ b · k2, (3.2)

where kgc is the wavenumber that corresponds to the measured radian frequency ω=
2πf according to the gravity–capillary dispersion relation for deep water

ω2
= kg+

σk3

ρ
(3.3)

σ being water surface tension coefficient and ρ water density. Zavadsky et al. (2017)
obtained the dispersion relation in the form given by (3.2) measuring independently
frequency and wavenumber of wind waves by wave and laser slope gauges. The
coefficients a = 0.006 m and b = −2.2 × 10−5 m2 obtained in their study are close
to those presented by Liberzon & Shemer (2011). The dominant wavelength at each
instant is thus λ = 2π/k, where k is the wavenumber calculated from (3.2) for the
instantaneous value of the dominant frequency.

The temporal variation of main ensemble-averaged wave parameters, denoted by
angle brackets, starting from the instant of the blower activation up to approaching
the steady state, is plotted in figure 8 for three fetches and five wind velocities. In
each panel, the instantaneous r.m.s. values of the surface elevation that characterize
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FIGURE 8. (Colour online) Temporal variation of the wave parameters, columns of the
figures denote fetch increasing from left to right, rows denote wind velocities increasing
from up to down: lines with circle markers denote

√
〈η2〉, squares – instantaneous

dominant frequency of η, fdom, triangles –
√
〈η2

x〉, pentagrams – dominant wavelength,
λdom.

wave amplitude,
√
〈η2〉, and of the surface slope

√
〈η2

x〉 that can serve as indication
of characteristic wave steepness, are plotted together with the dominant frequency and
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the corresponding wavelength. Note that the behaviour of 〈η2
y〉

1/2 is similar to that
of 〈η2

x〉
1/2; the corresponding curves are not plotted in order not to overload figure 8.

The dominant frequency fdom is obtained using the records of the surface elevation η;
the corresponding dominant wavelength λdom calculated using the empirical dispersion
relation (3.2).

The high temporal resolution of the ensemble-averaged results that corresponds to
the sampling frequency of 300 Hz makes it possible to distinguish between different
stages in the wave field evolution. At all fetches and wind velocities, during the
initial 4 s or so, the disturbances appearing at the water surface are too small to
be characterized quantitatively. Following this wind acceleration stage, wave field is
characterized by a rapid growth of very short waves with the r.m.s. values of surface
elevation not exceeding approximately 1 mm over the whole length of the test section.
The salient feature of this process is a nearly impulsive increase in the r.m.s. values
of the surface slope

√
〈η2

x〉 that represent the wave steepness; they rapidly attain
quasi-steady values. The characteristic slopes are practically independent of fetch at
a given wind velocity, and increase somewhat with U, varying from approximately√
〈η2

x〉 = 0.17 for U= 6.5 m s−1 to
√
〈η2

x〉 = 0.22 for higher wind velocities. A delay
of about 0.8 s in appearance of those ripples exists at fetches exceeding 120 cm
at the lowest wind velocity (U = 6.5 m s−1); at U > 6.5 m s−1 no such delay can
be identified. The characteristic frequency of the shortest identifiable ripples exceeds
15 Hz at all fetches and wind velocities; the values of fdom then decrease.

At longer fetches and for stronger winds presented in figure 8, the dominant
frequency decreases to approximately 10 Hz by the time when quasi-steady steepness
is attained. While surface slopes attain their steady-state value quite fast, the process
of evolution of other wind–wave parameters plotted in figure 8 is notably slower.
As can be seen by comparing panels in each row of that figure, the increase in the
values of

√
〈η2〉 is initially nearly identical for all fetches at the given wind velocity.

Similarly, the decrease in the dominant frequency at those initial stages is essentially
common for all panels. At x= 120 cm, both the r.m.s. values of η and the dominant
frequency fdom attain their quasi-steady values at approximately 7–8 s after activation
of the blower for all wind velocities. At longer fetches, the values of

√
〈η2〉 and of

fdom continue to evolve, attaining quasi-steady values at approximately 12 s for the
fetch x= 220 cm, and at approximately 16–17 s for x= 340 cm.

To verify this LSG-measured almost immediate growth of the ensemble-averaged
surface slope

√
〈η2

x〉, an independent slope evaluation can be carried out using the
wave-gauge records as

√
〈ηx(t)2〉 = k(t)

√
〈η(t)2〉. Figure 9 shows the comparison

between the LSG-measured variation of the surface slope
√
〈η2

x〉 and the wave-gauge-
derived temporal variation of the slope reconstructed from

√
〈η2〉 and the wavenumber

k(t) = 2π/λ(t) as plotted in figure 8. Results presented for U = 10.5 m s−1 and
x = 120 cm demonstrate consistent behaviour. Thus the joint variation of wave
amplitude and wavelength following the initial ‘jump’ in

√
〈η2

x〉 keeps the wave slope
nearly constant during the whole growth stage.

3.3. Scenario for the initial wind–wave system growth under impulsive forcing

Careful comparison of the variation of
√
〈η2〉 and fdom in each row of figure 8 (for

an identical wind velocity U) reveals that at longer fetches, at the instant when the
dominant frequencies fdom attain the value corresponding to the steady state fdom at
one of the shorter fetches, the instantaneous ensemble-averaged values of

√
〈η2〉 are
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FIGURE 9. Comparison of temporal variation of the surface slope obtained by two
methods at U = 10.5 m s−1, x= 120 cm.

also identical to the steady r.m.s. values of the surface elevation at that shorter fetch.
This observation leads to a conjecture that in the process of temporal growth of wind
waves, once a harmonic with the frequency f̃ attains its equilibrium amplitude at a
certain fetch x̃( f̃ ), the characteristic amplitude of this harmonic remains constant from
there on and does not vary significantly at longer fetches, x > x̃( f̃ ). Thus, only low
frequency harmonics with f < f̃ continue to contribute to wave growth at those fetches.

This conjecture suggests the following scenario describing the wind–wave field
evolution under impulsive wind forcing. With activation of the blower over water
at rest, a spatially homogeneous wave field is initially excited. This wave field is
dominated by short ripples, but in fact contains also longer wave harmonics of
vanishing amplitudes. Under the action of wind, different harmonics grow at their
distinct growth rates, as studied by Liberzon & Shemer (2011), until they attain
the equilibrium amplitude and steepness for the given steady wind forcing. In the
course of growing, each harmonic propagates with its group velocity cg. Longer
gravity waves obviously propagate faster and for a given characteristic equilibrium
steepness, attain greater wave heights; they need, however, more time and longer
fetches to reach their equilibrium state. The growth stage terminates at each fetch
once all waves with f 6 fdom have had sufficient time to propagate to that fetch. The
overall duration of the growth stage at each fetch and wind velocity, ttot(x), can thus
be estimated as ttot = x/cg( fdom(x)), where cg = ∂ω/∂k can be estimated using the
empirical dispersion relation (3.2). The resulting group velocity is shown in figure 10
as a function of the wavenumber k. The values of group velocity corresponding to
the dispersion relation of gravity–capillary waves (3.3), cg,gc, are also plotted in this
figure for comparison. The two curves collapse only for approximately k < 10 m−1

(λ > 0.6 m). For the range of wavelengths studied in the present experiments, the
Doppler shift due to mean shear current causes a notable increase in the effective
group velocity and thus cannot be neglected.

The total duration of the growth stage was therefore calculated using the empirical
values of group velocity for each dominant wavenumber. The estimated values of the
dominant frequency fdom, the wavenumber, kdom, corresponding to fdom according to
(3.2) and of the corresponding group velocity, cg( fdom) are given in table 2. To extend
the range of experimental parameters, the table contains results of an additional series
of measurements performed at x= 340 cm for a lower wind velocity, U = 5.3 m s−1.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

52
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.521


476 A. Zavadsky and L. Shemer

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80 100 120 140

Derived from (3.3); no induced current
From (3.2)

FIGURE 10. Wavenumber dependence of group velocity cg,gc in the absence of mean
current compared with that corresponding to the empirical dispersion relation in presence
of induced shear current, cg.
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FIGURE 11. (Colour online) Comparison of the growth duration obtained by two methods.

The validity of the suggested scenario can be assessed estimating the actual
duration of the growth stage from the experimental data presented in figure 8. The
initial reference point may be taken at the instant when blower attains its maximum
capacity, i.e. at 3.5–5.5 s after the activation of the blower, depending on the ultimate
wind velocity, see figure 2. The duration of the growth stage, ttot, estimated from
figure 8, is compared in figure 11 with the values calculated using the empirical
group velocity. As expected, the data points indeed lie in close proximity to the 45◦
line.

3.4. Comparison with the results by Kawai (1979) and the theory by Phillips (1957)
The data on the temporal variation of the wind–wave field initially at rest under the
action of nearly impulsive turbulent air flow, accumulated in the present study, allow
quantitative comparison with some available experimental and theoretical results.

A closer look at the temporal variation of 〈η2
〉

1/2, fdom, and the dominant wavelength,
λdom, at longer fetches reveals a number of notable changes in the slopes of the
curves. For each fetch and wind velocity, these clearly detectable slope variations
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FIGURE 12. Identification of stages of the temporal development of the wave field at a
fixed fetch x= 340 cm and wind velocity U = 7.5 m s−1.

U (m s−1) Parameter Fetch x (cm)

120 220 340
fdom, Hz 5.5

5.3 kdom, m−1 83
cg, m s−1 0.28
fdom, Hz 7 5.6 3.9

6.5 kdom, m−1 117 85 48
cg, m s−1 0.27 0.28 0.31
fdom, Hz 6.1 4.4 3.4

7.5 kdom, m−1 97 59 38
cg, m s−1 0.27 0.29 0.33
fdom, Hz 5.1 3.9 3.1

8.5 kdom, m−1 74 48 33
cg, m s−1 0.28 0.31 0.34
fdom, Hz 4.3 3.4 3

9.5 kdom, m−1 56 40 31
cg, m s−1 0.3 0.32 0.35
fdom, Hz 3.6 3 2.6

10.5 kdom, m−1 42 31 26
cg, m s−1 0.32 0.35 0.37

TABLE 2. Parameters of growing wave field.

occur essentially simultaneously for all those parameters and suggest division of the
temporal evolution of the wave field into distinct stages. To define the evolution stages,
consider the variation with the elapsed time of the characteristic wave amplitude
〈η2
〉

1/2 plotted in figure 12 for representative conditions (fetch x= 340 cm and wind
velocity U = 7.5 m s−1).

The first detectable wavelets appear at the elapsed time t1, by this instant the wind
velocity in this case has already attained its target value, see figure 2. Those initial
wavelets grow fast, but after a short time, the growth rate abruptly decreases at t= t2.
Note that at this instant the waves are quite small with characteristic amplitude less

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

52
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.521


478 A. Zavadsky and L. Shemer

U (m s−1) x (m) t1 (s) t2 (s) t3 (s) t4 (s)

120 3.65 4.2 — 7.8
6.5 220 3.9 4.6 10.3 11.7

340 4.45 5.2 14.5 16
120 3.55 4 — 8.7

7.5 220 3.6 4.7 10 11.7
340 3.8 4.7 14.2 15.6
120 3.5 3.9 — 8.9

8.5 220 3.5 4.7 10.3 11.7
340 3.8 5 13 15.3
120 3.5 5.3 — 9

9.5 220 3.5 5.7 10 11.9
340 3.7 5.7 12.5 14.5
120 3.45 5.3 7.2 9.4

10.5 220 3.45 6.3 9.9 11.9
340 3.7 6.3 12.3 14.7

TABLE 3. Transition times as defined in figure 12.

than 0.5 mm. The relatively slow wave growth continues for t2< t< t3; at t3 the rate of
wave amplitude growth increases again, until quasi-steady equilibrium state is attained
at t4.

The transition times between the evolution stages, t1–t3, as well as the total
durations of the wave field development from the instant of the blower activation to
emergence of equilibrium state, t4, evaluated from figure 8 are summarized in table 3.
Blanks denote cases when the corresponding instants cannot be clearly identified. As
can be seen in table 3, the initial wavelets at all fetches and wind velocities appear
at t ≈ 3.6–4.45 s. At the shorter fetch, x = 120 cm, the whole evolution process is
short as apparent in the values of t4 that do not exceed approximately 9 s; it is thus
difficult to identify transition between the stages. The instant t2 when the fast growth
of wavelets slows down is approximately constant at t2≈ 5 s for lower wind velocities
(6.5 m s−1 6 U 6 8.5 m s−1) at both longer fetches. At higher wind velocities the
value of t2 increases somewhat and exceeds 6 s. The transition between the second
and the third stage in the evolution can be identified in all cases except for lower
wind velocities at the shortest fetch (x = 120 cm). The existence of distinct stages
in the temporal growth of the wind–wave field identified in figure 12 suggests that
the wave growth during each stage may be governed by a different mechanism. We
therefore attempt to analyse results accumulated during each evolution stage separately
invoking theoretical models that predict behaviour compatible with the experimental
findings.

A closer look at the initial response of the water surface to impulsive wind forcing
is presented in figure 13(a) for all fetches and the two lower wind velocities for
which the target value of U is attained at times t 6 t1. The plot, in semi-logarithmic
coordinates, makes it obvious that the growth of the characteristic amplitude of the
initial ripples with time is exponential. The energy growth of the initial wavelets thus
can be approximated as

〈η2
〉 = 〈η2

0〉e
βt, (3.4)

where β is the growth parameter and 〈η2
0〉 energy of the initial disturbance. The values

of β were evaluated for all fetches and wind velocities and summarized in table 4. The
corresponding friction velocities u∗ are given in table 1.
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FIGURE 13. (Colour online) Zoom in on the initial response of the water surface: (a) an
effectively impulsive forcing for lower wind velocities; (b) effect of the wind acceleration
at high wind velocity.

β (s−1)

Fetch (cm) U = 6.5 m s−1 U = 7.5 m s−1 U = 9.5 m s−1 U = 10.5 m s−1

120 7.6 12 11.7 12.2
220 7.1 9.4 12 13.9
340 5.9 7.8 10 10.7

TABLE 4. Growth parameter β.

For all cases presented in figure 13(a), the duration of the exponential growth is
less than 0.5 s, so unambiguous determination of the growth parameter from the
experimental data indeed requires high sampling rate of fs = 300 Hz used in this
study.

The exponential growth of wavelets in figure 13(a) that was attributed to instability
mechanism starts at t1 given in table 3. The exponential growth stage in this figure
thus lasts only for approximately 0.3 s. The growth rate parameters β presented in
table 4 are in general agreement with the computations by Kawai (1979) and with
his experimental growth rates. Extrapolation of his results to stronger wind forcing is
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needed for comparison since lower effective wind velocities and thus smaller values
of the friction velocity u∗ were employed in his study. Note that for a constant wind
velocity, the growth rate parameter β decreases with fetch. For the case of high
wind velocities, this stage is notably longer as shown in figure 13(b). For both wind
velocities in this figure, exponential growth also starts at approximately t1 = 3.5 s, as
in figure 13(a). For those velocities acceleration of wind still continues during the
growth of the initial wavelets. The growth rate is not constant; the slope of the curves
initially resembles that at lower wind velocities as seen in figure 13(a), however, at
t ≈ 4 s the growth rate of wavelets decreases notably. The values of the growth
coefficient in these cases were calculated from 〈η2

〉 within the time interval ranging
from t1 to approximately 4 s and are also given in table 4. The fetch dependence
however is less prominent for these cases; the exponential growth terminates for all
fetches and wind velocities in figure 13(b) at about t2 = 5.5 s. The growth rates of
the wavelets at 4 s< t< t2 are similar for the cases presented in figure 13(b) with β
ranging approximately from 1.7 s−1 to 2.5 s−1.

The variation of the total slope, (〈η2
x〉 + 〈η

2
y〉)

1/2 during the initial stage of the
temporal evolution of the wave field is compared in figure 14 with the temporal
variation of 〈η2

〉 at all fetches at the extreme wind velocities considered in this study.
As noted above the wind velocity at the lower blower settings effectively attains

its steady value prior to excitation of the first wavelets. Figure 14(a) demonstrates
that at the lowest wind velocity (U = 6.5 m s−1), the quasi-steady value of the
characteristic wave steepness is attained practically simultaneously at all fetches, with
the termination of the exponential growth stage of the characteristic energy 〈η2

〉

of the initial wavelets at the elapsed time t = t2. Similarly to behaviour of 〈η2
〉 in

figure 13(b), the growth of the characteristic wave steepness in the lower panel of
figure 14 is also characterized by two different slopes, sharp decrease in the slope
of (〈η2

x〉 + 〈η
2
y〉)

1/2 at each fetch occurs about t = 3.9–4.1 s, depending on fetch,
simultaneously with the corresponding change in the wave energy growth coefficient.

It thus can be concluded that the maximum quasi-steady characteristic slope is
attained at the end of the stage corresponding to the exponential growth of initial
wavelets, at t= t2; the subsequent growth of the waves occurs while the slope remains
nearly constant.

Appearance of the initial detectable ripples on the water surface was treated
differently by Phillips (1957); it was predicted that the resonance mechanism between
the pressure fluctuations in turbulent air flow over the water causes the appearance
of most prominent ripples with minimum phase velocity and wavelength of 1.7 cm
(frequency f = 13.5 Hz) that propagate at an angle relative to the wind direction. As
stressed above, the initial detectable waves have frequencies in the range 14–18 Hz,
notably above the Phillips prediction. It should be noted, however, that higher ripple
frequencies observed in the present experiments may result from the Doppler shift
due to the induced shear current that was not accounted for in the Phillips theory.
Nevertheless, the results of figure 13 favour the Kawai viscous instability mechanism
that predicts exponential growth of initial wavelets in time.

To describe wave evolution at later stages that follow the appearance of initial
ripples, t> t2, the theory presented by Phillips (1957) can be invoked. The wind–wave
evolution at the early stage of the development corresponding to elapsed times
t2< t< t3, when the duration of the evolution is still very short, can be attributed to the
initial stage of the water surface response, as defined by Phillips. Phillips did not offer
a closed relation for the wind–wave growth at this early stage, however, his theory
predicts that the mean squared values of the surface elevation of gravity–capillary
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FIGURE 14. (Colour online) Comparison of the temporal variation of 〈η2
〉 and(

〈η2
x〉 + 〈η

2
y〉
)1/2.

waves that span different spatial scales initially grow linearly with time. The variation
of 〈η2

〉 during this stage is plotted in figure 15 for all wind velocities and two fetches,
x= 220 and x= 340 cm. The instant of the initiation of this stage, t = t2, serves as
the reference in this plot. In spite of considerable scatter of the data, the results of
figure 15 seem to comply in general with the linear in time wave energy growth
prediction. As wind velocity U increases, the growth rate increases as well, while
the duration of this stage become shorter. The slopes of the fitted linear growth lines
K are summarized in table 5. The values for different fetches at each wind velocity
appear to be very similar.

At the elapsed time t= t3, the rate of change of the characteristic wave energy 〈η2
〉

increases notably. The development of the wind–wave field at the elapsed times t> t3,
until the quasi-steady equilibrium state is attained at t= t4, may be attributed to ‘the
principal stage’ of the wave field development of Phillips (1957). Note that at this
stage, the waves at fetches x = 220 cm and x = 340 cm are already long enough
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FIGURE 15. (Colour online) The ‘initial growth stage’ (according to Phillips) of the
temporal development of the wave field.

K (mm2 s−1)
Fetch (cm) U = 6.5 m s−1 U = 7.5 m s−1 U = 8.5 m s−1 U = 9.5 m s−1 U = 10.5 m s−1

220 0.2 0.39 0.55 1.07 2
340 0.2 0.42 0.6 1.02 1.7

TABLE 5. Linear growth parameter K.

with lengths exceeding 7 cm (see figure 8), and thus are practically unaffected by
capillarity; they therefore can be considered as purely gravity waves. The following
relation for temporal growth of gravity waves at this principal stage was suggested by
Phillips:

η2 ∼
p2t

2
√

2ρ2
wUcg

. (3.5)

Here, p2 is a mean square pressure fluctuations at the surface, Uc is the convection
velocity of surface pressure fluctuations that in the Phillips mechanism is related to
the water-wave phase velocity, and ρw is water density. It should be stressed that
direct measurements of turbulent pressure fluctuations were not possible more than
half a century ago, as is the case nowadays as well. To enable comparison of his
model predictions with field measurements, Phillips (1957) therefore assumed that the
characteristic pressure fluctuations are proportional to interfacial shear stress, τ =ρau2

∗
,

where u∗ is the friction velocity at air–water interface, so that p2 ∼ u4
∗
. Moreover, an

assumption was made that pressure fluctuations are convected at the velocity Uc ≈U,
the wind velocity is related to the friction velocity as U = 18u∗, thus allowing to
rewrite (3.5) as

η2 ∼ 0.035
(
ρa

ρw

)2 U3t
g
. (3.6)

The theory of Phillips therefore predicts that the mean square surface displacement
of short gravity waves grows linearly with time, with the growth rate proportional
to the third power of wind velocity. As can be seen in figure 10, the characteristic
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FIGURE 16. (Colour online) Variation of 〈η2
〉/U4 of short gravity waves with time.

wave velocity is in fact nearly constant for the range of short gravity waves (10 cm
< λ < 30 cm), with variations not exceeding approximately 10 %. It is substantially
lower than the wind velocity and essentially independent of U. It is thus reasonable
to adopt approximation that the convection velocity Uc is constant for the conditions
prevailing in the present experiments. Retaining the relation between the pressure
fluctuations and the wind velocity U as adopted in (3.6) allows us to obtain from
(3.5) the following relation for the ensemble-averaged squared surface elevation

〈η2
〉 =CU4t, (3.7)

where in the general framework of Phillips approach C is supposed to be a constant
dimensional coefficient.

The validity of relation (3.7) for description of variation of 〈η2
〉 with time for short

gravity waves is now examined. The results on the growth of short gravity waves in
figure 16 are presented here for two fetches (x= 220 cm and 340 cm) and 3 values
of the wind velocity (U = 8.5, 9.5 and 10.5 m s−1). The instant of the initiation of
the principal stage of wind–wave development, t= t3, see figure 12, is taken for each
curve separately from table 3. This instant serves as the reference in figure 16. The
wave energy 〈η2(t)〉 variation is also presented relative to the initial values at the
instant of transition, t3. The linearity of the dependence of 〈η2

〉 on time is clearly seen.
The slopes of the curves are not identical; for x = 220 cm they do not exhibit any
detectable trend with variation of wind velocity; whereas for x = 340 cm the slopes
for various velocities are approximately constant and somewhat higher than those for
x= 220 cm. The slopes of all curves in figure 16, however, are of the same order of
magnitude, varying in the range of (1–3)× 10−9 s3 m−2.

Careful examination of figure 8 prompted an attempt to assess a different
normalization approach. In figure 17 the ensemble-averaged values of 〈η2

〉 for
three wind velocities (U = 8.5, 9.5 and 10.5 m s−1) at fetches x = 220 cm (in
red) and x= 340 cm (in black) were normalized by corresponding steady-state mean
values. Note that no distinction is made in figure 17 between the different stages of
gravity–capillary and short gravity waves development stages.

The results of figure 17 show that at each fetch, there is no prominent difference
between curves corresponding to different wind velocities U. It thus seems reasonable
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FIGURE 17. (Colour online) Temporal growth of normalized values of 〈η2
〉 for different

wind velocities. Thick lines denote averaged over all wind velocities results. Red curves:
x = 220 cm; black curves: x = 340 cm. Thin dashed lines denote three highest wind
velocities applied in the experiment.

to average the results for all wind velocities taken at each fetch. The curves
corresponding to the averaged values are also plotted in figure 17 by thick solid
lines. The averaged curves allow delineating the stages of wind–wave growth: first,
exponentially growing initial short wavelets appear simultaneously at both fetches;
these wavelets dominate the wave field up to t ≈ 5 s. This stage is followed by a
relatively slow and close to linear growth of the energy of gravity–capillary waves,
up to approximately t3 = 8 s for x = 220 cm and t3 = 13 s for x = 340 cm. Note
that the growth rates at this stage are clearly fetch dependent. Next, more rapid and
essentially linear growth of 〈η2

〉 is observed, with slope that seems to be only weakly
dependent on fetch. Finally, the quasi-steady state is attained. The similarity between
curves corresponding to different wind velocities U for a fixed fetch indicate that the
transition times between the development stages t2 and t3 as well as the total duration
of the evolution, ttot, depend on fetch only and not on U, see table 3. The weak
dependence of the total duration of the wave growth on wind velocity U can also
be seen in figure 7 where the points corresponding to a constant fetch form clusters.
The spread within each cluster does not exceed approximately 10 %.

3.5. Three-dimensional structure of waves under impulsive wind forcing
Simultaneous measurements of the surface slope components ηx and ηy allow studying
the temporal variation of the three-dimensional surface geometry during the initial
wave growth stage. This can be done in terms of the probability density function
(PDF) of the instantaneous azimuthal angle defined as φ= tan−1(ηy/ηx) that represents
the direction of projection of the vector normal to the instantaneous surface onto the
horizontal plane. The azimuthal angle φ= 180◦ corresponds to the wind direction. The
PDF obtained for ensembles of instantaneous azimuthal angles accumulated at several
instants after activation of the blower for two extreme conditions are presented in
figure 18 for the shorter fetch and lower wind velocity (a) and for the longer fetch
and higher wind velocity (b). The PDFs are calculated for 3000 instantaneous values
of φ accumulated from the measured ensembles of two slope components sampled
at the frequency of 300 Hz during the time interval of ±0.05 s around the specified
instant for 100 realizations at each fetch and wind velocity.
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FIGURE 18. (Colour online) Probability density function of the instantaneous azimuthal
angle φ at several instants during the initial wave growth stage.

For both cases considered in figure 18, the probability distribution of the slope
inclination direction is symmetric around the two peaks at φ = 0◦ and φ = 180◦. The
difference in peak heights indicates upwind–downwind asymmetry of the wave shape;
lower peaks correspond to wider directional spreading. It should be stressed that all
inclination directions of the instantaneous surface have a non-negligible probability for
both conditions and all instants plotted in figure 18.

In figure 18, the PDF of the azimuthal angle distribution varies strongly with
time. The distributions corresponding to the initial recognizable ripples are strongly
asymmetric, indicating that in a representative wave, the leeward part is notably
longer than the upwind part. As the waves grow, the probability distributions become
more symmetric and the peaks that correspond to the upwind part grow. Near perfect
front–back symmetry is attained at t = 4.4 s, (a), and at t = 4.2 s, (b). Eventually,
a steady state is attained that is characterized by a wider directional spreading and
upwind–downwind asymmetry, with the downwind part of the wave typically shorter
than its upwind part. The steady-state results are in agreement with those presented
in Zavadsky et al. (2017).

The variation of the PDF of the distribution of the azimuthal propagation angle is
related to different rate of change of the characteristic slopes in the along-wind and
cross-wind directions during the growth of the initial wavelets. Examination of the
single realization record presented in figure 5 indicates that the growth of ηx seems
to precede that of that ηy. A closer look at the variation of the characteristic slope
variation amplitudes, 〈η2

x〉
1/2 and 〈η2

y〉
1/2, during the early stages of the evolution is

presented in figure 19 for the conditions corresponding to those in figure 12. The wave
slopes in the cross-wind direction appear with a pronounced delay as compared to ηx,
they grow notably slower and attain their quasi-steady-state value significantly later.
The initial wavelets are therefore largely unidirectional.

To obtain an additional independent insight into the three-dimensional (3-D)
structure of wind waves during the initial stages of excitation, it is instructive
to revisit the PTV records of the temporal variation of the surface velocity. The
ensemble-averaged mean drift velocity plotted in figure 4 has only one component in
the wind direction x; the cross-wind mean velocity component, V , is virtually absent.
This information can be utilized to estimate from the available PTV records the
values of velocity fluctuations in both x and y directions. For each tracer, the velocity
fluctuations in the wind direction, u, are obtained as the difference between the
instantaneous and ensemble-averaged values at every elapsed time; the corresponding
cross-wind components v contain fluctuations only.
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FIGURE 19. (Colour online) Zoom in on the initial variation of 〈η2
x〉

1/2 and 〈η2
y〉

1/2 at a
fixed fetch x= 340 cm and wind velocity U = 7.5 m s−1.
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FIGURE 20. (Colour online) PTV-derived ensemble-averaged surface velocity fluctuations
in along- and cross-wind directions. The characteristic r.m.s. values of orbital velocity
defined as ωdom

√
〈η2〉 are plotted for comparison. (a) Wind velocity U = 6.5 m s−1, (b)

U = 8.5 m s−1.

The variation with the elapsed time of the PTV-derived r.m.s. values of ensemble-
averaged velocity fluctuations in the wind direction

√
〈u2〉 and cross-wind direction√

〈v2〉 are plotted in figure 20 for two wind velocities in the test section. The
surface velocity fluctuations become notable after 1.5–2 s following the activation
of the blower, already at the stage when surface waves are still undetectable. The
fluctuations in the wind direction are stronger as compared to

√
〈v2〉; however,√

〈u2〉 and
√
〈v2〉 remain of the same order at all times. Starting from about 4 s, i.e.

approximately when the wind attains its prescribed velocity, the rate of growth of the
fluctuations of both components the surface velocity increases somewhat, although the
cross-wind velocity grows notably slower. Both components of the surface velocity
fluctuations are higher in figure 20(b), corresponding to stronger wind.

The existence of surface velocity fluctuations in both along-wind and cross-wind
directions suggests that they may be related to the orbital motion induced by the 3-D
wind waves. The essentially 3-D nature of short waves under steady wind forcing in
our facility has been demonstrated in Zavadsky et al. (2017) and Zavadsky & Shemer
(2017). The characteristic scale of the velocity fluctuations due to the orbital motion
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FIGURE 21. (Colour online) Temporal variation of the skewness coefficient λ3.

of a 2-D wave can be defined as vorb = ωdom

√
〈η2〉, where the angular dominant

frequency ωdom = 2πfdom. Since this definition of vorb represents the absolute value of
the velocity fluctuations at the surface, vorb can be seen as an upper bound of the x
and y components of the characteristic velocity fluctuations due to 3-D orbital motion.
The variation with time of vorb also plotted in figure 20 demonstrates that vorb indeed
exceeds both

√
〈u2〉 and

√
〈v2〉, but is of the same order. These findings indicate that

the orbital motion in an essentially 3-D wind–wave field contributes significantly to
the observed fluctuations of the surface drift velocity, in agreement with the results
presented in figures 18 and 19.

3.6. Higher moments of the surface elevation
Temporal variation of ensemble-averaged time-dependent skewness λ3 and kurtosis λ4
defined as

λ3(t)= 〈η3(t)〉/〈η2(t)〉3/2 (3.8)

λ4(t)= 〈η4(t)〉/〈η2(t)〉2 (3.9)

is now studied. The variation of the vertical wave asymmetry as represented by the
skewness coefficient λ3 is plotted in figure 21 for all fetches and the two extreme
wind velocities.

The skewness λ3 of the initial ripples is negative and increases with time. The
values of λ3 cross the horizontal axis at elapsed times approximately corresponding to
the duration of the existence of spatially homogenous wind–wave field in the tank (cf.
figure 8). The skewness coefficients then continue to increase in time; the quasi-steady
state is attained at elapsed times t≈ τ2 that denotes the total duration of the wave field
development in figure 2. For lower wind velocity, figure 21(a), the steady-state values
of λ3 increase with fetch, while for the highest wind velocity employed in the present
study, the dependence of the skewness coefficient on the fetch is less pronounced,
being close to λ3 = 0.4 for all fetches (b). The results on steady-state values of the
skewness coefficient are in agreement with those reported in previous studies of wind
waves in a laboratory tank (Huang & Long 1980; Hatori 1984; Zavadsky et al. 2013;
Zavadsky & Shemer 2017).

The negative values of λ3 observed everywhere in the tank during the initial stage
of wave growth deserve special attention. As already mentioned in § 3.2, waves
at this early stage have frequencies of approximately 18 Hz and thus are strongly
affected by surface tension. A typical example of the surface elevation variation in
time recorded in the present experiments is plotted in figure 22(a). The probability
density function of the surface elevation calculated for the segment duration of 0.7 s
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FIGURE 22. Initial ripples at the water surface: (a) segment of the individual surface
elevation record normalized by the r.m.s. value; (b) PDF of the surface elevation averaged
over all realizations for the whole interval plotted in (a).

as shown in this figure and averaged over the whole set of realizations is given in
figure 22(b). The waves are characterized by low flat crests and sharp large troughs,
resulting in strongly asymmetric PDF and in negative skewness. The shape of the
wave in figure 22 strongly resembles that obtained analytically by Crapper (1957)
for finite amplitude capillary deep-water waves, although the ripples observed during
the initial growth stage belong to short gravity–capillary range. The similarity of
the initial ripples with the shape of capillary finite amplitude waves was noticed by
Huang & Long (1980) who also obtained negative skewness for the short ripples
under steady wind forcing.

The variation of the ensemble-averaged kurtosis coefficient λ4 for the conditions of
figure 21 is plotted in figure 23. The values of λ4 at the initial stage of wave growth
exceed λ4 = 3 that corresponds to the Gaussian probability distribution of the surface
elevation, thus indicating that the probability of very high waves during this stage is
relatively large. The extreme wave heights for those gravity–capillary waves, however,
result not from very high crests, but rather from deep troughs, see figure 23(a). The
deep trough at t= 4.71 s in figure 23 indeed exceeds the r.m.s. value by a factor of
4.1. The highest waves during this stage can thus formally be seen as the so-called
‘rogue holes’. It should be kept in mind, though, that the absolute heights of these
short ripples are limited to just few millimetres.

The ensemble-averaged values of kurtosis then decrease fast, and their steady-state
values are notably below λ4 = 3, in agreement with Hatori (1984), Zavadsky et al.
(2013) and Zavadsky & Shemer (2017). The steady-state kurtosis values are attained
at elapsed time comparable to those of other dominant wave parameters. The
consistently low values of λ4 corroborate the exceedance probability distributions
presented for extremely large ensembles of waves in Zavadsky et al. (2013) and
Zavadsky & Shemer (2017) that indicate very low probability of rogue waves in
a young wind–wave field at different fetches under a range of steady wind-forcing
velocities.

4. Discussion and conclusions

Wind waves emerging on water surface initially at rest due to effectively impulsive
and near-impulsive wind forcing were studied in a small experimental facility. At all
fetches and wind velocities, logarithmic wind velocity profile exists above the water
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FIGURE 23. (Colour online) Temporal variation of the kurtosis coefficient λ4.

surface (Zavadsky & Shemer 2012). Results similar to those obtained in the present
study therefore can be expected during the initial temporal evolution stages of wind–
wave field in larger facilities and in nature.

Measurements were carried out for a range of wind velocities and at multiple
fetches. Extensive use of the laser slope gauge, in addition to a standard capacitance-
type wave gauge, made it possible to obtain information on the 3-D characteristics of
the evolving wind–wave field. The experimental procedure was fully automatic and
controlled by a single computer. The same computer was used for acquisition and
recording of the experimental data. These unique features of the present experimental
study, coupled with the short time scales characterizing the evolution of the very
young wind–wave system in a small experimental facility, made it possible to carry
out measurements of numerous realizations of a random wave field. Experimental
data accumulated in the course of multiple realizations of the evolving wave field
under identical wind-forcing conditions allowed computation of ensemble-averaged
time-resolved representative wave parameters, as a function of time elapsed since
activation of the wind forcing. The results obtained for different wind velocities and
measurement locations allowed to identify the major stages in the wind–wave system
evolution, starting from appearance of the first detectable wavelets, up to emerging of
a quasi-steady state, and to characterize quantitatively the variation of the dominant
waves parameters in the course of the development of unsteady wind–wave field in
time and space.

With activation of the blower, drift shear current appears in water that manifests
itself in the acceleration of the surface velocity. The temporal variation of this
velocity was measured by particle tracking velocimetry technique. The surface velocity
acceleration seems to be uniform at different fetches; during the initial few seconds
it follows closely the available analytical laminar flow solution. The first observable
surface waves are mostly unidirectional, see figures 19 and 20, but after few seconds
the component of the slope and of the surface velocity in the cross-wind direction
grows, so that the waves become essentially three-dimensional. Following this very
early stage of the wave field development, the LSG-derived averaged results show that
after the initial few seconds of evolution, the characteristic slopes in the cross-wind
direction are of the same order as those in the along-wind direction, see figure 5.
This initially two-dimensional and then fast becoming three-dimensional structure
of ripples was independently confirmed by the analysis of the PTV-derived surface
velocity fluctuations, figure 20. The ensemble-averaged velocity fluctuations following
the very initial development stage are fast becoming significant in both directions:
along wind,

√
〈u2〉, and cross-wind,

√
〈v2〉, being of the same order of magnitude,

with
√
〈u2〉 exceeding

√
〈v2〉 at all times. The amplitudes of these fluctuations remain
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below the upper bound of the velocity fluctuations due to the orbital motion in a
random unidirectional wave field, vorb, estimated at each elapsed time. Appearance of
velocity fluctuations in the shear flow under the water surface is often associated with
transition to turbulence that accompanies the emergence of surface waves (Caulliez
et al. 1998; Veron & Melville 2001). The present results indicate that an essentially
potential 3-D orbital movement due to the presence of random wind waves may
contribute significantly to the measured fluctuations of the surface velocity. More
accurate and detailed experiments are needed to assess the relative contribution of
turbulence and orbital motion to shear-flow velocity fluctuations below the water
surface under different operational conditions.

The variation of ensemble-averaged wave parameters with time elapsed from the
activation of the blower demonstrates that a well-defined pattern exists that determines
the initial evolution of wind–wave field in time and in space. Examination of the wave
field variation at various fetches and wind velocities suggests that each frequency
harmonic propagates along the test section at its group velocity with characteristic
amplitudes growing with fetch to their equilibrium values for the given wind forcing;
these amplitudes then remain constant along the test section. During the growth
stage, the harmonics seem to be unaffected by the spectral components at other
frequencies, so that the initial growth of wind waves is largely a linear phenomenon,
with nonlinear wave–wave interactions being essentially insignificant at time and
length scales pertinent to this study.

The activation of the blower and the appearance of initial ripples cause a sharp
increase in the characteristic surface slope fluctuations values, first in along-wind and
then in cross-wind directions. These fluctuations that characterize the wave steepness
attain fast the level that is close to that observed under steady wind forcing by
Zavadsky et al. (2017). The fluctuation levels of both slope components seem to be
only weakly dependent on fetch and wind velocity. The steady-state characteristic
steepness is attained nearly in full during the short time interval t1 < t < t2
that corresponds to the exponential growth stage of the initial gravity–capillary
ripples. Contrary to that, the overall wave field evolution following the rapid
appearance of those ripples is characterized by a pronounced spatial variation of
all ensemble-averaged parameters except for the characteristic slopes. The dominant
wavelength, λdom(t), was calculated for each instantaneous dominant wave frequency
fdom(t) using the empirical dispersion relation that accounts for the Doppler shift in
the presence of shear current (Liberzon & Shemer 2011; Zavadsky et al. 2017). The
characteristic surface elevation fluctuations,

√
〈η2〉, as well as fdom(t) and λdom(t) vary

monotonically until they attain their corresponding steady-state values. The changes in
the slopes of the curves representing these parameters are attributed to the transitions
between different stages characterizing the evolving wind–wave field. The elapsed
times at which the transitions between the stages of evolution occur are defined in
figure 12 and presented in table 3 for all fetches and wind velocities employed in
this study.

The initial wavelets appear at t = t1. At lower air flow rates, the target wind
velocity is attained at elapsed times t< t1, so wind waves evolve under an effectively
impulsive forcing. The present results show that the energy of initial wavelets grows
exponentially in time, in agreement with the viscous instability mechanism suggested
by Kawai (1979). The growth rates of wavelets, β, were obtained in the present study
for stronger wind forcing and higher values of air–water interfacial shear than those
considered by Kawai. Nevertheless, extrapolating the experimental and numerical
results of Kawai (1979) to higher friction velocities yields values of β that are in
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agreement with the present results. For wind velocities U > 7.5 m s−1, the initial
ripples appear while the air flow in the test section is still being accelerated. The
growth of the ripples is initially exponential for those velocities as well; the values
of β for those higher wind velocities that are presented in table 4 are consistent with
those measured for weaker wind forcing. However, the duration of the exponential
growth at a constant rate does not exceed 1 s, the growth of the ripples following
that initial stage then slows down significantly and ceases to be exponential. This
slowdown occurs at elapsed times when the target wind velocity has already been
attained. The conclusion thus can be made that for all wind velocities, following the
stage of the exponential growth of initial wavelets, waves in the present experiments
evolve under the action of an effectively impulsive wind forcing.

Note that the analysis of viscous instability mechanism by Kawai (1979) that
leads to the exponential growth of the initial wavelets assumes existence of
unidirectional waves. The results of figures 19 and 20 suggest that the termination
of the exponential growth stage is associated with development of instability in the
cross-wind direction. As a result, shortly after their appearance, the initial wavelets
cease to be largely unidirectional. The wave field at the end of the exponential growth
stage is characterized by ripples with heights below about 0.5 mm that are essentially
three-dimensional and random. These ripples appear nearly simultaneously over the
whole test section and resemble the wavelets observed at very short fetches under
steady wind forcing.

No definite dependence on wind velocity and/or fetch could be identified. The
dominant frequencies of those initial ripples are in the range of 14–18 Hz. The
fast cessation of the exponential growth stage suggests comparison of the present
results with the Phillips (1957) resonant theory. The frequency of the ripples exceeds
somewhat the Phillips prediction of 13.4 Hz. This difference can be attributed to the
Doppler shift due to the shear current in water induced by the wind. Similar estimates
of frequencies of the first detectable ripples were reported in other studies cited above,
that were carried out in much larger experimental facilities. Phillips also pointed out
that the ripples propagated at an angle to the wind direction. In our experiments, no
distinct propagation angle can be identified. Rather, the azimuthal angles of wave
propagation direction are widely spread. These results on spreading of the ripples
propagation direction obtained using the LSG are consistent with measurements of the
two components of surface velocity fluctuations obtained using the PTV technique.

The growth of wind waves following the appearance of the initial wavelets is
notably different. The dominant wave frequency continues to decrease with time at
all fetches and wind-forcing conditions. The wave energy growth with time becomes
close to linear, see figure 15. This result is consistent with Milewski, Tabak &
Vanden-Eijnden (2002) who showed theoretically that under random forcing and with
negligible dissipation, the wave energy grows linearly with time. The resonant theory
by Phillips indeed assumes random wind forcing.

The wave evolution during the elapsed time interval t2 < t < t3 can be interpreted
as the initial stage of the resonant waves development according to Phillips (1957).
During this time interval the dominant waves are in the gravity–capillary range. The
theory of Phillips suggests that the wave energy growth during this stage is linear with
time, as indeed observed in our experiments for t2 < t < t3. At longer times, t > t3,
the rate of change of wave parameters varies again, until the quasi-steady state is
attained. The waves become longer and belong to the pure gravity range. It is natural
to attribute the evolution at elapsed times t> t3 to the principal stage of development
in the notation of Phillips. At this stage, Phillips invoked numerous assumptions on
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the structure of the turbulent air flow above the water surface and on the resonant
waves’ propagation velocities, to predict that gravity waves grow as 〈η2

〉 ∼ U3t. In
the present study, advantage was taken of information on the actual wave propagation
velocities and on the structure of the turbulent flow over wind waves accumulated in
our previous study (Zavadsky & Shemer 2012), to modify somewhat the assumptions
adopted by Phillips. These modifications lead to the expected wave growth as 〈η2

〉 ∼

U4t. The experimental results for two fetches and different wind velocities compiled in
figure 16 indeed demonstrate that the ensemble-averaged values of 〈η2

〉 grow linearly
with time measured from the beginning of the principal development stage in the wave
evolution process, t= t3. However, the slopes of the curves representing the temporal
variation of 〈η2

〉 ≈ U4t, while being of the same order, are not in fact universal and
vary somewhat in the range (1–3) × 10−9 s3 m−2. No trend in the slope with the
variation of the wind velocity was identified.

The essential differences between different stages of the evolution of the very
young wind–wave field also manifest themselves in the time dependence of the
higher statistical momenta. The skewness coefficients λ3 are negative for the initial
ripples, and gradually increase to positive values characterizing larger waves at all
wind velocities. These non-zero values of the skewness coefficient indicate that
practically during the whole evolution process, the wind–wave system is essentially
nonlinear. The kurtosis coefficient λ4 for the initial detectable waves exceeds the
value of 3 that corresponds to the Rayleigh distribution, thus indicating that the
probability of extremely high waves at this stage is relatively large. These steep
wave, however, are characterized by deep troughs rather than high crests, as is the
case with nonlinear capillary waves. The values of λ4 then decrease fast to values
below λ4 = 3 for all conditions. In spite of the essentially 3-D structure of the wave
field, it is instructive to examine the qualitative change in the representative wave
profile in the wind direction. The initial ripples are characterized by downwind side
longer than the upwind side. This asymmetry is gradually reversed as waves grow
longer and become dominated by gravity.

The present results thus demonstrate that young wind waves are essentially random
and cannot be seen as unidirectional; moreover, the growth of each harmonic towards
its equilibrium amplitude for given wind forcing is apparently unaffected by other
harmonics and thus by the characteristic surface profile. These observations suggest
that numerous studies briefly reviewed in the introduction in which the wind waves’
growth is considered in 2-D approximation and related to interactions between the
air flow and water surface for a prescribed surface profile may not be applicable to
emergence of young wind waves. It may be noted in this connection that Zavadsky
et al. (2017) demonstrated that the characteristic spatial coherence lengths of young
waves under steady wind forcing are quite short, for different wind velocities and
fetches being notably smaller than the corresponding dominant wavelengths.

The Phillips (1957) resonant theory for wind–wave generation is fundamentally
based on the three-dimensionality of the random wave field. Contrary to the
assumptions made in the largely deterministic theory of Miles (1957) and its later
developments, the approach of Phillips is intrinsically stochastic and based on the
wave vector spectra of turbulent pressure fluctuations in air flow over the moving
water surface. So far, there is no way to obtain reliable estimates of these spectra
experimentally. To overcome this problem, Phillips made certain assumptions relating
the pressure fluctuations spectrum to the friction velocity u∗ at air water interface,
which in turn was related to the wind velocity U.

In summary, the present results provide the first experimental verification of the
Phillips theory and strongly indicate that the general approach suggested by Phillips
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constitutes an appropriate starting point to describe the evolution of initial ripples
to longer gravity–capillary and short gravity wavelength range. One can expect
that modifications of the model and refinement of certain assumptions made in the
theory in view of new experimental results accumulated since the original publication
by Phillips will lead to a better understanding of physical mechanisms governing
emergence of wind waves, and thus to better agreement with experiment.
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