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Abstract Schertz conjectured that every finite abelian extension of imaginary quadratic fields can be
generated by the norm of the Siegel–Ramachandra invariants. We present a conditional proof of his
conjecture by means of the characters on class groups and the second Kronecker limit formula.
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1. Introduction

Let K be an imaginary quadratic field, f a non-zero integral ideal of K and Cl(f) the ray
class group of K modulo f. Then there exists a unique abelian extension Kf of K whose
Galois group is isomorphic to Cl(f) via the Artin map

σf : Cl(f) ∼−−→ Gal(Kf/K), (1.1)

which is called the ray class field of K modulo f. By class field theory, any abelian
extension of K is contained in some ray class field Kf; hence, it is important to construct
the ray class fields of K to determine the maximal abelian extension of K.

In 1964, Ramachandra [6, Theorem 10] constructed a primitive generator of Kf over
K in terms of a certain elliptic unit and showed that arbitrary finite abelian extension
of K could be generated by the norm of this unit, which settled Kronecker’s Jugend-
traum over an imaginary quadratic field. However, his unit involves products of singular
values of the Klein forms and the discriminant Δ-function that are too complicated to
use in practice. On the other hand, Schertz [7, Theorem 6.8.4] presented a relatively
simple ray class invariant over K by means of the singular value of a certain Siegel
function, namely, the Siegel–Ramachandra invariant. He further conjectured that every
finite abelian extension of K could be generated by the norm of the Siegel–Ramachandra
invariant [7, Conjecture 6.8.3] as follows.
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Conjecture 1.1. Let f be a non-zero proper integral ideal of K and let L be a finite
abelian extension of K such that K ⊂ L ⊂ Kf. Then for every non-zero integer n and
C ∈ Cl(f),

L = K(NKf/L(gf(C)n)),

where gf(C) is the Siegel–Ramachandra invariant of conductor f at C defined in (2.1).

Recently, Koo–Yoon generated ray class fields Kf over K via Siegel–Ramachandra
invariants by making use of the characters on class groups and the second Kronecker
limit formula [3, Theorem 4.6]. In this paper, by improving their idea, we give a condi-
tional proof of the conjecture with a certain assumption depending only on the extension
degree [Kf : LHK ], where HK denotes the Hilbert class field of K (Theorem 2.6 and
Example 2.10).

Notation 1.2. For z ∈ C, we denote by z the complex conjugate of z. If G is a group
and g1, g2, . . . , gr are elements of G, let 〈g1, g2, . . . , gr〉 be the subgroup of G generated
by g1, g2, . . . , gr. Moreover, if H is a subgroup of G and g ∈ G, by [g] we mean the coset
gH of H in G. For a number field K, let OK be the ring of integers of K. If a ∈ OK , we
denote by (a) the principal ideal of K generated by a.

2. Main theorem

For a rational vector r =
[
r1
r2

] ∈ Q2 \ Z2, we define the Siegel function gr(τ) on the
complex upper half plane H by the following infinite product:

gr(τ) = −q1/2B2(r1)eπir2(r1−1)(1 − qr1e2πir2)
∞∏
n=1

(1 − qn+r1e2πir2)(1 − qn−r1e−2πir2),

where B2(X) = X2 −X + 1/6 is the second Bernoulli polynomial and q = e2πiτ . Then, a
Siegel function is a modular unit, namely, it is a modular function whose zeros and poles
are supported only at the cusps [9] or [4, p. 36]. In particular, if r ∈ (1/N)Z2 \ Z2 with
an integer N ≥ 2 then the function gr(τ)12N belongs to FN [2, Proposition 1.1], where
FN is the field of meromorphic modular functions for the principal congruence subgroup
Γ(N) whose Fourier coefficients lie in the Nth cyclotomic field Q(e2πi/N ).

Let K be an imaginary quadratic field of discriminant dK , f a non-zero proper integral
ideal of K and N the smallest positive integer in f. For C ∈ Cl(f), we take any integral
ideal c in C and choose a basis [ω1, ω2] of fc−1 such that ω1/ω2 ∈ H. Then one can write

N = r1ω1 + r2ω2

for some r1, r2 ∈ Z. We define the Siegel–Ramachandra invariant of conductor f at C by

gf(C) = g[ r1/N
r2/N

](ω1/ω2)12N . (2.1)

This value depends only on the class C and f, not on the choice of c.

https://doi.org/10.1017/S0013091518000895 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091518000895


On the Schertz conjecture 839

Proposition 2.1. Let C,C ′ ∈ Cl(f) with f �= OK .

(i) gf(C) belongs to Kf as an algebraic integer. If N is composite, gf(C) is a unit in
Kf.

(ii) We have the transformation formula

gf(C)σf(C
′) = gf(CC ′),

where σf is the Artin map stated in (1.1).

Proof. [5, Chapter 19, Theorem 3] and [4, Chapter 11, Theorem 1.2]. �

Let χ be a non-trivial character of Cl(f) with f �= OK , fχ a conductor of χ and χ0

the primitive character of Cl(fχ) corresponding to χ. The Stickelberger element and the
L-function for χ are defined by

Sf(χ) =
∑

C∈Cl(f)

χ(C) log |gf(C)|,

Lf(s, χ) =
∑

(0) �=a⊂OK

gcd(a,f)=1

χ(a)
N (a)s

(s ∈ C),

respectively, where N (a) is the absolute norm of an ideal a. The second Kronecker limit
formula describes the relation between the Stickelberger element and the L-function as
follows.

Proposition 2.2. Let χ be a non-trivial character of Cl(f) with fχ �= OK . Then we
have

Lfχ
(1, χ0)

∏
p | f

p � fχ

(1 − χ0([p])) = − 2πχ0([γdK fχ])
6N(fχ)ω(fχ)Tγ(χ0)

√−dK
· Sf(χ),

where dK is the different ideal of K/Q, γ is an element of K such that γdK fχ is an integral
ideal of K prime to fχ, N(fχ) is the smallest positive integer in fχ, ω(fχ) is the number
of roots of unity in K which are congruent to 1 modulo fχ and

Tγ(χ0) =
∑

x+fχ∈(OK/fχ)×
χ0([xOK ])e2πiTrK/Q(γx).

Proof. See [4, Chapter 11 §2, LF 2]. �

Remark 2.3. Since χ0 is a non-trivial primitive character of Cl(fχ), both Lfχ
(1, χ0)

and the Gauss sum Tγ(χ0) are non-zero [1, Chapter V, Theorem 10.2], [5, Chapter 22
§1, G 3]. If every prime ideal factor of f divides fχ then we understand the Euler factor∏

p | f, p � fχ
(1 − χ0([ψ])) to be 1, and hence we conclude that Sf(χ) �= 0.
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For an intermediate field L of the extensionKf/K, we denote by Cl(Kf/L) the subgroup
of Cl(f) corresponding to Gal(Kf/L) via the Artin map (1.1). Then one can identify
Cl(Kf/HK) with the quotient group

(OK/f)×/{α+ f ∈ (OK/f)× | α ∈ O×
K}

via the natural homomorphism

(OK/f)× −→Cl(Kf/HK)

α+ f 
−→[(α)].

Let f =
∏

p pep be a prime ideal factorization of f. For each prime ideal p, we set

Gp = (OK/p
ep)×/{α+ pep ∈ (OK/p

ep)× | α ∈ O×
K}

so that Gp
∼= Cl(Kpep/HK) ⊂ Cl(pep). Then we have

|Gp| = φ(pep)
ω(pep)
ωK

where φ(pep) = |(OK/p
ep)×|, ωK is the number of roots of unity in K and ω(pep) is the

number of roots of unity in K which are congruent to 1 modulo pep .

Lemma 2.4. Let H ⊂ G be two finite abelian groups, g ∈ G \H, and let n be the
order of the coset [g] in G/H. Then for any character χ of H, we can extend it to a
character ψ of G in such a way that ψ(g) is any fixed nth root of χ(gn).

Proof. See [8, Chapter VI, Proposition 1]. �

Let L be a finite abelian extension of K such that K � L ⊂ Kf and L �⊂ HK . Replacing
f by fp−ep if necessary, we may assume that L �⊂ Kfp−ep for every prime ideal factor p of f.

Lemma 2.5. Assume that for each prime ideal factor p of f there is a rational prime
νp satisfying ordνp(|Gp|) > ordνp([Kf : LHK ]) + ip where

ip =
{

0 if νp �= 2,
1 if νp = 2.

Then, for any class D ∈ Cl(f) \ Cl(Kf/L), there exists a character χ of Cl(f) such that
χ|Cl(Kf/L) = 1, χ(D) �= 1 and p | fχ for every prime ideal factor p of f.

Proof. By Lemma 2.4, there exists a character χ of Cl(f) satisfying χ|Cl(Kf/L) = 1 and
χ(D) �= 1. For each p, we define a homomorphism ϕp by

ϕp : Cl(Kf/HK) →Gp

[α+ f] 
−→[α+ pep ].

Suppose that p � fχ for some p. Let n be the order of the class D in the quotient group
Cl(f)/Cl(Kf/HK). Then Dn = [(β)] for some β ∈ OK which is prime to f. Note that

Cl(Kf/L) ∩ Cl(Kf/HK) = Cl(Kf/LHK).
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Case 1. First, suppose that Gp/Im(ϕp|Cl(Kf/LHK)) �= 〈[β + pep ]〉. Then there exists a
non-trivial character ψ of Gp in such a way that ψ is trivial on Im(ϕp|Cl(Kf/LHK)) and
ψ([β + pep ]) = 1. Let ψ′ = ψ ◦ ϕp be a character of Cl(Kf/HK). Then it is possible for
us to extend ψ′ to a character ψp of Cl(f) such that ψp|Cl(Kf/L) = 1 and ψp(D) = 1 by
Lemma 2.4.

Case 2. Now, assume that Gp/Im(ϕp|Cl(Kf/LHK)) = 〈[β + pep ]〉. By the hypothesis,
there is a non-trivial character ψ of Gp such that ψ is trivial on Im(ϕp|Cl(Kf/LHK)) and
ψ([β + pep ]) �= 1, χ(Dn)−1. Similar to Case 1, one can extend ψ to a character ψp of Cl(f)
for which ψp|Cl(Kf/L) = 1 and ψp(D) �= χ(D)−1.

Here we observe that ψp is a non-trivial character whose conductor is solely divisible by
p in both cases. Hence the character χψp of Cl(f) satisfies χψp|Cl(Kf/L) = 1, χψp(D) �= 1,
p | fχψp and fχ | fχψp . Thus, we replace χ by χψp. By continuing this process for every p,
we get the lemma. �

Let hL,f be the set of prime ideal factors p of f such that there is no rational prime νp

satisfying ordνp(|Gp|) > ordνp([Kf : LHK ]) + ip.

Theorem 2.6. Let f =
∏

p pep be a non-zero proper integral ideal of K, and let L
be a finite abelian extension of K such that K ⊂ L ⊂ Kf. Assume that L �⊂ HK and
L �⊂ Kfp−ep for every prime ideal factor p of f, and

∑
p∈hL,f

1
[L : L ∩Kfp−ep ]

≤ 1
2
. (2.2)

Then, for any non-zero integer n and C ∈ Cl(f), the singular value

NKf/L(gf(C)n)

generates L over K. In particular, if |hL,f| = 0 or 1, then the assumption (2.2) is always
true and so we have the desired result.

Proof. The proof is clear when L = K, and so we may assume that K � L. Let

L′ = K(NKf/L(gf(C0)n)),

where C0 is the unit class in Cl(f). On the contrary, suppose L′ � L. Then we claim
that there exists a character χ of Cl(f) satisfying χ|Cl(Kf/L) = 1, χ|Cl(Kf/L′) �= 1 and p | fχ
for every p ∈ hL,f. Indeed, if |hL,f| = 0 then the proof is clear by Lemma 2.4. Suppose
|hL,f| ≥ 1. Let

G1 = {characters χ of Cl(f) | χ|Cl(Kf/L) = 1, χ|Cl(Kf/L′) �= 1},
G2 = {non-trivial characters χ of Cl(f) | χ|Cl(Kf/L) = 1 and p � fχ for some p ∈ hL,f}.
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Observe that all characters in G1 are non-trivial. Then we have

|G1| = |{characters χ of Gal(L/K) | χ|Gal(L/L′) �= 1}|
since Cl(f)/Cl(Kf/L) ∼= Gal(L/K)

= |{characters χ of Gal(L/K)}| − |{characters χ of Gal(L/K) | χ|Gal(L/L′) = 1}|
= [L : K] − [L′ : K]

= [L : K]
(

1 − 1
[L : L′]

)

≥ 1
2 [L : K].

On the other hand, we deduce

|G2| = |{characters χ of Cl(f) | χ|Cl(Kf/L) = 1 and fχ | fp−ep for some p ∈ hL,f}| − 1

≤
∑

p∈hL,f

|{characters χ of Cl(fp−ep) | χ|Cl(K
fp−ep /L∩Kfp−ep ) = 1}| − 1

=
∑

p∈hL,f

[L ∩Kfp−ep : K] − 1

= [L : K]
( ∑

p∈hL,f

1
[L : L ∩Kfp−ep ]

)
− 1

≤ 1
2 [L : K] − 1 by (2.2).

Hence |G1| > |G2| and so the claim is proved.
Choose a class D ∈ Cl(Kf/L

′) \ Cl(Kf/L) such that χ(D) �= 1. We then see from the
proof of Lemma 2.5 that there is a character ψ of Cl(f) satisfying χψ|Cl(Kf/L) = 1,
χψ(D) �= 1, fχ | fχψ and p | fχψ for every prime ideal factor p of f. We replace χ by χψ.

Since χ is non-trivial and fχ �= OK , we obtain Sf(χ) �= 0 by Proposition 2.2. On the
other hand, we derive that

Sf(χ) =
1
n

∑
E∈Cl(f)

χ(E) log |gf(E)n|

=
1
n

∑
E∈Cl(f)

χ(E) log |(gf(C0)n)σf(E)| (by Proposition 2.1)

=
1
n

∑
E1∈Cl(f)

E1 mod Cl(Kf/L
′)

∑
E2∈Cl(Kf/L

′)
E2 mod Cl(Kf/L)

×
∑

E3∈Cl(Kf/L)

χ(E1E2E3) log |(gf(C0)n)σf(E1E2E3)|
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=
1
n

∑
E1

χ(E1)
∑
E2

χ(E2) log |NKf/L(gf(C0)n)σf(E1)σf(E2)| since χ|Cl(Kf/L) = 1

=
1
n

∑
E1

χ(E1) log |NKf/L(gf(C0)n)σf(E1)|
( ∑

E2

χ(E2)
)

= 0,

because NKf/L(gf(C0)n) ∈ L′ and χ|Cl(Kf/L′) �= 1. This is a contradiction, and so L′ = L.
Since L′ is an abelian extension of K and

NKf/L(gf(C0)n)σf(C) = NKf/L(gf(C)n) for C ∈ Cl(f),

we conclude that L = L′ = K(NKf/L(gf(C)n)) as desired. �

Remark 2.7. If f = pn is a power of a prime ideal p of K, then the assumption (2.2)
is always satisfied since |hL,f| ≤ 1.

Now, consider the case where L = Kf. One can readily show that

hKf,f = {a prime ideal factor p of f | |Gp| = 1 or 2},
and hence [3, Theorem 4.6] is a special case of Theorem 2.6 for L = Kf as follows.

Corollary 2.8. Let f =
∏

p pep be a non-zero proper integral ideal of K. Assume that
Kf �= Kfp−ep for every prime ideal factor p of f, and

∑
p∈hKf,f

1
φ(pep)

≤ 1
2
.

Then, for any non-zero integer n and C ∈ Cl(f), we have

Kf = K(gf(C)n).

Proof. See [3, Theorem 4.6]. �

Remark 2.9. We see from [3, Lemma 4.4] that |Gp| = 1 or 2 if and only if pep satisfies
one of the following conditions.

Case 1. K �= Q(
√−1),Q(

√−3).

• 2 is not inert in K, p is lying over 2 and ep = 1, 2 or 3.

• 3 is not inert in K, p is lying over 3 and ep = 1.

• 5 is not inert in K, p is lying over 5 and ep = 1.

Case 2. K = Q(
√−1).

• p is lying over 2 and ep = 1, 2, 3 or 4.

• p is lying over 3 and ep = 1.

• p is lying over 5 and ep = 1.
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Case 3. K = Q(
√−3).

• p is lying over 2 and ep = 1 or 2.

• p is lying over 3 and ep = 1 or 2.

• p is lying over 7 and ep = 1.

• p is lying over 13 and ep = 1.

Example 2.10. Let K = Q(
√−11) and let L be a finite abelian extension of K such

that K � L ⊂ Kf for some non-zero proper integral ideal f of K. Then HK = K.

(i) Let f = 22OK . Then f = p1p
2
2 with prime ideals p1 = 2OK and p2 =

√−11OK .
Observe that |Gp1 | = 3, |Gp2 | = 55 and [Kf : K] = 165. Hence [Kf : L] =
1, 3, 5, 11, 15, 33 or 55. Since

ord3(|Gp1 |) > ord3([Kf : L]) if [Kf : L] = 1, 5, 11, 55,

ord5(|Gp2 |) > ord5([Kf : L]) if [Kf : L] = 3, 33,

ord11(|Gp2 |) > ord11([Kf : L]) if [Kf : L] = 15,

we get |hL,f| = 0 or 1 for any case. Therefore, it follows from Theorem 2.6 that

L = K(NKf/L(gf(C)n))

for any non-zero integer n and C ∈ Cl(f).

(ii) Let f = 5OK . Then f = pp with the prime ideal p = (5, 2 +
√−11). Consider the

case where L = Kf. Note that we cannot apply [7, Theorem 6.8.4] to this case
because the exponents of (OK/p)× and (OK/p)× are 4. On the other hand, one
can easily show that |Gp| = |Gp| = 2 and so hKf,f = {p, p}. Since

1
φ(p)

+
1

φ(p)
=

1
4

+
1
4

=
1
2
,

we deduce by Corollary 2.8 that

Kf = K(gf(C)n)

for any non-zero integer n and C ∈ Cl(f).
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