
TLP 13 (4–5): Online Supplement, July 2013. C© 2013 [REHAN ABDUL AZIZ, GEOFFREY CHU and
PETER J. STUCKEY]

URL: http://dx.doi.org/10.1017/S147106841300032X

517

Stable model semantics for founded bounds

REHAN ABDUL AZIZ, GEOFFREY CHU and PETER J. STUCKEY

National ICT Australia, Victoria Laboratory,� Department of Computing and Information Systems,
University of Melbourne, Australia

(e-mail: raziz@student.unimelb.edu.au, gchu@csse.unimelb.edu.au,

pjs@csse.unimelb.edu.au)

submitted 10 April 2013; revised 23 June 2013; accepted 5 July 2013

Abstract

Answer Set Programming (ASP) is a powerful form of declarative programming used in areas
such as planning or reasoning. ASP solvers enforce stable model semantics, which rule out
solutions representing certain kinds of circular reasoning. Unfortunately, current ASP solvers
are incapable of solving problems involving cyclic dependencies between multiple integer or
continuous quantities effectively. In this paper, we generalize the notion of stable models to
bound founded variables with arbitrary domains, where bounds on such variables need to be
justified by some rule in the program in order for the model to be stable. We show how to
handle significantly more general rule forms where bound founded variables can act as head
or body variables, and where head and body variables can be related via complex constraints
subject to certain monotonicity requirements. We describe a new unfounded set detection
algorithm which allows us to enforce this generalization of the stable model semantics. We
also show how these unfounded sets can be explained in order to allow effective conflict-
directed clause learning. The new solver merges the best features of CP, SAT and ASP solvers
and allows new types of problems to be solved very efficiently.

KEYWORDS: answer set programming, stable model semantics, finite domain solving

1 Introduction

Many problems in the areas of planning or reasoning can be efficiently expressed

using Answer Set Programming (ASP) (Baral 2003; Gebser et al. 2012). ASP enforces

stable model semantics (Gelfond and Lifschitz 1988) on logic programs, which

disallows solutions representing certain kinds of circular reasoning. Current state-

of-the-art ASP solvers convert an ASP program into a Boolean representation by

grounding the variables in the rules to all their allowed values, and using a Boolean

Satisfiability (SAT) solver (Marques-Silva and Sakallah 1999; Moskewicz et al. 2001)

to solve the resulting Boolean problem (Gebser et al. 2012). Naively, this gives the

wrong semantics, as SAT solvers do not enforce the stable model semantics. This is

overcome by augmenting the SAT solver with a component that detects unfounded

sets (Van Gelder et al. 1988) (sets of variables that can only be set true using circular

reasoning), and fixes such sets of variables to false (Anger et al. 2006; Gebser et al.

� NICTA is funded by the Australian Government as represented by the Department of Broadband,
Communications and the Digital Economy and the Australian Research Council through the ICT
Centre of Excellence program.

https://doi.org/10.1017/S147106841300032X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841300032X

518 R. A. Aziz et al.

2007). Unfortunately, this approach suffers from the grounding bottleneck problem.

In ASP programs with finite domain (FD) constraints, grounding the FD constraints

will often generate a very large or exponential number of Boolean clauses, causing

the SAT-based ASP solver to run out of memory.

Several methods have been proposed to overcome the grounding bottleneck in

ASP solvers. These include translational approaches (Drescher and Walsh 2010; Liu

et al. 2012) and approaches in which ASP solvers are combined with Constraint

Programming (CP) (Rossi et al. 2006) such that the FD constraints are handled

natively by the CP solver without grounding (Baselice et al. 2005; Mellarkod

et al. 2008; Gebser et al. 2009). In the latter approaches, each occurrence of an

FD constraint c in the logic program is replaced with a Boolean variable bc.

Reified constraints of form: bc ↔ c are posted in the CP solver and the domains

of the bc’s are channeled between the ASP and CP solvers. A recent approach

implements unfounded set detection as a propagator inside a CP solver that prunes

unfounded sets from partial models and explains them during search (Aziz et al.

2013). Another solution extends an ASP solver with external propagators that can

generate nogoods during search to explain their propagation (Drescher and Walsh

2012). While the methods mentioned above avoid the grounding bottleneck, all

of them have two major shortcomings. First, they cannot correctly handle any

ASP program where ASP variables appear as arguments in FD constraints in

the rules. This is because the unfounded set detection algorithm does not detect

any inference loop that goes through external constraints in rule bodies. Secondly,

none of these systems can efficiently model problems involving cyclic dependencies

between integer or continuous quantities. Due to the possibility of positive feedback

loops, a generalization of stable model semantics to integer or continuous variables

is required to get sensible (i.e., stable) solutions of such problems.

Consider the simple example of calculating shortest paths over an undirected graph

(V , E), where the distance from x to y is ex,y = ey,x. Let spx,y be integer variables

representing the length of the shortest path from x to y. A simple declarative model

is as follows:

∀x, spx,x � 0

∀x, y, spx,y � spy,x

∀x, y, z, spx,y � ex,z + spz,y

Unfortunately, if we give such a model to a CP solver (which uses logical semantics),

we can get completely nonsensical solutions such as spx,y = 0 for all x, y. What we

need in order to solve this problem properly is some sort of stable model semantics

over the bounds of the integer variables spx,y . In particular, we want a semantics

where the upper bounds of the variables spx,y need to be justified, i.e., for each

value k, unless there is some rule that is forcing spx,y to be smaller than k, then

spx,y should not be smaller than k. It is possible to do this using the existing ASP

language as follows. Let spub(x, y, d) represent whether we can go from x to y in

less than or equal to d cost. Then a model such as:

∀x, y, k, spub(x, y, k)← spub(x, y, k − 1)

∀x, spub(x, x, 0).

∀x, y, k, spub(x, y, k)← spub(y, x, k)

∀x, y, r, s, spub(x, y, r)← spub(z, y, s) ∧ r = ex,z + s

https://doi.org/10.1017/S147106841300032X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841300032X

Stable model semantics for founded bounds 519

will generate stable models where spub(x, y, d) is true iff d is � the correct shortest

path value, allowing us to calculate spx,y . However, this is extremely inefficient and

suffers from a significant grounding bottleneck if distances are large.

As another example consider the following version of the Company Controls

problem. Given a set of companies C , and two companies s, t ∈ C , we want

company s to gain control of company t at minimum cost. Each company i has

mi shares in total. A company i can gain control of company j if it controls more

than 50% of company j’s shares either directly (owns shares in j itself) or indirectly

(controls a company that owns shares in j). Initially each company i ∈ C owns ai,j
of company j’s shares. Company s is going to try to gain control of company t by

either buying shares in t directly, or by buying shares of other companies to gain

control over them and then using them to buy more shares to gain control over

additional companies, etc., until it controls t. Each company i has a limited amount

of cash budget i to buy shares with. Let ci represent whether company s controls

company i. Note that we assume company s controls itself, so cs = true by default.

Let bi,j be the amount of stocks of company j that company s forces company i to

buy. Note that company s can only force company i to buy if it controls company

i, so ¬ci → bi,j = 0. Suppose the stock of company j has a fixed market price of pj .

Then we can model it as follows:

minimize
∑

j∈C pjbs,j expenditure of company s

subject to:
cs company s controls itself by default
← ¬ct s must control t

∀j ∈ C, cj ←
∑

i∈C ci ∗ (ai,j + bi,j) > 0.5 ∗ mj s control j if it control >50% shares
∀i, j ∈ C, ← bi,j > 0 ∧ ¬ci only controlled companies can buy
∀i ∈ C, ←

∑
j∈C aj,i + bj,i > mj cannot buy more than available

∀i ∈ C, ←
∑

j∈C bi,j > budget i budget constraint

This version of the problem is different from the one used in ASP competitions1

where buying options are limited to a relatively small number of preset packages.

Our version allows companies to buy shares in any increment. If the mi’s are large,

grounding our version to an ASP program will quickly cause the solver to run out

of memory.

In this paper, we propose a new approach to ASP that allows a wider range of

problems to be modeled and solved efficiently. We generalize the notion of stable

models to bound founded variables. These variables cannot take an arbitrary value

from their domain. Instead, their value defaults to the lowest or highest value

allowed by the rules in the program depending on whether they are lb-founded

or ub-founded (lower/upper bound founded) variables. Thus the bounds on such

variables need to be justified by some rule in order for a model to be stable. We

show how to handle significantly more general rule forms where bound founded

variables can act as head or body variables, and where these variables can be related

via complex constraints subject to certain monotonicity requirements. We describe a

new unfounded set detection algorithm that allows us to enforce this generalization

1 https://www.mat.unical.it/aspcomp2011/FinalProblemDescriptions/
CompanyControlsOptimize

https://doi.org/10.1017/S147106841300032X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841300032X

520 R. A. Aziz et al.

of stable model semantics. We also show how these unfounded sets can be explained

in order to allow effective conflict-directed clause learning.

2 Definitions and background

Let ⇒ denote logical implication and ⇔ denote logical equivalence. A constraint

satisfaction problem (CSP) is a tuple (V ,C,D), where V is a set of variables, C

is a set of constraints, and D is a set of unary domain constraints of the form

{x ∈ D(x) | x ∈ V }. Each constraint c restricts the values that a set of variables

vars(c) ⊆ V can be simultaneously assigned. A valuation θ is a function that maps

each x ∈ V to a value in D(x).

A propagator pc for constraint c is a contracting function from domains to

domains such that for any D, c ∧ D ⇒ pc(D), i.e., it prunes infeasible variable/value

pairs to return a smaller domain. A constraint programming solver branches on

the value of variables and performs a fix-point calculation using the propagators to

reduce the size of the current domain. If any variable’s domain becomes empty, then

that subtree is failed and has no solutions. If all variables are fixed and no failure

occurs, then we have a solution. An event-based propagation engine (Schulte and

Stuckey 2008) uses domain change events such as lower/upper bound change events

or value fixing events (lb event(x), ub event(x), fix event(x) resp.) to lazily wake up

propagators. Each propagator subscribes to the events that may allow it to prune

additional values.

Given a constraint c and a variable argument x, c is monotonically increasing

(resp. decreasing) w.r.t. x if increasing (resp. decreasing) x’s value can never cause

c to go from satisfied to unsatisfied. A HORN-CP is a CSP where every constraint

c is monotonically increasing in at most one of its arguments and is monotonically

decreasing in all other arguments. The minimal solution to a HORN-CP is a solution

θ such that there does not exist another solution θ′ with ∀v ∈ V , θ′(v) � θ(v). Note

that for Boolean variables, false < true.

Similarly to how the minimal model for a HORN-SAT instance can be found

by running unit propagation on the constraints to fixed point and then setting all

unfixed variables to false, the minimal solution for a HORN-CP instance can be

found by running bounds consistent propagators on the constraints to fixed point

and then setting all variables to their lowest allowed values. If the propagation leads

to an empty domain, there are no solutions. Otherwise, we will always get a minimal

solution.

Example 1

Consider the constraints x � 0, y � 4 + x, 2x � y. This is a HORN-CP program,

each constraint monotonically increasing in the first argument. A fixpoint calculation

calculates x � 0, y � 4, x � 2, y � 6, x � 3, y � 7, x � 4, y � 8. The minimal

solution is x = 4, y = 8. �

3 Bound founded answer set programming

We now define bound founded answer set programs (BFASPs). A BFASP P is a

tuple P = (N ∪ F, R), where N are standard (CP) variables, F are founded

https://doi.org/10.1017/S147106841300032X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841300032X

Stable model semantics for founded bounds 521

variables, and R is a set of rule constraints. Variables can either be Boolean, integer,

or continuous. Founded variables can be divided into two categories: lb-founded

and ub-founded. Therefore, the complete type of a variable is determined by two

factors: whether it is Boolean, integer, or continuous and whether it is lb-founded,

ub-founded or standard. The stable model semantics requires that the lower bounds

(resp. upper bounds) of lb-founded (resp. ub-founded) variables are justified by

some rule constraint in order to be valid in a stable model. This means that an

lb-founded Boolean variable is the same as a variable in ASP, i.e., in the absence

of any rule that forces it to be true, the variable becomes false. It is intuitive to

think of an lb-founded integer x with domain [L . . . U] as a set of ASP variables

[x � L], [x � L + 1], . . . , [x � U], [x � U + 1] where [x � v] represents the truth

value of x � v, linked by the following ASP rules:

[x � L].

∀v ∈ [L..U − 1], [x � v] ← [x � v + 1]

← [x � U + 1]

The value of x is then the largest value v such that [x � v] is true but [x � v + 1]

is false. Similarly, an lb-founded continuous variable can be thought of as an infinite

set of ASP variables [x � v] where ∀v < v′, [x � v] ← [x � v′], and ub-founded

variables are analogous, but with ASP variables representing x � v instead. Of

course, this grounding is precisely what we want to avoid in this paper.

Each rule constraint r is a pair (cons(r), head (r)) where cons(r) is a constraint

defined by an arbitrary logical expression over any standard or founded variable

in the problem, and head (r) ∈ F is called the head variable of r. We now define

the stable model semantics for a BFASP P that is valid (defined below). We first

consider the case where we only have standard or lb-founded variables. Given a full

assignment θ to the variables inN∪F, the CP reduct of P w.r.t. θ, written Pθ , is a

HORN-CP constructed as follows. We start with Pθ empty. We add all variables in

F to Pθ . For each rule constraint r = (c(y, x1, . . . , xn), y), for each xi where xi is not

in F, or for which c is not decreasing w.r.t. xi, we substitute the value of θ(xi) for

xi in c. If the modified constraint c is not a tautology, we add it to Pθ . A solution θ

to P is a stable solution iff its restriction to the variables F is the minimal solution

of Pθ .

Theorem 1

The CP reduct defined above generalizes the well-known Gelfond-Lifschitz (GL)

reduct (Gelfond and Lifschitz 1988) used to transform normal logic programs to

positive ASP programs, and is exactly equivalent to the GL reduct in the special

case where P is a standard ASP program with normal rules over Boolean variables.

Proof

Consider a normal rule a ← p1 ∧ . . . ∧ pn,∼q1 ∧ . . . ∧ ∼qm. In BFASP format, this

would be a rule constraint (a ← p1 ∧ . . . ∧ pn ∧ ¬q1 ∧ . . . ∧ ¬qm, a). The constraint

is increasing in a and the qi’s, and is decreasing in the pi’s. Given any solution θ,

the GL reduct is constructed by removing all rules where one of the qi is true in

θ, and then removing all negative literals from all rules. Consider what happens

when constructing the CP reduct. The constraint is not decreasing w.r.t. the qi’s, so

we substitute the value of θ(qi) for qi for each i into the constraint. If any of the

https://doi.org/10.1017/S147106841300032X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841300032X

522 R. A. Aziz et al.

qi is true in θ, then after substituting the values in, c becomes a tautology so we

do not add it to Pθ , which is the same as removing the rule in the GL reduct. If

all the qi’s are false, then after substituting the values in, the constraint becomes

a ← p1 ∧ . . . ∧ pn, which we add to the CP-reduct. This is again the same as in the

GL reduct where we remove all negative literals. �

We extend the definition of CP reduct and stable model semantics to ub-founded

variables as follows: for each ub-founded variable x in the program, create an lb-

founded variable x′ and replace every occurrence of x in P with −x′, and then map

the stable models of the modified program to the original program via θ(x) = −θ(x′).

Example 2

Consider the program P with three lb-founded integers variables a, b, c with domains

[−10 . . . 10] and two rule constraints: r1 = (a � b − c + 7, a) and r2 = (c � 5). For

the assignment θ = {a = −8, b = −10, c = 5}, Pθ has two rules: (a � b − 5 + 7, a)

and (c � 5). The minimal model of Pθ is θ, and hence θ is a stable model of P . �

The dependency graph of a BFASP has nodes N∪F and edges {(head (r), x) |
r ∈ R, x ∈ var(cons(r)), cons(r) not increasing in x}. This generalizes the dependency

graph defined for normal logic programs in (Anger et al. 2006). We assign a unique

number id to every strongly connected component of this graph and map every

variable in the component to this number through a function scc that preserves the

topological order of the components. Next, we say that a BFASP is valid iff there is

no rule r ∈ R and a variable x ∈ var(cons(r)) s.t. cons(r) is non-monotonic in x, and

scc(head (r)) = scc(x). This is a broad class of programs that includes all normal logic

and linear programs. Our stable model semantics for BFASP guarantees that for

any valid BFASP, stable models represent non-circular derivations. For a non-valid

BFASP, the semantics defined above is insufficient for that purpose.

Example 3

Consider a program with lb-founded integers variables a, b and rule constraints:

r1 = (a � |b|, a), r2 = (b � 2a − 6, b). The dependency graph has edges (a, b) and

(b, a) due to r1, r2 respectively. Since the constraint a � |b| is non-monotonic in b,

and scc(a) = scc(b), this is not a valid BFASP. �

4 A language for expressing BFASPs

Since BFASPs allow more complex rules over head or body variables, existing

ASP languages are insufficient to express BFASPs. We extend the well-known

CP modelling language MiniZinc (Nethercote et al. 2007) to express BFASPs. The

extension is quite minimal. First, we define two new keywords “lbfvar” and “ubfvar”

which can be used in place of the “var” keyword to indicate that a variable is lb-

founded and ub-founded respectively. Secondly, we annotate every rule constraint

with its head variables via “head(y)”. Note that n-ary logical predicates in ASP are

modelled as n-dimensional arrays of lb-founded Boolean variables.

Example 4
The shortest path program can be modelled as follows:

https://doi.org/10.1017/S147106841300032X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841300032X

Stable model semantics for founded bounds 523

Fig. 1. A graph of roads and distances, and its representation for the model.

int: n; % number of nodes
int: e; % number of edges
set of int: Node = 1..n;
set of int: Edge = 1..e;
array [Edge] of int: start; % start node of edge
array [Edge] of int: end; % end node of edge
array [Edge] of int: dist; % distance of edge

array [Node ,Node] of ubfvar int: sp; % shortest path from node x to node y

constraint forall (x, y in Node) (sp[x,y] <= sp[y,x] :: head(sp[x,y]));
constraint forall (x in Node) (sp[x,x] <= 0 :: head(sp[x,x]));
constraint forall (e in Edge , y in Node) (

(sp[start[e], y] <= dist[e] + sp[end[e], y] :: head(sp[start[e], y])) /\
(sp[end[e], y] <= dist[e] + sp[start[e], y] :: head(sp[end[e], y])));

solve satisfy;

The graph shown in Figure 1 is modelled with the instance data shown on the

right. Under the logical semantics used by standard CP solvers, an assignment such

as ∀x, y, θ(sp[x, y]) = 0 is a solution to this P , but does not give the shortest paths

between the nodes. Under stable model semantics however, this is not a solution.

Calculating the minimal model of the reduct Pθ gives sp[1, 2] = 8, sp[1, 3] = 11,

sp[1, 4] = 5, sp[2, 3] = 7, sp[2, 4] = 13, sp[3, 4] = 6, which does not match θ, so θ is

not a stable model. It is easy to see that the only stable model for this problem is

given by the minimal model of Pθ , which corresponds to the correct shortest path

values. �

5 Enforcing stable model semantics in BFASPs

To simplify the presentation, from this point on, we will assume that every ub-

founded variable in the program has been replaced by an lb-founded variable as

described in Section 3. A critical component of most current state of the art ASP

solvers is an unfounded set detection algorithm. Detecting unfounded sets during

search allows the solver to prune off unstable partial assignments early on and

to ensure that the final solution is stable. For BFASPs, we have to generalize the

concept of unfounded sets of propositional variables to unfounded sets of bounds.

Given a set B of bounds of the form [y � v] where y ∈ F, B is an unfounded set

of bounds w.r.t. to the current domain if given the current domain, no bound in

the set can be established from its rules without relying on some other bound in

the set B. In an analogous way to the propositional case, if we find an unfounded

set of bounds during search, then no stable model in that subtree can have any

of those bounds true, so all of those bounds can be set false. We now present an

unfounded set algorithm for BFASPs. This algorithm generalizes the unfounded set

algorithm for the propositional case described in (Simons et al. 2002), which uses

source pointers and utilizes scc to optimize the unfounded set detection.

https://doi.org/10.1017/S147106841300032X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841300032X

524 R. A. Aziz et al.

As a preprocessing step, for all rule constraints r = (c(y, x1, . . . , xn), y), we

convert them into the form (y � fr(x1, . . . , xn), y), such that c(y, x1, . . . , xn) ⇔
y � fr(x1, . . . , xn). Such a function fr always exists if c is increasing in y. Let

body(r) = {x1, . . . , xn}, and body+(r) and body−(r) be the subsets of {x | x ∈
body(r), scc(x) = scc(y)} in which fr is monotonically increasing and decreasing

respectively. Let body0(r) = {x | x ∈ body(r), scc(x) �= scc(y)}. Let rules(y) = {r |
head(r) = y}. Let int rules(y) = {r | head(r) = y, body+(r) �= ∅}. Let ext rules(y) =

rules(y)\int rules(y). We also initialize a static data structure EventToRule consisting

of pairs (e, r) where e is a domain change event that might cause r to stop justifying

a bound on y. That is, for each xi we add (ub event(xi), r), (lb event(xi), r) or

(change event(x), r) depending on whether fr is increasing in xi, decreasing xi, or

neither respectively.

The solver maintains a justification graph JustGraph , which consists of a set of

triples (b, r, s), where b is a bound that is justified by some rule constraint r, and

s is a set of other bounds with variables in the same level whose justification was

used to infer that b might be justified. We define several functions of the current

justification graph JustGraph and the current domain D. For brevity, we leave

out the implicit arguments of JustGraph and D. Let lb(x), ub(x) and val(x) give

the current lower bound, upper bound and value respectively of x in D. val(x) is

undefined if x is not fixed in D. Let jb(x) = max{v | ∃r, ∃s, (x � v, r, s) ∈ JustGraph}.
Let ext jb(x) = max{v | ∃r ∈ ext rules(x), ∃s, (x � v, r, s) ∈ JustGraph}.

We assume that for each rule r, we can evaluate the function fr when all its

arguments are fixed. Let sjb(r) (strongest justified bound) be a function that returns

a value such that no bound stronger than y � sjb(r) can be justified by r given

the current domain and justified bounds. We require that, when all the variables in

body(r) are fixed, sjb(r) must return the smallest value with the above property. A

naive way to implement sjb(r) is as follows. If any of the variables in body0(r) are

not yet fixed, return sjb(r) = ∞. Otherwise, return sjb(r) = fr(γ(x1), . . . , γ(xn)), where

γ(x) = ub(x) if x ∈ body+(r) and γ(x) = lb(x) if x ∈ body−(r) and γ(x) = val(x)

if x ∈ body0(r). A better implementation will return non-infinite sjb(r) values even

when not all the variables in body0(r) are fixed yet. This can be done by leveraging

the propagators in a CP solver, but for lack of space, we do not go into details.

To allow clause learning, we also need to explain unfounded sets, so we need a

function expl(r) that returns a set of literals that explain why no bound stronger

than y � sjb(r) can be justified. For the naive implementation of sjb(r) above,

when not all vars in body0(r) are fixed, we return expl(r) = ∅. Otherwise, we return

expl(r) = {x � ub(x) | x ∈ body+(r)} ∪ {x � lb(x) | x ∈ body−(r)} ∪ {x = val(x) | x ∈
body0(r)}.

We post a foundedness propagator for each (non-empty) SCC, which is responsible

for the variables in the component. The priority of each propagator is the same

as the id of that component. The propagators support four methods: propagate(),

processEvents(), getUnfoundedSet() and getExpl(). The pseudocode is given in

Figure 2. The function propagate() first calls processEvents() to process any domain

change events and dejustify any bounds whose justification has been made invalid

by the domain changes. Next, if there is any bound in the current domains of any

variable x with scc(x) = id that is not justified, it calls getUnfoundedSet() to either

rejustify the bounds, or find an unfounded set. If an unfounded set is found, then

https://doi.org/10.1017/S147106841300032X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841300032X

Stable model semantics for founded bounds 525

Fig. 2. Pseudocode for unfounded set detection algorithm.

it sets the bounds in the unfounded set false with the explanation from the call

getExpl(). If there are any unprocessed variables left, the propagator requeues itself

in the propagation queue so that higher priority propagators can run before this

propagator is run again.

The function processEvents() crawls through the existing justification graph to

find out what bounds lose their justification due to new domain changes. The

function getUnfoundedSet() does a fix-point calculation using the sjb() to find

out what bounds can be rejustified. The function getExpl(Unfounded) resolves the

explanations for why each bound cannot be justified in order to derive an explanation

for the whole unfounded set. See the pseudocode for more details.

The algorithm is initialized as follows. At the root node, JustGraph = ∅. We wake

up all foundedness propagators. On the first call to each foundedness propagator at

the root node, we initialize LostExt to all the variables in that level instead of the

usual ∅. JustGraph is a trailed data structure, so upon backtracking, it is reverted

to its previous value.

Example 5

Consider the problem of building a network of roads subject to monetary constraints.

Each segment of road is optional and has a certain build cost, and we want to find

the road design that gives the best total travel times. We can model this with a slight

alteration to the shortest path model in Example 4. We remove the last constraint

and the solve goal and add:

array [Edge] of int: cost; % cost to build road

array [Edge] of var bool: b; % build road or not

int: budget; % max cost of roads built

constraint forall (e in Edge , y in Node) (

https://doi.org/10.1017/S147106841300032X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841300032X

526 R. A. Aziz et al.

(sp[start[e], y] <= dist[e] + sp[end[e], y] <- b[e] :: head(sp[start[e], y])) /\

(sp[end[e], y] <= dist[e] + sp[start[e], y] <- b[e] :: head(sp[end[e], y])));

constraint sum (e in Edge) (cost[e] * bool2int(b[e])) <= budget;

solve minimize sum (i, j in Node where i < j) (sp[i,j]);

Consider the instance from Example 4 again but where we add the following lines

representing the build cost and budget to the data file:

cost = [50, 30, 20, 60];
budget = 100;

Since the b variables do not depend on anything else, the SCC algorithm will set

them to level 0. The set of sp variables are cyclically dependent on each other, so the

SCC algorithm will set them to level 1. The first set of constraints in the model force

sp[x, y] = sp[y, x] and we will not mention them any further. At the root node, the

second set of rules give sp[x, x] � 0 for all x with empty justifications. Depending

on the evaluation order, different rules in the third set may justify the same bound.

We will just pick any one of them in this example. The third set of rules give:

sp[1, 2] � 8, sp[2, 3] � 7, sp[3, 4] � 6, sp[4, 1] � 5 with empty justifications, sp[1, 3]

� 11 with justification {sp[3, 4] � 6}, and sp[2, 4] � 13 with justification {sp[3, 4]

� 6}. No stronger upper bounds can be justified, thus the foundedness propagator

forces sp[1, 2] � 8, sp[2, 3] � 7, sp[3, 4] � 6, sp[4, 1] � 5, sp[1, 3] � 11, sp[2, 4] �
13 with explanation ∅. Note that what unfounded set detection is doing is basically

to calculate the most optimistic values of the shortest paths given the current set of

decisions, and then set those values as the lower bounds of the sp[x, y].

Suppose search tries b[1] = true. Propagation forces sp[1, 2] = 8. The budget

constraint forces b[4] = false. This domain change event triggers the rules sp[4, 1] �
5← b[4] and sp[1, 3] <= 5+sp[3, 4]← b[4] to stop justifying bounds on their heads,

so sp[4, 1] � 5 and sp[1, 3] � 11 become dejustified. The third set of constraints

now allow us to rejustify a bound of sp[1, 3] � 15 with justification {sp[2, 3] � 7},
followed by sp[4, 1] � 21 with justification {sp[1, 3] � 15}. No stronger bounds can

be justified, thus the foundedness propagator forces sp[1, 3] � 15 and sp[4, 1] � 21

with explanation {¬b[4]}.
Suppose then search tries b[2] = true. Propagation forces sp[2, 3] = 7 and

sp[1, 3] = 15. Suppose search then tries b[3] = true. Propagation forces sp[3, 4] = 6,

sp[2, 4] = 13 and sp[4, 1] = 21. This gives a stable model with objective value:

6 + 7 + 8 + 13 + 15 + 21 = 70. Suppose we backtracked and tried b[3] = false

instead. This domain changed event causes sp[3, 4] � 6 and sp[4, 1] � 21 to

become dejustified. Since sp[3, 4] � 6 was used to support sp[2, 4] � 13, that also

becomes dejustified. No bounds can be rejustified, thus the foundedness propagator

forces sp[2, 4] � ∞, sp[3, 4] � ∞ and sp[1, 4] � ∞ with explanation {¬b[4],¬b[3]},
i.e., there is no path from a, b or c to d. This stable model has an objective

value of ∞. �

6 Experimental results

We compare our implementation with state of the art ASP system gringo (version

3.0.4) + clasp (version 2.0.6), which we call cl+gr in this section. We refer to

our implementation as chuffed. At present it only supports bound founded integers

https://doi.org/10.1017/S147106841300032X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841300032X

Stable model semantics for founded bounds 527

and Booleans. All experiments were run on a Lenovo model 3000 G530 notebook

with a 2.1 GHz Core 2 Duo T6500 CPU and 3 GB of memory running Ubuntu

12.04. Every instance was run 10 times, and each timing (that is not —) in the tables

in this section is the median of these 10 times. All times are given in seconds. For all

experiments, the timeout for grounding and flattening was 5 minutes, and timeout

for solving was 10 minutes.2 We ran our experiments on non-expert encodings of

the following problems:

ShortPath: Finding the shortest path from a source node to a destination node in a

directed graph of N nodes and E edges.

RoadCon: The road construction problem as defined in Example 5, on an undirected

graph of N nodes, where D is the maximum distance between two points and C is

the maximum cost to build a road segment.

CompCon: Company controls problem as defined in the introduction where C is

the number of companies and S is the number of shares each company has.

UtilPol: Utilitarian policies: Suppose a government wants to decide which policies

to enact in order to maximize the happiness of its citizens. Enacting each policy

incurs a certain cost. Additionally, the happiness of a citizen depends on the chosen

policies as well as the happiness of other citizens. A citizen’s happiness can be

increased (or decreased) by a certain amount if some other citizen’s happiness is

above a certain threshold. More formally, the input consists of P policies, C citizens,

cost of each policy p (costp), total available budget (b), utility of policy p for citizen

c (util c,p), change in happiness of citizen c due to happiness of another citizen c′

(rel c,c′) and the threshold after which this change applies (tc,c′). We can represent the

happiness of a citizen c by the lb-founded integer hapc, and the decision whether or

not to enact a policy p by a Boolean variable enp. The happiness of a citizen c is

given by the following rule constraint:

(hapc �
∑

p

util c,penp +
∑

c′

rel c,c′(hapc′ � tc,c′), {hapc})

The objective is to maximize the sum of happiness of all citizens by choosing a set

of policies to enact given a budget.

We chose these problems since they contain founded bounds on integers. The

results from our experiments are presented in Tables 1–4 in the following format:

each row represents the results for a particular instance. The performance of each

system is given by several columns. The first column gives the grounding (gr) or

flattening (flat) time. If the system failed to complete this phase, then a — is put

in all its columns. The second column gives the best value produced by the system

(omitted in Table 1 which deals with satisfiability). The third column tells whether

the system provably found the optimal value. If a system did not produce any

answer for an instance, then a — is put for this field. The final column gives the

actual time that the solver took to solve the instance, the value is 600 if the solver

did not complete before timeout or ran out of memory.

Table 1 presents comparison of cl+gr, a CP solver cpx and chuffed on the

shortest path ShortPath benchmark. The CP encoding views the shortest path

2 All instances and encodings used are available in gringo and MiniZinc format at: http://ww2.cs.
mu.oz.au/~pjs/bound_founded/

https://doi.org/10.1017/S147106841300032X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841300032X

528 R. A. Aziz et al.

Table 1. ShortPath

cl+gr chuffed cpx

N E gr comp time flat comp time flat comp time

20 10 6.00 Y 2.66 0.01 Y 0.00 0.03 Y 0.06

50 20 — — — 0.05 Y 0.01 0.37 Y 0.36

100 30 — — — 0.25 Y 0.12 3.12 N 600

250 100 — — — 1.00 Y 1.16 28.11 N 600

600 200 — — — 2.50 Y 8.97 169.08 N 600

800 200 — — — 12.79 N 600 — — —

problem as a combinatorial problem, where the solver constructs the shortest path

by choosing a set of edges. cl+gr only produces a solution for the smallest instance,

and fails to ground the other instances in the allocated time. The comparison between

chuffed and cpx is more interesting. On smaller instances, performance of both

systems is comparable but on bigger instances, the flattening plus the solving time

of the combinatorial encoding increases significantly. We do not compare with cpx

in the remaining experiments since it requires modelling the cyclic dependencies

inductively which quickly blows up.

Table 2 compares the performance of cl+gr and chuffed on the road construc-

tion RoadCon benchmark. cl+gr starts to break down on the second instance but

chuffed continues to give answers for instances that contain as many as 60 nodes.

Table 3 presents results on the company controls benchmark CompCon. Grounding

is not the bottleneck for this benchmark, but the solving time of clasp increases

significantly as the number of stocks and number of companies are increased.

For chuffed, increasing the number of companies makes the problem significantly

harder but the effect of increase in the number of stocks is relatively milder as

compared to clasp. chuffed solves an instance that has 30 companies and fails on

an instance in which there are 50 companies. Table 4 presents results for utilitarian

policies problem UtilPol. As in previous benchmarks, chuffed comprehensively

outperforms cl+gr. The domains of rel and util variables were set to 0 . . . 5 in

all instances. Any increase in the sizes of domains of these variables has no effect

on the performance of chuffed but has a significant effect on the performance of

cl+gr. The right of Table 4 shows the sizes of the grounded program and the

running times of clasp as the domains of variables are scaled by the number given.

For a tenfold increase in the domain size, the size of the ground program increases

from 748 kilobytes to 337 megabytes. The running time also increases significantly

until timing out on the last 3 instances. In contrast chuffed requires 3.6kB and less

than 0.005 seconds for all instances.

7 Related work

ASP and many of its major extensions are subsumed by BFASP. ASP with

choice rules, weighted sum, max, min etc, (see Calimeri et al. 2013 for a recent

standardization of the ASP language) are easily expressible as BFASPs. Similar,

Constraint Answer Set Programming (CASP) (Gebser et al. 2009) and even Fuzzy

https://doi.org/10.1017/S147106841300032X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841300032X

Stable model semantics for founded bounds 529

Table 2. RoadCon

cl+gr chuffed

N D C gr opt comp time flat opt comp time

5 10 8 0.43 24 Y 0.65 0 24 Y 0.00

9 11 13 111.79 — N 600 0.02 123 Y 0.06

25 45 40 — — — — 0.66 2629 Y 3.46

45 25 32 — — — — 4.91 2174531 N 600

60 30 25 — — — — 13.15 6613781 N 600

Table 3. CompCon

cl+gr chuffed

S C gr opt comp time flat opt comp time

10 5 0.00 102 Y 0.00 0.00 102 Y 0.00
50 10 0.05 702 N 600 0.02 234 Y 0.14

100 30 0.97 14701 N 600 0.22 408 Y 5.99
250 30 2.65 — N 600 0.21 75 Y 35.52
500 50 16.63 — N 600 0.72 — N 600

Table 4. UtilPol comparison, and scaling behaviour on the smallest instance

cl+gr chuffed

C P gr opt comp time flat opt comp time

3 5 0.07 34 Y .36 0.01 34 Y 0.00
5 6 66.64 — N 600 0.00 680 Y 0.00

20 25 89.10 — N 600 .06 886 Y 208.64
90 90 — — — — 1.40 12628 N 600

250 230 — — — — 13.74 — N 600

Scale gr kB cl+gr

1 748 0.36

2 2816 1.25

3 8252 9.39

4 18741 37.83

5 36288 114.22

6 67570 260.39

7 113475 498.09

8 170287 600

9 243608 600

10 336386 600

ASP (FASP) (Nieuwenborgh et al. 2006; Blondeel et al. 2013) can all be expressed

directly as BFASP instances.

In CASP, all rules are of the form: a← p1∧. . .∧pn∧¬n1∧. . .∧¬nm∧c1(x̄)∧. . .∧cl(x̄)

where pi, ni are ASP variables and ci are FD constraints over standard integer

variables. We can convert it to a BFASP by adding the head annotation “head(a)”

to each CASP rule. The stable model semantics of this BFASP are identical to that

of CASP defined in (Gebser et al. 2009).

Fuzzy ASP can be converted into BFASPs with the same stable model semantics.

In FASP, the model must specify how each logical connective acts on the value of its

arguments. However, all the commonly used options allow the FASP to be directly

translated into BFASP. For example, depending on whether we use the Lukasiewicz,

https://doi.org/10.1017/S147106841300032X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841300032X

530 R. A. Aziz et al.

Godel-Dummett, or product norm, a FASP rule: x← p[1]∧ . . .∧ p[k]∧¬n[1]∧ . . .∧
¬n[m] translates into one of the following BFASP rules:

x >= sum(i in 1..k)(p[i]) + sum(i in 1..m)(1-n[i]) - (k + m - 1) :: head(x)

x >= min(i in 1..k)(p[i]) <- forall(i in 1..m)(not n[i]) :: head(x)

x >= product(i in 1..k)(p[i]) <- forall(i in 1..m)(not n[i]) :: head(x)

It may initially appear that BFASP is very similar to FASP. However, BFASP is a

significant generalization. It is far more generic in terms of what the head variable

can represent (not just fuzzy Booleans but arbitrary values in �) and it allows a

wider range of constraints in the rules (not just logical connectives). Furthermore, our

implementation can handle non-linear rules such as those produced by the product

norm (which the MIP based method of (Janssen et al. 2008) cannot handle), and

we have an unfounded set detection algorithm for BFASP that allows us to prune

unstable partial models during search (which the MIP-based method of Janssen

et al. 2008 also cannot do).

There is another body of work in partial order programming (Osorio and Jayara-

man 1996) that is similar to BFASPs. In this work, the authors also look at logic

programs with rules of form y � f(expr) ← conditions . However, they only define

the semantics of a limited subclass of such programs. The cases they consider, in our

terminology, are as follows. Case 1, they consider any variable in expr or conditions

as standard variables only and apply the standard logical semantics (Section 4.1

of Osorio and Jayaraman 1996). This is completely different from the stable model

semantics and will give the wrong answers for a simple shortest path program like

Example 4. Case 2, they consider only hierarchical programs where every variable in

expr or conditions belongs to a previous SCC (Prop 5.1 of Osorio and Jayaraman

1996). This is insufficient to model shortest path, as all those variables are in the

same SCC. Case 3, they allow non-hierarchical programs, but same SCC variables

can only interact through increasing monotonic functions, i.e., f is increasing in all

arguments that are in the same SCC as y. This allows shortest path to be modelled,

but is still far less expressive than the stable model semantics defined in this paper.

Our semantics allows f to be decreasing in arguments from the same hierarchical

level, and thus we truly generalize negation by failure to continuous domains, giving

the generalization of stable model semantics to continuous variables.

8 Conclusion

We have generalized the stable model semantics to cover bound founded variables

and shown how to enforce these semantics on a wide range of problems involving

rules with bound founded variables in the head or body. The new solver seamlessly

integrates the best features of CP, SAT and ASP. It can use the highly efficient global

propagators and finite domain variables from CP, the powerful clause learning from

SAT, and the modeling power of stable model semantics from ASP. This new

technology allows a wide range of problems to be modeled and solved much more

effectively than before.

References

Anger, C., Gebser, M. and Schaub, T. 2006. Approaching the core of unfounded sets. In
Proceedings of the International Workshop on Nonmonotonic Reasoning. Clausthal University
of Technology, Institute for Informatics, 58–66.

https://doi.org/10.1017/S147106841300032X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841300032X

Stable model semantics for founded bounds 531

Aziz, R. A., Stuckey, P. J. and Somogyi, Z. 2013. Inductive definitions in constraint
programming. In Proceedings of the Thirty-Sixth Australasian Computer Science Conference,
B. Thomas, Ed. CRPIT, vol. 135. ACS, 41–50.

Baral, C. 2003. Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge University Press.

Baselice, S., Bonatti, P. A. and Gelfond, M. 2005. Towards an integration of answer
set and constraint solving. In Proceedings of the 21st International Conference on Logic
Programming. ICLP’05. Springer-Verlag, 52–66.

Blondeel, M., Schockaert, S., Vermeir, D. and De Cock, M. 2013. Fuzzy answer set
programming: An introduction. In Soft Computing: State of the Art Theory and Novel
Applications. Springer, 209–222.

Calimeri, F., Faber, W., Gebser, M., Ianni, G., Kaminski, R., Krennwallner, T., Leone,

N., Ricca, F. and Schaub, T. 2013. Asp-core-2 input language format. https://www.mat.
unical.it/aspcomp2013/ASPStandardization.

Drescher, C. and Walsh, T. 2010. A translational approach to constraint answer set solving.
Theory and Practice of Logic Programming 10, 4–6, 465–480.

Drescher, C. and Walsh, T. 2012. Answer set solving with lazy nogood neneration. In
Technical Communications of the 28th International Conference on Logic Programming. 188–
200.

Gebser, M., Kaminski, R., Kaufmann, B. and Schaub, T. 2012. Answer Set Solving in
Practice. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan and
Claypool Publishers.

Gebser, M., Kaufmann, B., Neumann, A. and Schaub, T. 2007. Conflict-driven answer set
solving. In Proceedings of the 20th International Joint Conference on Artificial Intelligence.
MIT Press, 386.

Gebser, M., Kaufmann, B. and Schaub, T. 2012. Conflict-driven answer set solving: From
theory to practice. Artif. Intell 187, 52–89.

Gebser, M., Ostrowski, M. and Schaub, T. 2009. Constraint answer set solving.
In Proceedings of the 25th International Conference on Logic Programming. Springer,
235–249.

Gelfond, M. and Lifschitz, V. 1988. The stable model semantics for logic programming.
In Proceedings of the Fifth International Conference on Logic Programming. MIT Press,
1070–1080.

Janssen, J., Heymans, S., Vermeir, D. and Cock, M. D. 2008. Compiling fuzzy answer set
programs to fuzzy propositional theories. In Proceedings of the 24th International Conference
on Logic Programming. Springer Berlin Heidelberg, 362–376.

Liu, G., Janhunen, T. and Niemela, I. 2012. Answer set programming via mixed
integer programming. In Proceedings of the 13th International Conference on Principles
of Knowledge Representation and Reasoning. AAAI Press, 32–42.

Marques-Silva, J. P. and Sakallah, K. A. 1999. GRASP: A search algorithm for
propositional satisfiability. IEEE Transactions on Computers 48, 5, 506–521.

Mellarkod, V. S., Gelfond, M. and Zhang, Y. 2008. Integrating answer set programming
and constraint logic programming. Annals of Mathematics and Artificial Intelligence 53, 1–4,
251–287.

Moskewicz, M. W., Madigan, C. F., Zhao, Y., Zhang, L. and Malik, S. 2001. Chaff:
Engineering an efficient SAT solver. In Proceedings of the 38th Design Automation
Conference. ACM, 530–535.

Nethercote, N., Stuckey, P. J., Becket, R., Brand, S., Duck, G. J. and Tack, G.

2007. MiniZinc: Towards a standard CP modelling language. In Proceedings of the 13th
International Conference on the Principles and Practice of Constraint Programming, vol. 4741.
Springer, 529–543.

https://doi.org/10.1017/S147106841300032X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841300032X

532 R. A. Aziz et al.

Nieuwenborgh, D. V., Cock, M. D. and Vermeir, D. 2006. Fuzzy answer set programming.
In Proceedings of Logics in Artificial Intelligence, 10th European Conference, JELIA 2006.
Springer Berlin Heidelberg, 359–372.

Osorio, M. and Jayaraman, B. 1996. Aggregation and well-founded semantics. In Proceedings
of Non-Monotonic Extensions of Logic Programming, NMELP ’96. Springer-Verlag, 71–90.

Rossi, F., Beek, P. v. and Walsh, T. 2006. Handbook of Constraint Programming (Foundations
of Artificial Intelligence). Elsevier Science, New York, NY.

Schulte, C. and Stuckey, P. J. 2008. Efficient constraint propagation engines. ACM
Transactions on Programming Languages and Systems 31, 1, Article No. 2.

Simons, P., Niemelä, I. and Soininen, T. 2002. Extending and implementing the stable model
semantics. Artificial Intelligence 138, 1–2, 181–234.

Van Gelder, A., Ross, K. A. and Schlipf, J. S. 1988. Unfounded sets and well-founded
semantics for general logic programs. In Proceedings of the ACM Symposium on Principles
of Database Systems. ACM, 221–230.

https://doi.org/10.1017/S147106841300032X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841300032X

