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Archimedes playing with a computer

FRANÇOIS DUBEAU

1.  Introduction
It was known before Archimedes (287-212 BC) that the circumference

of a circle was proportional to its diameter and that the area was
proportional to the square of its radius. It was Archimedes who first supplied
a rigorous proof that these two proportionality constants were the same, now
called  [1].  He started with inscribed and circumscribed hexagons and
increased the number of sides from 6 up to 96 by successively doubling it.
His result was not a single value. In fact he generated five intervals each of
which contained . He calculated a lower bound from the inscribed polygon
and an upper bound from the circumscribed polygon of 96 sides. This gave
him the interval  or , which is less accurate
than the interval bounded by half-perimeters of the inscribed and
circumscribed 96-gons, which is .

π

π

(310
71 ,  31

7) (3.140845,  3.142857)

(3.141031,  3.142714)
Archimedes' method is a nice example for introducing undergraduate

and graduate students in mathematics to numerical analysis methods in
order to get information from sequences. This is the main purpose of this
Article. In this short paper we introduce such techniques and try to imagine
what Archimedes could have done with the help of a computer. What
information he would have been able to obtain from numerical sequences
generated by his method to approximate . Maybe he would have had the
idea of Richardson (1881-1953) to improve his sequences and obtain better
approximations of  [3]. Finally, as described in [4], using trigonometric
relations related to the polygons, and with the help of Taylor (1685-1731)
and series expansions for functions, it is possible to verify all the
information on the sequences obtained from the computer.

π

π

2.  The setting with Thales (c.625-547 BC) and Pythagoras (c.580-495 BC)}
We consider inscribed and circumscribed regular -gons with respect to

the unit circle decomposed into  equal triangles. The sequence of integer
numbers  is such that  (we start with an hexagon) and

.

τn
τn

{τn}∞
n = 0 τ0 = 6

τn + 1 = 2τn

For triangles associated to inscribed -gons, let their base, height, and
side be , , and  (see Figure 1). From Pythagoras' Theorem we
have

τn
bn hn sn = 1

⎧

⎩
⎨
⎪
⎪

h2
n + (bn

2 )2 = 1,

(1 − hn)2 + (bn
2 )2 = b2

n + 1,

from which we deduce that

⎧

⎩
⎨
⎪
⎪

bn + 1 = 2 (1 − hn),

hn + 1 = 1 + hn
2 .
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bn + 1

hn + 1

sn +1 = 1 bn

hn

sn = 1

FIGURE 1: Triangles related to inscribed polygons

The half-perimeter  and area  of the -gons arepn an τn

⎧

⎩
⎨
⎪
⎪

pn = τn
bn
2 ,

an = τn
bnhn

2 = pnhn,

so  because . Similarly, for triangles associated with
circumscribed -gons, let their base, height, and side be ,  and
(see Figure 2). From Pythagoras' Theorem we have

an < pn hn < 1
τn Bn Hn = 1 Sn

⎧

⎩
⎨
⎪
⎪

1 + (Bn
2 )2 = S2

n ,

(Sn − 1)2 + (Bn + 1
2 )2 = (Bn − Bn + 1

2 )2 .

The half-perimeter  and area  of the -gons arePn An τn

⎧

⎩
⎨
⎪
⎪

Pn = τn
Bn
2 ,

An = τn
BnHn

2 ,

so  because . Moreover, from Thales' intercept theorem we
get

An = Pn Hn = 1

Bn

bn
=

Sn

sn
=

Hn

hn
,

where  and  (see Figure 3).  From these relations we get
, and 

Hn = 1 sn = 1
an < pn < pn

hn
= Pn = An

an + 1 = τn + 1
bn + 1hn + 1

2
= τn 1 − h2

n = τn
bn

2
= pn.
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Bn + 1

Hn + 1 = 1

Sn+ 1

Bn

Hn = 1

Sn

FIGURE 2: Triangles related to circumscribed polygons

BnSn

sn = 1

hn

bn
Hn=1

FIGURE 3: Similar inscribed and circumscribed triangles associated with a -gonτn

3.  Archimedes' method
Since the inscribed -gon is included into the unit circle and the unit

circle is itself included into the circumscribed -gon, it is normal to accept
that

τn
τn

an ≤  ≤ An.area of the unit circle
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For the perimeter of the unit circle, which is the length of a curve, it is
less easy.  We use the fact that inscribed -gon, unit circle, and
circumscribed -gon are convex bodies nested within each other and accept
that 

τn
τn

2pn ≤ ≤ 2Pn.circumference of the unit circle

Theorem 1
The increasing sequence  and the decreasing sequence

both converge to half the circumference of the unit circle, which will be
denoted by .

{pn}∞
n = 0 {Pn}∞

n = 0

π

Proof
We have  and , hence1

2bn < bn + 1 Bn + 1 < 1
2Bn

⎧

⎩
⎨
⎪
⎪

pn + 1 = τn + 1
bn + 1

2 = τnbn + 1 > τn
bn
2 = pn,

Pn + 1 = τn + 1
Bn + 1

2 = τnBn + 1 > τn
Bn
2 = Pn,

so

pn < pn + 1 <  …  < Pn + 1 < Pn.
Since the sequence  is increasing and upper bounded, it converges
say to . In the same way, since the sequence  is decreasing and
lower bounded, it converges say to . We also have . Moreover,

{pn}∞
n = 0

p {Pn}∞
n = 0

P p ≤ P

0 < hn < hn + 1 =
1 + hn

2
< 1.

so the increasing sequence  is upper bounded by 1. It converges to
such that . Using  and taking the limit, we get

. So  or , but , and it follows that .
Since we have

{hn}∞
n = 0 h

0 < h ≤ 1 2h2
n + 1 = hn + 1

2h2 = h + 1 h = 1 h = −1
2 h > 0 h = 1

Pn − pn = pn
1 − hn

hn
,

taking the limit on both sides, we get , so the two series both
have the same limit, which will be denoted by .

P − p = 0
π

Corollary
The increasing sequence  and the decreasing sequence

both converge to area of the unit circle, .
{an} ∞

n = 0 {An} ∞
n = 0

π

Archimedes' method is based on a way to compute recursively the two
sequences of half-perimeters. The next theorem presents the formula for this
recursive method.
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Theorem 3
The successive terms of the two sequences  and  are

related by the following relations
{pn} ∞

n = 0 {Pn} ∞
n = 0

⎧

⎩
⎨
⎪
⎪

Pn + 1 = 2 pnPn
pn + Pn

,

pn + 1 = pnPn + 1.

Proof
For the first identity we have

Pn + 1 = τn + 1
bn + 1

2hn + 1
= 2τn

1 − hn

1 + hn
= τn

1
1 + hn

1 − h2
n = pn

2
1 + hn

.

Also 

pnPn = p2
n

1
hn

,

and

pn + Pn = pn (1 +
1
hn

) = pn (1 + hn

hn
) .

Therefore

2
pnPn

pn + Pn
= 2

p2
n / h

pn (1 + hn) / hn
= pn

2
1 + hn

= Pn + 1.

For the second identity we have

pn + 1 = τn + 1
bn + 1

2
= τn 2 (1 − hn) = τn

bn

2
2 (1 − hn)

1 − h2
n

= pn
2

1 + hn
,

and

pnPn + 1 = p2
n

2
1 + hn

.

Hence

pn + 1 = pnPn + 1.

Corollary
The successive terms of the two sequences  and  are

related by the following relations
{an} ∞

n = 0 {An} ∞
n = 0

⎧

⎩
⎨
⎪
⎪

an + 1 = anAn,

An + 1 = 2 an + 1An
an + 1+An

.
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We now have the following algorithm to generate the two sequences
 and  which will both converge to .{pn} ∞

n = 0 {Pn} ∞
n = 0 π

STEP 1 Initialisation. Start with an hexagon.
;τ0 = 6

;b0 = 1, h0 = 3 / 2
;p0 = τ0

2 b0 = 3
P0 = τ0

2 B0 = τ0
2

b0
h0

= 2 3.
STEP 2 Repeat for n = 0,  1,  2,  …

;τn + 1 := 2τn

Pn + 1 := 2 pnPn
pn + Pn

;
pn + 1 := pnPn + 1.

The finite sequences  and  generated by this method are
presented in Tables 1 and 2. The exact digits are indicated in boldface
characters.

{pn} 20
n = 0 {Pn} 20

n = 0

Archimedes' method

n τn pn pn + 1 − pn K = pn+1−pn+2
pn−pn+1

Cn

0 6 3.000000000000 0.105828541230 0.2532 -0.1417

1 12 3.105828541230 0.026800072051 0.2508 -0.1426

2 24 3.132628613281 0.006721589766 0.2502 -0.1432

3 48 3.139350203047 0.001681747843 0.2501 -0.1434

4 96 3.141031950890 0.000420521395 0.2500 -0.1435

:      

9 3072 3.141592105999 0.000000410693 0.2500 -0.1436

10 6144 3.141592516692 0.000000102673 0.2500 -0.1436

11 12288 3.141592619365 0.000000025668 0.2500 -0.1436

:

17 786432 3.141592653581 0.000000000006 0.2500 -0.1434

18 1572864 3.141592653588 0.000000000002 0.2497 -0.1465

TABLE 1: Results for Archimedes' method for pn
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Archimedes' method

n τn Pn Pn + 1 − Pn K = Pn+1−Pn+2
Pn−Pn+1

Cn

0 6 3.464101615138 0.248711305964 0.2241 0.3205

1 12 3.215390309173 0.055730367076 0.2436 0.3025

2 24 3.159659942098 0.013573726966 0.2484 0.2927

3 48 3.146086215131 0.003371615486 0.2496 0.2890

4 96 3.142714599645 0.000841549666 0.2499 0.2877

:

9 3072 3.141593748771 0.000000821386 0.2500 0.2871

10 6144 3.141592927385 0.000000205346 0.2500 0.2871

11 12288 3.141592722039 0.000000051337 0.2500 0.2871

:

17 786432 3.141592653607 0.000000000013 0.2500 0.2876

18 1572864 3.141592653594 0.000000000003 0.2502 0.2835

TABLE 2: Results for Archimedes' method for Pn

4.  Analysis of the sequences
4.1  Convergence of the sequences

The first question is: do we observe convergence? In Tables 1 and 2
errors are estimated at each iteration by computing  instead

, and  instead of , because the value of  is
unknown. We observe that the estimated errors decrease, so the two
sequences seem to converge, both to the same value 3.14159265359
(which has 11 correct decimal places, 12 correct digits).

pn + 1 − pn
π − pn Pn + 1 − Pn Pn − π π

π ≈

The second question is how fast do the sequences converge? Suppose a
sequence  converges to . Let us consider the following limit if it
exists:

{xn} ∞
n = 0 α

lim
n → ∞

xn + 1 − α
xn − α

= K,

with  (because the errors decrease). Since  is not known, we
replace  by , which means that  looks like  to . Then we
consider the limit of the resulting sequence of ratios

|K| < 1 α
α xn + 1 xn + 1 α xn

{Kn =
xn + 1 − xn + 2

xn − xn + 1
} ∞

n = 0
,
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which is also . Indeed we haveK

Kn =
xn + 1 − xn + 2

xn − xn + 1
= (xn + 1 − α

xn − α ) (1 − xn + 2 − α
xn + 1 − α)

(1 − xn + 1 − α
xn − α )

and, if  exists, K

lim
n → ∞

Kn = K
(1 − K)
(1 − K) = K.

So it is justified to compute  to approximate . From Tables 1 and 2, we
get  for both sequences  and .

Kn K
K = 0.2500 = 1 / 4 {pn} ∞

n = 0 {Pn} ∞
n = 0

If we continue, using the approximations

xn + k + 1 − xn + k + 2  K (xn + k − xn + k + 1)   Kk + 1 (xn − xn + 1) ,� �

and , we havexn + k + 2  α�

xn + k  α + Kk (xn − xn + 1) ,�

which means, if we set  and then replace  by , thatn = 0 k n

xn = α + O (Kn) .
Hence we get

⎧

⎩
⎨
⎪

⎪

pn = π + O ( 1
4n) ,

Pn = π + O ( 1
4n) .

4.2  Towards a better approximation
We can go further by trying to find the relative location of  within each

interval . We use
π

(pn, Pn)
⎧

⎩
⎨
⎪
⎪

pn + k � π + Kk (pn − pn + 1) ,

Pn + k � π + Kk (Pn − Pn + 1) .

Let us consider the ratios

rn =
π − pn + k

Pn + k − pn + k

  
−Kk (pn − pn + 1)

Kk [(Pn − Pn + 1) − (pn − pn + 1)]
�

=
(pn + 1 − pn)

[(Pn − Pn + 1) + (pn + 1 − pn)]
,

and

Rn =
Pn + k − π

Pn + k − pn + k
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Kk (Pn − Pn + 1)

Kk [(Pn − Pn + 1) − (pn − pn + 1)]
�

=
Pn − Pn + 1

[(Pn − Pn + 1) + (pn + 1 − pn)]
.

From Table 3, we have , and . So if we consider the

new approximation , as expected, Table 3 indicates that this
sequence converges faster;  or ,
and 

lim
n → ∞

rn = 1
3 lim

n → ∞
Rn = 2

3

π̂ = 2
3pn + 1

3Pn
Kπ̂ = 0.0625 = 1 / 16 = 1 / 42 Kπ̂ = K2

π̂ = π + O ( 1
42n) .

Better approximation

n τn rn Rn π̂ = 1
3 (2pn + Pn) π̂n − π̂n + 1 K= π̂n+1−π̂n+2

π̂n−π̂n+1
Cn

0 6 0.2985 0.7015 3.154700538379 0.012351407835 0.0575 0.0131

1 12 0.3247 0.6753 3.142349130545 0.000710074325 0.0613 0.0131

2 24 0.3312 0.6688 3.141639056220 0.000043515812 0.0622 0.0120

3 48 0.3328 0.6672 3.141595540408 0.000002706600 0.0624 0.0119

4 96 0.3332 0.6668 3.141592833809 0.000000168959 0.0625 0.0118

5 192 0.3333 0.6667 3.141592664850 0.000000010557 0.0625 0.0118

6 384 0.3333 0.6667 3.141592654294 0.000000000660 0.0625 0.0118

7 768 0.3333 0.6667 3.141592653634 0.000000000041 0.0625 0.0118

8 1536 0.3333 0.6667 3.141592653593 0.000000000003 0.0626 0.0117

9 3072 0.3333 0.6667 3.141592653590 0.000000000000 0.0634 0.0105

TABLE 3: Results for the better approximation π̂

4.3  Finding the first terms of series expansions
Now if we suppose that

xn = α + CKn + O (K2n) ,
where

O (K2n)
K2n

→
n → ∞

L,

we can try to estimate  from the data. IndeedC

xn − α
Kn

= C + KnO (K2n)
K2n

,
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and we have

lim
n → ∞

xn − α
Kn

= C.

We consider as before  instead of , and we havexn − xn + 1 xn = α

xn − xn + 1

Kn
= C (1 − K) + KnO (K2n)

K2n
→

n → ∞
C (1 − K) .

Now we also have

Kn = K (1 + O (Kn)) ,
from which we deduce that

lim
n → ∞

(Kn

K )n

= 1.

So, using  instead of , we consider the limitKn K

Cn =
xn − xn + 1

(1 − Kn) Kn
n

→
n → ∞

C.

Constants ,  and  are computed in Tables 1, 2 and 3 for the
sequences ,  and .  In Table 4 we compare the
computed numerical approximations of these constants and their theoretical
values (presented in Section 6).

Cp CP Cπ̂
{pn}∞

n = 0 {Pn}∞
n = 0 {π̂n}∞

n = 0

Approximate and true value of C
C    Numerical

approximation
 True 
 value

Cp -0.1436  -0.143547577− π3

3!.62 =
CP 0.2871  0.287095154π3

3.62 =
Cπ̂ 0.0118  0.011806315π3

20.64 =

TABLE 4: Approximate and true values of C
In fact at this point we have used  and  to cancel out the constant

of  from expressions for  and 
pn Pn C

O ( 1
4n) pn Pn

pn = π + Cp ( 1
4n) +  …

and

Pn = π + CP ( 1
4n) +  … ,

to get

π̂n = π + Cπ̂ ( 1
42n) +  … ,

because
2Cp + CP = 0.
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Remark
There is a price to pay for using  instead of  in numerical

computations. An expression like  produces catastrophic
cancellations so it introduces non-significant digits or errors in the
computations. We can see this effect in Tables 1, 2 and 3 for columns
and . In these columns the computations are not precise enough in the first
lines, and in the last lines the catastrophic cancellations introduce errors, so
the choice of the constants  and  coincides with values on lines around
the middle of the tables. Catastrophic cancellations are related to the
machine epsilon of the computer and software used; it gives a lower bound
on the relative errors due to rounding in floating point arithmetic [2]. For the
computations we used MATLAB with machine epsilon equal to ,
which means that we can get 15 to 16 significant digits.

xn + 1 α
xn − xn + 1

Kn
Cn

K C

2 × 10−16

5.  Richardson's process
To get the approximation  we have eliminated a term of the form

, with , in the series of  and . So let us consider
an expression of the form

π̂
O ( 1

4n) = O (Kn) K = 1
4 pn Pn

xn = α + C1K
n + C2K

2n +  … = α + ∑
� ≥ 1

C�K
�n,

which we rewrite as

α = xn − ∑
� ≥ 1

C�K
�n.

There are systematic methods to perform the above-mentioned elimination.
 
One of these methods is Richardson's extrapolation process which

successively, for increasing , removes the term  in a series [3]. The
principle is quite simple. Suppose, for a fixed , we have a sequence of
formulas  to find  such that 

� O (K�n)
k

{Qk,n}+∞
n + 1 α

α = Qk,n + Gk,kK
kn + Gk,k + 1K

(k + 1)n + Gk,k + 2K
(k + 2)n +  …

= Qk,n + ∑
� ≥ k

Gk,�K
�n,

for each integer . To eliminate the term , we considern ≥ 0 Gk,kKkn

α = Qk,n + 1 + ∑
� ≥ k

Gk,�K
� (n + 1)

= Qk,n + 1 + ∑
� ≥ k

Gk,�K
�n + � ,

and

Kkα = KkQk,n = ∑
� ≥ k

Gk,�K
�n + k.
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Then we subtract these expressions to get

(1 − Kk) α = (Qk,n + 1 − KkQk,n) = ∑
� ≥ k

Gk,� (K�n + � − K�n + k)

= (Qk,n + 1 − KkQk,n) + ∑
� ≥ k

Gk,� (K� − Kk) K�n.

So we write

α = Qk + 1,n + ∑
� ≥ k + 1

Gk + 1,�K
�n,

where the new formula  isQk + 1,n

Qk + 1,n =
Qk,n + 1 − KkQk,n

1 − Kk
= Qk,n + 1 + Kk Qk,n + 1 − Qk,n

1 − Kk
,

and

Gk + 1,� = Gk,�
(K� − Kk)
(1 − Kk) .

We can organise the computation as illustrated in Table 5 below.

k
n 1 … 2 … 3 … k − 1 … k … k + 1

… … … … …
0 Q1,0 … Q2,0 … Q3,0 … Qk − 1,0 … Qk,0 … Qk + 1,0

… … … … …
1 Q1,1 … Q2,1 … Q3,1 … Qk − 1,1 … Qk,1

… … … …
2 Q1,2 … Q2,2 … Q3,2 … Qk − 1,2

… … … … …
k − 2 Q1,k − 2 … Q2,k − 2 … Q3,k − 2

… …
k − 1 Q1,k − 1 … Q2,k − 1

…
k Q1,k

…

n O ( 1
4n) O ( 1

42n) O ( 1
43n) … O ( 1

4(k − 1)n) O ( 1
4kn) O ( 1

4(k + 1)n)
TABLE 5: Richardson's extrapolation table
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For our problem, let us use the series for  for each case: ,
and . Using the half-circumference of inscribed -gons and

α = π pn Pn
π̂n τn

π = pn − Cp,1 ( 1
4n) − Cp,2 ( 1

42n) +  … ,

we set  and the results are given in Table 6. It is remarkable that
 is a very accurate value of . It only needs five values of the sequences

of , already generated by Archimedes, to get a very good results for .
For the half-circumference of circumscribed -gons for

pn = Q1,n
Q5,0 π

pn Q5,0
τn

π = Pn − CP,1 ( 1
4n) − CP,2 ( 1

42n) +  … ,

we set  and the results are given in Table 7. In this case  is less
accurate. For , since we have

Pn = Q1,n Q5,0
π̂n

π = π̂ − Cπ̂,1 ( 1
42n) +  … ,

we skip the first column because, if we set , and we only need five
columns to get the result given in Table 8. For the same computational
complexity, we can go up to  which is very good.

π̂n = Q2,n

Q6,0

So if Archimedes had known this method he would have been able to
find a very precise value of .π

k

n m Q1,n Q2,n Q3,n Q4,n Q5,n

0 6 3.000000000000 3.141104721640 3.141592453898 3.141592653578 3.141592653590

1 12 3.105828541230 3.141561970632 3.141592650458 3.141592653590

2 24 3.132628613281 3.141590732969 3.141592653541
3 48 3.139350203047 3.141592533505
4 96 3.141031950891

TABLE 6: Richardson's extrapolation table for pn

k

n m Q1,n Q2,n Q3,n Q4,n Q5,n

0 6 3.464101615138 3.132486540519 3.141656260576 3.141592542982 3.141592653637
1 12 3.215390309173 3.141083153072 3.141593538570 3.141592653206
2 24 3.159659942098 3.141561639476 3.141592667039
3 48 3.146086215131 3.141590727817
4 96 3.142714599645

TABLE 7: Richardson's extrapolation table for Pn

https://doi.org/10.1017/mag.2022.115 Published online by Cambridge University Press

https://doi.org/10.1017/mag.2022.115


440 THE MATHEMATICAL GAZETTE

k

n m Q2,n Q3,n Q4,n Q5,n Q6,n

0 6 3.154700538379 3.141525703356 3.141592765782 3.141592653542 3.141592653590

1 12 3.142349130545 3.141591717932 3.141592653980 3.141592653590

2 24 3.141639056220 3.141592639354 3.141592653591
3 48 3.141595540408 3.141592653369
4 96 3.141592833809

TABLE 8: Richardson's extrapolation table for π̂n

6.  Taylor and trigonometry
As suggested in [4], if Archimedes had met Taylor, or in other words if

we assume that he knew the trigonometric functions and their Taylor's
expansions, the observations of the preceding sections on Archimedes'
sequences can be verified. Indeed, let the central angle be

θn =
τn

=
2π
τn

,
length of the circumference

number of sides of the -gon

so . We haveθn + 1 = θn / 2

⎧

⎩
⎨
⎪

⎪

pn = τn
bn
2 = τn sin θn

2 = τn sin π
τn

,

Pn = τn
Bn
2 = τn sin θn

2 = τn sin π
τn

,

and we consider Taylor's expansions

⎧

⎩

⎨
⎪

⎪

sin θ = θ − 1
3!θ3 + 1

5!θ5 + O (θ7) ,

+ O (θ7) .tan θ = θ + 1
3θ3 + 2

15θ5

Since  and , we getθ = π
τn

tn = 6 · 2n

⎧

⎩

⎨
⎪

⎪

⎪

⎪

⎪

⎪

pn = π − π3

3! ( 1
τ2

n) + π5

5! ( 1
τ4

n) + O ( 1
τ6

n) ,

= π − π3

3!·62 ( 1
4n) + π5

5!·64 ( 1
42n) + O ( 1

43n) ,

Pn = π + π3

3 ( 1
τ2

n) + 2π5

15 ( 1
τ4

n) + O ( 1
τ6

n) ,

= π + π3

3·62 ( 1
4n) + 2π5

15·64 ( 1
42n) + O ( 1

43n) .

For the asymptotic constant , we have for each sequenceK

Kp = lim
n → ∞

pn + 1 − π
pn − π

= lim
n → ∞

1 / 4n + 1

1 / 4n =
1
4

,

and

KP = lim
n → ∞

Pn + 1 − π
Pn − π

= lim
n → ∞

1 / 4n + 1

1 / 4n =
1
4

.
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For the relative location of  in the intervals we considerπ

rn =
π − pn

Pn − pn
=

π3

3!·62 ( 1
4n) + O ( 1

42n)
π3

2·62 ( 1
4n) + O ( 1

42n) →
n → ∞

1
3

,

and

Rn =
Pn − π
Pn − pn

=
π3

3!·62 ( 1
4n) + O ( 1

42n)
π3

2·62 ( 1
4n) + O ( 1

42n) →
n → ∞

2
3

.

For  we haveπ̂

π̂ =
2pn + Pn

3
= π +

π5

20 · 64 ( 1
42n) + O ( 1

43n) ,

which means we have eliminated the term in  in the expansions for
and . It follows that

O ( 1
4n) pn

Pn

Kπ̂ = lim
n → ∞

π̂n + 1 − π
π̂ − π

= lim
n → ∞

1 / 42(n + 1)

1 / 42n =
1
16

.

From these expansions, we get the true values of the constants ,  and
 reported in Table 4.

Cp CP
Cπ̂

7.  Conclusion
Using the sequences generated by the Archimedes' method to

approximate  from the half-perimeter of inscribed and circumscribed
regular polygons with respect to the unit circle, we have seen how to extract
information from a sequence about its convergence. Moreover we were able
to modify a sequence to get faster convergence. So, with the simple
acceleration method we used, Richardson's extrapolation method,
Archimedes would have obtained a more accurate approximation of .
Finally we have considered the analysis of this problem with trigonometric
functions and their Taylor's expansions as suggested for example in [4], and
verified our results with a computer.

π

π

As an exercise, the interested reader may repeat the preceding analysis
for the sequences generated by

⎧

⎩
⎨
⎪

⎪

Xn = (1 + 1
2n)2n + 1

xn = (1 + 1
2n)2n

for , to get the limit and also propose sequences which
converge faster.

n = 0,  1,  2, …
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Quotations for Nemo (continued from page 399)

2. It was a sound ill suited to the place, and reminded Sir Kenneth how
necessary it was he should be upon his guard. He started from his knee,
and laid his hand upon his poniard. A creaking sound, as of a screw or
pulleys, succeeded, and a light streaming upwards, as from an opening in
the floor, showed that a trap-door had been raised or depressed.

3. Look where the pulley's tied above!
Great God! (said I) what have I seen!
On what poor engines move
The thoughts of monarchs and designs of states!
What petty motives rule their fates!

4. She had not contented herself with opening the door from above by the
usual arrangement of a creaking pulley, though she had looked down on
me first from an upper window, dropping the curious challenge which in
Italy precedes the act of admission.

5. The kennel, to make amends, ran down the middle of the street—when it
ran at all: which was only after heavy rains, and then it ran, by many
eccentric fits, into the houses. Across the streets, at wide intervals, one
clumsy lamp was slung by a rope and pulley; at night, when the lamplighter
had let these down, and lighted, and hoisted them again, a feeble grove of
dim wicks swung in a sickly manner overhead, as if they were at sea.
Indeed they were at sea, and the ship and crew were in peril of tempest.

6. A distinguished psychologist, who is well acquainted with physiology,
has told me that parts of himself are certainly levers, while other parts
are probably pulleys, but that after feeling himself carefully all over, he
cannot find a wheel anywhere. 
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