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Electrohydrodynamic tuning of the migration
characteristics of a sedimenting compound drop
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Electrohydrodynamic sedimentation of simple drops has been a topic well-studied by
researchers. However, electrohydrodynamic sedimentation of a compound drop would
be critically influenced by the density of the involved phases and this has hitherto
remained unaddressed. Herein, we develop a semi-analytical model for an eccentric
compound drop settling under the action of gravity and an electric field using bispherical
coordinates. The sedimentation velocity of the two drops (shell and core) is determined,
and the same is applied to capture the influence of concomitant physical, hydrodynamic
and electric properties on compound droplet sedimentation. The findings indicate that
the compound drop may either sediment or de-sediment depending on the amount of
eccentricity and its interplay with electrohydrodynamic parameters. Thereafter, the critical
limit of eccentricity and time within which similar results are furnished by concentric and
eccentric configurations is determined. It is found that, based on the property ratios, the
eccentricity remains lower than 0.1 up to a non-dimensional time range of the order of
102–103, within which both the configurations can furnish a similar solution.

Key words: drops, electrohydrodynamic effects

1. Introduction

Electrohydrodynamics has long been a topic of fascinating research interest owing to a
wide variety of far-reaching industrial implications encompassing ink-jet printing (Basaran
2002), electrospraying (Jaworek & Krupa 1999; Castellanos 2014; Karyappa, Deshmukh
& Thaokar 2014; Choi & Saveliev 2017; Gañán-Calvo et al. 2018), oil–water separation
(Eow, Ghadiri & Sharif 2007), emulsification (Karyappa, Naik & Thaokar 2016) and so
on. It all started with the benchmark finding of Taylor (1966), who applied a quasi-static
electric field to a neutrally buoyant and leaky-dielectric liquid droplet under the conditions
of weak deformation and negligible charge convection (CC). Taylor postulated a relation
between the hydrodynamic and electrical property ratios that can predict whether the drop
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will become prolate or oblate when placed in an electrically conducive environment. This
work of Taylor (1966) triggered many researchers (Ward & Homsy 2006; Lac & Homsy
2007; Zhang, Zahn & Lin 2013) to explore and address some of the neglected but yet
effective facets of the study.

On this note, it is important to mention literatures that are not restricted to the
assumptions of Taylor (1966), and instead observed the effects of an unsteady framework
(Esmaeeli & Sharifi 2011) and the orientation of the applied electric field (Mandal,
Bandopadhyay & Chakraborty 2016a; Poddar et al. 2019) on the electrohydrodynamic
phenomenon; addressed the electrohydrodynamics of a droplet under an imposed
background flow (Dey et al. 2015); considered the complicated influence of surface CC
through a nonlinear coupling (Das & Saintillan 2016; Poddar et al. 2019) and dictated
the two-way coupled influence between interfacial deformation and electrohydrodynamic
characteristics of the droplet (Ha & Yang 2000; Xu & Homsy 2006; Vlahovska 2011;
Yariv & Almog 2016). In addition to surface CC and interfacial deformation, the inclusion
of gravity as a body force on the droplet would result in a coupled effect due to the
imposition of an external electric field – a phenomenon that can non-trivially dictate the
electrohydrodynamic sedimentation of drops. Indeed, such a mechanism is of immense
importance (Bandopadhyay et al. 2016; Poddar et al. 2018) because of its applicability
in processes such as drug transportation and enzyme crystallization (Zheng, Tice &
Ismagilov 2004; Pethig 2013).

It is important to note that the above cited literatures are limited to studies on single
droplet electrohydrodynamics. An advanced version of the same would include the
analysis of a ‘compound drop’ (a core drop bounded by a shell drop) when it is affected by
an electric field. Such works on compound drops are essential as they mimic the physical
attributes associated with applications involving lipid bilayer formation (Palaniappan &
Daripa 2000), recovery of oil (Stone & Leal 1990), phase separation (Draxler & Marr
1986) and drug transportation (Nakano 2000; Fabiilli et al. 2010). At the initial stage,
investigations on compound drops were centred around studies like creeping flow mediated
dynamics of a compound drop under the influence of buoyancy by Rushton & Davies
(1983) and inertia by Brunn & Roden (1985); translational stability of compound drops by
Sadhal & Oguz (1985); influence of extensional flows on the compound drop dynamics
by Stone & Leal (1990) and many others of the kind extensively reviewed in Johnson
& Sadhal (1985) – literatures that neglected the effect of an externally imposed electric
field. However, an electric field, after it has been widely applied and proved effective
in modulating the sedimentation of single drop (Xu & Homsy 2006; Bandopadhyay
et al. 2016; Poddar et al. 2018), was applied to compound drops to understand the
electrohydrodynamics involved.

The earliest literature investigating the stability of an eccentric compound drop due to
the effect of buoyancy and an electric field was presented by Gouz & Sadhal (1989). They
coupled the leaky-dielectric model to the creeping flow equations and semi-analytically
solved the same for spherical drops in a bipolar coordinate system. Tsukada et al. (1997)
conducted experiments and computations to gain insight into the concomitant effects of
an electric field and convection on the degree of deformation of a compound drop. Finally,
the authors showed that the electric intensity and the core to shell drop volume ratio could
correlate the deformation of the drop and the strength of flow. For leaky-dielectric fluids,
Behjatian & Esmaeeli (2013) analytically showed that the flow pattern inside and outside
a compound drop subjected to a weak electric field is dictated by the number of vortices
in the shell. Soni, Juvekar & Naik (2013) observed shape transition (oblate to prolate or
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vice versa) for a double emulsion under a uniformly oriented electric field. Thereafter,
the electrohydrodynamics of a compound drop was studied under an alternating current
environment in some literature (Soni, Dixit & Juvekar 2017; Soni, Thaokar & Juvekar
2018).

Recently, Santra, Mandal & Chakraborty (2019) considered the pressure driven flow
of a compound droplet in a transversely applied electric field. Their study addressed the
droplet pinch-off dynamics because of a displacement of the core from the concentric
point. The authors also examined the transient electrohydrodynamic phenomenon of a
confined compound drop through numerical and analytical techniques in one of their
works (Santra, Das & Chakraborty 2020). However, surface CC was not accounted for
in any of the aforementioned literature. Moreover, the involved electrohydrodynamics can
also be tuned by the deformation of the compound drop (Bandopadhyay et al. 2016).
Hence, it has been established for simple drops that shape deformation and CC act
as two key electrohydrodynamic determinants (Mandal et al. 2018). In the latest work
from our group (Boruah et al. 2022), one such study was taken up where the problem
of a compound drop moving under the action of background plane Poiseuille flow and
acted upon by an applied electric field was investigated. In this case, a neutrally buoyant
compound drop configuration is considered to highlight the sole effect of background flow.
However, if the compound drop is allowed to sediment under the action of buoyancy in an
electrically conducive environment, then the physics of the problem would be governed
by a balance between the associated forces and the buoyancy force. In such a situation, the
electrohydrodynamics of the compound drop would be critically influenced by the density
of the involved phases, and this would be an interesting problem to investigate.

Motivated by the same, the buoyancy driven settling of a compound drop in an
electrically conducive environment is analytically formalized for both the concentric
and eccentric configurations. A detailed study is carried out for an eccentric compound
drop subjected to applied electric field and is solved semi-analytically in a bispherical
coordinate system in this article; however, a similar study for a concentric compound drop
configuration can be performed using the method outlined in Boruah et al. (2022). For
both the cases, the sedimentation velocity of the two drops (shell and core) is determined,
and the same is applied to capture the influence of concomitant physical, hydrodynamic
and electric properties on compound droplet sedimentation. Thereafter, the critical limit
of eccentricity and time within which similar results are furnished by concentric and
eccentric configurations is determined.

2. Problem formulation

2.1. Physical description
A physical scenario of an eccentric compound drop with Ro as the outer radius and Ri as
the inner radius of the undeformed configuration that sediments with a priori unknown
uniform shell drop velocity (U2) and core drop velocity (U3) in a surrounding unbounded
phase due to the co-presence of gravity and an electric field (E∞) uniformly applied, as
shown in figure 1(a), is considered. A bispherical coordinate system (ξ, η, ϕ) is considered
which is attached to the centroid of the drop. In the schematic, ξ1 = cosh−1((1 + e2 −
K2)/2e) represents the shell drop interface and ξ2 = cosh−1((1 − e2 − K2)/2eK) denotes
the core drop interface, where e indicates the eccentricity and K indicates radius ratio, i.e.
the ratio of the radius of the core drop to the radius of the shell drop. Note that the numbers
1, 2 and 3 are used to designate the suspending phase, the shell drop phase and the core
drop phase, respectively. Density is denoted by ρi, viscosity by μi, electrical permittivity
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Figure 1. Representative schematic of an eccentric compound drop configuration sedimenting in the presence
of both gravity and a uniform imposed electric field.

by εi and electrical conductivity by σi for the ith fluid. On the other hand, subscript ‘ij’ is
used to refer to the interface separating the ith and jth fluids and, accordingly, we denote
the interfacial tension by γij.

2.2. Assumptions
The mathematical model is simplified using the following assumptions:

(i) The flows in all the three phases of fluids are considered to be incompressible. The
core drop is not miscible in the shell and similarly the shell drop is immiscible in the
suspending medium.

(ii) The fluids are considered to be leaky dielectric and Newtonian in nature.
(iii) Each of the fluid phases flows at a hydrodynamic Reynolds number (Re =

ρ1UcRo/μ1) much less than unity such that the Stokes equations are applicable.
Here, Uc is the characteristic velocity defined as Uc = R2

ogρ1/μ1, where g is defined
as the acceleration due to gravity.

(iv) Under the creeping flow limit, the magnitude of the capillary number (Ca =
μ1Uc/γ12) is considered to be low enough such that the spherical shape of the drops
is maintained.

(v) At all times, quasi-steady flow is maintained such that the fluid motion is dictated by
the instantaneous droplet position.

(vi) The stability of the compound drop system is maintained.

2.3. Experimental justification for the assumptions
The present theory has been set up on the assumptions outlined in the previous
section and requires a suitable parametric space to connect itself to real world
problems. To relate to practical experiments such as those in Xu & Homsy
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(2006), we consider the suspending medium and the core drop to be castor oil
(ρ1,3 = 961 kg m−3, μ1,3 = 1.4 Pa s, ε1,3 = 4.45ε0, σ1,3 = 5 × 10−10 S m−1), where
ε0 as the permittivity of vacuum, while phenylmethylsiloxane-dimethylsiloxane (ρ2 =
1000 kg m−3, μ2 = 0.5 Pa s, ε2 = 2.8ε0, σ2 = 10−12 S m−1) is the shell drop fluid.
The interfacial tension is taken to be γ = 5 × 10−3 N m−1. To adhere to the assumptions
considered herein, we consider Ro = 200 μm and E∞ = Eref = 2 × 105 V m−1.

With the aforementioned parametric set-up, the assumptions can be justified as follows:
firstly, these fluids are Newtonian and immiscible, thus supporting assumptions (i) and
(ii) in the previous section. They are also leaky dielectric (assumption (ii)) as the time
scale for relaxation of charges, ε1/σ1 is less than the time scale for convection of charges,
Ro/Uc. Stokes flow (assumption (iii)) is also valid as Re ∼ 10−4. The capillary number
(Ca ∼ 0.1) is low enough, thus validating assumption (iv). Although the compound drop
would temporally evolve, the associated fluid motion would depend on the instantaneous
location of the droplets, allowing us to consider quasi-steady flow (assumption (v)), as
previously done in the literature (Pak, Feng & Stone 2014). Moreover, the generation of a
stable compound drop (assumption (vi)) is practically feasible by actuating bi-phase flow
in narrow capillaries (Utada et al. 2005; Kim et al. 2011).

2.4. Non-dimensional scheme
The non-dimensional scheme employs Ro as the length scale; Uc = R2

ogρ1/μ1 as the
velocity scale; Eref as the electric intensity scale; μ1Uc/Ro(= τH

ref ) as the hydrodynamic
stress scale; and ε1E2

ref (= τE
ref ) as the electric stress scale. Similarly, we define different

property ratios such as the viscosity ratio by λ1i = μi/μ1, conductivity ratio by R1i =
σi/σ1, permittivity ratio by S1i = εi/ε1 and radius ratio by K = Ri/Ro.

2.5. Governing equations and boundary conditions
We start with the governing equation for electric field intensity i.e.

∇ × Ei = 0, (2.1)

which can be reformulated as (Sadhal 1983)

Ei = −∇ψi = ∇ ×
(
ωi

ρ
îϕ

)
. (2.2)

Substituting (2.2) into (2.1) yields

∇ × ∇ ×
(
ωi

ρ

)
îϕ = 0, (2.3)

where ∇ = ι̂ηh1∂/∂η + ι̂ξ h2∂/∂ξ + ι̂ϕh3∂/∂ϕ, h1 = h2 = (cosh ξ − ζ )/c and h3 =
(cosh ξ − ζ )/(c

√
1 − ζ 2), with ζ = cos η and c = K sinh ξ1.

Further simplification of (2.3) yields ε2ωi = 0, with the expression for ε2 as (Stimson
& Jeffery 1926)

ε2 ≡ (cosh ξ − ζ )

c2

[
∂

∂ξ

{
(cosh ξ − ζ )

∂

∂ξ

}
+ (1 − ζ 2)

∂

∂ζ

{
(cosh ξ − ζ )

∂

∂ζ

}]
. (2.4)
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As given in Wacholder & Weihs (1972), ω has the following solution:

ω = (cosh ξ − ζ )−1/2
∞∑

n=0

[
dn cosh

(
n + 1

2

)
ξ + en sinh

(
n + 1

2

)
ξ

]
C−1/2

n+1 (ζ ), (2.5)

where, the Gegenbauer polynomial C−1/2
n+1 is of degree −1/2 and order (n + 1). For different

involved regions, ωi has the following forms that satisfy the far field condition at the
leading order (ω1 → ρ2/2, as ξ, η → 0) and the boundedness condition (|ω3| < ∞, as
ξ → ∞) in bispherical coordinates (Morton, Subramanian & Balasubramaniam 1990)

ω1 = ρ2

2
+ (cosh ξ − ζ )−1/2

∞∑
n=0

[
dn sinh

(
n + 1

2

)
ξ

]
C−1/2

n+1 (ζ ), (2.6a)

ω2 = (cosh ξ − ζ )−1/2
∞∑

n=0

[fn e(n+1/2)(ξ−ξ2) + gn e−(n+1/2)(ξ−ξ2)]C−1/2
n+1 (ζ ), (2.6b)

ω3 = (cosh ξ − ζ )−1/2
∞∑

n=0

[hn e∓(n+1/2)(ξ−ξ2)]C−1/2
n+1 (ζ ). (2.6c)

Utilizing the well-known relations ρ = c
√

1 − ζ 2/(cosh ξ − ζ ), z = c sinh ξ/(cosh ξ −
ζ ), ϕ = ϕ, the remaining boundary conditions will take the following form Gouz & Sadhal
(1989):

∂ωi

∂ξ

∣∣∣∣
ξ=ξi

= ∂ωj

∂ξ

∣∣∣∣
ξ=ξi

, (2.7a)

R1iωi|ξ=ξi = R1jωj|ξ=ξi . (2.7b)

Towards solving the flow problem, the governing equation ε4Si = 0, with S being the
Stokes streamfunction is used (Happel & Brenner 2012) which has a general solution of
the following form for ith fluid (Stimson & Jeffery 1926):

Si = (cosh ξ − ζ )−3/2
∞∑

n=0

Ξ(i)
n (ξ)C−1/2

n+1 (ζ ). (2.8)

As given in Mandal, Ghosh & Chakraborty (2016b),�(i)n will assume the following forms:

Ξ(1)
n = Dn e(n−1/2)ξ + En e(n+3/2)ξ + f̃n e∓(n−1/2)ξ + g̃n e∓(n+3/2)ξ , (2.9a)

Ξ(2)
n = Hn e(n−1/2)ξ + In e(n+3/2)ξ + Jn e∓(n−1/2)ξ + Kn e∓(n+3/2)ξ , (2.9b)

Ξ(3)
n = Ln e∓(n−1/2)ξ + Mn e∓(n+3/2)ξ . (2.9c)

Using these relations, the leading-order far field condition can be recast as (Mandal et al.
2016b)

S1 = (cosh ξ − ζ )−3/2
∞∑

n=0

(f̃ n e∓(n−1/2)ξ + g̃n e∓(n+3/2)ξ )C−1/2
n+1 (ζ ) as ξ → 0. (2.10)

Here, the constants f̃n and g̃n can be expressed as (Mandal et al. 2016b)

f̃n = n(n + 1)c2
√

2(2n − 1)
U2 and g̃n = − n(n + 1)c2

√
2(2n + 3)

U2. (2.11a,b)
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The leading-order hydrodynamic boundary conditions are as follows (Gouz & Sadhal
1989):

u(i)ξ = u(j)ξ = δi2(U3 − U2) · îξ , (2.12a)

u(i)η = u(j)η , (2.12b)

λiτ
(i)
ξη − λjτ

(j)
ξη = E(i)η

4π
(S1jE

(j)
ξ − S1iE

(i)
ξ ). (2.12c)

The electrostatic and hydrodynamic equations are first linearized to suitable forms given
in Appendix A and Appendix B. Thereafter, they are solved semi-analytically using the
procedure outlined in Boruah et al. (2022) and Jadhav & Ghosh (2021a), which is not
repeated herein for the sake of brevity. This results in unknown coefficients which are then
utilized along with force balance conditions to determine the velocities. The force balance
equations are (Sadhal & Oguz 1985)

ℵ21U2 + ℵ31U3 + ℵ1 = 2

3
√

2c
[K3ρ13 + (1 − K3)ρ12 − 1], (2.13a)

ℵ22U2 + ℵ32U3 + ℵ2 = 2

3
√

2c
[K3(ρ13 − ρ12)], (2.13b)

where ℵ21 = ∑N
n=0 (ϑ

(1)
2 + ϑ

(2)
2 ), ℵ31 = ∑N

n=0 (ϑ
(1)
3 + ϑ

(2)
3 ), ℵ1 = ∑N

n=0 (ϑ
(1)
1 + ϑ

(2)
1 )

and so on.

3. Results and Discussion

First, the results for the shell and core drop velocities using the eccentric configuration
and concentric configuration are compared under the small eccentricity limit (e = 0.001).
The details of the solution procedure regarding sedimentation of a concentric compound
drop can be found in Boruah et al. (2022). Note that the problem discussed in Boruah
et al. (2022) is for a neutrally buoyant compound drop migrating under the action of
plane Poiseuille flow and an electric field. However, the aforementioned problem can be
simplified to the case of a compound drop sedimenting under the action of gravity and an
electric field by setting the coefficients of the velocity profile accordingly and modifying
the force balance condition to include the effect of density.

We start with a comparative study of the results for shell and core drop velocities using
the eccentric configuration and concentric configuration under the small eccentricity limit
and for two different combinations of R12 and S12 (i.e. R12< S12 and R12> S12), as shown
in figure 2. As a function of radius ratio, the variation in velocity for the two drops are
showcased in figures 2(a) and 2(b) for a suitable choice of parameter ratios as provided
in the figure caption. The plots clearly indicate perfect matching between the results of
the eccentric compound drop obtained using bispherical coordinates and the analytical
results of a concentric compound drop. Moreover, we notice that the core size hinders the
movement of both drops, as they slow down with the increase in K. However, the effect
of K in altering the velocity is more pronounced in the core drop as compared with the
shell drop. Furthermore, it is important to notice that both drops migrate in the direction
of gravity when they are concentric (or eccentricity is very low), irrespective of the choice
of R12 and S12.

We also present a comparative study of the results for shell and core drop velocities using
the eccentric compound drop configuration in the small eccentricity limit (e = 0.001), and
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0.80.60.40.20

0.010 0.02
e = 0.001 (R12 > S12)

Concentric (R12 > S12)

Concentric (R12 < S12)

e = 0.001 (R12 < S12)

0.010.005

1.0
K

0.80.60.40.20 1.0
K

U2 U3

(b)(a)

Figure 2. Comparison of (a) shell drop velocity (U2) vs radius ratio (K) and (b) core drop velocity (U3) vs K
for eccentric compound drop with e = 0.001 and concentric compound drop for R12 < S12 (R12 = 1.5, S12 = 2)
and R12 > S12 (R12 = 1.1, S12 = 0.5). The other considered ratios are ρ12 = 1.04, ρ13 = 1, λ12 = 0.5, λ13 = 1,
R13 = 1 and S13 = 1.

0.80.60.40.20

0.006

0.004

0.002

0.015

0.010

0.005

λ12 = 0.1

λ12 = 1
λ12 = 10

Concentric

1.0
K

0.80.60.40.20 1.0
K

U2 U3

(b)(a)

Figure 3. Comparison of (a) shell drop velocity (U2) vs radius ratio (K) and (b) core drop velocity (U3) vs
K for eccentric compound drop with e = 0.001 and concentric compound drop for different values of λ12. The
other considered property ratios are ρ12 = 1.04, ρ13 = 1, λ13 = 1, R12 = 1.5, R13 = 1, S12 = 2 and S13 = 1.

for viscosity ratio values of 0.1, 1 and 10, and those of concentric compound drop in
figure 3. As a function of K, the variation in velocity for the core and shell is, respectively,
showcased in figures 3(a) and 3(b) for a suitable choice of parameter ratios, as mentioned
in the caption of the figure. Here also, an accurate match between the results of the
eccentric compound drop obtained using bispherical coordinates and the analytical results
of the concentric case is noticed for different values of λ12. The core and shell velocities
decrease as λ12 increases. It is also important to notice that the size of the core drop can
either aid or hinder the movement of the shell and core drop based on λ12. Indeed for
λ12 ≤ 1, both the core and shell velocities decrease as K increases. On the contrary, for
λ12 > 1, both the core and shell velocities increase with K owing to the decrease in volume
of the highly viscous fluid in the shell drop.

Next, we move on towards analysing the impact of the hydrodynamic and electric
parameters on the motion of an eccentric compound drop. We start with the variation
of the core and shell velocities under the influence of the density ratio (ρ12) for
e = 0.001(concentric), 0.1, 0.3 and 0.5, as depicted in figure 4. The other relevant
parameters are given in the caption of figure 4. We can notice the concomitant interplay
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0

U2 U3

5

0

–5

–10

–15

5

0

–5

–10

–15
108642

Concentric

e = 0.1
e = 0.3
e = 0.5

ρ12

0 108642
ρ12

(b)(a)

Figure 4. Variation of (a) shell drop velocity (U2) and (b) core drop velocity (U3) with ρ12 for e = 0.1, 0.3, 0.5
and 0.001 (concentric). The other considered parameters are ρ13 = 1, λ12 = 0.5, λ13 = 1, R12 = 1.5, R13 = 1,
S12 = 2 and S13 = 1.

of eccentricity and density ratio in tuning the direction and speed of both drops. The
velocities of the shell and core drop for e = 0.1 deviate minimally from the results for
a concentric compound drop and show minimum alteration in the migration direction
with change in ρ12. However, with the increase in eccentricity, we observe that both drops
migrate along the direction of the applied electric field when ρ12 < 1, while they migrate
opposite to the direction of the applied electric field when ρ12 > 1. Also, the higher the
deviation of the density ratio is from 1, the higher are the magnitudes of the core and shell
velocities, and the same also increase as the eccentricity increases. The reason behind
such an intriguing variation in the direction and velocity of core and shell because of the
confluence of the eccentricity and density ratio can be attributed to the asymmetry in the
fluid accumulated above and below the core with the change in eccentricity. Additionally,
the presence of dense fluid either inside or outside the shell drop also aids or hinders the
asymmetricity in the charge distribution due to the supplied electric field, thus mediating
the droplet direction.

Figure 5 demonstrates the shell and core drop velocity variations as a function of
viscosity ratio (λ12) for e = 0.001(concentric), 0.1, 0.3 and 0.5, under a suitable choice of
property ratios, as mentioned in the figure caption. At lower values of λ12, the velocity
variation is more significant as compared with that at higher values of λ12. Indeed, a
finite velocity occurs when the viscosity ratio is sufficiently higher. This underscores the
profound influence of the presence of a viscous fluid either inside or outside the shell
drop which aids or hinders the asymmetricity in the charge distribution because of the
supplied electric field, thus manipulating the velocity of the drops. Apart from the effect
of the viscosity in tuning the magnitude of the velocity, the eccentricity critically mitigates
the direction of drop motion. For the concentric configuration and e = 0.1, the shell and
core drops are seen to migrate along the direction of the applied electric field, while
they migrate opposite to that of applied electric field when the eccentricity is sufficiently
large. The asymmetry in the accumulated fluid above and below the core with a change in
eccentricity is the reason behind such an observation.

In terms of the influence of the electric parameters, firstly, we show the variation of
the shell and core drop velocities in figures 6(a) and 6(b), respectively, with a change
in electrical conductivity ratio (R12) for e = 0.001(concentric), 0.1, 0.3 and 0.5. The
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Figure 5. Variation of (a) shell drop velocity (U2) and (b) core drop velocity (U3) with λ12 for e = 0.1, 0.3, 0.5
and 0.001 (concentric). The other considered parameters are ρ12 = 1.04, ρ13 = 1, λ13 = 1, R12 = 1.5, R13 = 1,
S12 = 2 and S13 = 1.
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Figure 6. Variation of (a) shell drop velocity (U2) and (b) core drop velocity (U3) with R12 for e = 0.1, 0.3, 0.5
and 0.001 (concentric). The other considered parameters are ρ12 = 1.04, ρ13 = 1, λ12 = 0.5, λ13 = 1, R13 = 1,
S12 = 2 and S13 = 1.

remaining property ratios considered here are given in the caption of figure 6. Here also,
the variations in velocity with R12 for e = 0.1 and the concentric configuration depict
close agreement. More precisely, we notice significant variation in the velocity when
R12< 1, beyond which the variation in velocity with R12 is insignificant. Quantitatively,
the magnitudes of the core and shell velocities decrease as R12 increases and this decrease
is sharp for R12< 1. This happens because the asymmetricity in the charge distribution
decreases with the increase in R12. Also, it is to be noted that S12 = 2 in figure 6, and
therefore, the core and shell velocities alter in sign when R12> 2, depending also on the
value of eccentricity. Indeed, when the eccentricity is sufficiently large, both the core and
shell velocities remain negative (i.e. they migrate opposite to the direction of the applied
electric field) throughout, irrespective of the variation in R12. This happens because the
imbalance in fluid accumulation above and below the core drop due to the variation of
eccentricity nullifies the effect of the asymmetric charge distribution when the eccentricity
is very large.

Figure 7 demonstrates the variation of shell and core drop velocities with electrical
permittivity ratio (S12) for e = 0.001(concentric), 0.1, 0.3 and 0.5. The remaining property
ratios considered here are given in the caption of figure 7. As is evident, with the increase
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Figure 7. Variation of (a) shell drop velocity (U2) and (b) core drop velocity (U3) with S12 for e = 0.1, 0.3,
0.5 and 0.001 (concentric). The other considered parameters are ρ12 = 1.04, ρ13 = 1, λ12 = 0.5, λ13 = 1,
R12 = 1.5, R13 = 1 and S13 = 1.

in S12, the shell and core drop velocities may either decrease or increase or alter sign
depending on e. More precisely, we notice an alteration in the migration direction of
both the core and shell for e = 0.1, and an increase in the velocity of the drops when the
eccentricity is sufficiently higher (i.e. e = 0.5) due to the increase in S12. Such a variation
occurs because the effect of the disbalance in fluid accumulation above and below the core
due to the change in e nullifies the effect of the asymmetric charge distribution when the
eccentricity is very large and, hence, we observe either an increase or decrease in velocity
with the increase in S12.

The next task is to explore whether an equilibrium configuration (for any e) exists and
how the same is influenced by the hydrodynamic and electrical property ratios. We do so
by plotting the variation of the relative velocity between the two drops (shell and core)
i.e. U2–U3, for different values of eccentricity and observe its variation with a change in
property ratios. Figure 8(a) shows the plot of U2–U3 variation as a function of ρ12. At first,
it is to be noted that, for ρ12 < 1, U2–U3< 0, for almost all values of the eccentricity. This
indicates faster movement of the core drop relative to the shell drop. However, when ρ12 >
1, U2–U3> 0, for almost all values of the eccentricity. This alteration in sign indicates the
presence of the critical density ratio (ρ12 = 1) for each e, for which U2 = U3. Also, the
more the value of ρ12 is higher or lower than the critical ρ12, the larger is the difference in
the relative velocity of the two drops. Furthermore, we observe that the difference in the
relative velocity is the lowest for the concentric configuration and e ≤ 0.1, indicating the
fact that the concentric compound drop furnishes similar results as the eccentric compound
drop up to an eccentricity limit of 0.1, irrespective of the density ratio considered.

The existence of a non-zero relative velocity is indicative of the fact that the eccentricity
of the compound drop evolves with time. With the progress of time, there is a linear
increase in the rate of eccentricity (e) as follows: e(t) = (U2,z–U3,z)t. Hence, for the
validity of the concentric assumption, two conditions need to be satisfied. The first
condition is that e 
 1 or |U2,z–U3,z| 
 1. Even though the first condition is satisfied,
however, the eccentricity being a function of time would increase as time progresses.
Therefore, t < |U2,z/(U2,z–U3,z)| is the second essential condition for the validity of the
concentric assumption. Indeed, our results quantitatively support the concentric compound
drop assumption as shown in Appendix C.

This would continue until the core drop migrates, reaches a stable fixed point and moves
with the same velocity as the shell drop thereafter. In order to ascertain the same, the
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Figure 8. (a) Variation of (U2–U3) with ρ12 for e = 0.1, 0.3, 0.5 and 0.001 (concentric). (b) Evolution of
eccentricity e(t) with time (t), subjected to e(t = 0) = 0, for ρ12 = 0.1, 1.04 and 10. The other considered
parameters are ρ13 = 1, λ12 = 0.5, λ13 = 1, R12 = 1.5, R13 = 1, S12 = 2 and S13 = 1.

following differential equation is solved numerically to determine how the eccentricity
evolves with time:

de
dt

= [U3(e(t),�)− U2(e(t),�)]. (3.1)

By solving (3.1), the temporal evolution of the eccentricity for different ρ12 is depicted in
figure 8(b). From the figure, we observe that the closer the value of ρ12 is to the critical ρ12,
the smaller is the stable fixed eccentricity point and the larger is the time taken to attain the
same. However, irrespective of the value of ρ12, the eccentricity in general remains lower
than 0.1 within a non-dimensional time limit of the order of 102. This indicates that the
concentric compound drop configuration and eccentric configuration can furnish similar
results until the time limit mentioned above.

In figure 9(a), we present the variation in the relative velocity of the core and shell with
a viscosity ratio (λ12) for different eccentricities. It clearly indicates that an equilibrium
configuration exists at the critical viscosity ratio limit of around 10, deviation from which
manifests as the core velocity being either higher or lower than the shell velocity. In fact,
the least deviation from the stable equilibrium position is observed for an eccentricity
near approximately 0.3. However, it is also seen that, irrespective of the value of λ12,
the concentric compound drop configuration predicts a similar variation in U2–U3 as
that for e = 0.1. Moreover, to examine the point of stability in terms of eccentricity and
non-dimensional time for different λ12, we plot the temporal evolution of eccentricity for
different λ12 in figure 9(b) by solving (3.1). From the figure, we observe that the closer
the value of λ12 is to the critical viscosity ratio, the smaller is the stable fixed eccentricity
point and the greater is the time taken to attain the same. However, irrespective of the
value of λ12, the eccentricity in general remains lower than 0.1 within a non-dimensional
time range of the order of 102–103.

Next, we examine the implication of the electrical parameters for the relative drop
velocity and for the temporal evolution of eccentricity. Figure 10(a) depicts the variation
in the relative velocity of the core and shell with R12 for different eccentricities. The plot
indicates maximum deviation from the stable equilibrium configuration for very small
values of R12. As R12 increases, the tendency of the core to attain a stable configuration
increases, although it is the maximum when R12 = S12. Moreover, the relative velocity of
the drops increases with the decrease in eccentricity. We also observe that, irrespective of
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Figure 9. (a) Variation of (U2–U3) with λ12 for e = 0.1, 0.3, 0.5 and 0.001 (concentric). (b) Evolution
of eccentricity e(t) with time (t), subjected to e(t = 0) = 0, for λ12 = 0.1, 1 and 10. The other considered
parameters are ρ12 = 1.04, ρ13 = 1, λ13 = 1, R12 = 1.5, R13 = 1, S12 = 2 and S13 = 1.
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Figure 10. (a) Variation of (U2–U3) with R12 for e = 0.1, 0.3, 0.5 and 0.001 (concentric). (b) Evolution
of eccentricity e(t) with time (t), subjected to e(t = 0) = 0, for R12 = 0.1, 1.5 and 3. The other considered
parameters are ρ12 = 1.04, ρ13 = 1, λ12 = 0.5, λ13 = 1, R13 = 1, S12 = 2 and S13 = 1.

the value of R12, the concentric compound drop configuration predicts a similar variation
in U2–U3 as that for e = 0.1. Thereafter, to examine the point of stability in terms of
eccentricity and non-dimensional time for different R12, we plot the temporal evolution
of eccentricity for different R12 in figure 10(b). From the figure, we observe that the
smaller is deviation of R12 from the critical conductivity ratio, the smaller is the stable
fixed eccentricity point and the larger is the time taken to attain the same. However,
irrespective of the value of R12, the eccentricity in general remains lower than 0.1 within a
non-dimensional time limit of the order of 102, the condition under which the concentric
and eccentric configurations furnish similar results.

Finally, the variation in the relative velocity of the core and shell with S12 for different
eccentricities is presented in figure 11(a) for a suitable choice of property ratios, as
mentioned in the figure caption. The plot indicates that U2–U3 is close to zero for
S12 = R12 when e = 0.1 for the concentric configuration, indicating S12 = R12 as the
critical permittivity limit pertaining to a stable configuration for this case. However,
with the increase in eccentricity, we notice that the critical permittivity limit also
changes. Thereafter, we plot the temporal evolution of the eccentricity for different S12 in
figure 11(b) to examine the point of stability in terms of eccentricity and non-dimensional
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Figure 11. (a) Variation of (U2–U3) with S12 for e = 0.1, 0.3, 0.5 and 0.001 (concentric). (b) Evolution
of eccentricity e(t) with time (t), subjected to e(t = 0) = 0, for S12 = 0.1, 1.5 and 3. The other considered
parameters are ρ12 = 1.04, ρ13 = 1, λ12 = 0.5, λ13 = 1, R12 = 1.5, R13 = 1 and S13 = 1.

time for different S12. We observe that smaller is the deviation of S12 from the critical
permittivity ratio, the smaller is the stable fixed eccentricity point and the smaller is the
time taken to attain the same. However, irrespective of the value of S12, the eccentricity
in general remains lower than 0.1 within a non-dimensional time limit of the order of 102.
Under this condition, both configurations of compound drop furnish similar results.

4. Conclusions

Considering a practical situation of an eccentric compound drop sedimenting in the
presence of a uniform electric field, we semi-analytically determine the sedimentation
velocity of the two drops (shell and core), and the same is applied to capture the influence
of concomitant physical, hydrodynamic and electric properties on compound droplet
sedimentation. Thereafter, the critical limit of eccentricity and time within which similar
results are furnished by the concentric and eccentric configurations is determined. The
salient features of the present study for an eccentric compound drop can be summarized
as follows:

(i) In the case of an eccentric compound drop, the density ratio critically controls the
direction of migration of the drops when the eccentricity is high. However, the
viscosity ratio tunes the magnitude of the shell and core drop velocities without
affecting the direction of motion.

(ii) At lower values of the eccentricity, the core and shell alter their direction of motion
when R12 = S12, while they always migrate opposite to the direction of the applied
electric field when the eccentricity is sufficiently large, irrespective of the variation
in conductivity ratio. On the other hand, with the increase in S12, the core and shell
velocities may either decrease or increase or alter sign based on the eccentricity.

(iii) In terms of the relative velocity between the core and shell, there exists a critical
hydrodynamic or electrical parameter ratio above or below which the core drop
might move at a velocity higher or lower than the shell drop. This critical density
ratio is 1 and the critical viscosity ratio is 10. In terms of the conductivity ratio, the
critical ratio is at R12 = S12. However, it is found that the critical permittivity limit
also changes with eccentricity.
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(iv) Moreover, regardless of the value of the parameter ratio, the concentric configuration
can predict similar variation in the relative velocity as that obtained for e = 0.1
and hence, the concentric and eccentric compound drop configurations furnish
similar results up to e< 0.1. Indeed, from the temporal evolution of the eccentricity,
the stable fixed eccentricity point and the non-dimensional time required to attain
the same are determined for different values of the property ratios. It is found
that, based on the property ratios, the eccentricity remains lower than 0.1 up
to a non-dimensional time range of the order of 102–103, within which both
configurations can furnish similar solutions.
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Appendix A. Algebraic equations for the electric potential field

The following linear algebraic equations are obtained by converting the boundary
conditions (2.7) (Jadhav & Ghosh 2021b):

[ − dn−1R4n + fn−1R5n − gn−1R6n](n + 1)+ dnΥ1n − fnΥ2n + gnΥ3n

+[−dn+1R7n + fn+1R8n − gn+1R9n]n = 4
√

2n(n + 1)c2 e∓(n+1/2)ξ1 sinh ξ1,
(A1a)

−[fn−1 − gn−1 + hn−1](n + 1)+ fnΥ4n − gnΥ5n + hnΥ5n − [fn+1 − gn+1 + hn+1]n = 0,
(A1b)

−dnR1n + [fnR2n + gnR3n]R12 = 4
√

2n(n + 1)c2 e∓(n+1/2)ξ1, (A1c)

[fn + gn]R12 − hnR13 = 0, (A1d)

where, R1n = sinh(n + 1/2)ξ1; R2n = e(n+1/2)(ξ1−ξ2); R3n = e−(n+1/2)(ξ1−ξ2)

R4n = cosh
(

n − 1
2

)
ξ1; R5n = e(n−1/2)(ξ1−ξ2); R6n = e−(n−1/2)(ξ1−ξ2); (A2a–c)

R7n = cosh
(

n + 3
2

)
ξ1; R8n = e(n+3/2)(ξ1−ξ2); R9n = e−(n+3/2)(ξ1−ξ2); (A3a–c)

ϒ1n = (2n + 1) cosh ξ1 cosh
(

n + 1
2

)
ξ1 − R1n sinh ξ1; (A4)

Υ2n = [(2n + 1) cosh ξ1 − sinh ξ1]R2n; Υ3n = [(2n + 1) cosh ξ1 + sinh ξ1]R3n;
(A5a,b)

Υ4n = (2n + 1) cosh ξ2 − sinh ξ2; Υ5n = (2n + 1) cosh ξ2 + sinh ξ2. (A6a,b)
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Appendix B. Algebraic equations for the hydrodynamic field

The algebraic equations for the hydrodynamic field are as follows:

DnΛ
1
n + EnΛ

2
n = U2Λ

3
n

(
�4

n

(2n − 1)
− �5

n

(2n + 3)

)
, (B1a)

HnΛ
1
n + InΛ

2
n + JnΛ

4
n + KnΛ

5
n = 0, (B1b)

(2n − 1){(Dn − Hn)Λ
1
n + JnΛ

4
n} + (2n + 3){(En − In)Λ

2
n + KnΛ

5
n} = −U2Λ

3
n(Λ

4
n −Λ5

n),
(B1c)

(2n − 1)2{(Dn − λ2Hn)Λ
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n − λ2JnΛ

4
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(
S12R13

R12
− S13

) ⎡
⎢⎢⎢⎣
(2n + 1)�7

n

2

{
−1

c
�8

kΩ
3
n,k − 1

2c
�9

kΩ
4
n,k

}

+�10
n sinh ξ2

{
1
2c
�8

kΩ
7
n,k + 1

2c
�9

kΩ
8
n,k

}
⎤
⎥⎥⎥⎦

+ (U2 − U3)(λ2 − λ3)Λ3
n((2n − 1)Λ4

n − (2n + 3)Λ5
n). (B1h)

The notations used in (B1) have the following expressions:

Λ1
n = e(n−1/2)ξ , Λ2

n = e(n+3/2)ξ , Λ3
n = n(n + 1)c2/

√
2,

Λ4
n = e−(n−1/2)ξ , Λ5

n = e−(n+3/2)ξ , (B2a–e)

Λ6
n = n(n + 1)(2n + 1)

2π
, Λ7

n = fn e(n+1/2)(ξ−ξ2) − gn e−(n+1/2)(ξ−ξ2), (B3a,b)

Λ8
k =

N∑
k=0

dk sinh
(

k + 1
2

)
ξC1/2

k , Λ9
k =

N∑
k=0

dk sinh
(

k + 1
2

)
ξC−1/2

k+1 , (B4a,b)

Λ10
n = fn e(n+1/2)(ξ−ξ2) + gn e−(n+1/2)(ξ−ξ2), (B5)
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Figure 12. Temporal variation of eccentricity for various K in case of concentric compound drop. The other
considered parameters are θt = π/4, R12 = 1.5, R13 = 1, S12 = 2, S13 = 1, ρ12 = 1.04, ρ13 = 1, λ12 =
0.5, λ13 = 1, M = 1, Ca = 0.1 and ReE = 0.1.

Ω1
n,k(ξ) =

∫ 1

−1

xC−1/2
n+1 C−1/2

k+1

(1 − x2)
dx, Ω2

n,k(ξ) =
∫ 1

−1

C−1/2
n+1 C−1/2

k+1

(cosh ξ − x)
dx, (B6a,b)

Ω3
n,k(ξ) =

∫ 1

−1

(cosh ξ − x)3/2C−1/2
n+1 C−1/2

k+1

(1 − x2)
3/2 dx, Ω4

n,k(ξ) =
∫ 1

−1

(cosh ξ − x)1/2C−1/2
n+1 C−1/2

k+1

(1 − x2)
dx,

(B7a,b)

Ω5
n,k(ξ) =

∫ 1

−1

xC−1/2
n+1 C−1/2

k+1

(1 − x2)(cosh ξ − x)
dx, Ω6

n,k(ξ) =
∫ 1

−1

C−1/2
n+1 C−1/2

k+1

(cosh ξ − x)2
dx, (B8a,b)

Ω7
n,k(ξ) =

∫ 1

−1

(cosh ξ − x)1/2C−1/2
n+1 C−1/2

k+1

(1 − x2)
3/2 dx, Ω8

n,k(ξ) =
∫ 1

−1

C−1/2
n+1 C−1/2

k+1

(cosh ξ − x)1/2(1 − x2)
dx.

(B9a,b)
Equations (B1a)–(B1d) are for ξ = ξ1 and (B1e)–(B1h) are for ξ = ξ2.

Appendix C. Condition for the validity of the concentric compound drop
configuration

In order to determine the condition within which the concentric assumption is valid, we
plot the eccentricity variation with time for various K in figure 12. Previously, it has
been established that the concentric and eccentric theories deliver similar results when
the eccentricity e< 0.1 (Mandal et al. 2016b). From figure 12, we determine that the
aforementioned condition is satisfied when the dimensionless time ranges from 450 to
850. Beyond this, the eccentric theory (Jadav & Ghosh 2021a,b) needs to be applied.
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