
J. Fluid Mech. (2007), vol. 593, pp. 475–504. c© 2007 Cambridge University Press

doi:10.1017/S0022112007008932 Printed in the United Kingdom

475

Increased mobility of bidisperse granular
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The unexpected behaviour of long-runout landslides has been a controversial subject
of discussion in the geophysics community. In order to provide new insight into
this phenomenon, we investigate the apparent reduction of friction resulting from
the presence of a second species of smaller particles in the bulk of the granular
material that forms the avalanche. Results obtained by means of a two-dimensional
soft particle discrete element numerical simulation are presented. The numerical
experiments consider an avalanche of two-size particles, originally placed over an
inclined plane. The friction coefficient for the particle–particle and wall–particle
contacts is held fixed. The granular mass is allowed to evolve with time, until it
comes back to rest on a horizontal plane. The position of the centre of mass is
located, such that the runout length Lcm/Hcm could be measured, with Lcm and Hcm

being the horizontal distance travelled and the height lost by the avalanche centre
of mass, respectively. Many simulations were performed keeping the area of the
avalanche constant, varying only the area fraction of small particles. The results show
that the runout length increases with the area fraction of small particles, reaching a
maximum for a given area fraction of small particles. A detailed analysis of the particle
distribution in the granular mass indicates that the apparent friction coefficient is
affected by the formation of a layer of small particles at the base of the avalanche.
This layer is identified as the source of ‘lubrication’. Furthermore, since there is a
dependence of the runout on the fall height and the volume in real avalanches, some
simulations with different areas and different fall heights were performed. The results
show a tendency of the runout to increase with area, and to decrease with the initial
fall height, which is in agreement with what is observed for geological events.

1. Introduction
The origins of the small apparent friction observed in long-runout landslides have

long been the subject of speculation. Long-runout landslides consist of large masses
of rock (of the order of a cubic kilometre of volume), the initiation of which could
be the result of an earthquake. The runout distances of these events may cover many
kilometres and have potential implications to human life and safety. Such events
include different granular mass flows, such as rock avalanches, debris flows and
pyroclastic flows. That is why the general term ‘landslide’ has been used by many
authors to describe them. The term ‘landslides’ has been defined as a ‘general term
covering wide variety of mass movement . . . involving . . . downslope transport, by
means of gravitational stresses of soil and rock material en masse’ (Gary, McAffe &
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Wolf 1972) . The term ‘avalanche’ has also been suggested to describe this phenomenon
(Howard 1973), and it is usually used to refer to a dry granular mass flow. Bates &
Jackson (1962) stretched the definition to include a fallen rock mass and associated
motion. In this paper, we refer to the term avalanche since we consider a simplified
case, where the effect of inter-granular fluid is negligible so the granular mass is not
cohesive.

Many hypotheses have been put forward to explain the long runout. They are briefly
summarized below, but also see Shaller & Smith-Shaller (1996). Some models have
invoked the presence of a fluidizing medium such as air, water, vapour, volcanic gases
or a suspension of fine particles (Legros 2002). Kent (1966) proposed that entrapped
air could fluidize landslides. Shreve (1968) and Fahnestock & Voight (1978) suggested
that a cushion of entrapped air would support landslides rather than fluidize them.
Hsü (1975) hypothesized that the fine particles alone, without the help of a supporting
fluid, could fluidize the coarser moving debris. On the other hand, some authors
have attempted to explain landslide mobility with fluid-absent granular models. The
proposed models include acoustic fluidization (Melosh 1979), spreading of a rapid
granular flow (Davies 1982; Straub 1996), self-lubrication (Campbell 1989; Cleary
& Campbell 1993), spreading of a granular flow in a regime transitional between
frictional and collisional (Campbell, Cleary & Hopkins 1995), and the support of the
avalanche over a thin collisional region of intense shear (Huppert & Dade 1998).

The mobility of landslides has also been considered using continuum models with
bulk rheological properties such as viscosity and yield strength, without specific
assumptions about the microscopic physics (Dade & Huppert 1998). Models which
take into account changes of mass due to deposition or bulking have also been
proposed (Hungr & Evans 1997). Studies which use monodisperse dry granular
mass flows, show strong dependence of flow runout on the initial aspect ratio of
the granular columns (Lajeunesse, Mangeney-Castelnau & Vilotte 2004; Lube et al.
2004; Balmforth & Kerswell 2005; Zenit 2005; Lajeunesse et al. 2006), challenging
the traditional view that the extent of geophysical granular flows depends on their
volume. Moreover, Phillips et al. (2006) found that for a given proportion of fine
particles in a bidisperse avalanche, the mobility is larger. While many of the proposed
mechanisms may have been relevant in specific landslides events, none of them has
been widely recognized as a universal explanation for landslide mobility, and the
debate continues.

In order to provide a new insight into this phenomenon, we investigate the apparent
reduction of friction resulting from the presence of small particles. In this paper,
we present an alternative explanation for the increased mobility of landslides. In
general, landslides are composed of particles of many sizes. Although, the mechanics
of polydispersed granular masses is far from being understood (Goujon, Dalloz-
Dubrujeaud & Thomas 2007), we consider a simplified case: the motion of a mass
composed of two particle species, of the same density and with a significant size
difference; that is a bidisperse case. When a bidisperse granular mass is moving
whether shaken by vibration or moving through an inclined plane, the phenomenon
of segregation occurs. The mechanism of the segregation is still not completely
understood; however, there are a number of mechanisms for the segregation of
dissimilar grains in granular flows, including inter-particle percolation, convection
(Ehrichs et al. 1995), inertia, collisional condensation (Jenkins 1998), particle density
(Drahun & Bridgwater 1983), gravity-driven size-segregation by kinetic sieving
(Bridgwater 1976; Savage & Lun 1988; Thornton, Gray & Hogg 2006), and diffusive
remixing (Hsiau & Hunt 1993; Savage & Dai 1993; Dolgunin & Ukolov 1995; Gray
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& Chugunov 2006) which are the dominant processes in dense granular free-surface
flows. Rosato et al. (1987) and Jullien, Meakin & Pavlovitch (1992) suggested the
percolation of the small beads in the layer of large beads as a mechanism for particle
size segregation by shaking. In this model, the small particles go down through the
empty spaces formed during the vibration. In that way, the large particles stay in the
free surface. In a similar manner, when a mixture of different sized particles flows
over an inclined plane, the segregation occurs almost immediately. However for two-
dimensional experiments, the segregation is slower, leading to a double segregation
(Rosato et al. 1987; Savage & Lun 1988; Vallance & Savage 2000) in which the
different classes of particles are not totally separated along the flow. During the flow,
the particles are moving constantly and empty spaces between the particles appear.
The large particles may go down only in large empty spaces, while the small particles
go down in small and large spaces. This asymmetry in the fluctuation of the particle
movement generates the segregation (dynamic percolation). A quantitative model
based on this idea, was propounded by Savage & Lun (1988). However, for certain
experimental configurations, inverse segregation can be observed (Thomas 2000).

By means of discrete-element computer simulations, the effect of a second species
of particles on the runout of avalanches is studied. In § 2, a brief description of the
computational technique is shown and the parameters in this study are presented and
discussed. Several techniques used to analyse the numerical results are presented in
§ 3. In §§ 4, 5 and 6, the results are presented and discussed. Finally, in § 7, a brief
summary and general conclusions are presented.

2. Discrete-element simulation
2.1. Simulation method

Results obtained by means of a two-dimensional soft particle numerical simulation
are presented. The discrete-element computer code used in this study was developed
by Wassgren (1996), and was adapted to simulate bidisperse flows. This technique
was first proposed by Cundall & Strack (1979) to study granular flows. A similar
simulation scheme was used by Campbell et al. (1995) to study the mobility of large
avalanches.

In this case, only gravity and contact forces are considered. Both the linear and
angular momentum conservation equations are solved for each particle at every time
step. The contact forces are modelled for both the normal and tangential directions.

The particle surfaces are allowed to overlap slightly in order to model elastic
deformations (soft particle scheme). In the simulations used in this study, the
maximum allowed overlap is 10% of the smallest particle diameter of the two
particles in contact. For the normal direction, the linear hysteretic spring model
proposed by Walton & Braun (1986) was used, which accounts for the collision
energy loss using a spring with two different stiffnesses. The loading stiffness, kL, is
chosen to match Hertzian contact parameters; the unloading stiffness, kU , is calculated
from the loading stiffness and the coefficient of restitution, εn (kU = kL/ε2

n). For the
tangential direction, a linear spring in series with the Coulomb sliding friction element
model was used, as proposed by Cundall & Strack (1979). In this model, both forces
(due to the slider and the spring) are calculated and the smallest value of these two
is chosen. If the slider force is smaller than the spring force, then the two particles in
contact are sliding over each other. The stiffness of the spring for tangential contact,
kS , is considered equal to the loading stiffness. The simulation time step is calculated
in such a way that it is always smaller than the typical collision duration. As there
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Hcm

Lcm

θ

Travel distance

Figure 1. Sketch of initial configuration and final deposit. Lcm (resp. Hcm) is the horizontal
(resp. vertical) distance between the two centres of mass of the deposit at the beginning and
at the end of the simulation, (θ = 30◦).

are two kinds of contacts (translational and rotational), the smallest contact time is
chosen. The simulation time step is at least ten times smaller than this minimum
contact time which is calculated from the Hertz contact theory.

In a discrete-element simulation, the majority of the computational overhead is
spent in checking the contact between particles. In order to reduce the number of
collision checks of each particle, a neighbouring-cell technique was implemented in
the simulation code. The details of the implementation of the code can be found in
Wassgren (1996).

The validity of these types of model has been discussed extensively in the granular
flow literature (see Rotter et al. 1998). For dense flows, in which the particle contacts
are enduring, the hysteretic spring contact model can be considered to be the most
appropriate since this approach leads to realistic impact behaviour, where it is assumed
that in each time step, the normal force changes by only a small amount which will
not significantly influence the tangential force. Results obtained using this model
reproduce experimental values of individual particle collisions (Schafer, Dippel &
Wolf 1996) and correctly predicts static pressures in silos (Rotter et al. 1998).

2.2. Paramenters and numerical experiments

The configuration studied here is shown schematically in figure 1. The numerical
experiments consist of an avalanche of two species of particles, small particles with
a diameter equal to ds and large particles with a diameter equal to dl , on a smooth
frictional plane with an inclination, θ , of 30◦. The diameter of large beads is the same
for all the simulations, thus the diameter of small particles determines the diameter
ratio, defined as dl/ds . The initial elevation was chosen such that the travel distance
on the inclined plane is equal to 50 times the large-particle diameter. A dispersity
of the particle size of ±10% around the mean value of the diameter is chosen in
order to avoid crystallization. The coefficient of friction for the particle–particle and
wall–particle contacts is held fixed and is equal to 0.5, a typical value of the frictional
properties of rocks (Campbell 1989). The coefficient of restitution, εn, is equal to
0.2. The values of the loading stiffness were calculated according to the expression
proposed by Zenit (2005):

kL =
2m∗g

d∗
α̇0

αmax

exp

(
− arctan β

β

)
, (2.1)
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νs dl/ds nl ns ntotal

0 – 500 – 500
0.5 8.33 250 17362 17612
0.5 4 250 4000 3500
0.5 3 250 2250 2900
0.5 2 250 1000 1250

Table 1. Number of small and large particles for different simulations. nl (resp. ns) is the
number of large (resp. small) particles; ntotal is the total number of particles.

where m∗ = mlms/(ml + ms) and d∗ = dlds/(dl + ds) are the equivalent mass and
diameter, respectively, and β = π/ ln εn. The terms α̇0 and αmax are the maximum
overlap and a characteristic collision speed. The values of kL were in the range
1.5 × 105 > kL/(ρd2

s g) > 1.9 × 105, corresponding to the chosen values of εn and dl/ds

investigated here. The mass and the density of the particles were scaled and therefore
will not affect the simulation results since only inter-particle contact and body forces
are considered. All numerical quantites were made dimensioless considering ds , g and
ρ as the characteristic scales.

The simulation parameters are the total area occupied by the beads, the initial
position of the avalanche, the diameter ratio (dl/ds) and the area fraction of small
beads (νs) defined by:

νs = As(As + Al)
−1. (2.2)

where As is the total area of small particles, and Al is the total area of large particles.
In this investigation, three different kinds of simulation were performed. In the

first one, the total area occupied by the particles remains constant, varying only the
diameter ratio dl/ds (from 1.5 to 8.33) and the area fraction of small particles νs (from
0 to 1). The total area occupied by the beads corresponds to the area occupied by 500
large beads. If the diameter of large beads is equal to 1 m in dimensional units then
the avalanche area is equal to 392.7 m2. The number of particles in each simulation
depends on the diameter ratio and the area fraction of small particles. The number
of small particles is given by ns = νsno(dl/ds)

2, where no is the number of large
particles for a simulation with a νs = 0. Table 1 shows ns for some simulations. The
largest case was for a monodispersed simulation (dl/ds = 8.33 and νs=1) with 48 000
particles, which ran for approximately one month in a Pentium IV PC. For each case,
simulations were run from 1 to 5 times, with slightly different initial conditions to
ensure repeatability.

The second type of simulation considers avalanches with a constant area but with
different initial fall heights, corresponding to travel distances varying from 20dl to
300dl . Lastly, the influence of the avalanche area on the global coefficient of friction
was studied in a third type of simulation. These simulations were run for constant
diameter ratio and the area fraction of small beads are constant (dl/ds = 3 and
νs = 0.6), varying only the area of the avalanche from 5000 to 40 000 dimensionless
area units (4Atot/(πd2

s )).
The initial bulk avalanche is prepared by filling a box formed by three walls with

the two species of particles (figure 2). In the initialization, the particles are located
randomly (figure 2a), leading to a relatively well-mixed avalanche initial bulk (see
§ 3.3). The particles settle during the initialization step (figure 2b–d) until their kinetic
energy is dissipated and the initial deposit is formed (figure 2e). When the particles

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

07
00

89
32

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112007008932


480 E. Linares-Guerrero, C. Goujon and R. Zenit

(a)

(d ) (e)

(b) (c)

Figure 2. Snapshots of the initialization simulation for different dimensionless times:
t∗ = t

√
g/ds , (a) random particle locations t∗= 2, (b) t∗ = 8, (c) t∗ = 14, (d) t∗ = 28

and (e) t∗ = 60, (dl/ds = 3, νs = 0.6).

(a)

(e)

(f )

(g)

(d )

(b) (c)

Figure 3. Moving of the bidisperse granular mass along the plane for different dimensionless
times t∗ = t

√
g/ds . (a) t∗ = 0, (b) t∗ = 20, (c) t∗ = 40, (d) t∗ = 60, (e) t∗ = 80, (f) t∗ = 100,

(g) t∗ = 250 (end of the simulation); (dl/ds = 8.3, νs = 0.25).

are at rest, the vertical wall that keeps the avalanche from moving down the slope is
removed. Figure 3 shows a typical evolution of a simulation for different dimensionless
time instants, t∗ = t

√
g/ds . The granular mass falls down over the smooth-frictional

inclined plane, under the influence of the acceleration due to gravity g, the granular
mass accelerates, reaches the horizontal plane (also smooth but frictional) and then
slows down along the horizontal plane, until it comes back to rest.
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3. Data analysis
Since literally everything about the simulated system is accessible, valuable

information can be obtained by further analysing the numerical results. In this
section, several analysis tools and calculations are briefly described.

3.1. Global friction coefficient and kinetic energy

Large rock avalanches are commonly described by their relative runout length defined
as the ratio of the total drop height, Hmax , and the runout distance, Lmax (Shreve
1968). The application of this ratio to calculate the equivalent coefficient of friction
entails the centre of mass of the fallen mass being shifted from the highest point
on the initial position to the furthest point of the avalanche. Physically, the line
connecting these two points is not the line connecting the centre of mass of the initial
maximum drop height and the avalanche final deposit. Therefore this assumption is
inaccurate. Thus, the parameters of interest are the centre of mass of the initial and
the final avalanche deposit, that is Hcm and Lcm. Hence, we define the global friction
coefficient of the avalanche to be:

µ =
Hcm

Lcm

. (3.1)

By locating the position of the centre of mass of the avalanche, the runout length
Lcm and the total drop height Hcm can be measured. The height is then

Hcm = |ycm,f inal − ycm,initial |,

and the runout length is

Lcm = |xcm,f inal − xcm,initial |,

where (xcm,initial, ycm,initial) and (xcm,f inal, ycm,f inal) represent the coordinates of the
centre of mass for the initial and final times, respectively.

For a few well-documented deposits, this ratio can be estimated with some
confidence. The data report low values of Hcm/Lcm, showing that the centre of
mass travels further than predicted by a frictional model with a constant friction
coefficient. The use of this ratio as an indicator of landslide mobility implies that
the energy released during the initial fall is dissipated with a constant coefficient of
friction and is responsible for the runout distance (Legros 2002).

The kinetic energy associated with the translational motion is Ek = 1/2
∑

i miv
2
i ,

where mi is the mass and vi is the magnitude of the translational dimensionless
velocity of the particle i defined as vi = (v2

xi + v2
yi)

1/2 where vxi (resp. vyi) is the
horizontal (resp. vertical) velocity. The dimensionless kinetic energy is defined as the
ratio of the translational kinetic energy and the initial potential energy.

3.2. Measurement of particle concentration

The particle concentration, or compactness, can be measured directly from the
simulation results. The compactness for each bead on the granular mass was calculated
using Voronöı cells (Barber, Dobkin & Huhdanpaa 1996). With this technique, details
of which can be found in the reference, the space around each particle can be
calculated; therefore, the area fraction for each particle is inferred as the ratio of the
particle area to the total area (space plus particle). A measurement of the compactness,
for layers or for the total mass, can then be obtained. Figure 4 shows an example of
the Voronöı calculation used in this study.
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Figure 4. Example of Voronöı cell calculation. For this case, dl/ds = 3, νs = 0.25.
The measured mean compactness is equal to 0.68.

3.3. Measurement of particle segregation

The most difficult issue to tackle in the study of size segregation in granular flows is
its quantification. Experimentally, segregation in avalanches is drastic: particles of the
same size migrate to the same region, separating completely from the rest (Goujon
et al. 2007). For two-dimensional flows, the size segregation is not efficient and it
is possible to observe double segregation (Rosato et al. 1987; Savage & Lun 1988;
Vallance & Savage 2000). Therefore, it is not clear how to determine the degree of
mixing or segregation from simple inspection.

We propose a new technique to characterize particle segregation. It considers the
calculation of Lorenz curves and Gini coefficients. These mathematical tools are widely
used in the field of econometrics to quantify the distribution of wealth (Gastwirth
1972). A description of how to adapt these tools to study particle segregation in
granular flows is shown below.

3.3.1. The Lorenz curve and Gini coefficient as a measure of particle segregation

The Lorenz curve (Lorenz 1905) is a graphical representation of the cumulative
distribution function of a probability distribution. It is often used to represent income
distribution. For instance, consider the x − y plot in figure 5. The x-coordinate shows
the bottom x-percentage of households and y is the percentage of the total income
that they have. Every point of the Lorenz curve represents a statement such as ‘the
bottom 20% of all households have 10% of the total income’. A perfectly equal
income distribution would be one in which every household has the same income.
This can be depicted by the straight line y = x. By contrast, a perfectly unequal
distribution would be one in which one person has all the income and everyone
else has none. This curve is called the line of perfect inequality. The Gini coefficient
(Gini 1912) is a measure of the inequality of a distribution. It is defined as the area
between the line of perfect equality and the Lorenz curve, with values between 0 and
1 representing perfect equality and inequality, respectively.
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x (%)

y 
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)
1.0

0.8

0.6

0.4

0.2

0 0.2 0.4 0.6 0.8 1.0

Figure 5. Typical Lorenz curve (dashed-dotted line). Curves representing perfect equality
and inequality are also shown (continuous and dashed lines, respectively).

The Lorenz curve and the Gini coefficient can be used to characterize the segregation
in bidisperse flows. For this, we determine the area of the small and large particles in
different layers of the flow. The thickness of the layers is an arbitrary parameter, but it
can be shown that for layer thicknesses smaller than ds/2, the measure is independent
of this choice.

The cumulative percentage of the area of small beads present in each layer can be
calculated as

Ls(y) =
Areas(y)

Areas

, (3.2)

where Areas(y) is the area of small beads in the layer at depth y, and Areas is the total
area of small beads in the avalanche. For the large particles, Ll(y) can be calculated
in the same manner. Hence, the Lorenz curve is the graphical representation of Ls or
Ll as a function of y/ymax shown in percentages. A Lorenz curve closer to the perfect
equality (straight line at 45◦) would, therefore, represent a well-mixed granular mass.

The Gini coefficient for small particles is calculated as

Gs = 1 − 2

∫ 1

0

Ls(y
∗) dy∗, (3.3)

where y∗ = y/ymax . The corresponding Gini coefficient for large particles, Gl , is
calculated in a similar manner. A Gini coefficient close to zero would represent a
well-mixed granular mass, whereas a value close to 1 would indicate a completely
segregated state.
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(a)

(b)

(c)

Figure 6. Three different initial configurations: (a) a nearly homogeneous mixture; (b) the
small beads are at the base of the flow; (c) the small beads are at the top of the flow. For all
cases dl/ds = 5 and νs = 0.20.

Figure 6 shows three different initial deposits, which were prepared in different ways
to study the influence of the initial distribution of particles on the avalanche runout.
This is described in more detail in the Appendix. The first deposit was prepared in the
same way as all other tests in this investigation; that is, particles are relatively well
mixed initially. For the second and third cases, the small particles were placed at the
bottom or top of the initial region, respectively, to have a preferential distribution.

Figure 7 shows the calculated Lorenz curves and Gini coefficients for the three
deposits shown in figure 6. The solid and dashed lines show Lorenz curves for the
small and large particles, respectively, for each case. In the well-mixed case (a), the
Lorenz curve for small beads is slightly below than that for large beads, which denotes
a slight segregation. Case (b) shows also that the Lorenz curve for small beads is
below that for large beads, but the difference is more important than in the previous
case. Hence, the segregation is stronger. Also, the calculated Gini coefficient for small
beads is larger than the previous case. On the other hand, case (c) shows that the
Lorenz curve for small beads is above that for large beads. This is an indication that
the particles are segregated, but the small ones are on the top of the mass. Note that
for this case, the Gini coefficient is also smaller than that for case (a).
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Figure 7. Lorenz curves for the three initial configurations shown in figure 6. The solid and
dotted lines correspond to large and small particles, respectively. (a) Gs = 0.56, (b) 0.86,
(c) 0.12.
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Figure 8. Lorenz curves for dl/ds = 8.3 and νs = 0.25 for different dimensionless times.
(a) Initial distribution, t∗ = 0, Gs = 0.37; (b) t∗ = 40, Gs = 0.35; (c) t∗ = 80, Gs = 0.44;
(d) t∗ = 120, Gs = 0.44; (e) t∗ = 250, Gs = 0.54.

4. Bidispersity effect on runout extent
4.1. Segregation and compactness

Because of the difference in size of the two classes of particles, segregation occurs
during the avalanche: small particles move down during the flow. Since the coefficient
of friction is the same for small and large particles, the segregation is only a result
of geometrical effects. The segregation can be assessed with the Lorenz curves.
Figure 8 shows the Lorenz curves for different time instants during the evolution
of the avalanche, for a typical case (dl/ds = 8.3, νs = 0.25). It can be noted that
the area fraction of the small beads at the base of the flow is increasing with time,
which means that segregation is occurring and that it progresses with time. Moreover,
during the avalanche, it is possible to distinguish three regions: a layer composed of
only small particles at the base of the flow; a layer composed of a mixture of the
two species of particles in the middle of the flow; and depending on the area fraction
of small particles, a layer composed of only large particles (small values of νs), or a
layer composed of only small particles (large values of νs) at the top of the flow.

It is also possible to determine the efficiency of the segregation for each diameter
ratio. For this, the Lorenz curve is calculated for different diameter ratios with the
same area fraction of small beads for the final deposit (figure 9). It is clear that the
degree of particle segregation increases with diameter ratio.

Figure 10 shows the mean compactness of the avalanche, measured using Voronöı
cells, as a function of time for each particle size ratio. In all cases, the compaction
initially decreases, during the acceleration part of the avalanche when the mass is
still over the inclined plane. A minimum compaction is found when the bulk of
the avalanche passes from the inclined to the horizontal plane. Subsequently, the
concentration increases to reach a nearly constant value. It is important to note
that in all cases the mean compactness is larger than 0.61. For such values of the
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Figure 9. Lorenz curves for νs = 0.25 and for different diameter ratios. (a) dl/ds = 8.33 (solid
thick line), Gs = 0.57; (b) dl/ds = 4, (solid thin line), Gs = 0.48; (c) dl/ds = 3, (dotted line),
Gs = 0.42; (d) dl/ds = 2, (dashed line), Gs = 0.42.

compactness, flows influenced by gravity can be considered dense, for which enduring
contacts are dominant and few collisions occurs.

4.2. Global friction coefficient

Figure 11 shows the global friction coefficient as a function of the area fraction of
small particles νs , for different size ratios. For avalanches with νs = 0 and νs = 1, that
is for mono-dispersed flows, the global friction coefficient µ is slightly smaller than
the value of the coefficient of friction used in the simulation (0.5).

For size ratios larger than 2, the global friction coefficient decreases with the area
fraction of small particles. For a certain area fraction of small particles νs,m, the global
friction coefficient is minimum. For area fractions of small particles larger than νs,m,
the global friction coefficient µ increases with the area fraction of small beads. In
figure 12, the area fraction for which the runout is the longest is shown as a funtion
of particle diameter ratio, dl/ds . We can also observe that the area fraction of small
beads for which the friction is minimum, decreases monotonically with the size ratio.

On the other hand, for a size ratio smaller than or equal to 2, the global friction
coefficient was found to be nearly constant, slightly larger than the value for mono-
dispersed flows. No minimum effective friction coefficient was found for the whole
range of νs .

4.3. Evolution of kinetic energy of the avalanche

The existence of an area fraction for which the global coefficient of friction is
minimum can be related to the evolution of the translational kinetic energy. In
figure 13, the variation of the dimensionless kinetic energy is presented for a size ratio
equal to 8.33 and for different area fractions of small beads. For the area fraction of
small beads equal to 0.25, which approximately corresponds to the area fraction for
which the global friction coefficient is minimum, the kinetic energy is maximum. The
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Figure 10. Mean compactness of the avalanche as a function of dimensionless time for four
different particle size ratios. (a) dl/ds = 8.33 (◦); (b) dl/ds = 4 (�); (c) dl/ds = 3 (×);
(d) dl/ds = 2 (+). For all cases νs = 0.25.
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Figure 11. The global friction coefficient µ = Hcm/Lcm as a function of the area fraction of
small particles νs for different ratios: +, dl/ds = 8.33; �, dl/ds = 4; �, dl/ds = 3; ◦, dl/ds = 2
and ×, dl/ds = 1.5. The dotted line represents the value of the global friction coefficient for
monodisperse flows. An area fraction of small particles for which the global friction coefficient
is minimum appears for size ratios larger than 2.
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Figure 12. Area fraction of small beads for which the minimum friction is obtained, νs ,m as
a function of diameter ratio dl/ds .

behaviour of the dimensionless kinetic energy is similar for simulations with diameter
ratios larger than 2. Moreover, the maximum of the kinetic energy increases with
the diameter ratio as shown in figure 14. Hence, the maximum of the dimensionless
kinetic energy is larger for lower values of the global friction coefficient.

For a diameter ratio smaller than 2, the behaviour of the dimensionless kinetic
energy is not the same as the one presented for larger diameter ratios. As can be
seen in figure 15, the curves of the dimensionless kinetic energy are not classified: the
maximum of the dimensionless kinetic energy fluctuates with an increase of the area
fraction of small beads. It is not evident, as in the other cases, that a maximum of
the dimensionless kinetic energy is related to a minimum of the global coefficient of
friction. However, the relation between the global friction coefficient and the kinetic
energy remains since the larger values of the dimensionless kinetic energy correspond
to the area fraction of small particles for which the global friction coefficient is small
(νs = 0.7 and νs = 0.9 for the case of dl/ds = 2).

4.4. Lubricant basal layer of small beads

The minimum of the global friction coefficient can be explained by analysing the
distribution of particles in the bulk of the avalanche. In particular, as will be shown,
the lubrication appears when a layer of small beads forms at the base of the flow.

In figure 16, the distribution of the particles around the centre of mass of the final
deposit is shown, for different diameter ratios and different area fractions of small
beads. The formation of a layer at the base of the flow composed by small particles
can be observed (shaded particles). This layer is identified by determining the small
particles that are beneath large particles with a minimum height throughout the final
deposit. For that, a contour under such large particles is defined (figure 17). The layer
is identified by counting the small particles which are beneath the contour. As shown
in figure 16(b–d), for size ratios larger than 2, for small νs , the layer of small particles
at the base of the flow is not continuous owing to the presence of some large beads

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

07
00

89
32

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112007008932


490 E. Linares-Guerrero, C. Goujon and R. Zenit

100 200 3000

0.1

0.2

0.3

0.4

νs = 0
νs = 0.10
νs = 0.25
νs = 0.50
νs = 1.00

t*

Ek

Ep,i

Figure 13. The translational kinetic energy Ek divided by the initial of the potential energy
Ep,i as a function of the dimensionless time t∗ for different area fractions of small particles
for the ratio dl/ds = 8.3. The area fraction of small particles for which the kinetic energy is
maximum corresponds to that for which the global friction coefficient is minimum.

at the base of the deposit. For νs � νs,m, the layer of small particles is continuous
throughout the deposit. For large νs , the thickness of the layer of small particles at
the base of the flow is thicker. On the contrary, as shown in figure 16(a), for the case
of dl/ds = 2, there is no area fraction of small beads for which there is a continuous
layer of small particles at the base of the flow.

This analysis suggests that not only the continuity of the basal layer characterizes
the final deposit distribution for cases in which the minimum friction was observed;
the height of the basal layer is also important. To measure the thickness of this basal
layer, its height was calculated as follows: the final deposit length L was determined
without taking into account the sparse particles that rolled individually in the extreme
sides of the deposit. The small particles of the basal layer throughout the length L

were identified. The area occupied by these particles divided by their compactness
were considered equal to the height of the layer hlayer multiplied by L. Therefore:

hlayer =

π
n∑

i=1

d2
i

4CL
, (4.1)

where n is the number of small particles at the basal layer throughout the length
L and C is the compactness. The compactness, or area fraction, was measured to
be equal to 0.78, in accordance to the value reported by Lun & Bent (1994) and
Aharonov & Sparks (1999). Since the height of the layer would depend on the length
L, the calculation of the effective height was made for different values of L (figure
17).

In figure 18, the thickness of the layer at the base of the flow for different diameter
ratios is presented. The thickness is divided by the diameter of the small beads ds .
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Figure 14. The dimensionless kinetic energy Ek/Ep,i as a function of dimensionless time t∗

for different diameter ratios for the critical area fraction of small particles (νs,m) for which
the global friction coefficient is minimum. The dimensionless kinetic energy increases with the
diameter ratio.

For hlayer/ds equal to 1 (horizontal dashed line), the area fraction of small particles
is, in fact, that for which the global friction coefficient was found to be minimum.
This is the case for all the diameter ratios.

With these results of the repartition of the small particles at the base of the flow, we
can conclude that the maximum of the lubrication (which corresponds to a minimum
of the global friction coefficient) is due to the formation of a continuous thin layer of
small particles at the base of the deposit. The lubrication is most efficient when the
layer is continuous and with a height aproximately equal to 1ds . The same qualitative
behaviour was found by Siavoshi, Orpe & Kudrolli (2006) for the case of granular
sliders.

4.5. Rolling motion at the base of the flow

From the results shown above, we can argue that the increased mobility of the
avalanches is the result of the formation of a thin layer of small particles which
changes the frictional dynamics at the base of the flow from sliding to rolling.
To evaluate this argument, the average dimensionless angular velocity of the small
particles in the basal layer was measured during the avalanche. For comparison, for
νs equal to 0, the dimensionless angular velocity of large particles that were touching
the plane was measured. The rotation is defined to be positive in the clockwise sense.
The dimensionless angular velocity is defined as ω = ωz

√
ds/g, where ωz is the particle

rotational speed.
In figure 19, the variation of the average angular velocity for a diameter ratio

equal to 8.3 is shown. It can be observed that for the critical area fraction of small
beads (νs ≈ 0.25) the angular velocity is maximum. The rotation of the small beads
increases with time, reaches a maximum value, and then decreases. The maximum of
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Figure 15. The dimensionless kinetic energy Ek/Ep,i as a function of dimensionless time t∗

for a diameter ratio equal to 2 for different area fractions of small particles (νs).

the rotation varies in the same way as the dimensionless kinetic energy: the maximum
of the rotation increases with the area fraction of small beads, and it is maximum
for the area fraction of small beads for which the global coefficient of friction is
minimum, and for the area fraction of small beads larger than this critical value,
the maximum of the rotation decreases with the area fraction of small beads. This
behaviour of the variation of the angular velocity is similar for all the diameter ratios
larger than 2. Moreover, the rotation increases with the diameter ratio as shown in
figure 20.

These results indicate that the presence of the small particles at the base of the flow
result in an increase of the rolling-type interactions with the plane which, in turn,
lead to a reduction of the global friction of the avalanche.

In summary, the minimum of the global coefficient of friction is linked to the
maximum of the dimensionless kinetic energy. The minimum of the global coefficient
of friction can be explained by the formation of a layer of small beads at the base of
the flow. The coefficient of friction is minimum for a thickness of the layer of small
beads equal to ds and with a large value of the rotation of these small beads. This
layer of small beads can be identified as the source of ‘lubrication’. In the following,
we present the results concerning the influence of the initial position and the area of
the avalanche on the global coefficient of friction.

5. Dependence of runout on initial bulk height
Legros (2002) proposed that the runout distance does not depend on fall height,

and that it only adds scatter to the correlation between the ratio Hcm/Lcm and the
landslide volume. On the other hand, Campbell (1989) observed that slides of the same
size but smaller initial fall heights, run out with smaller relative friction coefficient.
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Figure 16. Distribution of the small and large particles in the final deposit for different ratios
dl/ds and for different area fractions of small particles (a) dl/ds = 2, (b) dl/ds = 3, (c) dl/ds = 4,
(d) dl/ds = 8.3. The value of the Gini coefficient for small particles, Gs , is indicated in each
case.

In order to evaluate the effect of the avalanche fall height on the runout, simulations
with different initial bulk heights were conducted for the case of a diameter ratio
equal to 3 and an area fraction of small particles equal to 0.60 (corresponding to
νs,m). The initial height of the deposit was changed to vary the travel distance on the
inclined plane from 10 dl to 300 dl .

The results presented in figure 21 show that the global friction coefficent µ =
Hcm/Lcm increases with the initial bulk height of the centre of mass (Hi/ds). This is in
agreement with the results obtained by Campbell (1989) for monodisperse avalanche
simulations, who attributed the reduction of mobility to an increased stress due to
the increment of the avalanche kinetic energy with height. In our case, in addition to
the mechanism proposed by Campbell, the increase of the effective friction can also
be attributed to the destruction of the basal layer of small particles.
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Figure 17. The thickness, hlayer , was determined for each length L. The reported value is an
average of the measurement considering several values of L.
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Figure 18. Dimensionless thickness of the layer of small beads at the base of the final deposit
hlayer/ds as a function of νs for different diameter ratios: �, dl/ds = 8.3; ©, dl/ds = 4;
�, dl/ds = 3; �, dl/ds = 2.

Figure 22 shows the thickness of the layer of small beads as a function of time for
avalanches with different initial heights. It was found that dimensionless thickness of
the layer of small beads hlayer/ds decreases with time and tends to the value 1 for
large times. Moreover, the curves are classified: there is an increase (for a given time)
of the thickness of the layer of small beads with the increase of the initial position.

The mean angular velocity of the small beads touching the plane is presented in
figure 23, as a function of time. The rotation increases, reaches a maximum value,
decreases and tends to a constant value. The curves for different initial positions are
also classified. The maximum of the rotation increases with the initial position. Note
that for an increase of the initial position, the thickness of the layer of small beads
increases (and is larger than 1), but also the rotation of the small beads increases.
These two results give opposite behaviours: an increase of the thickness of the layer
of small beads would lead to an increase of the global coefficient of friction, whereas
an increase of the rotation would lead to a decrease of the global coefficient of
friction. However, since the effective friction was found to increase with the initial
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Figure 19. Variation of the mean dimensionless angular velocity as a function of
dimensionless time for different area fractions of small particles for dl/ds = 8.3.
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Figure 20. Variation of the mean dimensionless angular velocity as a function of
dimensionless time for different diameter ratios for νs,m.

height, it can be argued that the rolling of beads in the layer has a minor role in this
particular case. To understand further the mechanism that leads to the destruction
of the basal layer, the compactness for each bead on the basal layer was determined
using Voronöı cells. Figure 24 shows the mean compactness of the simulations with
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Figure 21. The global friction coefficient as a function of the initial dimensionless height
(Hi/ds). For this case dl/ds = 3 and νs = 0.60. The error bar of the first data point denotes the
variability found when the simulation was repeated five times for the same nominal conditions.
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Figure 22. Basal layer height variation as a function of dimensionless time for different initial
dimensionless heights. The horizontal line corresponds to a basal layer height equal to one.

different initial heights as a function of time. The compactness decreases with the
time, reaches a minimum value and increases to reach a value close to 0.74. The
minimum of the compactness decreases as the initial height position increases; that
is, the decompaction increases with the initial position. In fact, this decompaction
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Figure 23. Variation of the dimensionless angular velocity as a function of dimensionless
time, for different dimensionless initial heights. For this case dl/ds = 3 and νs = 0.6.
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Figure 24. Mean compactness as a fucntion of time, for different dimensionless initial
heights. For this case dl/ds = 3 and νs = 0.6.

behaviour may be expected since avalanches descending from larger initial heights will
gain more kinetic energy; leading to increased agitation and, in turn, decompaction.

It can then be concluded that for this case, the increase of the coefficient of friction
with the initial position is due to an increase of the thickness of the basal layer of
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Figure 25. Global friction coefficient as a function of dimensionless total area, 4Atot/(πd2
s ).

dl/ds = 3 and νs = 0.6. The error bar of the first data point denotes the variability found
when the simulation was repeated for the same nominal conditions.

small beads, and to its decompaction during the avalanche. Moreover, the increased
rotation of the small beads, seems not to be sufficient to result in a decrease of the
global coefficient of friction.

6. Dependence of runout on the avalanche size
One of the characteristics of long runout landslides is that their effective friction

coefficient decreases as the volume of the avalanche increases (Siebert 1984; Self &
Hayashi 1992; Sheridian, Siebe & Komorowski 1992). To verify that the mechanism
investigated here is also valid for different sizes of avalanches, some simulations were
run for a range of initial areas. The diameter ratio for these simulations was chosen
to be equal to 3 with an area fraction of small particles equal to 0.60. The global
coefficient of friction, Hcm/Lcm, was found to decrease with the area of the avalanche
as shown in figure 25. This result is in qualitative agreement with what is observed
for real avalanches. This tendency can also be explained by analysing the basal layer
of the avalanche. The dimensionless thickness of the layer of small beads increases
with the avalanche area reaching a mean value of 1 when the avalanche is sufficiently
large. Figure 26(a) shows the measured dimensionless thickness of the basal layer
as a function of time for different avalanche sizes. The rotation of the beads at the
basal layer is approximately the same for the different avalanche sizes (figure 26b),
regardless of the observed decrease of the global friction coefficient.

Again, for this case, the global coefficient of friction is a minimum for a thickness of
the layer of small beads equal to ds . The thickness of the layer of small beads increases
from 0 (small area) to 1 (large area). Because of similar values of the rotation for
all the experiments, the rolling interaction rotation of small beads seems to have no
influence in this case. In conclusion, the decrease of the global coefficient of friction
with the area is due to an increase of the thickness of the layer of small beads. Our
results show a negative correlation between the apparent friction coefficient and the
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Figure 26. (a) Dimensionless thickness of the layer of small beads hlayer/ds at the base of the
flow as a function of dimensionless time t∗. (b) Variation of the basal dimensionless angular
velocity as a function of dimensionless time for different areas. For this case, dl/ds = 3 and
νs = 0.6.

avalanche size, a tendency observed in large avalanches. However, this trend in real
avalanches exhibits a large scatter, which remains controversial (Iverson & Vallance
2001; Legros 2002).

As explained in § 2, the simulations are made dimensionless, considering the
diameter of small particles as the characteristic length scale. From the results
shown above, it follows that the apparent coefficient of friction in these simulations
depends on the number of particles, and not directly on the volume of the avalanche.
Consequently, low apparent coefficients of friction should occur for large or small
avalanche volumes. Our study predicts an enhanced mobility at all scales provided
that a lubricant basal layer of small particles is formed.

7. Conclusions
In summary, simulations were conducted to investigate the effect of a second species

of particles on the runout length of granular avalanches. We found that the particle
species with small diameter segregates and moves to the base of the flow. The layer
of small particles at the base of the flow serves as a lubrication layer that results in
a reduction of the global friction coefficient and, hence, an increase of the runout
of the avalanche. The layer of small particles changes the frictional dynamics of the
avalanche’s base from a combination of rolling and sliding contacts to a rolling-
dominated interaction. This mechanism is, in fact, the same as used in mechanical
ball bearings. The reduction of friction is maximum for a certain area fraction of
small particles for which a continuous layer of one diameter is formed at the base of
the flow. Moreover, the value of the most efficient area fraction of small beads νs,m

depends on dl/ds having a continuous behaviour. Although, the system studied here
is a simplification, we can argue that the same mechanism occurs in real avalanches.
All geological granular masses are composed by particles of several sizes and, in
fact, small particles are commonly found at the base of the final deposits (Bursik
et al. 1979; Saucedo, Macı́as & Bursik 2004). Hence, the effect reported here would
increase the mobility of landslides even for a small amount of a small size species.
Simulations with different initial height fall and different areas were also performed.
These results are in agreement with the results obtained by Campbell (1989) and
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Figure 27. Lorenz curve for the three configurations. The dotted lines are for the initial time,
and the continuous lines for the final time. (a) Well-mixed initial configuration. (b) Small beads
at the base. (c) Small beads at the top.

provide a new insight for explaining this behaviour. The analysis outlined here does
not obviously preclude any of the previous explanations for the enhanced mobility of
some rock falls. This phenomena is far more complex and there are many factors that
contribute to the runout of mass movements of dry debris flows and rocks. However,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

07
00

89
32

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112007008932


Increased mobility of bidisperse granular avalanches 501

νs µ (well mixed) µ (small at base) µ (small on top)

0.05 0.364 0.328 0.350
0.20 0.226 0.244 0.240

Table 2. Global friction coefficient for three different initial configurations,
for two values of νs .

our analysis does indicate that geometrical effects in flows containing more than one
particle size have important implications in the extent of the runout. Although it
is expected that this mechanism is also present in three-dimensional avalanches, the
effective lubrication may be different because the segregation rate is much quicker for
such flows; hence, the formation of the basal layer would occur more rapidly. Also,
in three-dimensions the rotation of the particles would not be unidirectional, so the
rolling dynamics may be affected, resulting in a less effective reduction of the friction.

This work was supported by the UNAM research program (PAPIIT grant IN-102303). C. G. acknowledges
the support of UNAM’s postdoctoral program.

Appendix. Influence of the initial mixture on the segregation
One natural question to ask is whether the initial particle distribution affects the

phenomena described in this investigation. To answer this question, we performed a
few additional simulations in which a preferential distribution of particles could
be imposed on the initial arrangement. For most simulations, small and large
particles were placed randomly in an initial region and allowed to settle and
accommodate themselves freely (figure 2). The initialization program was modified
to locate the small particles separated, either above or below, from the large ones.
Hence, preferential initial particle distributions were produced. The three different
configurations considered are shown in figure 6. The diameter ratio is equal to 5 and
area fractions of small beads of 0.05 and 0.2 were studied.

Figure 27 shows the Lorenz curves for the initial and final deposits considering the
three initial configurations. It can be observed that final particle distribution does not
seem to be affected by the initial configuration: the Lorenz curves for small and large
beads are similar for the different configurations. For the initially well-mixed case,
the Gini coefficient for both species increases from the initial to final states, which
is an indication of the segregation that occurred during the avalanche. For the case
in which the particles are preferentially near the bottom of the initial deposit, the
Lorenz curves for the initial and final times remain relatively unchanged. In this case,
the granular mass is already segregated and no significant changes of the evolution of
the avalanche structure are identified. In the other case, for which the small particles
are initially on the top, the shape of the Lorenz curves for small particles changes
significantly from beginning to end, depicting a transition from unmixed, mixed and
unmixed again. The Gini coefficient is larger in the case where the large beads are
at the bottom of the flow than in the case where the small beads are at the bottom
of the flow (because in this case no segregation can occur: the mixture is already
segregated). More importantly, the global coefficient of friction does not seem to be
significantly affected by the initial conditions as shown in table 2 where it can be
observed that for the two initially segregated cases (small beads at the top or at
the base), the global friction coefficient is approximately the same. For the initially
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well-mixed configuration, the effective friction is slightly different from in the two
others configurations, but the difference is small, approximately of 7%. Clearly, the
initial configuration does not affect the results in a significant manner.
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