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Abstract. This paper presents a systematic study of the prehistory of the traditional subsystems
of second-order arithmetic that feature prominently in the reverse mathematics program promoted by
Friedman and Simpson. We look in particular at: (i) the long arc from Poincaré to Feferman as con-
cerns arithmetic definability and provability, (ii) the interplay between finitism and the formalization
of analysis in the lecture notes and publications of Hilbert and Bernays, (iii) the uncertainty as to the
constructive status of principles equivalent to Weak König’s Lemma, and (iv) the large-scale intel-
lectual backdrop to arithmetical transfinite recursion in descriptive set theory and its effectivization
by Borel, Lusin, Addison, and others.

§1. Introduction. The reverse mathematics project promoted by Friedman and Simp-
son (Friedman, 1975a; Friedman, 1975b; Friedman, 1976; Simpson, 2009) has been one
of the more active areas in mathematical logic in recent decades. This program aims to
calibrate the set existence principles implicit in ordinary mathematics by showing such
principles to be equivalent to one of a small handful of traditional subsystems of second-
order arithmetic. In increasing order of strength, the traditional systems are known as
RCA0, WKL0, ACA0, ATR0, and �1

1-CA0.
The aim of this paper is to set out the history of these constituent systems of the reverse

mathematics enterprise. Some parts of this history are well-known, and are part of the
folklore which one learns when one learns this subject. This includes: Weyl’s formulation
of a system very much like ACA0 in his 1918 Das Kontinuum (Weyl, 1918), and the roots
of RCA0 in the finitism of Hilbert and Bernay’s Grundlagen (Hilbert & Bernays, 1934;
Hilbert & Bernays, 1939).

However, hitherto there has been no attempt to set out in a systematic manner how we
get from Weyl’s 1918 book to Friedman’s 1974 address at the International Congress of
Mathematicians (Friedman, 1975a), or how ideas related to Hilbert and Bernay’s finitism
have come to find a second life as a base system which so many logicians today regularly
employ. As we will see, this is not merely a latter-day rekindling of earlier foundational
projects, but rather is a continuous intellectual development which spans generations and
interacts with nearly every area of mathematical logic.

We primarily envision this paper as a historical companion to the first chapter of
Simpson’s monograph (2009). We follow Simpson by beginning with ACA0 in §2, and
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then moving to RCA0 in §3, then WKL0 in §4, and reaching finally ATR0 in §5.1 This
order of presentation also happily agrees in large measure with the historical order of the
development of the systems of the reverse mathematics enterprise.

But this study should also appeal to historians and logicians who do not have a vested
interest in reverse mathematics as such. This is for two related reasons. First, the history of
the subsystems of second-order arithmetic is a veritable crossroads for various important
ideas in the history of logic of the last century. For instance, the history that we set out
below contains the history of the formalization of the comprehension schema for second-
order logic, and the history of the idea of a basis theorem in computability theory. Indeed,
it would be hard to discuss the history of such ideas without thereby writing a history of
the subsystems of second-order arithmetic.

Second, Friedman and others have often emphasized that mathematical logic can be
seen as the study of a well-ordered chain of theories of increasing interpretability strength
(cf. Friedman (2007), §7, Feferman, Friedman, Maddy, & Steel (2000), p. 428, Koellner
(2009), p. 100), starting with weak theories of arithmetic and reaching up into the large
cardinal hierarchy. In this chain, second-order arithmetic occupies a crucial transition point
between the number-theoretic and the set-theoretic. The origins of the subsystems thus
ought be of considerable interest even to those whose own research falls in the great space
below or the great space above second-order arithmetic.

One regrettable limitation of our study is that we focus exclusively on the best known
of the traditional subsystems treated in (Simpson, 2009). We hence pay little attention to
those systems which are based on choice principles, which are based on finitary forms
of Ramsey’s Theorem, or which are weaker than RCA0. We similarly are silent upon
the development of constructive reverse mathematics (e.g., Veldman (2014)) and systems
that use higher-types in their formalization (e.g., Kohlenbach (2008)). Further, for reasons
of space, we also adopt the pretense that there is no gap in-between Friedman’s 1974
talk (Friedman, 1975a) and the appearance of the first edition of Simpson’s monograph
(Simpson, 1999). Needless to say, much important work was done in these years which
shape our contemporary understanding of reverse mathematics, to which our history does
little justice.

We should finally mention that in electing to concentrate on subsystems of second-order
arithmetic themselves, our survey also fails to explicitly highlight what is often presented as
the most characteristic feature of reverse mathematics – i.e., the many instances of so-called
reversals by which theorems of classical mathematics have been proven equivalent to the
various axiomatic principles which define the subsystems over the base theory RCA0.
We will return to discuss such results briefly in the concluding section §6 in regard to
the received view that reversals serve to measure the set existence assumptions which are
necessary and sufficient to prove classical theorems (e.g., Simpson (1988), Simpson (2009,
I.1, I.9)).

By taking subsystems rather than reversals as our focus, our study is able to provide a
context for discussing the development in fields like computability theory and descriptive
set theory which are more closely tied to the specific setting of second-order arithmetic.
By the same token, were we to take reversals as our focus, then a priori it seems that
this would amount to a study of the general enterprise of proving equivalences between
mathematical statements and set-theoretic statements over any base theory. This would be

1 We treat �1
1-CA0 primarily in the footnotes, largely because it is a “rounding out” of the other

systems.
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a broad and ultimately different topic,2 and one which would be less directly tied to the
origins of reverse mathematics as presented in Simpson’s monograph (Simpson, 2009).

It is perhaps inevitable that any exposition of the “prehistory” of an intellectual enterprise
will take on a somewhat whiggish cast. Nonetheless, we have attempted to approach the
development of the particular axiomatic systems in question not from the perspective of
rational reconstruction, but rather by attending to the details of the specific contexts which
led to their isolation. For instance, something that comes out in our history is the many
starts and stops along the way– such as the long pause between Weyl and Grzegorczyk
discussed in §2.2– and the moments of hesitation – such as over the constructive credentials
of Gödel’s completeness theorem (to which Weak König’s Lemma reverses) discussed in
§4.2. Moreover, what ultimately emerges in the history of our topic is less the triumph of
any one viewpoint than the development of a neutral framework which may serve to chart
the relationships between many distinct positions in the foundations of mathematics.

Before we begin with the history of ACA0 in the next section, let us recall the basics
of the axioms of the subsystems with which we shall be concerned. The axioms of full
second-order Peano arithmetic or Z2 start with a finite set of axioms saying how addition
and multiplication interact with zero and successor (the axioms of Robinson’s Q), and adds
to them the induction axiom

∀ X [X (0) & ∀ n X (n) → X (S(n))] → ∀ n Xn

and the comprehension schema:

∃ X ∀ n (ϕ(n) ↔ Xn)

wherein X does not appear free in ϕ(n). As these formulas indicate, the distinction between
numbers and sets of numbers is marked by using lower-case roman letters for the former
and upper-case roman letters for the latter. The subsystem ACA0 is formed by restricting
the comprehension schema to formulas ϕ(n) that contain no second-order quantifiers. The
system RCA0 is formed by (i) restricting comprehension further to formulas ϕ(n) which
are recursive, in that both it and its negation can be expressed by a �0

1-formula, i.e.,
one starting with an existential quantifier over numbers and followed by only bounded
quantifiers; and by (ii) replacing the induction axiom by the induction schema over �0

1-
formulas. The system WKL0 is formed from RCA0 by the addition of a statement to the
effect that “every infinite subtree of the full binary tree has an infinite path”; see §4 for more
details. Finally, the system ATR0 is formed from RCA0 by the addition of a statement to
the effect that “one can do transfinite recursion along any well-order with an arithmetic
operator”; see §5 for more details. In all our notation and terminology, we are following
the first chapter of Simpson’s monograph (2009).

§2. Arithmetical comprehension and related systems.

2.1. Russell, Poincaré, Zermelo, and Weyl on set existence. The history of ACA0
and related systems is closely tied to the history of predicativity. The meaning of this
term was forged gradually in the writings of Russell and Poincaré, beginning in the years

2 For example, such a study should presumably also include equivalent formulations of the Axiom
of Choice (e.g., Rubin & Rubin (1963)), and Dedekind’s set theoretic development of analysis
leading to (Dedekind, 1888) (whose role as an anticipation of reverse mathematics has been
highlighted by Sieg & Schlimm (2005)).
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1905–1906. In 1905, Russell used the word predicative to demarcate those formulas which
determine sets from those which did not; and he took responding to the paradoxes to
involve saying which formulas were predicative and which were not (Russell, 1907, p. 34).
Poincaré immediately appropriated this vocabulary and in 1906 proposed identifying the
impredicative with that which contains a vicious circle, albeit without attempting to make
precise the relevant sense of circularity (Poincaré, 1906, pp. 307–308). Russell then con-
cured and initially proposed understanding the type of vicious circularity at issue in terms
of self-applicability (Russell, 1906, p. 634). This proposal eventually evolved into the
vicious circle principle, to which we shall return in §2.4.

Hence in its first usage proposed by Poincaré and Russell in the years 1905–1906,
predicative carries two meanings: it serves as a sufficient and perhaps necessary condition
for set-existence, and it is indicative of a certain lack of circularity in definitions. To the
modern ear, these two things sound rather different in character, and so too did they to
Zermelo, who in 1907–1908 set out to simultaneously axiomatize set-theory and respond
to the criticisms of his 1904 proof of the well-ordering theorem. Zermelo suggested that
the appeal to the existence of infimums and supremums on the real line, such as in the
standard proof of the fundamental theorem of algebra, possessed the circular features at
which Poincaré and Russell had gestured, so that an insistence on tying set-existence to
a lack of circularity in definitions would make “science impossible” (Zermelo, 1908a,
p. 118). In 1909–1910, Poincaré conceded the force of this kind of objection but responded
that in the specific case pointed out by Zermelo, one could proceed by taking infimums and
supremums of rationals and thus transform the original proof into one which adheres to the
predicative restrictions (cf. Poincaré (1909b), p. 199, Poincaré (1910), p. 48).

In his own 1908 axiomatization, Zermelo formulated the axiom of separation by saying
that any “definite property” of an antecedently given set determines a subset (Zermelo
(1908b), pp. 263). In 1910, Weyl, like many at the time (cf. Moore (1982), §3.3, pp. 160
ff, Ebbinghaus (2003), §2, pp. 199 ff), expressed frustration with the lack of precision in
this formulation, and proposed an alternative formulation, saying: “by a definite relation
shall be understood that which is defined through finitely many applications of suitably
modified definition principles on the basis of the two relations of equality and membership”
(Weyl, 1910; Weyl, 1968, Vol. 1, p. 304). It is not too hard to see in this the kernel of the
contemporary inductive definition of well-formed formula.3

Thus in his 1918 book Das Kontinuum, Weyl formulates a second-order system whose
first-order objects are natural numbers. Saying that he was motivated by a desire to “fix
more precisely” Zermelo’s notion of definite property (Weyl, 1918, p. 36), Weyl again
presents the inductive definition of a well-formed first-order formula and then says that
to each such specifiable “property E there corresponds a set (E)” (Weyl, 1918, pp. 13,
31–32). As Feferman put it: “Weyl’s main step, then, was to see what could be accom-
plished in analysis if one worked [. . . ] only with the principle of arithmetical definition”
(Feferman, 1998, p. 54).

In Das Kontinuum, Weyl then explicitly attends to the Zermelo-Poincaré question of
whether classical results like the fundamental theorem of algebra hold in this more
restricted setting. In effect, one of the capstones of Weyl’s book is the demonstration that
his formalization allows one to establish the fundamental theorem (Weyl, 1918, p. 64;
Feferman, 1964, p. 7). But this comes only after having set up the rudiments of the real
number system and continuous functions on it. Weyl formalizes real numbers as Dedekind

3 See Feferman (1998) pp. 258–259 for a formalization of Weyl’s 1910 notion of “definite relation.”
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cuts of rationals (Weyl, 1918, p. 51), and he proves the completeness of the real line in
the sense that every Cauchy sequence converges (Weyl, 1918, pp. 57–58). However, he
cautions that in general the existence of infimums and supremums of arbitrary bounded
subsets of real numbers is “in no way secured” in his model (Weyl, 1918, p. 60).

In his 1921 paper “On the New Foundational Crisis in Mathematics,” Weyl slightly
strengthened this conclusion, saying that one has to “abandon” the least upper bound
principle in general and that there is no way to save it (Weyl, 1921, pp. 47–48). Much the
same was expressed in the third section of his 1926 essay (Weyl, 1926), where it was placed
immediately subsequent to a discussion of the antinomies. This made it seem to some, like
Hölder (1926), that Weyl was suggesting that classical analysis was somehow touched
by paradox. In the last section of his essay, Hölder notes that if one is given a countable
sequence of real numbers, there is a way of constructing its infimums and supremums
along lines accepted by Weyl (cf. Hölder (1926), p. 246 ff). But this is precisely what
Weyl showed in his 1918 book, and Weyl’s reservations about infimums and supremums
was simply that the kinds of restrictions he was advocating do not guarantee their exis-
tence for arbitrary bounded sets of reals, but only for predicatively definable bounded sets
of reals.

2.2. Grzegorczyk, Mostowski, and Kondô on effective analysis. The topic of Weyl’s
1918 book was only taken up again in the mid 1950s.4 The intervening years had seen
the development of computability theory, descriptive set theory, and proof theory, and
it was against the backdrop of this enriched landscape that people began to reevaluate
the predicative perspective. Thus Grzegorczyk opens his 1955 essay by saying that “The
purpose of this paper is to give strict mathematical shape to some ideas expressed by
H. Weyl in ‘Das Kontinuum”’ (Grzegorczyk, 1955, p. 311). In the bulk of the paper,
Grzegorczyk proceed by studying analysis in the minimal ω-model of ACA0, so that all
second-order quantifiers were restricted to the arithmetically definable subsets of natural
numbers. However, late in the paper he introduced an axiomatic version, and after stating
the full comprehension schema says that “We admit in this scheme only those formulas
[. . .] in which each quantifier bounds a variable of the lowest type” (Grzegorczyk, 1955,
pp. 337–338).

Despite this brief aside on axiomatization, it seems safe to say that Grzegorczyk’s
primary concern was with ω-models. In the 1957 Amsterdam conference on constructivity
(cf. Krajewski & Woleriski (2007), p. 6), Grzegorczyk wrote that what distinguishes the
Polish approach to constructivity was that “All methods of proof are allowed. The construc-
tive tendency consists only in the narrowing of the field of mathematical entities considered
in classical analysis” (Grzegorczyk, 1959, p. 43). Mostowski’s contribution to the volume
is similar in spirit to Grzegorczyk’s: he looks explicitly at the minimal ω-model of ACA0
and notes that it “coincides with the universe of the constructive analysis of Hermann
Weyl” (Mostowski, 1959, p. 183); and he too notes that there is a natural axiomatization
close to ACA0 (Mostowski, 1959, p. 184).

An important passage in Mostowski’s article, which we find no analogue of in
Grzegorczyk, is the following, in which Mostowski suggests the project of trying to find
multiple ω-models for the full comprehension schema:

4 Such a gap in the development of the study of predicativity is highlighted by Feferman (2005),
pp. 601–603. In two other instances, Feferman had indicated that Grzegorczyk and Kondô were
the intellectual successors to Weyl’s program (cf. Feferman (1964), p. 8, Feferman (1998), p. 291).
This subsection is an attempt to fill out more of the details of this succession.
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We consider therefore a class K of sets of integers and ask, whether the
comprehension axiom (E X)(x)[x ∈ X ≡ G(x)] is satisfied in K; this is
equivalent to the problem, whether all the axioms of classical arithmetic
are satisfied in K. [. . . ] [¶] [¶] The general recursive, elementarily defin-
able, and hyperarithmetic systems are thus essentially different from the
classical arithmetic: if we take any of them as a basis for mathematics we
must abandon some classical principles. This result which, of course, is
not at all surprising suggests immediately the problem of finding as simple
a model as possible for the classical axioms of arithmetic and of set theory.
If such a model could be defined by constructivistic means we would have
a constructivistic justification of the classical systems. (Models which we
have in mind are absolute for integers, i.e., their integers are isomorphic
with the ordinary ones). (Mostowski, 1959, pp. 186–187).

In the last pages of the paper, he amplifies upon what he intends by “constructivist justi-
fication.” He says that the “most promising feature [of constructivism] is that it wants to
inquire into the nature of mathematical entities and to find a justification for the general
laws which govern them, whereas platonism takes these laws as granted without any further
discussion” (Mostowski, 1959, p. 192).

The sense of “justification” here is then more proximate to what we today might intend
by “explanation”: Mostowski seeks to identify some extension of the notion of computation
(akin to the way hyperarithmetic extends the notion of computable) so that all of the
comprehension axioms come out true when the second-order quantifiers are restricted to
this extension. If, contrary to fact, all sets of natural numbers were computable in this more
extended sense, one would then have an explanation for the truth of the full comprehension
schema. As Motowski says, this is not constructivism in the sense of Brouwer, but “gives
merely a glance on constructivism, so to say, from the outside” (Mostowski, 1959, p. 180).
Heyting, in his contribution to the 1957 conference, concurred with this, saying that in
a genuinely constructive theory “there can be no mentioning of other than constructible
objects.” Hence, in Heyting’s eyes, Mostowski and Grzegorczyk’s preference for working
in a classical metatheory precludes their work from being constructive in this more austere
sense (Heyting, 1959, p. 69).

The work of this Polish school was heavily influenced by developments in computabil-
ity theory, which during this period had tended to be closely related to developments in
descriptive set theory. For instance, Kleene tells us that the identification of recursive sets
of natural numbers with the �0

1-definable sets was first suggested by Souslin’s theorem
(cf. Kleene (1955), p. 196). In the French tradition, work in descriptive set theory was
associated to ideas of Poincaŕe and Lebesgue which sometimes go under the heading
of French semi-intuitionism (cf. Michel (2008)). This was the tradition in which Kondô
worked, and on at least two occasions he begins his papers with invocations of the claims
of Poincaré and Lebesgue that the only objects in mathematics are those which can be
defined in a finite number of words (Poincaré, 1909a, p. 482; Lebesgue, 1905, p. 205;
Kondô, 1956; Kondô, 1985, p. 330; Kondô, 1958, p. 1). This requirement was practically
implemented by restricting attention to either implicitly definable sets, or to classes of sets
like the Borel or projective sets.

Kondô’s approach in (1958) was to consider two subfields k0 ⊆ k of the real numbers,
and to consider the model A(k0, k) which consists of first-order part k with a distinguished
predicate for the integers and for k0, and with second-order part consisting of all first-order
definable subsets of k in the ring signature expanded by these two predicates (cf. notation
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for polynomials F on Kondô (1958), pp. 12–13, the operation LF on Kondô (1958),
pp. 13–14, and A(k0, k) on Kondô (1958), p. 19). The structures A(k0, k) are called, in
Kondô’s terminology, models of relative analysis. In the case where k0 is the rationals and
k is the reals, the second-order part of this model consists of the projective sets. In the case
where both k0 and k are the rationals, this model will be a notational variant of the minimal
ω-model of ACA0. Kondô also considers ways to map one model of relative analysis to
another. He considers the map A(k0, k0) 
→ A(k0, π(k0)) where π(k0) consists of all the
reals whose Dedekind cut is a set in A(k0, k0) (cf. Kondô (1958), p. 74). He indicates in
a later paper (Kondô, 1960, p. 62) that when k0 is the rationals then the model of relative
analysis A(k0, π(k0)) is closely related to the systems of Weyl and Grzegorcyzk.5

2.3. Kreisel on predicative definability. In his review of Kondô (1958), Kreisel noted
that Kondô’s various results about what is common to all models of relative analysis “may
also be expected on axiomatic grounds” (Kreisel, 1959b). This idea of connecting multi-
ple models to an axiomatic treatment is reiterated in Kreisel’s retrospective 1976 article
(Kreisel, 1976), where he notes that “the bulk of current theorems generalize: wherever the
notion of set is used, explicitly or implicitly, it may be interpreted to mean: set of a (so to
speak ‘elementary’) collection of sets satisfying the particular ‘weak’ closure conditions”
(Kreisel, 1976, p. 109).

Part of the impetus for this work came out of Kreisel’s writings on the Hilbert Program.
Kreisel noted in 1958 that the effects of the Gödel incompleteness theorem for the Hilbert
Program only touch formalized notions of provability, which might be different than the
“absolute” notions of provability associated with traditional programs like finitism, con-
structivity, and predicativism (Kreisel (1958b), p. 177, cf. Kreisel (1968), p. 323). However,
Kreisel noted in a paper appearing two years later that “predicative provability” might be
a rather different thing than “predicative definability” (Kreisel (1960b), p. 298, cf. Wang
(1974), p. 128). As an initial suggestion for how to formalize the latter, he proposed that
one call a subsystem of second-order arithmetic predicative if it has a unique minimal
ω-model (Kreisel, 1960b, p. 298).

The idea then was to allow for a broader notion of predicativity than that which appears
in Weyl or Grzegorcyzk. For, at around the same time as the first paper of Grzegorcyzk,
it had been shown by Kleene that the �1

1-definable sets of natural numbers formed the
minimal ω-model of �1

1-comprehension (Kleene, 1955). Kreisel wrote of Kleene’s work
that it “provides a precise and satisfactory definition of the notion of predicative sets (of
integers)” (Kreisel, 1955). Further, Kreisel, Gandy and Tait subsequently proved that the
�1

1-definable sets are the only sets that are contained in the intersection of all ω-models of a
given recursively enumerable ω-consistent set of axioms (in the language of second-order
arithmetic).6

These notions deserved to be called predicative, in Kreisel’s view, because when one
looks back at the original works of Poincaré and Weyl, there is a stability idea. For instance,

5 The mathematical result for which Kondô is now most well-known is the uniformization theorem
for coanalytic sets (Moschovakis, 2009, p. 178; Kechris, 1995, p. 306). But he proved this result
in 1939 (cf. Kondô (1939)), and it does not play a role in the papers from the late 1950s and early
1960s. Of course, retrospectively we can see a reason for this: the uniformization theorem reverses
to�1

1-CA0 over ATR0 (cf. Simpson (2009), p. 225), and hence requires stronger assumptions than
the perspective which Kondô was exploring in the papers from the late 1950s and early 1960s.

6 Indeed, their result is much stronger in that one can replace ‘recursively enumerable’ by ‘�1
1’

(Gandy, Kreisel, & Tait (1960), p. 579, cf. Apt & Marek (1973), p. 188).

https://doi.org/10.1017/S1755020316000411 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020316000411


364 WALTER DEAN AND SEAN WALSH

Poincaré tells us that a predicative classification is one which is not changed by the intro-
duction of new elements (Poincaré (1909a), p. 463, cf. Walsh (2016), §4). This could be
formalized, Kreisel noted, with the contemporary model-theoretic notion of absoluteness: a
formula ϕ(x) is absolute between a substructure M and a superstructure N if M |� ϕ(a)
iff N |� ϕ(a) for all tuples a from the substructure M. Of course, formulas which are
provably �1

1 in a subsystem of arithmetic are absolute between models of that subsystem
which share the same first-order part (Kreisel (1960a), p. 378, Kreisel (1970b), p. 512,
cf. Feferman (1987), p. 450).

Connecting this back to the idea of a common set of axioms with multiple models,
Kreisel wrote that the idea was to

find a convenient set of axioms for second or higher order arithmetic
which are valid both when the variables of higher type (in the sense
of the simple theory of types) are interpreted as ranging over all sets
(of the type considered) and when they are interpreted as ranging over
predicative sets (Kreisel, 1962a, p. 311).

It was in this paper that Kreisel formulated the�1
1-choice axiom which forms the backbone

of the subsystem which we now call �1
1-AC0 (Kreisel, 1962a, p. 313).

2.4. Kreisel, Wang, and Feferman on predicative provability. Another related con-
ception of predicativity pertained to predicative conceptions of proof. This was mentioned
briefly in the previous section, but its roots go back to Russell’s type theory. As is well-
known, Russell did not begin with just simple type theory but rather with so-called ramified
type theory, which introduced different layers of higher-order variables. This first appeared
in Russell’s papers (Russell, 1908, 1910) and was employed in the Principia (Whitehead
& Russell, 1910). In such systems, not only could one define a first round of second-order
objects by first-order comprehension, but one could then define a second round of second-
order objects by quantifying over first-order objects or second-order objects of the first
round; and there are similarly ω-many rounds for the third-order objects, the fourth-order
objects, etc. (cf. Schütte (1960), §27, pp. 245 ff, Schütte (1977), §22, pp. 197 ff, Church
(1976), Hazen (1983), pp. 343 ff, Urquhart (2003), §4, pp. 293 ff). If, as is common, one
omits all but the first- and second-order objects, then the system is usually called ramified
analysis.

Both the mathematical elegance and philosophical motivation of ramified type-theory
and ramified analysis have been subject to dispute. They were thought to be inelegant
because the typing of second-order variables had no analogue in the mathematics which
one sought to formalize in the system. In the words of Feferman, it was a “parody of
classical analysis” (Feferman (1964), p. 12, cf. Kreisel (1962a), p. 68, Ramsey (1926),
p. 186). But the rejoinder always was, as Wang once put it, that “in formalizing actual
proofs we do not have to let even the distinction of orders intrude” (Wang, 1954, p. 266).

As for its philosophical motivation, out of his debate with Poincaré (cf. Russell (1906),
p. 634), Russell eventually settled upon the following formulation of the vicious circle prin-
ciple: “If, provided a certain collection had a total, it would have members only definable in
terms of that total, then the said collection has no total” (Whitehead & Russell, 1910, p. 40,
Whitehead & Russell, 1962, p. 38). Ramsey noted that common everyday uses of definite
descriptions like “the tallest man in the room” seem to violate the this principle (Ramsey,
1925, p. 368). Without trying to meet this objection directly, Gödel in 1944 suggested
that the principle might be seen to at least follow from a “constructivist” conception of
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properties, on which they are built up iteratively out of definable sets (cf. Gödel (1990),
p. 127 and the footnote on p. 119).7

In his 1954 paper, Wang (1954) described a ramified type theory which contained lev-
els corresponding to infinite ordinals. However, Wang himself admitted that he did not
really know how far up the ordinal hierarchy the system went (Wang, 1954, pp. 247–248,
pp. 260–261; Wang, 1955, §9, pp. 77 ff). Kreisel then suggested only including the pred-
icative ordinals. Kreisel’s proposed definition of predicative ordinal was inductive, and
read as follows: if α is a predicative ordinal and ramified analysis up to level α proves
that a recursive well-order, with order type β, is a well-order then β is a predicative ordinal
(cf. Kreisel (1960b), §5, p. 297, Feferman (2005), p. 607, Pohlers (1987), p. 413). Feferman
and Schütte independently showed in Feferman (1964), Schütte (1965a,b) that the least
non-predicative ordinal is the ordinal which now bears the name of the Feferman-Shütte
ordinal (cf. Feferman (1998), pp. 121–122).

2.5. ACA0 as a formal system. We have just seen that some of the first systems to
attempt to axiomatize predicative reasoning included either ramified comprehension or
iterations of provability along well-orders. Neither of these approaches leads directly to a
unique characterization of the system ACA0.

One development which anticipates the isolation of this system more directly was work
on what is now known as Gödel-Bernays set theory GB. This system was originally pro-
posed as a two-sorted first-order theory of sets and classes by Bernays (1937), based
on a prior axiomatization by Von Neumann (1925). In addition to various axioms of set
existence – e.g., Empty Set, Pairing – GB contains axioms formalizing the so-called Gödel
operations. These assert that the domain of classes is closed under operations such as
complementation, intersection, and taking converses (in the case of classes which are
relations). Although this system is finitely axiomatized, Bernays (1937, p. 72) showed
that these operations are sufficient to prove the existence of all classes which are definable
by formulas not containing bound class variables. On this basis Mostowski (1950) showed
that GB is a conservative extension of ZF.

It is now known that ACA0 shares many of these features with GB. For instance
ACA0 is conservative over PA. And although this system is typically presented as consist-
ing of Q together with the arithmetical comprehension scheme and the induction axiom,
ACA0 may also be finitely axiomatized on the basis of appropriately chosen variants of
the Gödel operations (see Hájek & Pudlák (1998, p. 154)). Bernays (1942) also observed
that it was possible to formalize portions of analysis (inclusive of the existence of least
upper bounds) in the system S consisting of GB without the Axiom of Infinity for sets,
in a manner which is similar to the formalization in second-order arithmetic carried out
by Hilbert & Bernays (1939) (as discussed below). While such a development relies on
the standard formalization of arithmetic in set theory, it is also possible to interpret ZF
together with the negation of the Axiom of Infinity in PA via the Ackermann interpretation
(cf. Ackermann (1937)) – a fact which was systematically exploited by Wang in his inves-
tigation of S and similar fragments of GB which he referred as “predicative set theory”
(cf., e.g., Wang (1953)). Mostowski (1959, p. 184) similarly observed that the “the part of
Bernays’ axiomatic system of set theory which deals with construction of classes represents

7 See Parsons (2002) §5 for a more thorough discussion of Gödel’s views. More generally, Parsons
(2002) is a study of figures such as Hilbert, Bernays, and Ramsey as critics of “definitionalism”,
the view that “sets are definable sets” (Parsons, 2002, p. 386).
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an axiomatization of a constructivistic (elementary [i.e., arithmetically] definable) notion
of a set.”8

A final antecedent for the isolation of ACA0 is provided by work in computability theory
which was inspired by the arithmetization of Gödel’s completeness and incompleteness
theorems–results which we will see below also played an important role in the delineation
of WKL0. For on the one hand, WKL0 can be characterized as an extension of RCA0 in
virtue of the fact that any ω-model of this theory itself contains a countable coded ω-model
of WKL0 (see Simpson (2009, VIII.2.7)). But on the other hand, Simpson (1973) suggests
that ACA0 can also be characterized as the weakest such extension for which it may be
shown that if a recursively axiomatizable theory T itself possesses an ω-model, then there
is also an ω-model of T plus the formalization of the statement “there does not exist a
coded ω-model of T”.9

§3. Hilbert and Bernays, the Grundlagen der Mathematik, and recursive compre-
hension. Two historical claims frequently made in regard to reverse mathematics are
that the study of second-order arithmetic and it subsystems can be traced to Hilbert and
Bernays’s Grundlagen der Mathematik (1934), (1939) and that the system now known as
RCA0 is somehow related to what they describe as the finiten Standpunkt and thus also
more generally to the view known as finitism (e.g., Hilbert (1922), Hilbert (1926)) (e.g.,
Simpson (1988), Simpson (2009, §I, IX.3), Feferman (1993)). The first of these claims
pertains to the general logical framework employed in the Grundlagen while the latter
pertains to a specific set of arithmetical axioms. And although a close reading of this work
lends some support to both contentions, one of our aims in this section will be to bring
out some complexities in the conventional narrative relating both to the development of
second-order logic by Hilbert and others during the 1910s–1940s and the use of formal
systems like RCA0 to provide a precise delineation of the finiten Standpunkt.

3.1. From the Axiom of Reducibility to second-order arithmetic. Both Hilbert
and Bernays’s lecture notes from 1917–1923 (Hilbert, 2013), as well as Hilbert and
Ackermann’s textbook Grundzüge der theoretischen Logik (Hilbert & Ackermann, 1928)
culminate in a discussion of Russell and Whitehead’s system from the Principia Mathemat-
ica (Whitehead & Russell, 1910).10 Prior to this discussion, each of these texts dramatically
advance upon the Principia in that they isolate and study the fragment of this system corre-
sponding to propositional logic and first-order predicate logic. Hence, unlike the Principia
itself, both these lecture notes and the Hilbert-Ackermann monograph are immediately
accessible to the modern reader as they follow our contemporary way of introducing logic.

8 Since the minimal ω-model of S corresponds to the hereditary finite sets together with the
predicatively definable classes thereof, such an observation can (as Mostowski observed) be
understood semantically in terms of the relationship between this structure and the minimal
ω-model of ACA0. And although this appears not have been noted at the time, it can be understood
proof theoretically since the mutual interpretability of PA and ZF − Infinity + ¬Infinity extends
to show that of ACA0 and the S + ¬Infinity.

9 An antecedent to this result was first obtained as a corollary to Gödel’s second incompleteness
theorem by Rosser & Wang (1950) (see also (Mostowski, 1956) and (Simpson, 2009, VIII.5.6)).
In the form just stated, however, the result was obtained by Steel (1975) as a corollary of the
following computability theoretic fact: there is no arithmetically definable relation P ⊆ 2ω × 2ω

which defines an infinite descending sequence of Turing degrees – i.e., 〈Ai : i ∈ ω〉 and
A′

i+1 ≤T Ai for all i , where Ai+1 is the unique set such that P(Ai , Ai+1).
10 See also (Mancosu, 2003) for more on the reception of Principia by Hilbert and his collaborators.
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For our purposes, the crucial idea in both sources is the measured dissatisfaction with
the Axiom of Reducibility and the ramified type-theory of the Principia. As mentioned
above in §2.4, the idea of ramification was to define a first round of second-order objects
by first-order comprehension, and then to define a second round of second-order objects
by quantifying over first-order objects and second-order objects of the first round, and
then continuing onto further rounds. Russell and Whitehead further articulated the Axiom
of Reducibility, which postulated that everything obtained at the second round (or a later
round) was in fact extensional with something obtained at the first round (Whitehead &
Russell, 1910, Vol. 1, pp. 58 ff, 161 ff; Whitehead & Russell, 1962, pp. 55 ff, pp. 166 ff).

The primary concern with the Axiom of Reducibility, evinced by Hilbert and his col-
laborators, was that it vitiated the intended interpretation of the ramified system. For they
conceived this interpretation to be one on which one started with a given structure and
added on its collection of first-order definable subsets, and then added a second collection
of subsets definable in a first-order way from those, etc. That is, the intended interpretation
is close to the “constructivist” conception mentioned by Gödel in 1944 (cf. §2.4).

In the lecture notes, Hilbert and his collaborators go onto note that: “in an arbitrary
choice of the primitive properties and relations [of the structure] one cannot in general
be sure that the Axiom of Reducibility is satisfied” (Hilbert, 2013, p. 487). Rather, the
interpretation on which this axiom is definitely satisfied is one on which the entities in the
first round are “considered as something existing in and of themselves, so that its plurality
does not depend on actually given definitions nor at all on the possibility of us giving a
definition” (Hilbert (2013), p. 206, cf. p. 487, cf. Parsons (2002), p. 378).11

This situation, they suggest, leads to the following dilemma regarding ramified type
theory:

[. . . ] either [(a)] it is handled purely formally, in which case it is impre-
cise and offers no guarantee of being without contradictions, or [(b)] the
logical operations will be made precise contentfully (inhaltlich) so that
contradictions are excluded, but that one does not obtain the usual proof
methods of analysis and set theory (Hilbert, 2013, p. 488).

To reverse the order of the dilemma, the thought seems to be that either (b) ramified
type theory is taken without the Axiom of Reducibility and is thus inhaltlich but does
not succeed in obtaining analysis, or (a) ramified type theory is taken with the Axiom of
Reducibility and is thus not inhaltlich and offers no guarantee of consistency and needs be
treated purely formally. The reason they think that the Axiom of Reducibility is necessary
for analysis, in the context of ramified type theory, is that real numbers were being formal-
ized as left Dedekind cuts, so that the least upper bound of a formula defining a bounded
set of reals would be given with a second-order existential quantifier corresponding to the
union of all the cuts. And this higher-order quantifier ought to range over all second-order
objects and not just those from the first round (cf. Hilbert (2013), pp. 213, 485, 906, Hilbert
& Ackermann (1928), p. 111, Hilbert & Bernays (1939), p. 463).

In subsequent writings, Hilbert and his collaborators clearly opted for horn (a) of the
dilemma. Since they preferred a system which was being treated purely formally and

11 Using contemporary terminology, one might say that the models in which the Axiom of
Reducibility is definitely satisfied are those where the second-order entities of the first round, the
second round, the third round, etc. are all provided by the application of the powerset operation
to the underlying first-order domain.
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judged by the extent to which it was able to recover analysis, it was noted in the Hilbert-
Ackermann monograph that one could simply remove the ramified system entirely and
move to what we would now call simple type theory (Hilbert & Ackermann, 1928, p. 115;
Hilbert (2013), p. 909). And in the second edition of the Hilbert-Ackermann monograph
in 1938 one finds the following statement of the comprehension schema:

Let G1,G2, . . . ,Gn variables of any type a1, . . . , an , and F a variable of
type (a1, . . . , an), and A(G1, . . . ,Gn) a formula that has free variables
G1,G2, . . . ,Gn . Then each formula of the form [¶] (V) (E F)(G1) . . .
(Gn)(F(G1, . . . ,Gn) ∼ A(G1, . . . ,Gn)) [¶] is an axiom. This formula
(V) has the purpose of replacing a formula which represents an indi-
vidual predicate with a predicate variable (Hilbert & Ackermann, 1938,
p. 125).12

It is sometimes claimed that Supplement IV of Volume 2 of (Hilbert & Bernays, 1939) is
the origin of full second-order Peano arithmetic (cf. Simpson (2009), p. 6) – i.e., the system
Z2 of Simpson’s monograph. However, the systems considered there contain neither the
full nor a restriction version of the comprehension scheme. Rather, Hilbert and Bernays
consider three second-order systems, called H , K , and L , respectively in sections A, F,
G of Supplement IV. The system L is in many ways similar to Z2, while the system K
differs from it in that the second-order entities have functions from natural numbers to
natural numbers as their intended interpretation, instead of subsets of natural numbers.
The system H differs from system K in that it uses a second-order variant of Hilbert’s
epsilon calculus, so that the first- and second-order quantifiers are defined in terms of the
epsilon operator.13

However, none of these systems have comprehension explicitly built-in; rather, what
seems to go proxy for this are certain principles of explicit or stipulative definition (Hilbert
& Bernays, 1939, pp. 454, 482, 490). They go proxy in the sense that, in their proof
sketches of why the least upper bound principle is satisfied, they seem to be supposing that
the stipulatively defined concepts fall within the range of the higher-order quantifiers.14

The situation in Supplement IV is however less than clear because it is also suggested that
the defined terms may be eliminated (Hilbert & Bernays, 1939, pp. 455, 487).

But of course second-order Peano arithmetic is not a conservative extension of this sys-
tem with comprehension removed (or even restricted down to first-order comprehension).
Rather, we now recognize that full comprehension decisively adds to the strength of the
system and thus can by no means be regarded as a type of explicit definition, in any
traditional sense of the term. Moreover, a common gloss on the distinction between the
systems studied in reverse mathematics is that they differ precisely in virtue of the “set
existence principles” they contain – a distinction which can be partially measured in terms

12 Hilbert and Ackermann employ ∼ to denote the biconditional, E F to denote existential second-
order quantification, and (G) to denote universal second-order quantification. This passage thus
expresses the full second-order comprehension scheme in the now familiar manner.

13 The epsilon operator and its associated calculus are of course less frequently studied today; but
see Leisenring (1969) for an overview.

14 More specifically, in reference to the proof-sketch on Hilbert & Bernays (1939), pp. 463–464:
the existence of a least upper bound of a non-empty bounded set A of real numbers is explicitly
presented in equation (5) on the bottom of p. 463 in terms of a higher-order existential quantifier.
In particular, the proof proceeds by presenting a “definitional equation” of a higher-order entity ν
at the bottom of p. 463. And the argument on p. 464 in equations (5a)–(5c) shows that ν is the
least upper bound.
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of the inclusion of subschema of full comprehension.15 In light of these complexities, it
will be useful to say a bit more about how the understanding of comprehension principles
evolved in relation to the development of second-order logic.

Although Hilbert & Ackermann (1938) can reasonably be regarded as the first “text-
book” treatment of second-order logic, the passage cited above from the second edition
does not in fact represent the first statement of the second-order comprehension schema
itself. In fact, it is stated very clearly by Gödel in his 1931 paper containing the Incom-
pleteness Theorems, where the connection is that he proved the Incompleteness Theorem
for a kind of simple type theory (Gödel (1986), pp. 154–155, Axiom IV, Ferreirós (1999),
p. 355). Tarski also includes it in his 1935 paper on truth, but almost as an afterthought to
his set-up of simple type theory. Tarski calls the comprehension schema a “pseudodefini-
tion,” and he tells us

This term we owe to Leśniewski, who has drawn attention to the neces-
sity of including pseudodefinitions among the axioms of the deductive
sciences in those cases in which the formalization of the science does
not admit the possibility of constructing suitable definitions. [. . . ] Pseu-
dodefinitions can be regarded as a substitute for the axiom of reducibility
[. . . ] (Tarski, 1956, p. 223 fn; Tarski, 1936, p. 344 fn).

This last line also occurs in Gödel, who writes that the comprehension schema “plays the
role of the axiom of reducibility (the comprehension axiom of set theory)” (Gödel, 1986,
pp. 154–155).

Another intimation of the comprehension schema is provided by Ramsey in 1925. As
with Hilbert and his collaborators, Ramsey suggested that the Axiom of Reducibility is
dispensable, so long as the higher-order entities are conceived to be “objective” and do
not depend “on our methods of constructing them” (Ramsey (1925), p. 365, cf. Parsons
(2002), pp. 381–382). To illustrate this, Ramsey considered a formula which we would
write as ϕ(x) ≡ ∀ F ψ(F, x) and says that it determines a member of the range of
second-order entities (Ramsey, 1925, p. 368). Hence, as with Supplement IV of Hilbert &
Bernays (1939), while Ramsey does not explicitly state the full comprehension schema, he
explicitly makes use of some of its immediate consequences.

Finally, it is perhaps worth mentioning an alternative formulation of comprehension
which Church developed in the 1940s. In his Introduction to Mathematical Logic from
1944, Church formalized comprehension in terms of the following substitution schema
(∀ F �(F)) → �(ψ(x)/F), where in the last term the expression �(ψ(x)/F) means
“substitute the formula ψ(x) for the atomic formula Fx in �” (cf. Church (1944) Rule
VIII′, p. 100, Church (1956) Rule 509, p. 297).16 If one considers�(F) ≡ ∃ G ∀x (Gx ↔
Fx), then the associated instance of the substitution schema straightforwardly implies the
comprehension schema. And of course, by taking contrapositives, the schema is equivalent
to �(ψ(x)/F) → ∃ F �(F). Written in this way, the connection to the idea that the
formula ψ(x) determines a higher-order entity F becomes even more apparent.

But in its original non-contraposed formulation, the schema can end up looking a lot
like the validity (∀ x ϕ(x)) → ϕ(t) of predicate logic. Viewed from this perspective, the
comprehension schema can take on the appearance of a tautology, which might explain

15 But see §6 for more on the qualification of “partially”.
16 Of course, yet another alternative formalization comes in the way in which comprehension is

handled in Church’s simple theory Church (1940), where it is covered by λ-terms.
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why it took a comparatively long time for people to realize its import and strength.17

Indeed, Henkin composed an entire paper as late as 1953 in which he noted that Church’s
substitution schema was equivalent to the comprehension schema (Henkin, 1953). He
thought that an advantage of formulating systems in terms of the comprehension schema
was that it was natural to then consider “certain subsystems” obtained by weakening the
comprehension schema, and for example one could entertain restrictions whose models
were “defined in a purely predicative way” (Henkin, 1953, p. 207).

3.2. Hilbert’s finitism and primitive recursive arithmetic. The significance of the
axiom system RCA0 is often explained in relation to what (following Kreisel (1958a))
is now called the Hilbert Program – i.e., the project by which Hilbert and his collaborators
hoped to prove the consistency of analysis and portions of set theory using the mathemati-
cal resources made available by what they described as the finiten Standpunkt. But although
this project can be seen as reaching its culmination in the Grundlagen der Mathematik,
neither RCA0 nor any precise equivalent is described in this work. To understand the
connection between this system and the Hilbert program, it will thus be useful to consider
a related system known as primitive recursive arithmetic [PRA], a version of which is
described in the Grundlagen.

Recall that PRA is the first-order theory whose language contains symbols for all prim-
itive recursive functions and whose axioms consist of the defining equations for these
functions together with the first-order induction scheme for quantifier-free formulas
(cf. Simpson (2009), pp. 369–370). There is a well-known proposal in the secondary liter-
ature on the Hilbert program originating with Tait (1968, 1981) according to which finitary
mathematics is characterized by the portion of mathematics which can be formalized within
PRA. And indeed the method of recursive function definition figures prominently not only
in many of Hilbert and Bernays’s expositions (e.g., Hilbert (2013), Hilbert (1926), Bernays
(1930)) which led up to Grundlagen but also with their description of what they call the
finiten Standpunkt in its first two chapters.

The discussion of what Hilbert and Bernays call “elementary number theory” in Chapter
2 of (Hilbert & Bernays, 1934) characterizes its subject matter as finite sequences of
symbols (i.e., numerals) formed by the process of “concretely terminating constructions”
(p. 21). Primitive recursion is then explained as an “abbreviated communication” for the
“deconstruction of numerals” and its role justified in terms of the fact that the relevant
processes of deconstructing numerals into their parts may always be seen to terminate
in a finite number of steps (pp. 26–27). The application of induction and the least number
principle to decidable formulas of elementary arithmetic is then given a similar justification
in terms of finite search procedures (p. 23, pp. 34–35). Hilbert and Bernays finally go on to
summarize what they take to be characteristic of finitary mathematics is that it is confined to
“objects that are conceivable in principle” and “processes that can be effectively executed
in principle”. They thus conclude that “it remains within the scope of a concrete treatment”
(p. 32).

If such remarks are considered either in isolation or in regard to Hilbert and Bernays’s
earlier expositions, they might appear to lend credence to Tait’s claim that they conceived
of the finiten Standpunkt as coinciding with what can be formalized in a system such as
PRA. But if we are to view the Grundlagen itself as one of the founding sources of reverse
mathematics, then such a characterization becomes problematic for at least two reasons.

17 This elision of substitution and comprehension is sometimes attributed to Frege (cf. Demopoulos
& Clark (2005), p. 131, Sullivan (2004), p. 672).
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First, this work not only represents the final stage of the original development of the Hilbert
Program, but it was also written at a time when Hilbert and Bernays were attempting to take
into account not only Gödel’s completeness and incompleteness theorems (respectively in
Hilbert & Bernays (1939), §4 and §5) but also the proof-theoretic work of Ackermann and
Gentzen. Second, the characterization of the finiten Standpunkt just recounted occurs at the
beginning of the first volume of the Grundlagen. And in the course of the rest of its two
volumes Hilbert and Bernays go on to consider a number of systems of formal arithmetic –
several of which properly extend PRA – without ever explicitly stating that any of them
captures their informal description of finitary mathematics.

The first of these points has been the focus of recent discussion of Tait’s claim. For on
the one hand, Zach (2003) observes that forms of transfinite recursion and recursion on
higher types are used in Ackermann’s dissertation (published as Ackermann (1925)) and
also that Hilbert appears to have accepted such methods as finitistic at this time. And on
the other, Sieg (2009) enumerates several instances in the Grundlagen (most relating to
formalization of consistency proofs) where Hilbert and Bernays employ methods which go
beyond those which can be formalized in PRA.

In regard to the second point, it is notable that across the two volumes of the
Grundlagen, Hilbert and Bernays also consider at least eight distinct systems of formal
first-order arithmetic. These differ both as to their non-logical signature (the weakest con-
tain only symbols for successor and less-than, while others contains primitive symbols
for addition and multiplication), whether they contain schema allowing for additional of
functions defined by primitive recursion, whether they contain an induction scheme, and
if so, whether it is limited to quantifier-free formulas. Amongst these systems are (i) the
system A which is like Robinson’s Q in that it is induction-free and �0

1-complete, but with
the signature of just successor and less-than (Hilbert & Bernays, 1934, p. 263); (ii) the
D system like Presburger’s arithmetic which has induction and defining equations for just
addition (Hilbert & Bernays, 1934, p. 357); (iii) the system Z which is identical to our
contemporary axioms for PA, minus any axioms for less-than (Hilbert & Bernays, 1934,
p. 371); (iv) the system Zμ which extends Z with a form of the least number principle
which Hilbert and Bernays show is equivalent to first-order induction (Hilbert & Bernays,
1939, p. 293).

The transition between these systems is motivated both by both a desire to formalize
greater fragments of number theory and in some cases to prove the consistency of the
weaker systems and the stronger ones. However Hilbert and Bernays observe that tech-
niques which they have used to prove the consistency of the previous systems cannot be
applied to Z. And after noting that each Diophantine equation may be expressed in Z, they
note that all recursive functions can be represented in this system, writing:

[. . . ] the formalism of system Z is not only, as we just found, in a
position to formulate difficult problems of number theory, but it deliv-
ers more generally a formalization of the entirety of number theory.
Namely, in this formalism all functions are representable which can be
introduced through recursive equations [. . . ] (Hilbert & Bernays, 1934,
pp. 372–373).

The system Zμ is introduced to aid in Hilbert and Bernay’s exposition of Gödel’s com-
pleteness and incompleteness theorems in Chapter 5 of (1939). But although this ostensibly
corresponds to the strongest theory considered prior to the introduction of the second-order
theories in Supplement IV, it should finally be noted that Hilbert and Bernays explicitly de-
mur from suggesting that even this system exhausts the resources of the finitary standpoint:
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The question arises as to whether finitary methods are in a position to
exceed the domain of inferences formalizable in Zμ. [¶] This question
is admittedly, as so formulated, not precise; because we have introduced
the expression “finitary” not as a sharply delimited endpoint, but rather
as a designation of a methodological guideline, which would enable us to
recognize certain kinds of concept formation and certain kinds of infer-
ences as definitely finitary and others as definitely not finitary, but which
however delivers no exact separating line between those which satisfy
the demands of the finitary method and those which do not (Hilbert &
Bernays (1939), pp. 347–348, cf. Sieg (2009), p. 375).

3.3. RCA0 as a formal system. Recall that RCA0 is derived from full second-order
Peano arithmetic or Z2 by both restricting the scope of the comprehension scheme and
also replacing the second-order induction axiom with the first-order induction scheme to
�0

1-formulas. Such a system would not have been directly formalizable in the framework
of the Grundlagen for, as we have just seen, comprehension was not distinguished as a sep-
arate logical principle there. And although we have also seen that the full comprehension
scheme was stated in Hilbert and Ackermann’s textbook Hilbert & Ackermann (1938),
they do not consider the possibility of restricting it to specific subclasses of formulas.
Thus although subsequent work in proof theory attests to the close relationship of RCA0
to PRA – and thus also to Tait’s delineation of finitism – the relevant results were not
obtained until the 1970s.18

A system equivalent to RCA0 was first introduced by Friedman in the abstracts (1976).
But although his original formulation of the basic subsystems in (Friedman, 1975a) was
based on full first-order induction, no explanation for restricting induction is given in
(Friedman, 1976). This topic is, however, discussed at length in Friedman, Simpson, &
Smith (1983) wherein RCA0 appears to have first been formulated in its contemporary
form. One programmatic observation made there is that full induction is provably equiv-
alent to the bounded comprehension scheme ∀x∃X (y ∈ X ↔ (y < x ∧ φ(y))) over
RCA0. On this basis, Simpson subsequently remarked that since “the whole point of
Reverse Mathematics is to prove ordinary mathematical theorems using only the weakest
possible set existence principle . . . the reverse mathematician is constrained to use full
induction as sparingly as possible” (Simpson, 1985, p. 150). It is additionally observed in

18 In particular, by combining results of Parsons (1970) and Friedman (1976), it is possible to show
that RCA0 is conservative over the extension of PRA with first-order quantification theory (which
is itself conservative over PRA) for �0

2-sentences. It hence follows that RCA0 is equiconsistent
with PRA in the sense that any proof of a contradiction in the former could be transformed into
a proof of a contradiction in the latter. A series of well-known results about the system WKL0
considered in the next section suggest that similar points can be made about this system as well.
In particular, in the mid-1970s Harrington and Friedman showed WKL0 is �1

1-conservative over

RCA0 and hence also �0
2 conservative over PRA. (Although Harrington and Friedman’s model

theoretic proofs of this result were never published, a related exposition was ultimately provided
in Simpson’s monograph (Simpson, 2009, IX.1–3). Sieg obtained the same conservativity result
for PRA by a proof theoretic argument Sieg (1985).) Simpson (1988) subsequently suggested
that these results contribute to a “partial realization of Hilbert’s program” and also that WKL0
embodies a foundational standpoint which he labels finitistic reductionism (Simpson, 2009,
p. 43). As these claims have been widely discussed in the extant secondary literature on reverse
mathematics – e.g., Feferman (1988), Caldon & Ignjatovic (2005), Burgess (2010) – we will not
consider them further here.
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both (Friedman et al., 1983) and (Simpson, 1985) that the systems with restricted induction
are more amenable to ordinal analysis, that their first-order parts of systems with restricted
induction typically admit neater characterizations, and that while the use of restricted
induction sometimes results in more complicated proofs, not only are few reversals to clas-
sical theorems lost in this manner, but their proofs sometimes yields improved quantifiers
bounds.

While these claims testify to the technical benefits of employing systems with restricted
induction, they also provide part of the context of Simpson’s subsequent discussion of
RCA0 in relation to Bishop’s constructive analysis. Beginning with (1967), Bishop pre-
sented a detailed constructive development of a large part of twentieth century analysis,
inclusive of measure theory and the theory of Banach spaces. His presentation avoids
the use of formal systems and techniques from computability theory which he took to
have hobbled the development of intuitionistic analysis after Brouwer. It is clear, however,
that Bishop’s development is grounded in the supposition that analysis may be faithfully
developed by treating natural numbers together with computable functions (or decidable
sets) of numbers as basic objects. This in turn inspired the formulation of several systems
of constructive set theory (e.g., Friedman (1977)) wherein the Bishop’s development of the
basic number systems and their properties may be formalized.

These papers in turn provided antecedents for the methods which are ultimately used
to formalize analysis in RCA0 in (Simpson, 2009, §II), but also provide the context for
observation that the axioms of this system are “‘constructive’ in the sense that they are
formally consistent with the statement that every total function from N into N is recur-
sive” (Friedman et al., 1983, p. 146).19 However, Simpson has also stressed (e.g., (2009,
pp. 31–32)) that the intention behind using RCA0 as a base theory within Reverse Mathe-
matics differs from Bishop’s motivation of constructive analysis in both foundational and
formal respects. For on the one hand, the goal of calibrating the set existence principles
required to prove classical theorems is very different from the traditional constructivist
goal of grounding mathematics in a theory of mental constructions and proving statements
on the basis of the attendant understanding of the logical connectives. And on the other,
formal systems for constructive mathematics such as Heyting arithmetic (or its extension
with higher types) are typically based on intuitionistic logic together with full first-order
induction. This is regarded as unproblematic both by Bishop (1967) and in classical expo-
sitions of intuitionism such as that of Heyting (1956). As we have seen, however, RCA0 is
based on classical logic together with a restricted induction scheme.

§4. Weak König’s Lemma and related systems. The statement now often referred to
as König’s Infinity Lemma was first formulated by Dénes König (1927, p. 122) as follows:
“If every point of a connected infinite graph has only finitely many edges going to it,
then the graph contains an infinite path”. König’s isolation of this statement was the result
of his attempts from 1914 onward to find a combinatorial proof of the Cantor-Schröder-
Bernstein Theorem.20 But by the time of his 1936 graph theory textbook, he had come to

19 This follows because it is easily seen that the ω-model of Z2 whose second order domain consists
of precisely the recursive sets satisfies RCA0 (Simpson, 2009, I.7.5).

20 König’s father, Julius, had used a form of this result in his failed 1904 attempt to refute the
Continuum Hypothesis by showing that the continuum could not be well-ordered and thus not
equal to ℵα for any α. Although his proof was flawed, it led to a correct proof of what is now
called König’s Theorem in set theory – i.e., if ai and bi are two families of cardinals indexed by I ,

https://doi.org/10.1017/S1755020316000411 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020316000411


374 WALTER DEAN AND SEAN WALSH

see the Infinity Lemma as a useful tool in its own right, writing that it has uses “in the most
diverse mathematical disciplines, since it often furnishes a useful method of carrying over
certain results from the finite to the infinite” (König, 1990, p. 164; König, 1936, p. 110).
Amongst these he lists the Heine-Borel Covering Lemma as well as a form of van der
Waerden’s Theorem, both of which he shows to be derivable from the Infinity Lemma.21

König also considered the restriction of the Infinity Lemma to trees – i.e., connected,
acyclic graphs – yielding the familiar statement “Every infinite, finitely branching tree
has a infinite path” [KL].

The statement now known as Weak König’s Lemma [WKL] in reverse mathematics
results from restricting KL not just to binary trees (i.e., trees in which each node has at
most two children), but also to trees whose nodes are labeled only with the integers 0
and 1. The arithmetical formulation of this statement thus takes the following form: every
infinite subtree T of the full binary tree 2<N has an infinite path.22 Although this may at
first seem like an ad hoc restriction of the original principle, it is now known that WKL
is sufficient to derive many statements of classical mathematics whose proofs, like that of
the Covering Lemma, have traditionally been thought to require non-constructive choice
principles. However, this aspect of both KL and WKL originally came to light in the course
of metamathematical investigations, to which we now turn.

4.1. The completeness theorem for classical predicate calculus. It is likely that Gödel
in his 1929 dissertation (Gödel, 1986) was the first person to make metamathematical use of
the Infinity Lemma in the course of his proof of the Completeness Theorem for the classical
first-order predicate calculus. Recall that Gödel initially proved this result in the following
form: if a first-order formula ϕ is irrefutable, then ϕ is satisfiable in some denumerable
model.

Gödel’s proof proceeds by constructing a sequence of finite models M0,M1, . . . which
respectively satisfy formulasψ0, ψ1, . . . obtained from the prenex normal form of ϕ. These
mimic the dependence of the bound variables of ϕ in such a way that their joint satisfiability
entails that of ϕ. Gödel showed that if ϕ is satisfiable, then Mi |� ψi can be always be
extended to Mi+1 |� ψi+1, but in only finitely many ways. By treating these models as
nodes in a tree determined by this extendability relation, an application of KL gives the

such that ai < bi for all i ∈ I then �i∈I ai < �i∈I bi . Julius’s original proof relied on a form
of Cantor-Schröder-Bernstein whose proof required the Axiom of Choice. The work of Dénes
which led to the Infinity Lemma was motivated by an attempt to determine the extent to which
choice was necessary by reformulating the problem in graph-theoretic terms. Although König
(1990, p. 171) observes that his proof of the Infinity Lemma still requires the Axiom of Choice
when stated in full generality, he also notes this may be avoided in many of its applications. See
(Franchella, 1997) and (Hinkis, 2013) for more on König’s use of the Lemma in his proof of the
Cantor-Schröder-Bernstein theorem.

21 The Covering Lemma states that the unit interval is compact with respect to the standard topology
on the reals – i.e., “Every covering of the closed unit interval [0, 1] by a sequence of open intervals
has a finite subcovering”. This statement is now known to reverse to WKL0 over RCA0. König’s
derivation of the Covering Lemma from the Infinity Lemma is similar to the proof given by
Simpson (2009, IV.1.1). He also states that this argument does not make use of the Bolzano-
Weierstrass Theorem which notably reverses to the stronger system ACA0 over RCA0. What
König does not do, however, is to consider the possibility of proving a converse implication –
e.g., that the Infinity Lemma is itself derivable from Covering Lemma.

22 In this case, we assume that T ⊆ N via an encoding of finite sequences as natural numbers
and that a path in T is defined to be a function f : N → {0, 1} such that for all k ∈ N,
〈 f (0), . . . , f (k − 1)〉 ∈ T .
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existence of an infinite sequence of models M0,M1, . . . with the described properties.
A model M |� ϕ can now be obtained by letting the domain of M be a subset of the
natural numbers and stipulating that a predicate P(x1, . . . , xk) appearing in ϕ is satisfied
by a k-tuple of natural numbers n j1 , . . . , n jk just in case there is an i such that Mi |�
P(n j1 , . . . , n jk ).

23

In 1920 Skolem had previously described a similar construction in the course of his
proof of the Löwenheim-Skolem theorem in which he had employed the Axiom of Choice
(van Heijenoort, 1967, 252–263). Gödel observed this may be obtained as a corollary of
his proof of completeness and similarly made no pretext that his proof was constructive.
He did, however, observe that the deductive completeness of the predicate calculus might
be viewed as a form of decidability in the sense that it demonstrates that “every expression
. . . either can be recognized as valid through finitely many inferences or its validity can be
refuted by a counterexample” (1986, p. 63). But he also observed that in order for such a
result to bear on the completeness of intuitionistic logic, the assertion that a countermodel
exists would itself need to be proven constructively.

The question of whether the completeness theorem admits a constructive proof was
considered more explicitly by Hilbert & Bernays (1939). As we have seen, Gödel had
already observed that an irrefutable formula ϕ possesses an arithmetical model – i.e.,
one whose domain consists of a subset of the natural numbers, and whose predicate and
function symbols are interpreted as sets of natural numbers of the appropriate arities.
Examination of Gödel’s proof also makes clear that the arithmetical formulas P∗

1 , . . . , P∗
n

can be constructed uniformly from the formula ϕ. In light of this, Hilbert & Bernays
(1939, pp. 189–190) went on to introduce the notion of an effectively satisfiable [effektiv
Erfüllbar] formula – i.e., one which upon being put into prenex normal form can be trans-
formed by effectively replacing atomic formulas with truth values and formulas containing
free variables with computable [berechenbar] number theoretic predicates so that each
substitution instance with numerals is made true in the standard model. They thought that
such an interpretation would constitute a “finite sharpening” (p. (1939), p. 191) of the
Completeness Theorem. But upon introducing the definition of effective satisfiability, they
go on to conjecture that completeness would fail if this notion were to be substituted for
the traditional (non-effective) definition of satisfiability in its statement.

In light of Church and Turing’s work on the Entscheidungsproblem (which Hilbert and
Bernays take into account in Supplement II of (1939)) such a conjecture would certainly
have been reasonable by the late 1930s. But it was not fully resolved until the early 1950s
in virtue of work which is now thought of as contributing more directly to computability
theory than it is to model theory. In particular, it appears to have been Kreisel (1950, p. 268)
who first explicitly observed that a special case of the Infinity Lemma is sufficient for the
proof of the Completeness Theorem. In the same paper he also uses Hilbert and Bernays’s
arithmetization of Gödel’s proof to construct a statement which is formally independent
of a subsystem S of Gödel Bernays set theory (considered in §2.5) above and suggested
on this basis that in no arithmetical model of this theory could the membership relation ∈
receive a recursive interpretation.24

23 Gödel does not cite the Infinity Lemma by name in his proof, but rather says merely that the
interpretation is obtained by “familiar arguments”. van Heijenoort (1967, pp. 510–511) reports
that he was later told by Gödel that these words were indeed intended to refer to the Infinity
Lemma. For a more detailed reconstruction of Gödel’s proof, see Gödel (1986, pp. 53–58).

24 As Wang observed in his review of (Kreisel, 1950), Kreisel’s proof doesn’t actually yield this
result but (in effect) only the weaker statement that the definition of ∈∗ produced by applying
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Kreisel (1953) also formulated the relevant principle as a statement which can be ex-
pressed in a second-order extension of Hilbert and Bernay’s system Zμ.25 He did not,
however, carry out the formalization of Gödel’s original argument from this principle.
However, the fact that it suffices to consider only subtrees of 2<N is evident from Kleene’s
(1952a) reformulation of Gödel’s proof based on the method of maximally consistent sets
introduced by Henkin (1949).

Recall that in this construction we assume an enumeration of all sentences ψ1, ψ2, . . . in
the language of ϕ augmented with new constants ci as well as axioms ∃xψi (x) → ψ(ci ).
Letting χ0 = ϕ we then consider at the (i + 1)-st stage the result of successfully setting
χi+1 = ψi+1 if {χ0, . . . , χi } ∪ {ψi+1} is consistent and χi+1 = ¬ψi+1 otherwise. Relative
to the given enumeration, finite sequences of this form can be represented as finite binary
sequences σ ∈ 2<N where σ(i) = 0 if χi = ψ and σ(i) = 1 if χi = ¬ψi . Suppose we
consider at the i th stage all sequences satisfying the following predicate:

Sϕ(σ ) = there is no proof in the predicate calculus of a contradiction

of length less than that of σ from the set encoded by σ

It is evident that the set of sequences satisfying S(σ ) is a tree Tϕ ⊆ 2<N and that Tϕ is
infinite just in case ϕ is irrefutable. Moreover, from an infinite path through Tϕ a model of
ϕ can be constructed in the familiar manner of the Henkin construction.

As finite binary sequences can be encoded as natural numbers and the quantifier over
proofs in the definition of Sϕ(σ ) is bounded, it follows that Tϕ can be defined by a primitive
recursive predicate. Generalizing one step further, let � be an arbitrary recursively axiom-
atized theory. We may consider the predicate S�(σ ) defined analogously Sϕ(σ ) where we
consider proofs of length less than |σ | from the axioms of �. In this case T� is infinite just
in case � is consistent and is definable arithmetically by a recursive (i.e., �0

1) predicate in
the language of first-order arithmetic. Consideration of recursive trees of this form led to
another development in mathematical logic which anticipated the isolation of WKL0 as a
formal system – i.e., the formulation of the so-called basis theorems in computability theory.

4.2. The constructive failure of König’s Lemma and the basis theorems. In the termi-
nology of contemporary computability theory, a class of sets S of natural numbers is known
as a �0

1-class if it is definable by some �0
1-formula. There is a well-known representation

theorem, provable in RCA0, that every�0
1-class is representable as the set of paths through

some recursive binary tree T ⊆ 2<N. WKL hence expresses the non-emptiness of �0
1-

classes whose underlying tree is infinite. By applying the construction just described,
Kleene (1952b) showed that if � is a recursively axiomatizable essentially undecidable
theory (such as first-order Peano arithmetic), then T� can contain no infinite recursive path.
For in this case it can be shown that the sets A and B consisting of the Gödel numbers of
sentences provable and refutable in � form a pair of computably inseparable sets. On the
other hand, any path f : N → {0, 1} through T� corresponds to the characteristic function

the Arithmetized Completeness Theorem to GB can never be �0
1. This anticipates the later work

(summarized in the introductory remarks to Gödel (1986)) which collectively showed that any
consistent statement has an arithmetical model in which all of its relations are �0

2-definable and

also that this statement fails for �0
1 ∪�0

1.
25 The statement is of the following form: any infinite, finitely branching tree consisting of finite

sequences of integers ≤ k (for some fixed k ∈ N) which is also determined by a primitive recursive
predicate of finite sequences has a path which is given by a term t (x) of the form μy.∀z R(x, y, z)
where R(x, y, z) is itself a primitive recursive predicate (Kreisel, 1953, pp. 125–126).
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of a set separating A from B – i.e., if C = {n : f (n) = 1} then C ⊇ A and C ∩ B = ∅.
Thus f (x) cannot be recursive. This result is interesting in its own right, as it is a failure
of a separation principle, to which we shall return in §5.2.

For present purposes, however, the import of this result is that there exist non-empty
�0

1-classes with no recursive members. Kleene (1952b) originally obtained this result in the
context of investigating whether Brouwer’s Fan Theorem is consistent with the assumption
that all choice sequences are recursive. In the relevant case, the Fan Theorem asserts that
if every tree T ⊆ 2<N is such that each path f (x) through T (notation: f ∈ [T ]) has
an initial segment which satisfies some property A, then there is a uniform bound on the
length of the initial segments of f (x) (notation: f � x) at which this property is satisfied:

∀ f ∈ [T ] ∃ x ϕ( f � x) → ∃ y ∀ f ∈ [T ] ∃ x ≤ y ϕ( f � x).

This principle expresses a form of compactness of the intuitionistic continuum which
Brouwer sought to preserve in his development of intuitionistic analysis, such as his proof
that every continuous real-valued function on a closed interval is uniformly continuous
(Brouwer, 1927).

It is readily seen that the Fan Theorem is classically equivalent to König’s Lemma.
But Kleene’s result has also led to some theorists working within the intuitionistic and
constructive traditions to regard the Fan Theorem with suspicion. In particular, Beth (1947,
1956) had made essential use of the Fan Theorem in his completeness proof for intuition-
istic first-order. In conjunction with Gödel and Dyson, Kreisel (Dyson & Kreisel, 1961;
Kreisel, 1962b, 1970a) then established a series of results showing that the formalized
statement of completeness for the intuitionistic predicate calculus with respect to what are
now called Beth models entails Markov’s Principle and the negation of the intuitionistic
Church’s Thesis (one form of which states “every function f : N → N is recursive”).
On this basis the constructive significance of formal completeness proofs has also thereby
repeatedly been called into question – cf. (van Dalen, 1973 pp. 87-88; Troelstra & van
Dalen, 1988, vol. 2, chap. 13).26

By further examination of the Hilbert and Bernays’s arithmetization of the Gödel com-
pleteness proof, Kleene (1952a, §72) and Hasenjaeger (1953) also showed that if � is
recursively axiomatizable, then T� must contain a path which is �0

2-definable in the lan-
guage of first-order arithmetic. As every infinite recursive binary tree can be represented in
this form for an appropriate theory �, the class of sets defined by �0

2-predicates is said to
serve as a basis for non-empty �0

1-classes – i.e., every non-empty �0
1-class has a member

among the class of sets defined by �0
2-predicates. Kleene (1959) attributed the following

general definition of a basis to Kreisel: a class of C of subsets of N is a basis for a class
� of second-order formulas containing X free just in case if each instantiated predicate
ϕ(X) ∈ � is such that ∃X [X ∈ C ∧ ϕ(X)] (see also Shoenfield (1967, §7.11)). He
additionally writes that the significance of the fact that C is a basis for � is that definitions
given by formulas of this form “mean the same to persons with various universes of [sets],
so long as each person’s universe includes at least C” (1959, p. 24).

By a well-known result of Post (1948), a set A ⊆ N is �0
2-definable just in case A is

Turing reducible to the halting set K (i.e., A ≤T K ) or, equivalently, that the Turing degree
of A is less than or equal to ∅′ (i.e., deg(A) ≤T ∅′). It thus follows that the class of sets of

26 At the same time, a minority view takes the moral of these equivalences to be that the intuitionist
“has to admit the possibility of infinite sequences of natural numbers that may be effectively
calculated but are not given by an algorithm” (Veldman, 2014, p. 635).
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Turing degree ≤T ∅′ form a basis for non-empty �0
1-classes (the Kreisel Basis Theorem).

This result was subsequently strengthened by Shoenfield (1960) to show that the class of
sets of Turing degree <T ∅′ forms a basis for non-empty �0

1-classes (the Shoenfield basis
theorem) and again by Jockusch & Soare (1972) to shows that the class of sets A such that
deg(A′) ≤T 0′ form a basis for non-empty �0

1-classes (the low basis theorem).
These results anticipate the formulation of WKL0 as a formal system in the sense that

they provide natural computability-theoretic characterizations of its ω-models. In partic-
ular, recall that a non-empty set S ⊆ 2N is a Turing ideal just in case it is closed under
effective join (i.e., if A, B ∈ S , then A⊕ B ∈ S) and Turing reducibility (i.e., if A ∈ S and
B ≤T A, then B ∈ S) and that if S is a Turing ideal, then 〈N,S,+, ·, 0, 1, <〉 is model of
RCA0. If S is additionally closed under the condition if A ∈ S codes an infinite subtree of
2<N, then there exists B ∈ S which is a path through A then S is known as a Scott set. It is
easy to see that ω-models of the language of second-order arithmetic whose second-order
domains S are Scott sets are models of WKL0. The results just summarized thus provide
examples of such models where S is obtained as the Turing ideal generated by some basis
for a non-empty �0

1-classes.
Another source of models of WKL0 which anticipated the formulation of WKL0 is

provided by Scott’s (1962) work on classes of sets bi-enumerable in complete consistent
extensions of first-order Peano arithmetic. Such classes may be characterized semantically
as the so-called standard systems of nonstandard models M PA – i.e., SSy(M) = {A ⊆
N : ∃B ∈ Def(M)[A = B ∩ N]} where Def(M) denotes the set of sets which are
definable with parameters in M . Friedman observed that the standard system of any count-
able nonstandard model of PA is a Scott set and also that any Scott set is the standard
system of some such model (Friedman, 1973, pp. 541–542). It thus follows from another
observation of Friedman (1975a, p. 238) that the ω-models of WKL0 are precisely those
whose second-order part is SSy(M) for some countable nonstandard M |� PA.

4.3. WKL0 as a formal system. Recall that the axiomatic theory WKL0 consists of
RCA0 together with the arithmetical formulation of WKL described above. Although this
theory was first introduced by Friedman (1975a), such a system is described informally
by Kreisel, Mints, and Simpson (1975). This paper is devoted to assessing the extent to
which “abstract language” pertaining to the existence of infinite sets is necessary for either
stating number theoretic results or for providing comprehensible proofs of arithmetical
theorems whose statements themselves do not require such language. The authors also
explicitly discuss the methodology of using subsystems of second-order arithmetic to study
the set existence principle implicit in different foundational standpoints:

[T]here is a logical view which requires restrictions, for example because
of (genuine or ethereal) doubts about the existence of sets having certain
formal properties . . . It certainly can do no harm to have some idea of the
consequence of a given ‘view’, for example, for the class of, say, number
theoretic theorems provable by means of [an] abstract principle. (Kreisel
et al., 1975, p. 116)

It is also in this paper that it was first proposed that KL and WKL could be understood
as axioms which can be added to weak arithmetical system so as to formalize “abstract”
statements about infinite sets. The authors explicitly distinguish between KL, the restriction
of KL to binary trees labeled with integers of unbounded size (KL−), and WKL. Upon first
observing that there is no reason to suspect that WKL is as strong as KL−, they then go
on to identify the �0

1-comprehension schema and describe a system similar to RCA0 as a
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potential base theory for investigating such claims. They record that Friedman had already
shown that the result of adding KL− to �0

1 plus “closure under a few primitive recursive
operations” yields the full arithmetical comprehension principle (i.e., presumably a system
coincident with ACA0) and is thus not conservative over this system. However, Kreisel,
Mints, and Simpson also observe (pp. 124–125) that the result of adding KL and �0

1-CA
to PA yields a conservative extension.27

What Kreisel, Mints, and Simpson do not do, however, is to conjecture the Friedman-
Harrington result that WKL0 is conservative over RCA0 for �1

1-formulas (see note 18
above). And although this result was also stated without proof by Friedman (1975a), it is
not this specific feature of WKL0 which he takes to illustrate why this is a natural subsystem
to consider in the development of reverse mathematics. Rather he suggests that WKL0 is
an example of the following general theme: “Much more is needed to define explicitly a
hard-to-define set of integers than merely to prove [its] existence” (1975a, p. 235).

The computability-theoretic aspects of WKL0 discussed above illustrate why this is so.
For as Friedman observes, WKL0 is sufficient to prove that a non-computable set exists (as
follows from the fact that we can formalize Kleene’s argument in this system). But this
system is not strong enough to prove the existence of the Turing jump of an arbitrary set
(as follows from the fact that WKL0 has an ω-model consisting of just low sets). However,
since X ′ is�0

1-definable relative to X , an application of arithmetical comprehension yields
that ACA0 proves that X ′ always exists whenever X does.

§5. Arithmetical transfinite recursion and countable ordinals. The system ATR0
formalizes, and reverses to, certain elements of classical descriptive set theory. Appropri-
ately, the intellectual origins of this system lie in the early history of descriptive set theory
in Borel and Lusin, which we set out in §5.1. Then, in §5.2–§5.3, we describe the more
immediate antecedents to Friedman’s axiomatization of ATR0: namely, the effectivization
of descriptive set theory by Addison and Kreisel, and the development of hierarchies by
Harrison.

5.1. Borel, Lusin, and countable ordinals. A salient aspect of the early history of
descriptive set theory was a skepticism about the existence of ordinals, in spite of their
ostensible presence in certain core concepts like the hierarchy of Borel sets. For instance,
the title of Souslin’s famous paper which contains his result that the Borel sets are precisely
those sets which are both analytic and co-analytic, is “On a definition of the Borel mea-
surable sets without transfinite numbers” (Souslin, 1917). In this same spirit, Kuratowski
published a paper indicating how to avoid transfinite ordinals in certain constructions,
saying that “in reasoning with transfinite numbers one makes implicit use of their existence;
now the reduction of the system employed in the demonstration is desirable from the point
of logic and mathematics” (Kuratowski, 1922, p. 77). Kuratowski’s method is similar to
how we might alternatively define the Borel sets to be the smallest collection satisfying
certain closure properties.

Now, as for its sources, one source of skepticism about ordinals was due to Borel,
who prior to the paradoxes in 1898 argued that Cantor’s second principle of generation
of ordinals, namely the taking of supremums, could not of itself generate an uncountable
ordinal. Retrospectively, of course, we can see that Borel had a point: for if one formalizes

27 The equivalence of both KL and KL− to arithmetical comprehension over RCA0 is presented as
Theorem III.7.2 in Simpson (2009) and attributed to Friedman (1975a). The conservativity result
then follows since ACA0 is a conservative extension of PA.
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the second principle as saying that the supremum of any set of ordinals exists, then this
principle would be validated in models like Vω1 , wherein all ordinals are countable. The
way that Borel put the point was that “the second principle of formation could only make
us acquire cardinals which we already have” and he went onto add: “and it seems doubtful
that we have an idea sufficiently precise of what could be a cardinal exceeding the count-
able” (Borel (1898), p. 122, Borel (1914), p. 122, cf. Gispert (1995), p. 61). But Borel’s
conclusion is much more agnostic than that of Brouwer, who in his 1907 dissertation gave
exactly the same argument but with the conclusion that “Cantor’s second number class
does not exist,”: “[. . . ] it cannot be thought of” and “[. . . ] it cannot be mathematically
constructed” (Brouwer, 1975, p. 81).28

Another source of skepticism about ordinals was the Burali-Forti paradox. While
Hadamard thought that this paradox was no different than the paradoxes which initially
beguiled other fruitful mathematical concepts like the negative and complex numbers
(Hadamard (1905b), p. 242, cf. Garciadiego (1992), p. 139), Poincaré used the paradox
to inveigh against mathematics which was not sufficiently rooted in intuition (Poincaré
(1905), §8, pp. 824–825, Poincaré (1906), §7, pp. 303–305, cf. Moore & Garciadiego
(1981), pp. 340–342). Lusin then went onto use Burali-Forti to argue against the claim
that we have an intuition of ordinal numbers on the basis of the familiar representation of
small countable ordinals (as various products and sums of ω and finite ordinals):

In effect, if we make (or believe to make) an image perfectly clear of
the totality of countable ordinals [¶] 0, 1, 2, . . . , ω, ω + 1, . . . , α, [¶]
we see with the same clarity the totality of all the transfinite numbers,
and by the reasoning of Burali-Forti we see that this totality is logically
contradictory in itself (Lusin, 1930b, p. 26).

Lusin and Borel then suggested viewing ordinals merely as an “abbreviated notation” for
“the order in which must be effected a countable number of operations” (Lusin (1930b),
p. 29, cf. Borel (1914), p. 231).

On Lusin’s view, this explicit construction is crucial to Borel sets: “It is the order of
the intermediary sets which is the veritable nerve of the constructive definition of Borel
measurable sets” (Lusin, 1930b, p. 29). By contrast, non-Borel projective sets have a kind
of secondary status, perhaps similar to how we might say that something is merely a class
(and not a set) or merely given by a formula (as opposed to determining a second-order
object). Speaking of projective non-Borel sets, Lusin writes that he

[. . . ] adopts the empiricist point of view and is inclined to consider the
examples constructed by him as forms of words and not as defining
objects genuinely completed, but only virtual objects (p. 322).

This view in 1930 is far more tempered than the view espoused by Lusin in the original
1925 papers, in which many of the results from the 1930 book were first obtained. In
particular, due to his skepticism about the totality of countable ordinals (and referencing
Baire’s famous statement from the cinq lettres (cf. Hadamard (1905a), p. 264)), Lusin says
in 1925 that

Baire wrote, 20 years ago, in his letter to Hadamard, “of a set which is
given, it is in my view false to consider the subsets of this set as given.” It
seems to us that this assertion could be extended in the following manner:

28 See Troelstra (1982) §2–§4 for more on the influence of Borel on Brouwer.
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a set being given, it is false to consider its complement as given (Lusin,
1925, p. 281, italics added).

Lusin is here referring to the now familiar decomposition of a coanalytic set X as X =⋃
α<β Xα , where the Xα are pairwise disjoint Borel and β ≤ ω1 (cf. Lusin (1930b),

pp. 204–205, cf. Kechris (1995), p. 269, Moschovakis (2009), p. 162). Thus in 1925, Lusin
had voiced the claim that set existence is not necessarily closed under complementation, in
part due to his skepticism about the totality of all countable ordinals.

By contrast, in 1930 Lusin suggested that there was a possibility of a kind of experimen-
tal confirmation of the totality of all countable ordinals. In particular, Lusin formulated the
problem of determining whether every coanalytic set is countable or of the cardinality of
the continuum (Lusin, 1930b, p. 295, Problem 1). He thought that the interest in this lies
in a negative resolution, of the form: there exists an uncountable coanalytic set without a
non-empty perfect subset– in the contemporary parlance, an uncountable thin coanalytic
set (cf. Moschovakis (2009), pp. 187, 212).29 For, as mentioned above, Lusin was able to
write a coanalytic set X as X = ⋃

α<β Xα , where the Xα are pairwise disjoint Borel and
β ≤ ω1. And if X did not include a non-empty perfect subset, then neither would any of
the Xα , and hence by the perfect set theorem for Borel sets, each Xα would be countable,
which under the hypothesis that X was uncountable would entail that β = ω1. That is,
this circumstance would result in the least uncountable ordinal ω1 being rather concretely
realized in terms of a partition of a coanalytic set of reals into ω1-many disjoint countable
Borel parts. Lusin puts the significance of this as follows:

Therefore, if this case, which is logically possible, is practically real, one
could affirm that the existence of all countable ordinals is an empirical
fact. (Lusin, 1930b, p. 295).

Lusin articulated a method for solving this problem, which he called the method of
resolvants. As he notes, its origin was in a remark from Borel’s 1908 lecture at the Inter-
national Congress of Mathematicians, wherein Borel sets out his view of the arithmetic
continuum (which he opposes to the geometric continuum, which is given in intuition):

The continuum never appears given in its totality, from the arithmetical
point of view; each of its elements could be defined (or at least, there are
none of its elements of which we could actually affirm that they could
not be defined) [[Footnote]: Here is, to give an idea of my point of view, a
problem which appears to be the most important in the arithmetic theory
of the continuum: is it or not possible to define a set E such that one
could not name any individual element of this set E , that is to say, such
that one could not distinguish without ambiguity this from all the other
elements of E? (Borel, 1909, p. 17; Borel, 1914, pp. 161–162).]

Hence Borel raises the question of whether definable non-empty sets necessarily have
definable members.

In Lusin’s hands, this idea became identified with a method of solving problems. As
Lusin’s student Keldysh put it, Lusin “says that a problem has been ‘mis en résolvante’ if
there exists a point set E such that the problem can be resolved affirmatively if a point in the
set E can be specified, and resolved negatively if it can be proved that E is empty” (Keldysh

29 Of course, strong forms of determinacy axioms imply the positive resolution. See Jech (2003),
p. 629.
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(1974), p. 185, cf. Kanovei & Lyubetskii (2003), p. 866, Lusin (1930b), p. 293). Lusin then
showed that the resolvant of the problem of the existence of uncountable thin coanalytic
sets is a projective set (cf. Lusin (1930b), p. 295, Keldysh (1974), p. 185). Part of Lusin’s
prediction that the famous problems of descriptive set theory would remain unsolvable was
that “one can neither name an individual point in such sets [projective sets], nor know if
there ‘exist’ points in such a set, nor know their properties” (Lusin, 1930b, p. 303). That is,
while the projective sets are definable, Lusin predicted that they do not all have definable
elements, and hence are precisely the kind of sets which Borel’s “most important” problem
asked after.

5.2. Effectivizing descriptive set theory. These ideas of Borel and Lusin found their
way into latter-day developments primarily through the work of Addison. His dissertation,
written under Kleene and finished in 1954, is in part occupied with formally defining the
basic concepts of what is now commonly referred to as effective descriptive set theory. And
at the outset of his dissertation, Addison writes that Lusin (1930b) “has been our constant
companion and guide” (Addison, 1954, p. 4).

Addison points out that Borel had been one of the first to suggest the idea of some kind
of effectivization of descriptive set theory, or at least the Borel sets. But writing in 1914,
Borel did so not in terms of computation, but in a less formal manner. For instance, he
calls a real number r calcuable if given an n > 0 one “knows” a rational q such that
|r − q| < 1

n . Amplifying upon this in a footnote, he tells us that what’s essential in such
knowledge is that “each of the operations [in the calculation] must be executable in a finite
amount of time, by a method certain and without ambiguity” (Borel, 1914, p. 219 fn). He
extends this to functions from reals to reals, saying that such a function f is calculable
when f (r) is calculable for all calculable r (Borel, 1914, pp. 223–224). He then says that a
set is bien définis (literally: well-defined), if its characteristic function is calculable (Borel,
1914, p. 225), and that sets bien défini are “precisely” those which in the first 1898 edition
of his text he called measurable, and which Lebesgue later renamed B-measurable, where
of course the “B” stands for “Borel” (Borel, 1914, p. 226).30

While prescient, there is obviously much that is informal in this aspect of Borel’s work,
and Addison took his task to be to formalize Borel’s ideas using tools from computability
theory (Addison, 1954, pp. 43 ff). He defines effective Borel subsets of Baire space, along
with natural number indices of them, by transfinite recursion, defining a sequence Kα =
K +
α ∪ K −

α in analogue to the usual definition of sequence Bα of the Borel subsets. In
particular, the clopen basis K0 = K +

0 = K −
0 of Baire space is given by the functions that

pass through a given finite sequence, and Addison presents an effective coding of these
which serve as the indices. Then a set said to be in K +

α (resp. K −
α ) with index e if e is

an index for a total computable function such that the set can be written as a union (resp.
intersection) of sets Xn such that Xn has index {e}(n), where as usual this denotes the
action of the e-th program on input n. Thus K +

1 is what we now recognize as the effective
open sets and K −

1 as the effective closed sets, or what we often refer to simply as the
�0

1-classes (cf. §4.2). Finally, he notes that whereas the classical hierarchy of Borel sets is
equal to

⋃
α<ω1

Bα , the effective hierarchy is equal to
⋃
α<ωC K

1
Kα , where ωC K

1 denotes
the least non-computable ordinal (cf. Addison (1954), pp. 46 ff).

30 The first 1898 edition of Borel’s text (Borel, 1898) contains no discussion of calculability, and
so one should take Borel’s “precisely” with a grain of salt. The discussion of calculability first
occurs in the 1914 edition of Borel’s text in the context of Richard’s paradox (cf. Borel (1914),
pp. 162 ff).
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This general construction from Addison’s dissertation was never published. However,
the classical treatment of effective descriptive set theory is still Chapter 3 of Moschovakis’
descriptive set theory textbook, where we are told that Addison “[. . . ] initiated the
development of the unified treatment we are presenting here” (Moschovakis, 1980, p. 118;
Moschovakis (2009), p. 88). However, all of Addison’s subsequent research was animated
by a related aspect of the dissertation, where he explores the analogies between com-
putability theory and descriptive set theory, particularly as regards their separation prin-
ciples (cf. Addison (1959), Addison (1962), §3, Addison & Moschovakis (1968), Addison
(2004), §3).

Recall that a class of sets is said to satisfy the separation property if for any two disjoint
members A, B from the class there is C such that A ⊆ C and B ∩ C = ∅ and such
that both C and its complement belong to the class in question. In §4.2 we had occasion
to note Kleene’s result that the �0

1-definable sets of natural numbers do not satisfy the
separation property. This contrasts to Lusin’s famous result that the analytic sets do satisfy
the separation property (Lusin, 1930b, p. 156; Moschovakis, 2009, p. 156). Since both
the analytic sets and the �0

1-definable sets of natural numbers are defined in terms of an
existential quantifier, this initially seemed like it suggested that the two hierarchies were
very dissimilar.

However, Addison’s dissertation culminates in an explanation of why the analogy should
rather be: analytic sets correspond to �0

1-definable subsets of natural numbers, while co-
analytic sets correspond to �0

1-definable subsets of natural numbers (cf. Addison (1954),
p. 80). The explanation is simple: Addison notes that Lusin himself had suggested that ana-
lytic sets have many of the same properties as closed sets, while co-analytic sets have many
of the same properties as open sets, particularly as concerns their separation properties.31

But on Addison’s effectivization of the Borel sets, one has the effectively closed sets K −
1

are precisely the�0
1-definable classes, while the effectively open sets K +

1 are precisely the
�0

1-definable classes.

5.3. ATR0 as a formal system. Nearly simultaneous to Addison’s effectivization of
descriptive set theory, Kreisel was examining which theorems of classical descriptive set
theory were provable from the systems of predicative analysis, such as �1

1-AC0, which
was mentioned above in §2.3. He showed that the perfect set theorem for closed sets
failed in these systems. In particular, if we restrict attention to closed subsets of Cantor
space, these can be represented as paths through infinite binary branching trees. Kreisel
(1959a) basically showed that there was an effectively closed set whose decomposition
into a perfect set and a countable set was such that neither part of the decomposition was
hyperarithmetic (cf. Cenzer & Remmel (2012), §IV.7).32

The traditional proof of the theorem that a non-empty closed set decomposes into a
countable set and a perfect set explicitly uses ordinals.33 For a closed set C , one defines
a decreasing sequence of closed sets Cα by setting C0 = C , taking intersections at limits,

31 Indeed, it seems that, for Lusin, the term “separation” stems from the T1-axiom in topology,
which says that two distinct points can be “separated” by disjoint open sets (Lusin, 1930a, p. 57);
elsewhere he continues the topological analogies and suggests that separation principles give us
a qualitative notion of distance (Lusin, 1930b, pp. 65–66).

32 The qualifier “basically” is due only to the fact that Kreisel (1959a) works with closed subsets of
the unit interval.

33 Cf. Kechris (1995), p. 33, Cenzer & Remmel (2012), §V1. It turns out that this theorem reverses
to �1

1-CA0 (cf. Simpson (2009), pp. 219–220).
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and setting Cα+1 to be the non-isolated points of Cα . Hence it was also natural for Kreisel
to study facts about ordinals and well-orderings in these systems. In 1963, Kreisel further
showed that these systems did not prove that any two well-orders were comparable, in that
they did not prove that one was isomorphic to an initial segment of the other. This result
was reported, and a proof given, in Harrison (1968) (cf. pp. 531–532).

The approach that Harrison adopted to these problems was to consider analogues of the
hyperarithmetic hierarchy. This is the hierarchy of subsets Ha of natural numbers obtained
by iterating the Turing jump along codes a for computable ordinals, and it was a result of
Kleene’s that the �1

1-definable sets were precisely those computable from some element
of this hierarchy (cf. Kleene (1955), Sacks (1990), pp. 24, 31, Ash & Knight (2000),
p. 81). Following Feferman & Spector (1962), Harrison considered ‘pseudo-hierarchies’
H∗

a which were defined just like Ha but with the exception that the codes a were from
a linear order which, while not truly a well-order, at least had no hyperarithmetic infinite
descending sequences. Harrison used this to show that one could not prove, in the systems
Kreisel had considered, that for every code a for a computable ordinal that the set Ha

existed (cf. Harrison (1968), pp. 536, 542).
Friedman’s dissertation interacts with these results in several different ways. First, he

showed that one of Kreisel’s systems (�1
1-DC) is �1

2-conservative over another (�1
1-CA),

by showing that the existence of these hierarchies could go proxy for the comparability of
well-orderings.34 Second, he showed that it was not the case that for every pseudo-code a
that the set H∗

a exists (cf. Friedman (1967), pp. 13–14, cf. Harrison (1968), p. 542).
Against this background, it can retrospectively appear almost necessary to consider

axiomatic renditions of such hierarchies. Since these hierarchies are defined by transfinite
recursion on ordinals, this thus recommends an axiom to the effect that one can effect
transfinite recursion along well-orders. And indeed, the principle ATR0 expresses that if
θ is any arithmetical operator and if α is a code for a well-order, then the effective union
⊕β<αθβ exists, where this is defined recursively by

θ0 = ∅, θβ+1 = θ(θβ), ⊕β<γ θβ, if γ < α limit

This axiom was first articulated by Friedman in his 1974 address, where he mentions that
it is equivalent to the comparability of countable well-orders (cf. Friedman (1975a), p.
240, Friedman (1976), p. 559). In Simpson’s monograph, it is further shown that ATR0 is
equivalent over ACA0 to the “oracle-version” of the claim that Ha exists for any code a
for a computable well-order (Simpson, 2009, Theorem VIII.3.15, p. 328), as well as “every
uncountable analytic set has a perfect subset” (cf. Simpson (2009), Theorem V.5.5, p. 193).

This axiomatization of ATR0 accords well with Borel and Lusin’s idea that an ordinal
was an “abbreviated notation” for “the order in which must be effected a countable number
of operations”: for, ATR0 directly postulates an ability to do recursion along such an
ordinal. Further, since this is how ordinals are actually used in classical descriptive set
theory– namely as indices for certain stages in a construction – it is not surprising ATR0
ends up reversing to many statements of descriptive set theory. The first of these reversals
were from Steel’s dissertation, written under Addison and Simpson. In particular, Steel
showed that ATR0 was equivalent to weak forms of determinacy, namely to the case where
the winning set was an effective open set (cf. Steel (1977), p. 15, Simpson (2009), p. 208).

34 Cf. Friedman (1967), p. 10. It should be noted that the theories which Friedman’s results concern
include full induction. There is no conservation result for the systems without full induction. Cf.
Simpson (2009), p. 347, p. 381.
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While this result is now a classic of reverse mathematics, its constituent notions – the axiom
ATR0 itself and the effectivization of the Borel hierarchy – were of a long genesis, whose
steps we have sought to record and document.35

Finally, it is worth mentioning one further aspect of the history of the axiom ATR0.
Again, this axiom says that the we can do recursion along a well-order. But there are
different ways of making the result of a computation available. For instance, instead of
making the entire computation process available, one might simply make a certain outcome
of the result available. In the case where the governing operator is monotonic, it is of
course well-known that there will exist a least-fixed point, and so one might rather postulate
axioms asserting the existence of this point. This was the impetus behind the many theories
of inductive definitions studied by Kreisel, Feferman and others, and surveyed in Feferman
(1981), Feferman & Sieg (1981). One of the motivations for this study came from descrip-
tive set theory: “Inductive definitions formulate rules for generating mathematical objects.
The process of inductive generation is used frequently in mathematics; for example, it is
used to obtain the subgroup of a group G (generated from a given subset of G) or the Borel
sets of a topological space” (Feferman & Sieg, 1981, p. 18).

§6. Conclusions. In the previous pages we have set out in detail the history of the
constituent subsystems RCA0, WKL0, ACA0, ATR0 of second-order arithmetic. We want
to close with a few reflections, of a more general character, on what this suggests for our
understanding of reverse mathematics and the many parts of the history of logic with which
it interacts.

Let us begin with reverse mathematics. Our history suggests that there is a long-standing
tradition, within the study of the subsystems, of evaluating candidate axioms by studying
the implications between these axioms and principles of a more ostenstibly mathematical
character. For instance, we saw this early in the debate between Poincaré and Zermelo in
§2.1, where they both accepted that the predicative perspective must prove the Fundamental
Theorem of Algebra if this perspective was to be acceptable. Likewise, in §4.2 we saw the
how the Completeness Theorem’s requirement of the existence of non-computable sets
casts doubt as to its constructive credentials. Episodes such as these then suggest that the
organization of the study of subsystems of second-order arithmetic around reversals simply
explicitly thematizes this long-standing element of the practice.

Further, the history of this subject suggests an alternative to the received view on the
significance of reversals. The received view, due to Simpson and repeated in nearly every
talk and paper on reverse mathematics, is that reversals are significant because they mea-
sure the set-existence principles implicit in ordinary mathematics.36 But if “set existence
principle” means “instance of the comprehension schema,” then it leaves out WKL0 and
ATR0. If in response to this, one broadens the definition to include any sentence beginning

35 Of course, other results from effective descriptive set theory, such as Silver’s Theorem and slightly
stronger forms of determinacy, reverse to systems stronger than ATR0 (cf. Simpson (2009),
pp. 229, 235). Further, yet stronger forms of determinacy are not even provable in full second-
order Peano arithmetic (cf. Friedman (1971), Montalbán & Shore (2012)).

36 See Simpson (1988), Simpson (2009, I.1, I.9). But compare Friedman & Simpson (2000, §3),
where it is suggested that one might considering replacing the ‘mutual derivability’ that is
characteristic of reversals with the related notion of ‘mutual interpretability’; likewise, Drake
had at one point suggested that reversals might be interesting because they track ‘consistency
strength’ (Drake, 1989, §2.4). See Walsh (2014) for a discussion of what epistemic notions may
or may not be tracked by interpretability.
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with “∀ X ∃ Y . . .”, then by trivial syntactic manipulations every sentence can be made to
be equivalent to a set-existence principle, and then measuring set-existence would be just
the same as sorting out the very fine-grained equivalence classes of mutual derivability.

A deflationary alternative, suggested by our history, is that reversals are significant
simply because the axioms of the subsystems are antecedently significant, and showing
something to be equivalent to such a subsystem provides it with additional meaning and
significance. In the sections devoted to ACA0, RCA0, and ATR0, we described various
philosophical viewpoints which can be seen to motivate these positions. The knowledge
that a principle of mathematics is equivalent to one of these subsystems then further broad-
ens our knowledge of this viewpoint: we then know that the principle is justifiable from
this perspective. And if too few such important principles are so justified, then we have a
reason to move beyond this perspective.

But such a broadening can be effected by things other than a reversal per se. In addition
to knowing what kinds of algebra and analysis are justifiable from a given perspective, we
might want to know what sorts of computation-like processes are justifiable from a given
perspective. For instance, knowing whether the perspective is compatible with there only
being computable sets, or knowing whether the perspective is compatible with there only
being primitive recursive provably total functions, seems to be on a par with knowing what
kinds of algebra and analysis may be done within a system. Bishop’s constructivism prided
itself on being compatible with only computable sets, and Tait’s understanding of finitism
restricted the available functions to the primitive recursive functions. To understand how
far one is from such constructivism and finitism is to understand one’s computational
resources.37

On this picture, it is then natural to think that there will be certain subsystems which,
while not themselves corresponding to any philosophical or foundational viewpoint, serve
as guideposts for the calibration of such resources. Our history suggests that WKL0 is such
a subsystem: indeed, it arose as one of the first markers separating mathematics which
is compatible with only computable sets from mathematics which requires some non-
computable sets. In this sense then, of course a reversal to WKL0 does tell us something
about set existence, namely, it mandates a wide array of non-computable sets. But saying
this is not to say that there is a univocal notion of set existence which captures both
WKL0 and the subsystems formed from restrictions on comprehension schema. Rather, the
thought would simply be: to understand a subsystem and the foundational viewpoint which
it represents is to understand the mathematics which it is consistent with, and computation
is just as much a part of mathematics as algebra and analysis.

But there is much in our history that ought be of interest to those without prior interests
in reverse mathematics as such. Hence we want to close by highlighting a distinctive
feature of this history, namely: the crucial intermediary role that certain figures play in
transmitting results between different areas of mathematical logic and different founda-
tional enterprises. While not having the stature of a Hilbert or Gödel or Turing, figures
such as Kleene and Kreisel played a distinctive role as instigators of interdisciplinarity
within logic, a role which is omitted from the usual description of their achievements.
For instance, while Kleene is rightfully regarded as one of the founders of the theory of

37 This is related to the suggestion in Shore (2010, §2) that what is really interesting in reverse
mathematics is showing that two principles have the same ω-models. But two theories can have
the same ω-models without having the same provably recursive functions, and vice-versa. Indeed,
it is this very phenomena which suggested the shift–mentioned in the previous footnote–from
‘mutual derivability’ to ‘mutual interpretability’.
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computation, in our brief history he also plays an important role in forging interactions
between computability theory and other sub-fields of logic. To briefly recapitulate: (1) in
§2.2 we mentioned the startling fact that Kleene’s characterization of the computable sets
as the �0

1-definable sets was inspired by Souslin’s theorem, (2) in §4.2 we described how
the study of the effective properties of König’s Lemma was initiated by Kleene as a study
of Brouwer’s constructive foundations of analysis, (3) and in §5.1 we described how it was
Addison’s dissertation, written under Kleene, that transformed Borel’s attempt to study
“calculable” restrictions within analysis into present-day effective descriptive set theory.

Likewise, while today Kreisel is primarily known among philosophers for his claims
about second-order logic and the determinacy of the continuum hypothesis, and among
mathematicians for his basis theorems (cf. Kreisel (1967), Cenzer & Remmel (2012),
§III.2), our history shows that he played an important role in translating and collating
results between different areas and different communities. Again, to summarize: (1) in
§2.3–§2.4 we mentioned Kreisel’s role in emphasizing the important difference between
predicative provability and definability, (2) in §4.2 we described his role in bringing
computability-theoretic results to bear on the status of the completeness theorem within the
constructivist framework, (3) and in §5.3 we described how Kreisel’s work on the compu-
tational strength of the perfect set theorem for closed sets led to Harrison’s investigations,
which were the immediate antecedent of some of Friedman’s results in his dissertation.

If one were writing merely the history of one branch of mathematical logic or founda-
tional enterprise in isolation from the rest, it would be difficult to appreciate the combined
magnitude of these contributions of Kleene and Kreisel to the history of logic in the last
century. No doubt we have not said all there is to say about their contributions or that of
other figures such as Feferman or Friedman whose cross-disciplinary work is better known.
None of these figures adhered to or is associated with a specific foundational standpoint. But
our history has also served to illustrate how their extension of results and methods which
grew out of these standpoints served to guide the development of mathematical logic in the
second half of the last century – albeit in indirect and occasionally surprising directions.
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