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New model for acoustic waves propagating
through a vortical flow
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A new amplitude equation is derived for high-frequency acoustic waves propagating
through an incompressible vortical flow using multi-time-scale asymptotic analysis.
The reduced model is derived without an explicit spatial-scale separation ansatz
between the wave and vortical fields. As a consequence, the model is seen to capture
very well the features of the wave field in the regime where the spatial scales of
the wave and vortical fields are comparable, a regime for which an optimal reduced
model does not seem to be available.
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1. Introduction
The problem of acoustic waves interacting with a vortical flow at low Mach

number is one of the most fundamental wave–vortex interaction problems in fluid
flow. Originally motivated by the phenomenon of spontaneous generation of turbulent
jet noise, Lighthill (1952) demonstrated that nonlinear vortical interactions can act
as a source for sound waves, a theory that has been proved to have a wide range
of applications (Howe 2002). A related problem is the scattering of acoustic waves
by a localized vortex. Sound waves passing over a vortex can exert a fluctuating
pressure field on the vortex. The vortex in response emits a wave field to distort
the incoming wave, resulting in the formation of a scattered wave. This scattering
problem was treated by Lighthill (1953) as an extension of his theory (Lighthill
1952) to obtain a theoretical prediction for the scattered wave field. More recently,
Ford & Llewellyn Smith (1999) and Llewellyn Smith & Ford (2001) revisited this
problem to conclude that, although a straightforward application of the acoustic
analogy of Lighthill (1952) for the scattering problem is not a priori justifiable,
results of a more formal matched asymptotic analysis are consistent with Lighthill’s
prediction for the leading-order scattered wave field. Further, Hattori & Llewellyn
Smith (2002) found agreement between the results of matched asymptotic analysis
and numerical simulations of compressible fluid equations at low Mach numbers. In
this scattering problem, for a vortex to emit a wave so as to scatter an incoming wave,
the frequency of the emitted wave must match the nonlinear vortex evolution time
scale, i.e. ω = c/λ ∼ U/L, where λ and ω denote the wavelength and frequency of
the wave while U and L represent the velocity and length scales of the vortical flow
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Acoustic waves propagating through a vortical flow 659

and c is the speed of sound. From this we obtain λ/L∼ 1/M, M=U/c� 1 being the
Mach number, implying that the wavelength of these waves is asymptotically larger
than the length scale of the vortex. Further, since the wave frequency is comparable
to the vortical time scale, there is no time-scale separation between the wave and the
vortical flow. Consequently, this branch of acoustic wave scattering by vortical flows
may be identified as that consisting of low-frequency waves.

The other major branch of acoustic wave scattering by a vortical flow, the primary
focus of the present work, consists of high-frequency acoustic waves encountering
a vortical field at low Mach number. The high-frequency limit means that the wave
time scale is much shorter than the vortex evolution time scale, i.e. ω−1

� L/U.
This interaction problem also has received a lot of attention for more than half a
century, with advancements being made through analytical (Rayleigh & Lindsay 1945;
Kraichnan 1953; Kambe & Mya Oo 1981; Fabrikant 1983), experimental (Labbe &
Pinton 1998; Manneville et al. 2001; Berthet, Fauve & Labbe 2003; Brillant, Chilla
& Pinton 2004) and numerical (Colonius, Lele & Moin 1994) investigations. In
addition to pre-existing interests, recently the possibility of using acoustic wave
scattering by vortical flows as a non-intrusive flow diagnostic technique, in contrast
to techniques such as particle imaging velocimetry or laser Doppler velocimetry,
which require seeding of the flow by external particles, has rejuvenated interest in
this problem (Lund & Rojas 1989; Baudet, Ciliberto & Pinton 1991; Oljaca et al.
1998; Manneville et al. 1999; Seifer & Steinberg 2004, 2005). Theoretical treatment
of this interaction in the past has taken advantage of spatial-scale separation between
the wavelength (λ) and the vortical length scale (L). The Wentzel–Kramers–Brillouin
(WKB) approximation holds in cases where the wave field propagates through a
background flow whose changes are felt over many wavelengths, i.e. λ/L � 1,
supporting the usage of geometric acoustics and ray tracing (Georges 1972; Broadbent
1977; Landau & Lifshitz 1987). Although λ/L � 1 is assumed, the partial wave
method is a technique that goes slightly beyond the WKB limit (Berthet & Coste
2003). The other extreme limit is the case of a large-scale wave field encountering
a small-scale vortical flow. The Born approximation is used in this regime, given
that the condition εL/λ� 1, where ε is the Mach number of the flow, is satisfied
(Fabrikant, Stepanyants & Stepaniants 1998; Auregan et al. 2002).

In spite of the extensive usage of these reduced models, in actual applications,
for example as observed in laboratory experiments, the vortical length scales are
comparable to the wavelength, i.e. λ/L ∼ O(1), violating the basic assumptions
required for the usage of these popular techniques (Labbe & Pinton 1998; Manneville
et al. 2001; Berthet et al. 2003). Surprisingly, very few works have directly addressed
this important regime, with the ones that have done so focusing on very simple
vortical flows such as a uniform flow or linear shear flows (e.g. Campos, Legendre &
Sambuc 2014; Brambley 2016). The lack of an optimal reduced model suitable for the
case where both fields share comparable spatial scales has led to the usage of these
existing techniques even when their requirements are not met. For instance, Labbe &
Pinton (1998) and Manneville et al. (2001) used WKB in spite of being outside its
regime of validity for qualitative comparison with experimental results. Specifically,
Labbe & Pinton (1998) say ‘A quantitative treatment would require one to include
the scattering effects for which no general theory is available in the near field region
where our measurement is made’, an issue that still remains unresolved. Given the
wide range of applications, it is highly desirable to have a reduced model which does
not take advantage of spatial-scale separation between wave and vortical fields, i.e. a
model that holds for λ/L∼O(1). The derivation of such a model is the goal of this
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660 J. Thomas

work. In § 2 we derive an amplitude equation for acoustic waves propagating through
an arbitrary vortical flow without any explicit assumption on spatial-scale separation
between the wave and vortical fields. We then compare the accuracy of this reduced
model with the linearized compressible Euler equations using numerical simulations
in § 3 for several vortical flows. Finally we summarize the work in § 4.

2. Derivation of the asymptotic reduced model
2.1. Linearized equations for the interaction

The Euler equations governing the dynamics of a compressible homentropic fluid are

∂v

∂t
+ v · ∇v +

1
ρ
∇p= 0, (2.1a)

∂ρ

∂t
+∇ · (ρv)= 0, (2.1b)

p
ργ
= const., (2.1c)

where (v,p, ρ) denote velocity, pressure and density, respectively, and γ is the ratio of
specific heats. We consider a weak acoustic wave field, (v′, p′, ρ ′) propagating through
a steady incompressible vortical flow (v(x), p(x), ρ) that satisfies the incompressible
Euler equations:

v · ∇v +
1
ρ
∇p= 0, (2.2a)

∇ · v = 0, (2.2b)

where ρ is constant. (We note that demanding the vortical flow to be ‘steady’ is
slightly over-restrictive. Strictly speaking we can let the vortical flow evolve on a
slow time scale as long as L/U is asymptotically greater than ω−1 so that the wave
field satisfies the ‘high-frequency’ requirement.) Using the vortex–wave splitting v =
v + av′, p= p+ ap′, ρ = ρ + aρ ′ in (2.1), where a� 1 is the wave amplitude, and
ignoring the nonlinear wave interaction terms of O(a2), we get

∂v′

∂t
+ v′ · ∇v + v · ∇v′ +

1
ρ
∇p′ −

ρ ′

ρ2∇p= 0, (2.3a)

∂ρ ′

∂t
+∇ · (ρv′ + ρ ′v)= 0. (2.3b)

We scale the above equations as

t→ (L/c∞)t, x→ Lx, v′→ c∞v′, p′→ (ρ∞c2
∞
)p′, ρ ′→ ρ∞ρ

′,

v→Uv, p→ ρ∞U2p, ρ→ ρ∞ρ,

}
(2.4)

where p∞, ρ∞ and c∞ refer to the pressure, density and speed of sound at a state
of rest. Observe that we do not distinguish between wave and vortical length scales,
using L as an estimate for both. Therefore (L/c∞)−1 is an estimate for the frequency
of the wave field. The scaled non-dimensional equations are

∂v′

∂t
+

1
ρ
∇p′ + ε(v′ · ∇v + v · ∇v′)− ε2

(
ρ ′

ρ2

)
∇p= 0, (2.5a)
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Acoustic waves propagating through a vortical flow 661

∂ρ ′

∂t
+∇ · (ρv′)+ ε∇ · (ρ ′v)= 0, (2.5b)

where ε = U/c∞ is the Mach number. We further simplify the above equations by
using

p/p∞ ∼ 1+O(ε2), ρ/ρ∞ ∼ 1+O(ε2), (2.6a,b)

p
p
=

(
ρ

ρ

)γ
⇒ p′ ≈

(
γ p
ρ

)
ρ ′ ≈

(
γ p∞
ρ∞

)
ρ ′, (2.6c)

where both (2.6a,b) and (2.6c) are written in dimensional form for clarity. The
expressions in (2.6a,b) indicate the well-known result that the pressure and density
fields of an incompressible flow are O(ε2) perturbations to the values at rest – see
for example § 2.6 of Lesieur (2008). To get (2.6c), we manipulated the isentropic
pressure–density relationship (see (2.1c)) and in the final step we used (2.6a,b).
It must be noted that these manipulations assume that density variations occur
on relatively small scales, unaffected by external agencies. Consequently, these
expressions do not extend straightforwardly to a Boussinesq fluid, for example,
approximating large-scale flows in the atmosphere or the ocean, where changes in
density are more pronounced in a certain direction due to external forcing, such as
gravity (Ostashev & Wilson 2015).

After non-dimensionalizing (2.6a,b) and (2.6c) using (2.4), we use them in (2.5)
and ignore the O(ε2) terms to get the minimal set of equations for acoustic waves
propagating through an incompressible flow (hereafter we shall drop the ‘primes’):

∂v

∂t
+∇p+ ε(v · ∇v + v · ∇v)= 0, (2.7a)

∂p
∂t
+∇ · v + ε∇ · (pv)= 0. (2.7b)

Subtracting the divergence of (2.7a) from the time derivative of (2.7b), we get(
∂2

∂t2
−∆

)
p+ ε∇ ·

(
∂p
∂t

v − v · ∇v − v · ∇v

)
= 0. (2.8)

Using (2.7b) in (2.8) to eliminate ∂p/∂t and ignoring the O(ε2) term that arises, we
get (

∂2

∂t2
−∆

)
p− 2ε∇ · (v · ∇v)+O(ε2)= 0. (2.9)

Note that the term ∇ · (v · ∇v)= ∂2(vivj)/∂xi∂xj is the leading interaction term most
frequently encountered in acoustic wave–vortical flow interaction investigations – see
§ 3.1 of Auregan et al. (2002) or Kraichnan (1953).

2.2. An amplitude equation
Setting ε = 0 in (2.9), we get the standard wave equation for acoustic wave
propagation. To derive an equation for the slow evolution of this leading-order
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wave field, we introduce a slow time T = εt and redefine the time derivative as
∂/∂t→ ∂/∂t+ ε∂/∂T to obtain(

∂2

∂t2
−∆

)
p+ 2ε

[
∂2p
∂t∂T

−∇ · (v · ∇v)

]
+O(ε2)= 0. (2.10)

We now expand variables asymptotically as (p, v)= (p0, v0)+ ε(p1, v1)+ O(ε2). At
leading order, we have

∂p0

∂t
+∇ · v0 = 0, (2.11a)

∂v0

∂t
+∇p0 = 0, (2.11b)(

∂2

∂t2
−∆

)
p0 = 0. (2.11c)

We write the solution of the above equations as a single-frequency wave field:

p0 = A0e−iωt
+ c.c., (2.12a)

v0 =−
i
ω
∇A0e−iωt

+ c.c., (2.12b)

where c.c. denotes complex conjugate. Using (2.12a) in (2.11c), we get the
homogeneous Helmholtz equation for the leading-order wave field:

−(ω2
+∆)A0 = 0. (2.13)

To capture the effect of the vortical flow on the leading-order wave field, we modify
(2.11c) as (

∂2

∂t2
−∆

)
p0 = εΦ(x, T)e−iωt

+ c.c., (2.14)

allowing us to derive an evolution equation for the wave amplitude, with Φ being
an unknown that will be found at the next order of asymptotics. This technique of
improving the leading-order dynamics by incorporating next-order correction terms is
known as reconstitution (Roberts 1985) and was recently used by Thomas, Smith &
Bühler (2017) to derive amplitude equations for near-inertial waves and by Thomas
(2016) to obtain higher-order corrections to the quasi-geostrophic equation. The
reader may also refer to Ablowitz (2011) for specific examples. The technique of
reconstitution in the exact form we employ here was first used by Wagner & Young
(2016) to derive an amplitude equation for the near-inertial second harmonic wave
field (especially see their appendix A). Using (2.12a) in (2.14), we get a refined form
of (2.13):

−(ω2
+∆)A0 = εΦ. (2.15)

At O(ε) of (2.10), we have(
∂2

∂t2
−∆

)
p1 +

{(
Φ − 2iω

∂A0

∂T
+ 2

i
ω
∇ · [v · ∇(∇A0)]

)
e−iωt
+ c.c.

}
= 0. (2.16)
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Acoustic waves propagating through a vortical flow 663

We set

p1 = A1e−iωt
+ c.c.+NRT, v1 =−

i
ω
∇A1e−iωt

+ c.c.+NRT, (2.17a,b)

where ‘NRT’ refers to non-resonant terms (whose frequency differs from ω) that are
required to complete the solution at O(ε). Substituting (2.17) into (2.16) and using
a solvability condition of the form

∫
∞

−∞
eiωt(2.16) dt= 0, which removes NRT, we get

−(ω2
+∆)A1 +Φ − 2iω

∂A0

∂T
+ 2

i
ω
∇ · [v · ∇(∇A0)] = 0. (2.18)

We combine the two equations as (2.15) + ε(2.18), define A = A0 + εA1 and ignore
the O(ε) terms that arise by approximating A0 by A in the last two terms in (2.18) to
get a single amplitude equation:

∂A
∂T
−

i
2εω

(ω2
+∆)A−

1
ω2
∇ · [v · ∇(∇A)] = 0. (2.19)

There are two noteworthy observations regarding the amplitude equation given in
(2.19). First, observe that using reconstitution we combined the O(1) and O(ε) parts
of the wave field to derive a single amplitude equation. This means that the O(ε)
terms, which capture the essence of the interaction, are allowed to modify the leading-
order wave field by direct resonant interaction. This may be contrasted to a method
such as Born approximation, where the leading-order field is fixed and separated from
the O(ε) scattered wave field (see for example § 3.2 of Auregan et al. (2002)), as a
consequence of which the O(ε) field does not directly affect the O(1) wave field.

Second, the presence of the term (ω2
+∆)A in the above amplitude equation implies

that the model is capable of capturing near-resonant dynamics. Simply put, this means
even if (2.19) is initialized with a single mode A=Ak0e

i(k0·x) with ω=|k0|, the vortical
flow can scatter wave energy to new modes k = k0 + δk so that at a later time the
spectrum of A can contain modes of the form Akei(k·x) with the difference ω − |k|
and the term (ω2

+ ∆)A both being non-zero, however small they may be. To see
an important consequence of this, we consider the evolution of a single plane wave
A=Akei(k·x−ΩT) based on this reduced model, temporarily ignoring the interaction term
(last term in (2.19)). This gives us the dispersion relation Ω(k) = (k2

− ω2)/(2εω),
from which follow Ω ′(k0)= k0/(εω) and Ω ′′(k0)= 1/(εω), where k= |k| and ω= k0.
Observe that although we get the correct expression for the group velocity, the
model predicts acoustic waves to be dispersive, i.e. Ω ′′(k0) 6= 0, contrary to their
well-known behaviour. We therefore take an extra step to modify the dispersive
characteristics of (2.19). Time differentiating (2.15) (using A instead of A0), we get
(ω2
+ ∆)∂A/∂T = O(ε). We add this term multiplied by an unknown variable α

to (2.19). The corresponding equation (ignoring the O(ε) term) and the dispersion
relation obtained by using a single plane wave as before are

[1+ α(ω2
+∆)]

∂A
∂T
−

i
2εω

(ω2
+∆)A= 0 (2.20a)

⇒ Ω(k)=
1

2εω
k2
−ω2

1+ α(ω2 − k2)
. (2.20b)

We get a unique value for α, i.e. α=−1/(4ω2), by imposing Ω ′′(k0)= 0 above. Using
this we get a modified amplitude equation:

(3ω2
−∆)

∂A
∂T
−

2iω
ε
(ω2
+∆)A− 4∇ · [(v · ∇)∇A]= 0. (2.21)
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664 J. Thomas

Equation (2.21) is the main result of this paper. It is a reduced model that filters
the oscillatory part of the wave field (e±iωt) and concentrates on the vortical induced
changes in the wave field.

To develop some confidence in this reduced model we now examine two special
cases. First we consider a single Fourier mode A = A0ei(k0·x), which corresponds to
a plane pressure wave p = A0ei(k0·x−ωt)

+ c.c., with ω = |k0|, propagating through a
spatially homogeneous flow, v = U, such that ∂xU = ∂yU = 0. Note that since this
flow is homogeneous, the interaction with the plane wave does not generate any new
wave modes, and therefore the amplitude equation (2.21) simplifies as

dA0

dT
+ i(k0 ·U)A0 = 0, (2.22)

since (ω2
+ ∆)A = (ω2

− k2
0)A0ei(k0·x) = 0. Integrating (2.22) in time, we get

p = A0(0)ei(k0·x−(ω+εk0·U)t) + c.c. Notice that the amplitude equation predicts that
the homogeneous flow acts to shift the frequency of the wave on a slow time scale.
This is a well-known result from ray tracing in the WKB regime (Landau & Lifshitz
1987).

As a second example, we consider a vortical flow consisting of a single Fourier
mode, v=Vei(kv ·x)+ c.c., and constrain the wave field to two plane waves so that A=
A1ei(kw1·x) + A2ei(kw2·x) with kw2 = kw1 + kv. Using these in (2.21), we get two ordinary
differential equations for the amplitudes of the plane waves:

dA1

dT
+

i
ω2
(kw1 · kw2)(kw2 · V∗)A2 = 0, (2.23a)

dA2

dT
+

i
ω2
(kw1 · kw2)(kw1 · V)A1 = 0. (2.23b)

These equations, which are also obtained if we start from (2.7) to construct amplitude
equations for two plane waves interacting with a single vortical mode, describe how
the vortical mode acts as a passive agent catalysing interactions between the two wave
modes. Solutions to these equations can be easily written down and an examination
reveals that the vortical mode phase shifts the wave frequency on the slow time scale,
T ∼O(1).

Of course, in general the vortical field is neither a homogeneous flow nor a single
Fourier mode, but its spectrum is expected to be composed of a wide range of
wavenumbers. If we begin with this ansatz in (2.7), we will find that a single plane
wave will scatter its energy to several other waves whose wavenumbers lie on a
circle in spectral space (|k0| = ω), yielding significantly more equations like (2.23).
In general, such a large collection of coupled equations in spectral space is difficult
to handle. One may go a step further by expressing all the terms resulting from the
interactions as an integral to obtain an integro-differential equation; Faou, Germain
& Hani (2016), for example, take advantage of such a strategy to investigate weakly
nonlinear wave interactions in the Schrödinger equation. By using reconstitution and
by retaining the term (ω2

+∆)A in (2.21), we are able to negotiate these difficulties
and most importantly obtain an amplitude equation in physical space.

2.3. Conservation laws
By spatially integrating A∗(2.21)+ c.c. and i(∂A∗/∂T)(2.21)+ c.c. over the whole
domain, assuming there is no contribution from the boundaries (corresponding
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to periodic or unbounded domains), we get the following two conservation laws
respectively for the amplitude equation (2.21):

d
dT

(
〈|A|2〉 +

1
3ω2
〈|∇A|2〉

)
= 0, (2.24a)

d
dT

{(
〈|A|2〉 −

1
ω2
〈|∇A|2〉

)
+

2iε
ω3
〈(∇A∗) · (v · ∇)(∇A)〉

}
= 0, (2.24b)

where 〈 〉 stands for integration over the whole domain. From (2.12a) and (2.12b),
it is clear that 〈|A|2〉 and 〈|∇A|2〉/ω2 represent the potential and kinetic energies
of the wave field, respectively. It is interesting to note that the original amplitude
equation (2.19) satisfies the conservation law d〈|A|2〉/dT = 0 instead of (2.24a) while
(2.24b) remains the same. In classical wave–mean flow interaction theory 〈|A|2〉
is identified as the wave action, whose conservation is a fundamental feature that
arises in amplitude equations (see e.g. Craik 1985; Bühler 2014). In the process of
improving the linear dynamics of (2.19) to obtain (2.21), we ended up modifying
action conservation to (2.24a). However, as we shall see in § 3 (see for instance
figure 10), improving the linear dynamics significantly upgrades the performance
of the model. The second conservation law is a statement of how the difference
between the potential and kinetic energies of the wave field changes due to the
interaction. Notice that, in the absence of the vortical flow, the difference between
the potential and kinetic energies is constant (this can be seen by setting ε = 0 in
(2.24b)), implying that if the kinetic and potential energies were equal initially they
would remain so. In other words equipartition of energy holds uniformly in time for
undisturbed wave fields. However, as a consequence of the interaction, the difference
between the kinetic and potential energies of the wave field changes at the expense
of the vortical flow.

3. Numerical experiments
In this section we use a series of numerical experiments to test the accuracy of

the amplitude equation. Although results obtained in § 2 apply in three dimensions,
for convenience we constrain ourselves to two-dimensional experiments. In doubly
periodic two-dimensional domains we compare the asymptotic model (2.21) with
respect to the parent model (2.7) and we shall refer to these two models as AM
and PM respectively for brevity. For all experiments described in this section we
used ε = 0.05, a choice motivated by experimental investigations that report the flow
Mach number to be O(10−2) or smaller (see e.g. Oljaca et al. 1998; Manneville et al.
2001; Berthet et al. 2003). First, we consider the interaction of acoustic waves with
a Gaussian vortex, an exact solution of the inviscid incompressible vorticity equation
(the inviscid limit of the Lamb–Oseen vortex; see Saffman 1992), whose vorticity, ζ ,
is given by

ζ =
αΓ

π
e−αr2

⇒ vθ =
Γ

2πr
(1− e−αr2

), (3.1)

where vθ is the azimuthal component of velocity and r=
√
[(x− xmid)2 + (y− ymid)2],

(xmid, ymid) being the centre of the domain. The parameter α decides the decay rate
and therefore the size of the vortex, and the circulation Γ in each experiment was
chosen so that the maximum value of vθ in the domain was unity, to be consistent
with the non-dimensional PM, equation (2.7). We first consider the interaction of a
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wave packet with a coherent vortex. In the absence of the vortex, corresponding to
the wave packet p= e−(1/10)[(x−x0)

2
+(y−ymid)

2
]ei(kx−ωt)

+ c.c., the amplitude was chosen to
be (based on (2.12a))

A= e−(1/10)[(x−x0)
2
+(y−ymid)

2
]eikx, (3.2)

where x0 was chosen so that the wave packet initially was located away from the
vortex core. To obtain a compact wave envelope encapsulating several wave phases,
we chose k= 8. This gives us a coherent structure for the wave field and our interest
is in examining how this coherent wave field is affected by the vortical flow. (A
diligent reader might protest at this point – in experiments where a localized wave
field interacts with a compact vortex, should we not use wave-absorbing boundaries
in contrast to periodic ones? In principle, it is ideal to use wave-absorbing boundaries
so that the localized leading-order wave field remains unaffected by any part of the
wave field that propagates beyond the computational domain due to reflection or
scattering by the vortex, mimicking the set-up of an unbounded domain. However,
on repeating the experiments described here with the domain length quadrupled
(i.e. 16 times increase in area), we did not find any notable difference in the wave
fields’ behaviour. We therefore persisted with periodic domains, which helped us take
advantage of spectrally accurate simulations.) A typical initial condition is shown
in figure 1(a). Using (3.2) in (2.12b) (with the subscript ‘0’ dropped), we get the
velocity field corresponding to the wave packet. Setting t = 0 in the expressions for
velocity and pressure, we get the initial conditions required to integrate PM, while
(3.2) serves as the initial condition for AM. We numerically integrated the AM
and PM using a pseudospectral code with RK4 time stepping. The spatio-temporal
resolution was chosen by ensuring that the conserved quantities in (2.24a) and (2.24b)
did not change by more than 5 % during the integration. Hyperdiffusion was used to
ensure that the grid-scale Reynolds number was O(1), dissipating unresolved scales
at the resolution employed. A spatial resolution of 5122 was used for the simulations
and the resolution was doubled to check numerical convergence. In all comparisons
that follow, pAM and pPM refer to the pressure distributions obtained from the AM
and PM respectively, and the results are expressed in terms of t, implying that we
used T = εt to relate slow time in AM to single time in PM. While pPM is obtained
directly from PM, A from AM was used in (2.12a) to get pAM. We varied α in (3.1)
to test the effect of vortices of different sizes on a wave packet, and the results
corresponding to α = 0.005, 0.1 and 5 are shown in figures 2, 3 and 4 respectively
for a domain [0, 16π]2. For α = 0.005 the wave packet is propagating through a
large-scale vortex whose changes are felt over many wavelengths, reminiscent of the
ray tracing regime where WKB holds. Concomitant with the direction of vθ , all the
phase lines gradually tilt anticlockwise, more or less by the same amount as seen in
figure 2 (note the tilt in phase lines at t= 20 and 40 in comparison with t= 1). This
(approximately) uniform tilting of the phase lines can be attributed to the fact that
the changes in the vortical field are weak on scales of the order of the wavelength
and therefore all phase lines experience more or less the same background flow. The
wave packet therefore retains its coherent structure in spite of getting refracted as it
propagates through the vortex. On decreasing the size of vortex by setting α = 0.1,
we make the wave packet comparable in size with the vortex. Now changes in the
vortex field occur at the scale of the wavelength. As a result, different phase lines are
affected by varying amounts depending on their location, and this results in loss of
the coherent structure of the wave packet, as can be seen from figure 3. Observe that,
as the wave packet leaves the vortex, there is loss of initial symmetry with increased
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FIGURE 1. (Colour online) (a) Wave packet at t= 0 with a vortex (α= 5). The subsequent
evolution of this wave packet is shown in figure 4. The three black contours of the vortex
are locations where vorticity is 75 %, 30 % and 10 % of the maximum value at the centre,
also shown in figures 2–7 (except figure 5) to give an indication of the size of the vortex
in various cases. (b) Turbulent vorticity field obtained by integrating the two-dimensional
vorticity equation with random initial data.

wave activity on one side in comparison with the other, the gradients increasing in
the direction of vθ . Finally, for the case of a vortex much smaller than the size of
the wave packet, shown in figure 4 with α chosen to be 5, the size of the vortex
itself is now comparable to the wavelength, resulting in highly variable deflection of
phase lines at various locations in the wave packet. This results in significantly more
scattering of the wave packet and the wave field leaves the vortex with two weakly
connected parts, as can be seen in figure 4 at t= 16. The scattering process is more
obvious from figure 5, which shows the spectrum of the wave field at the final time,
where p̂k denotes the Fourier coefficient of eik·x obtained from the Fourier expansion
of p. Note that although all wave energy was initially accumulated at k= (8, 0) and
k= (−8, 0) (due to c.c.; see (2.12a)), scattering by the vortical field redistributes this
energy to other wavenumbers, these new wavenumbers being approximately located
on and around the circle |k| = 8 in spectral space corresponding to the frequency
condition ω= |k|, as can be seen from figure 5.

To quantify the error between AM and PM for various cases, we define the
normalized root-mean-square (r.m.s.) error as

erms =

√
〈(pAM − pPM)2〉√
〈(pPM)2〉

, (3.3)

and this is shown in figure 10 for these three cases, indicated by the continuous red,
blue and black curves respectively. Although the time of integration was different
for each experiment, we rescaled time in figure 10 to accommodate all error plots
on a single axis, which of course does not affect the error values themselves. From
figure 10 we find that the errors are O(ε), and as can be inferred from figures 2 to
5, the AM and PM are seen to agree well. Interestingly the agreement between AM
and PM is seen to improve as the wavelength and vortical scale become comparable.
In other words, the scattering regime, where the scales of the wave and vortical fields
are more or less comparable, is seen to be better captured by the AM than the λ/L�
1 regime, where the errors are relatively higher. This can also be seen in figure 2
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FIGURE 2. (Colour online) Plots of (a) pAM and (b) pPM at t= 1 (left of the vortex core),
20 (at the vortex core) and 40 (right of the vortex core) for α = 0.005.

15

20

25y

30

35(a)

(b)

15
20 25 30 25 30 35 40 30

–2.0

–1.5

–1.0

–0.5

0

0.5

1.0

1.5

2.0

35 4540

20

25y

x x x

30

35

FIGURE 3. (Colour online) Plots of (a) pAM and (b) pPM at t= 6, 15 and 25 from left to
right for α= 0.1. Note that the third column shows a larger part of the domain than the
previous two columns in order to accommodate the wave packet and part of the vortex
in the same frame.

– on closer examination it is clear that at t = 40 the reduced model predicts the
wave packet to be slightly more distorted than in the parent model. Of course, it
must be noted that higher errors in the λ/L� 1 regime could be a result of longer
integration time (final time was t = 40 for the first case with α = 0.005 compared
to t = 16 for the last case with α = 5). In general, asymptotic models with fixed ε

are expected to diverge from their parent models with increasing time, the agreement
improving as ε is made smaller and smaller. Nevertheless, we note that the important
take-away message from this set of experiments is that, for a wave packet interacting
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FIGURE 4. (Colour online) Plots of (a) pAM and (b) pPM at t= 8, 12 and 16 from left to
right for α = 5.
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FIGURE 5. (Colour online) Plots of (a) |p̂k
AM| and (b) |p̂k

PM| at t= 16.

with vortices of varying size, the reduced model performs best in the regime where the
vortical length scale is comparable with the wavelength, this regime being the primary
target of the present work.

For all the experiments reported, we compared the amplitude equations with and
without improved linear dispersive characteristics, i.e. equations (2.19) and (2.21), with
the parent model. Overall we consistently found that improving the linear dispersive
part of the reduced model led to better agreement with the parent model. An example
of this is shown in figure 6 for the case with α= 5. Figure 6(a) shows the pointwise
error between AM and PM at t= 16 while figure 6(b) shows the difference between
the solution obtained by integrating (2.19) and PM. Note that the pointwise error
magnitudes are less for the model with improved linear dynamics (2.21) by a factor
of more than three as compared to the original model (2.19). A further comparison
is shown in figure 10, where the discontinuous black curve shows the r.m.s. error
between PM and (2.19), which should be compared with the continuous black curve
corresponding to (2.21). The r.m.s. error is seen to be much higher for (2.19) as
compared with (2.21). These comparisons demonstrate the benefits of improving the
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FIGURE 6. (Colour online) Pointwise errors: (a) pAM − pPM and (b) p(2.19) − pPM.
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FIGURE 7. (Colour online) Plots of (a) pAM and (b) pPM at t= 50, 100 and 200 from left
to right for α = 0.1.

linear dispersive characteristics of the original model (2.19) to obtain our preferred
model (2.21).

Next, we conducted a series of experiments with a plane wave p = ei(kx−ωt)
+ c.c.

corresponding to the amplitude A= eikx, propagating through vortices of different sizes.
In general we found that the AM and PM agreed quite well, and a particular example
where k = 1 and α = 0.1 in (3.1) is shown in figure 7. Notice how the phase lines
get tilted, breaking the translational symmetry of the wave field in the y direction,
eventually resulting in increased wave activity in the upper half of the domain. The
magenta curve in figure 10 quantifies the difference between the two models. Except
for very specific differences in the dynamics depending on the size of the vortex, we
found that a plane wave interacting with isolated vortices is captured very well by
the AM. We therefore skip further details here and focus on a more extreme case –
a plane wave interacting with a turbulent flow. The vorticity field for this experiment
consisted of a turbulent distribution of vortices of varying sizes, shown in figure 1(b),
obtained by integrating the two-dimensional vorticity equation in a doubly periodic
domain [0, 64π]2 with random initial data. As before, the velocity field obtained by
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FIGURE 8. (Colour online) Plots of (a) pAM and (b) pPM at t= 50 and 400.

inverting this vorticity field was normalized to have unit maximum value before using
it to integrate AM and PM. We propagated a plane wave with k = 1 through this
flow. The choice of relatively longer integration time (final time was t = 400) in a
larger spatial domain ensured that the wave field interacted with the turbulent flow for
a significant amount of time. Figure 8 shows the comparison between AM and PM
for this case. As time progresses, the plane wave gets shredded into smaller scales, a
behaviour that is well captured by the reduced model. The error between AM and PM
is indicated by the green curve in figure 10. It is important to note that, even though
the initial condition was a plane wave consisting of a single wavenumber, scattering by
the vortical field generates a wide range of new wavenumbers, corresponding to the
small-scale formation in the wave field observed in physical space. This is obvious
from figure 9, which shows the spectrum of the wave field at the final time, similar
to figure 5. The scattering process results in transfer of energy to other wavenumbers
from the initial k= (1, 0) and k= (−1, 0) (corresponding to the plane wave). However,
this spectral scattering is more or less compatible with the frequency requirement ω=
|k|, which implies that the new wavenumbers lie on and close to the circle |k| = 1
in spectral space. This condition being satisfied during the scattering process is the
primary reason for the noteworthy agreement between the AM and PM.

4. Summary
The main objective of this work was to derive and test a reduced model capable

of capturing the essential features of acoustic waves propagating through an
incompressible flow in the parameter regime where the wave and vortical flow shared
comparable spatial scales. Using multi-time-scale asymptotics, taking advantage
of a time-scale separation between wave and vortical flow but with no a priori
assumption regarding the spatial scales, we were able to derive an amplitude equation
for the effect of a vortical field on acoustic waves. On comparing this model with
the linearized compressible Euler equations for a wave packet propagating through
vortices of varying sizes, we found that the reduced model performed very well when
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FIGURE 9. (Colour online) Plots of (a) |p̂k
AM| and (b) |p̂k

PM| at t= 400.
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FIGURE 10. (Colour online) The root-mean-square (r.m.s.) error with time axis scaled to
accommodate all the cases considered in a single plot. The continuous red, blue, black,
magenta and green curves correspond to cases considered in figures 2, 3, 4, 7 and 8,
respectively. The broken black curve plots the r.m.s. error between the parent model and
(2.19), whose linear dynamics were not modified, for the case corresponding to that shown
in figure 6(b).

the wavelength and vortical flow scale were comparable. Similar results were found
on letting a single plane wave propagate through a compact vortex. However, the most
extreme test for the new model was the case where a plane wave was propagated
through a turbulent vortical flow. We found that the scattering of the wave field and
the subsequent small-scale formation of the wave field were very well captured by
the amplitude equation. These experiments have increased our confidence in the new
amplitude equation, which can be used for practical applications, specifically when
there is no spatial-scale separation between the wave and vortical fields, invalidating
the usage of geometric acoustics or Born approximations.
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