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Abstract

Objective: To diagnose egocentric neglect after stroke, the spatial bias of performance on cancellation tasks is typically
compared to a single cutoff. This standard procedure relies on the assumption that the measurement error of cancellation
performance does not depend on non-spatial impairments affecting the total number of cancelled targets. Here we
assessed the impact of this assumption on false-positive diagnoses. Method: We estimated false positives by simulating
cancellation data using a binomial model. Performance was summarised by the difference in left and right cancelled
targets (R-L) and the Centre of Cancellation (CoC). Diagnosis was based on a fixed cutoff versus cutoffs adjusted for
the total number of cancelled targets and on single test performance versus unanimous or proportional agreement across
multiple tests. Finally, we compared the simulation findings to empirical cancellation data acquired from 651 stroke
patients. Results: Using a fixed cutoff, the rate of false positives depended on the total number of cancelled targets and
ranged from 10% to 30% for R-L scores and from 10% to 90% for CoC scores. The rate of false positives increased
even further when diagnosis was based on proportional agreement across multiple tests. Adjusted cutoffs and unanimous
agreement across multiple tests were effective at controlling false positives. For empirical data, fixed versus adjusted
cutoffs differ in estimation of neglect prevalence by 13%, and this difference was largest for patients with non-spatial
impairments. Conclusions: Our findings demonstrate the importance of considering non-spatial impairments when
diagnosing neglect based on cancellation performance.

Keywords: Perceptual disorders, task performance and analysis, psychometrics, stroke, clinical decision making,
neuropsychology

INTRODUCTION

Egocentric spatial neglect is characterised by an inability to
respond to stimuli presented in the contralesional hemifield
(Heilman, Bowers, Valenstein, & Watson, 1987). Neglect is
commonly diagnosed using a test battery including cancellation
tasks (Albert, 1973; Azouvi et al., 2006; Donnelly et al., 1999;
Rorden & Karnath, 2010; Vaes et al., 2015; Weintraub &
Mesulam, 1988). In these tasks, patients with egocentric neglect
cancel fewer targets on the contralesional than on the ipsile-
sional side of space, while healthy controls cancel a high num-
ber of targets evenly throughout the search array (Dalmaijer,
Stigchel, Nijboer, Cornelissen, & Husain, 2014; Donnelly
et al., 1999; Gauthier, Dehaut, & Joanette, 1989).

Performance on cancellation tasks can be quantified by
comparing the number of cancelled targets on the left and

right side of space (R-L score) or with the Centre of
Cancellation (CoC), which represents the average location
of cancelled targets (e.g. Azouvi et al., 2006; Demeyere &
Gillebert, 2019; Demeyere, Riddoch, Slavkova, Bickerton,
& Humphreys, 2015; Robertson et al., 1994; Rorden &
Karnath, 2010; Vaes et al., 2015). These measures aim to
capture the spatial asymmetry typical of neglect, that is,
the difference in the probability to cancel targets between
the left and right side of the cancellation display
(Huygelier & Gillebert, 2018). To establish whether a patient
has neglect, the R-L or CoC score is compared to a single
impairment threshold, not considering the total number of
cancelled targets (e.g. Demeyere et al., 2015; Rorden &
Karnath, 2010). We refer to this type of thresholds as fixed
normative cutoffs. Fixed normative cutoffs are based on
percentiles of test scores obtained in neurologically healthy
individuals or stroke patients without egocentric neglect
(e.g. Demeyere, et al., 2015; Rorden & Karnath, 2010).
These percentiles represent the most extreme test scores that
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can be observed in individuals without neglect and are
expected to limit false-positive diagnosis.

Measurement Precision of Cancellation
Performance Depends on Non-Spatial
Impairments

Despite the popularity of cancellation tasks, few studies
investigated their measurement precision (Bailey, Riddoch, &
Crome, 2004; Machner, Mah, Gorgoraptis, & Husain, 2012).
Measurement precision is important as it affects the cer-
tainty with which conclusions can be drawn based on test
scores (Crawford & Garthwaite, 2002; Lord, 1952; Lord,
Novick, & Birnbaum, 1968; Slick, 2006). In classic test
theory, it is assumed that the observed test score of a person
on a specific moment can be divided in two parts: the true
underlying test score1 that remains stable across test
moments and the measurement error that leads to probabi-
listic variation of observed test scores across moments
(Novick, 1966). Thus, the observed score of an individual
is considered an estimate of the true underlying score
(Lord, Novick, & Birnbaum, 1968; Slick, 2006), and
measurement precision refers to the extent to which an
observed score reflects the true score. When measurement
precision is low, the chance is low that we can observe
the same score across repeated assessments.

Bailey et al. (2004) and Machner et al. (2012) estimated
the measurement error of the total number of cancellations
and the R-L score divided by the total number of cancellations
by studying the variability in these scores across repeated
assessments in neglect patients. The authors observed con-
siderable variability in cancellation scores across repeated
testing. However, by estimating themeasurement error across
all patients, they treated the error as a constant property,
reflecting the assumption that each patient’s observed score
is associated with the same level of error. Measurement error
is indeed considered a constant property of scores in classic
test theory (Novick, 1966), but this principle may not apply
to cancellation scores. That is, in contrast to continuous out-
come measures, responses on a cancellation task are discrete:
a patient either cancels or omits a single target.

Given their discrete nature, cancellation responses are best
described by a binomial distribution with the mean equal to
NP and variance equal toNP(1 – P), whereN is the number of
targets and P is the probability to cancel a target. The asso-
ciation between the mean and variance of the distribution
(Brown, Thomas, & Patt, 2017; Lord, 1952; Lord et al.,
1968; McDonald, 2011) implies that the measurement error
of cancellation test scores is variable. Applying the binomial
formula to a cancellation task with 50 targets reveals that we
can expect, for instance, a variance of 12.5 cancelled targets
across repeated tests for a patient with 50% chance to cancel
each target and a variance of 4.5 cancelled targets for a patient

with a 10% or 90% chance to cancel each target. In other
words, the measurement error of the number of cancelled tar-
gets is highest when the probability to cancel a target equals
50% and decreases as the probability approximates 0% or
100%. Binomial variance affects test scores that rely on the
number of cancelled targets such as the R-L score in the
same way. The CoC measurement error has already been
shown to be variable, with the CoC standard deviation
increasing as the number of cancelled targets decreases
(Toraldo, Romaniello, & Sommaruga, 2017).

This non-constant error variance may be important since
stroke patients likely vary in their ability to cancel targets
in a non-lateralised way, or in other words, in the number
of omissions made across the visual field. We will refer
to the reduced probability of cancelling targets irrespective
of their location in the visual field as non-spatial errors
(Huygelier & Gillebert, 2018). Non-spatial errors can result
from a mix of multiple non-spatial impairments, including,
among others, impairments in selective and sustained atten-
tion (Foldi, Jutagir, Davidoff, & Gould, 1992) and working
memory (Husain et al., 2001). The measurement error of
cancellation test scores will be higher in stroke patients with
versus without such non-spatial impairments. Consequently,
the most extreme R-L and CoC scores that can be observed
in individuals without neglect will depend on non-spatial
impairments. Therefore, it is unclear whether fixed normative
cutoffs can successfully limit the rate of false-positive neglect
diagnoses as these cutoffs ignore non-spatial errors.

The chance of false-positive neglect diagnosis also
depends on howmultiple test instruments inform the diagnosis.
Although it is not uncommon to diagnose neglect on a single
cancellation task (e.g. Brink, Verwer, Biesbroek, Visser-
Meily, & Nijboer, 2017; Demeyere & Gillebert, 2019; Farnè
et al., 2004; Nijboer, Kollen, & Kwakkel, 2013), many
researchers and clinicians use multiple tasks (e.g. cancellation,
line bisection, and figure copying) to diagnose egocentric
neglect. There is however no gold-standard approach for
reconciling conflicting diagnoses from multiple tests, as
diagnostic criteria vary considerably across published studies.
Some studies required unanimous diagnostic agreement from
two cancellation tasks (e.g. Smania et al., 1998), while others
required a certain proportion of agreement across multiple
tasks varying from 17% to 67% (e.g. Cazzoli et al., 2012;
Dalmaijer et al., 2018; McIntosh, Schindler, Birchall, &
Milner, 2005; Plummer, Morris, & Dunai, 2003; Rengachary,
He, Shulman, & Corbetta, 2011; Rorden & Karnath,
2010; Urbanski et al., 2010; Verdon, Schwartz, Lovblad,
Hauert, & Vuilleumier, 2010). The impact of these different
methods on the rate of false positives has not been investi-
gated yet.

The Present Study

Previous studies developed fixed cutoffs to interpret R-L and
CoC scores to limit false positives below a specific threshold
(e.g., Demeyere et al., 2015; Rorden & Karnath, 2010). We

1We deliberately use the term ‘true underlying test score’ and not ‘true deficit’.
Whether the true underlying test score represents the true underlying deficit depends
on the validity of the task and is an independent issue from the measurement error.
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investigated whether fixed cutoffs can indeed control false
positives. We did not study how cutoffs affect the balance
between false positives and false negatives, since their opti-
mal balance depends on the diagnostic context (Habibzadeh,
Habibzadeh, &Yadollahie, 2016).We simulated cancellation
data using a simple probabilistic model (Huygelier &
Gillebert, 2018). Our model merely represents non-spatial
errors on cancellation tasks and makes no assumptions of
the underlying non-spatial impairments or how search strat-
egy affects performance. We used Monte Carlo simulation, a
method tomake inferences using random numbers that follow
a certain probability distribution (i.e. in our case the binomial
distribution) (Beisbart & Norton, 2012). This method allows
full control over the true test score underlying the observed
test score, making it valuable for psychometric research
(Feinberg & Rubright, 2016) and providing theoretical
insights that can aid clinical decision making (Beaujean,
2018).

Using these simulated data, we assessed the impact of
fixed cutoffs on false-positive diagnosis. We predicted that
the measurement precision of R-L scores would be lowest
in simulated cases who had 50% non-spatial errors, which
in turn would result in an inflated false-positive neglect
diagnosis. For the CoC, we predicted the lowest measurement
precision and highest false-positive rates for the highest
percentages of non-spatial errors, in line with earlier findings
(Toraldo et al., 2017). This procedure was compared to a new
approach, in which cutoffs were adjusted according to the total
cancelled targets. We predicted better control over false
positives using adjusted cutoffs compared to fixed cutoffs.
Moreover, we assessed the impact of different diagnostic
methods on false positives. Neglect was either diagnosed on
a single test or on multiple tests. In case of multiple tests,
we compared an approach of diagnosing neglect on unanimous
versus proportional agreement of test results.

Finally, we aimed to illustrate the real-world impact of our
premises using cancellation data acquired from a cohort of
651 stroke patients. In this analysis, we first assessed the
occurrence and the distribution of non-spatial errors in our
sample of stroke patients. We then assessed the percentage
of patients for which fixed normative versus adjusted cutoffs
would lead to a different diagnosis. Finally, we assessed
whether fixed normative versus adjusted cutoffs differed
most in rates of diagnosing neglect for patients who made
approximately 50% non-spatial errors.

METHOD

The Theoretical Impact of Diagnostic Methods on
False-Positive Rates

Simulating cancellation data using a binomial model

To simulate cancellation data, we generated 50 uniformly
distributed target locations ranging from −1 (left border
of search matrix) to þ1 (right border of search matrix).
We chose 50 targets, since this approximates the number

of targets of many cancellation tasks: the Bells test with
35 targets (Gauthier et al., 1989), line cancellation with
40 targets (Albert, 1973), diamond cancellation with 48 targets
(Vaes et al., 2015), Oxford Cognitive Screen (OCS) cancella-
tion with 50 targets (Demeyere et al., 2015), Star cancellation
with 54 targets (Halligan, Cockburn, & Wilson, 1991) and the
letter cancellation with 60 targets (Weintraub & Mesulam,
1985).

Then, cancellation responses for each target were simu-
lated according to a simple binomial model (see Huygelier &
Gillebert, 2018). The model assumes that cancellation res-
ponses result from a probabilistic process in which each target
has a certain probability to be cancelled. In case of egocentric
neglect, the probability underlying cancellation responses on
the contralesional side is smaller than the probability underlying
cancellation responses on the ipsilesional side of the cancella-
tion page. The difference between these two probabilities is
referred to as ‘spatial asymmetry’. For patients with no neglect,
these probabilities are equal. The cancelled targets depend on
these two probabilities and are randomly generated using a
binomial distribution.

Importantly, our model assumes that the probability to
cancel targets across the entire display can be smaller than
1, allowing for non-spatial errors to occur. Note that in case
of no true spatial asymmetry, non-spatial errors will be
directly related to overall cancellation performance. That
is, if a patient has a probability of cancelling 50% of all targets
across the cancellation array, then the expected total can-
celled targets will be equal to 50%. In case of a true spatial
asymmetry, the overall cancellation performance can reflect
a combination of non-spatial and spatial errors. Using this
model, cancellation responses were simulated for patients
with no spatial asymmetry and with varying levels of non-
spatial errors. The level of non-spatial errors ranged from
0 to 1 in 10 steps with 10,000 simulations for each level, pro-
ducing a dataset with 110,000 simulated observations.

Finally, the R-L and CoC scores were calculated for each
of these simulated cancellation tasks. The R-L score was
calculated by subtracting the proportion cancelled targets
for the 25 targets located on the left side from that of the
25 targets located on the right side. The CoC was calculated
by averaging the location of cancelled targets and subtracting
the average location of all targets. Both R-L and CoC scores
ranged from −1 toþ1, where negative values indicated more
cancelled targets on the left than right side and vice versa.

Estimating fixed and adjusted cutoffs

The 5th and 95th percentiles of the R-L and CoC scores were
estimated based on our simulated dataset. Note that, based on
the law of large numbers, the percentile cutoffs will represent
the true percentiles. We chose the 5th and 95th percentiles in
line with the cutoffs reported by Demeyere et al. (2015). Two
types of R-L and CoC cutoffs were calculated; fixed and
adjusted cutoffs. To estimate the fixed cutoffs, a subset of
simulated data in which at least 80% targets had been
cancelled was chosen as this performance is similar to that
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of neurologically healthy individuals as reported for instance
in Demeyere et al. (2015). The fixed cutoffs are based on
different expected total performances. Adjusted cutoffs were
determined on subsets of simulated data, each with a specific
expected proportion of cancelled targets ranging from 0 to 1
in 10 steps.

False positives for different diagnostic methods

Fixed and adjusted cutoffs were used to interpret the simu-
lated cancellation test scores. Each of the 110,000 simulated
individual performances was classified into one of three cat-
egories. For a single test administration, observations with an
R-L or CoC score greater than the 95th percentile were clas-
sified as left neglect, while observations with an R-L score
lower than the 5th percentile were classified as right neglect.
Single observations with R-L or CoC scores between the 5th
and 95th percentile were classified as no neglect. This clas-
sification was performed separately for the fixed and adjusted
cutoffs. For the unanimous agreement, the number of admin-
istered tests varied from 2 to 3 and neglect was only diag-
nosed when each of the administered tests consistently
indicated neglect for the same side of space (i.e. consistent
left-sided or consistent right-sided neglect). For the propor-
tional agreement, we simulated 5 test administrations and
varied the minimum number of positive test results required
for diagnosis from 1 to 4. Observed scores across simulated
retests varied probabilistically, while the true scores remained
constant. Then, for each classification method, we calculated
the rate of false-positive diagnoses. Note that false positives
should remain below 10% when testing for the presence of
left- and right-sided neglect (two-sided testing) when using
the 5th and 95th percentiles and a single test. That is, as
10% of the control group without neglect have test scores
that exceed these percentiles, you expect 10% false-positive
diagnosis. We checked whether false positives indeed
remained below the 10% threshold, as this threshold has been
used in previous studies (e.g., Demeyere et al., 2015). For
unanimous agreement, false positives should be 1% and

0.1% for 2 and 3 unanimous tests respectively. For propor-
tional agreement, false positives should follow 1 – [(1 –

Qk)m], withQ the probability of a false positive, k the number
of false positives and m the number of tests. Note that false
positives refer to simulated cases that were classified as
neglect patients of which the true R-L and CoC score was
zero. However, in case of a test that is insufficiently able
to detect neglect, a true test score of zero does not necessarily
proof the absence of neglect.

The Real-World Impact of Fixed Normative
versus Adjusted Cutoffs on Neglect Diagnosis

A consecutive sample of stroke survivors was recruited from
the John Radcliffe Hospital (Oxford, UK) between February
2012 and September 2018 in compliance with the regulations
of the National Research Ethics Service (11/WM/0299
and 14/LO/0648) and Helsinki declaration. Patients were
included if they were able to remain alert for 20 min and were
able to provide informed consent. Participant characteristics
are reported in Table 1.

The OCS cancellation task is a search matrix of 150 heart
drawings pseudo-randomly scattered across a landscape
orientation A4 page. Two-thirds of these drawings have left
or right gaps (distractors) and the remaining third are com-
plete drawings (targets). These drawings are arranged accord-
ing to a grid pattern ensuring that there are an equal number of
targets and distractors across different areas of the page.
Patients were asked to cross out all complete hearts.
Patients were given two practice trials before proceeding to
the full task. Patients who were unable to hold a pen
responded by pointing to each stimulus which was then
immediately marked by the examiner. Each patient was
allowed 3 min to complete the task. Performance was sum-
marised by subtracting the number of cancelled
targets on the right side from the left side of this array and
was divided by 20 targets. This R-L score2 ranged from
−1 to 1 and discards the central 10 targets. Demeyere et al.
(2015) reported fixed normative cutoffs (5th and 95th
percentiles) of –.10 and .15.

Using these empirical data, we evaluated the implications
of our simulations. First, we determined the prevalence of
non-spatial errors in stroke patients without statistically
significant neglect according to the fixed normative cutoffs.
For this purpose, we calculated the proportions of patients
obtaining a proportion of cancelled targets of either 0–.20,
.22–.40, .42–.60, .62–.80 and .82–1.00 cancelled targets with
an R-L score ≥ –.10 and ≤ .15. Second, we assessed whether
fixed normative versus adjusted cutoffs lead to different
diagnostic decisions. To this end, the proportion of patients
classified as having statistically significant neglect based on
the fixed normative cutoffs (i.e. –.10 and .15) and our adjusted
cutoffs was calculated. For the adjusted cutoffs, stroke patients
were categorised according to their total performance in

Table 1. Demographic and stroke characteristics of stroke sample

Variable Na M SD Min Max

Age 605 74 14 18 97
Years of education 375 12 3 0 23
Handedness (right/left/
ambidextrous)

323/25/5

Gender (female/male) 291/358
Stroke etiology (ischemia,
haemorrhage, transient
ischemic attack)

292/74/17

Lesion side
(right/left/bilateral)

268/237/22

Stroke to test interval
(days)

284 6 7 0 90

a Missing numbers represent patients whose stroke characteristics were unre-
ported in their medical notes.

2These analyses focus on the R-L score because the data did not contain information
of each single target location which impeded the computation of CoC scores.
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different groups: 0–.20, .22–.40, .42–.60, .62–.80, .82–1.00
cancelled targets. Third, we assessed whether diagnostic
decisions based on these two cutoffs differed most for patients
who cancelled around .50 (range: .40 to .60 targets), for whom
we expected the highest false-positive rates.

RESULTS

Fixed and Adjusted Cutoffs

First, fixed cutoffs were calculated based on the simulated
dataset. In simulated cases where at least 80% of targets were
cancelled, R-L scores more extreme than ±.12 represented
statistically significant neglect impairment at the 10% level
(Table 2). These cutoffs align well with fixed normative
cutoffs with Demeyere et al. (2015) reporting cutoffs of
−.10 and .15 and Robertson et al. (1994) reporting ±.10.
CoC scores more extreme than ±.05 represented statistically
significant neglect impairment at the 10% level based on our
simulated data. These CoC cutoffs align well with the norma-
tive cutoffs reported by Rorden and Karnath (2010) of ±.08.

Next, adjusted cutoffs were calculated for each perfor-
mance level. Adjusted R-L cutoffs ranged from ±.24 in cases
where 50% of targets were expected to be cancelled to ±.12 in
cases where 90% or 10% of targets were expected to be can-
celled (Table 2). Adjusted CoC cutoffs ranged from ±.51 in
cases where 10% of targets were expected to be cancelled to
±.05 in cases where 90% of targets were expected to be can-
celled. These adjusted cutoffs illustrate that extreme R-L scores
were most likely when the probability to cancel targets was
between 40% and 60%. Extreme CoC scores were most likely
when the probability to cancel targets was equal to 10%.

False-Positive Rates for Different Diagnostic
Methods

A single test administration

The rate of false positives was calculated based on fixed and
adjusted cutoffs for a single test administration (Figure 1A).
When R-L scores and fixed cutoffs were used to diagnose
neglect, the rate of false positives increased as the non-spatial
errors approximated 40–60%. False positives reached amaxi-
mum of 30% when the non-spatial errors equaled 50%. False
positives exceeded the 10% threshold for non-spatial errors
ranging from 20% to 80%. However, when using adjusted
cutoffs, false positives remained below the 10% threshold
for non-spatial errors between 20% and 80%. When CoC
scores and fixed cutoffs were used to diagnose neglect, false
positives increased as the non-spatial errors increased. The
false positives exceeded the 10% threshold for all non-spatial
errors larger than 10% and reached 90% for the highest level
of non-spatial errors. The adjusted CoC cutoffs produced bet-
ter control over false positives as they remained equal to or
below the 10% threshold for non-spatial errors from 20%
to 80%.

Multiple tests – unanimous agreement

Next, the false-positive rate was calculated in simulated cases
where multiple consistent test results were required to diag-
nose neglect. In simulated cases where unanimous agreement
across multiple tests was required for diagnosis, false posi-
tives decreased as the number of tests increased both when
using fixed and adjusted cutoffs (Figures 1B and 1C).
When using fixed cutoffs, R-L false positives dropped below
the 10% level when two consistent positive test results were
required (Figure 1B). CoC false positives dropped below the
10% threshold when three consistent positive test results were
required (Figure 1C). False positives for the adjusted cutoffs
were below 1% and 0.1% for 2 and 3 unanimous tests,
respectively.

Multiple tests – proportional agreement

Finally, the rate of false positives was calculated for simu-
lated cases in which positive test results from only a propor-
tion of administered tests was required to diagnose neglect. In
simulated cases where 1/5 positive test results were required
for diagnosis, false positives exceeded the 10% threshold for
almost all cases of non-spatial errors when using fixed cutoffs
(Figure 2A) and adjusted cutoffs (Figure 2B) for both R-L and
CoC scores. More specifically, for fixed cutoffs false posi-
tives ranged from 40% to 80% for R-L scores and from
40% to 100% for CoC scores for non-spatial errors ranging
from 10% to 90%. Thus, false positives exceeded the
expected 10% rate by a fourfold to a ninefold. When fixed
cutoffs were used, false positives fell below the 10% thresh-
old for R-L scores when 3/5 positive tests were required, but
remained above this threshold for CoC scores even when 4/5

Table 2. Fixed and adjusted cutoffs for the two measures of
cancellation performance

CoC R-L

5th Pc 95th Pc 5th Pc 95th Pc

Fixed cutoffs
p*≥ .80 −.05 .05 −.12 .12
Adjusted cutoffs
p= .00 .00 .00 .00 .00
p= .10 −.51 .51 −.12 .12
p= .20 −.33 .33 −.20 .20
p= .30 −.24 .24 −.20 .20
p= .40 −.19 .19 −.24 .24
p= .50 −.15 .15 −.24 .24
p= .60 −.12 .12 −.24 .24
p= .70 −.10 .10 −.20 .20
p= .80 −.08 .08 −.20 .20
p= .90 −.05 .05 −.12 .12
p= 1.00 .00 .00 .00 .00

Note: p= expected total performance. p*= observed total performance.
CoC= the standardised average location of all cancelled targets, R-L= the
difference between the proportion of cancelled targets on the left versus right
visual field. Pc= percentile.
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Fig. 1. The simulated false positives as a function of the expected non-spatial errors for the CoC and R-L score for fixed cutoffs and adjusted
cutoffs and for basing the diagnosis on a single test result (A) or on unanimous positive tests results based on two tests (B) and three tests (C).
The dashed grey line represents themaximum expected false-positive rate based on the 5th and 95th percentiles (10%). TheCoC is the standardised
average location of all cancelled targets. The R-L is the difference between the proportion of hits on the left and right side of the cancellation array.

Fig. 2. The simulated false positives as a function of the expected non-spatial errors for the CoC and R-L score for fixed cutoffs (A) and adjusted
cutoffs (B) and for basing the diagnosis on a minimum of one, two, three, four positive tests out of five administered tests. The dashed grey line
represents themaximum expected false-positive rate based on the 5th and 95th percentiles (10%). The CoC is the standardised average location of
all cancelled targets. The R-L is the difference between the proportion of hits on the left and right side of the cancellation array.
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positive tests were required (Figure 2A). Alternatively, when
adjusted cutoffs were used, false positives dropped to the
10% level for R-L and CoC cutoffs when at least 2/5 positive
results were required to diagnose neglect (Figure 2B). For
adjusted cutoffs, false positives approximated the expected
rates of 41%, 5%, 0.5%, and 0.005% for 1/5, 2/5, 3/5, 4/5 pos-
itive results, respectively.

The Real-World Impact of Fixed Normative
versus Adjusted Cutoffs on Neglect Diagnosis

First, we estimated the prevalence of non-spatial errors in
stroke patients without spatial asymmetry in cancellation
performance. These patients were identified by comparing
cancellation responses to the fixed normative cutoffs pub-
lished by Demeyere et al. (2015). The results showed that
394 out of 651 stroke patients did not obtain an R-L score
indicative of egocentric neglect. Figure 3A illustrates that a
considerable number of these patients cancelled a low
number of targets. More specifically, 28 of these 394 patients
with normal R-L scores cancelled between 0% and 20%
targets, 22 patients cancelled between 22% and 40% targets,
33 patients cancelled between 42% and 60% of targets, 69
patients cancelled between 62% and 80% of targets and
242 patients cancelled more than 80% of targets. Thus,
119 of these 394 patients who were not diagnosed with
neglect according to fixed normative cutoffs (i.e. no spatial
asymmetry in cancellation performance) cancelled between
20% and 80% of all targets. It is likely that their cancellation
performance was affected by non-spatial impairments as they
did not show a large difference in cancelled targets between

both sides of the visual field, but still failed to cancel many
targets. This group of patients represents 19% of our entire
stroke cohort. These results suggest that the inflated false-
positive rates in our simulations that applied to simulated cases
with non-spatial errors from 20% to 80% and without spatial
asymmetries could apply to 19% of all stroke patients3.

Patient cancellation responses were also compared to
the fixed normative and the new adjusted cutoffs. As previ-
ously mentioned, when compared to fixed normative cutoffs,
394 patients did not show statistically significant neglect, imply-
ing that 257 patients exhibited statistically significant egocentric
neglect. Of these 257 patients, 85 were not diagnosed with
neglect according to the adjusted cutoffs. All patients who were
diagnosed as neglect patients using the adjusted cutoffs were
also diagnosed as neglect patients using the fixed normative
cutoffs. The discrepancy between the number of patients
diagnosed according to fixed normative versus adjusted cutoffs
was highest for patients who cancelled between 40% and 60%
of targets (Figure 3B).

DISCUSSION

While fixed normative cutoffs of cancellation test scores are
frequently used for diagnosing egocentric neglect, our study
shows that they do not adequately consider the discrete nature
of cancellation responses. Discrete responses are best mod-
eled by the binomial distribution of which the variance is

Fig. 3. The relation between the total performance on the hearts cancellation task and R-L scores. The relation of R-L scores and total per-
formance on the hearts cancellation task of 655 stroke patients (A). The grey circles represent data of the stroke patients. The black dashed line
represents the fixed cutoffs −.10 and .15. The dark grey lines represent adjusted cutoffs based on the binomial model. The proportion of
patients classified as a neglect patient according to the fixed cutoffs and not according to the adjusted cutoffs is visualised as a function
of the total performance on the hearts cancellation task (B).

3This may represent an underestimation of the percentage of patients showing no
neglect and only non-spatial impairments, as the fixed normative cutoffs can produce
false-positive diagnosis and we only estimated the prevalence of non-spatial impair-
ments on those patients who were not diagnosed as neglect patients using these liberal
cutoffs.
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not constant. This non-constant error variance implies that
more extreme R-L scores are more likely to occur when
the probability to make responses equals 50% across the
cancellation task. By simulating data using a binomial model,
we showed that extreme R-L scores were indeed most prob-
able when 50% of targets were expected to be cancelled.
In contrast, extreme CoC scores were more likely to occur
when fewer targets were expected to be cancelled. This pat-
tern of CoC error variance can be explained by the fact that
the CoC relies on averaging the location of cancelled targets
and the statistical average is less precise when it is based on a
small sample (i.e. number of cancelled targets).

Our findings on the inflated false-positive rate for the CoC
were consistent with an earlier study using a logistic model of
spatial neglect (Toraldo et al., 2017). Toraldo et al. (2017)
predicted inflated false-positive rates as high as 97% when
the number of cancelled targets decreases to a minimum
and provided a standardised CoC score to correct for this
inflation of false positives associated to non-spatial impair-
ments. Our study adds onto these earlier findings by revealing
the impact of multiple tests on false positives, by providing
a direct comparison of false-positive rates for the CoC and
R-L scores and by showing the impact of the non-constant
error variance on real-world neglect diagnosis.

Patients with Non-spatial Impairments More
Likely Misdiagnosed as Neglect Patients

Our simulations showed that false positives depended on
non-spatial errors when diagnosis was based on fixed cutoffs.
This suggests that fixed cutoffs lead tomore liberal diagnostic
decisions for certain patients just because those patients can-
cel fewer targets overall. In other words, our results suggest
that patients with non-spatial impairments are more likely
misdiagnosed as neglect patients. Real-world data of a large
stroke cohort showed that a considerable number of patients
likely have non-spatial impairments. Specifically, 119 of the
394 patients without neglect showed signs of non-spatial
impairments in our stroke cohort. Moreover, we showed that
fixed normative versus adjusted cutoffs led to a difference in
the estimated prevalence of neglect of 13%. These findings
suggest that inflated false positives associated with non-
spatial impairments have impact on the diagnostic specificity
for a considerable number of stroke patients. As such, our
analyses showed that accurate theory about the measurement
precision of cancellation scores has implications for clinical
practice. Neglect patients also suffer from non-spatial impair-
ments in working memory, selective and sustained attention,
among others, and these impairments may even interact with
spatial impairments (Husain et al., 2001; Husain & Rorden,
2003; Husain, Shapiro, Martin, &Kennard, 1997; Robertson,
2001; Robertson, Mattingley, Rorden, & Driver, 1998;
Robertson, Tegnér, Tham, Lo, & Nimmo-smith, 1995).
Therefore, one may wonder why it matters that non-spatial
impairments impact the chance of diagnosing a spatial
impairment. We argue that it is important to measure

constructs independently in order to investigate their interac-
tion. That is, we would not be able to establish the true asso-
ciation of spatial and non-spatial impairments, if the
measurements of both impairments itself are dependent.

Adjusted Cutoffs and Unanimous Test Results
Control False Positives

The results of this study provide two concrete ways to limit
false positives to the 10% threshold4. First, adjusted cutoffs
produced a stable rate of false positives that did not depend
on the non-spatial errors. Thus, applying adjusted cutoffs
leads to diagnostic decisions that are equally liberal for all
patients, independent of whether these patients have non-
spatial impairments. Second, requiring unanimous positive
test results drastically reduced the rate of false positives, even
for fixed cutoffs. For the R-L fixed cutoffs, requiring unani-
mous agreement of two tests effectively reduced false
positives and for CoC fixed cutoffs unanimous agreement
of three tests effectively reduced false positives. Some may
argue that the ease of interpreting test scores using a fixed
cutoff outweighs the benefit of reducing false positives. To
illustrate the ease of using adjusted cutoffs, we added an
explanation and simulated adjusted cutoffs that can be used
to interpret R-L scores of the OCS cancellation task in
Supplementary Material 1. Our adjusted cutoffs for R-L
scores are equivalent to the z-test of proportions
(Newcombe, 1998). Based on this statistical test implemented
in our online application (http://www.psytests.be/stats/
cancellation_task), one can obtain interval estimates of R-L
scores for patients.

Multiple Tests Inflate False Positives

Many researchers and clinicians already integrate data of
multiple tests to diagnose neglect. However, rather than
requiring unanimous agreement of multiple tests, it is not
uncommon to use a single positive test result out of multiple
tests as the criterion to diagnose neglect (e.g. McIntosh et al.,
2005; Rengachary et al., 2011; Verdon et al., 2010). The
results of our simulations reveal that this method dramatically
increased false positives when both fixed and adjusted cutoffs
were used. This result is not surprising given that the chance
that at least one test result will be a false positive increases as
the number of tests administered increases (Farcomeni, 2008;
Nichols & Hayasaka, 2003). The true test scores did not vary
in our simulated retests, which differs from clinical practice
where information across multiple test instruments that differ
in construct validity (e.g., line bisection, cancellation, and
figure copying tasks) is integrated. This raises the question
to what extent our estimated false positives for multiple tests
generalize to clinical practice. Indeed, for patients who have
spatial impairments, performance on different tests (e.g. line

4Our results can be extrapolated to other levels of false positives. The same methods
can be used to limit false positives to each threshold that a researcher or clinician aims to
achieve by using different percentiles.
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bisection, cancellation, and figure copying tasks) is associ-
ated (e.g. Azouvi et al., 2003; Bailey et al., 2004; Rorden
& Karnath, 2010; Sperber & Karnath, 2016), and combining
tests may reduce the chance of a misdiagnosis. However, for
patients without a spatial deficit, multiple tests act as
independent tests. The association between multiple tests for
patients without true spatial deficits does not improve if tests
are combined that differ in construct validity. Thus, although
combining different tests can increase the chance of detecting
a true neglect case, it will simultaneously increase false posi-
tives if no correction for multiple comparisons is applied.

Reducing False Positives Does Not Necessarily
Improve Diagnostic Accuracy

Throughout this investigation, we have focused on false-
positive diagnosis.However, accurate diagnosis requires amin-
imal rate of false positives as well as false negatives. One may
wonder whether the adjusted cutoffs are not too conservative,
risking to reduce false positives at the cost of detecting true
neglect. Indeed, changing cutoffs will only re-weigh the bal-
ance between false positives and false negatives and it cannot
simultaneously reduce both errors. However, the goal of
detecting 100% of true neglect cases, cannot entirely justify
inflated false positive rates as high as the rates that we found.
That is, consider a scenario in which the true prevalence of
neglect equals 20% andwe can detect 100%of these cases, than
the total percentage accurate diagnosis drops below the guess
rate when false positives exceed 60%. Thus, our results signal
an important issue that requires consideration.

Since we have not established how adjusted cutoffs affect
the balance between false positives and false negatives, we
can only recommend the use of adjusted cutoffs for contexts
in which false positives need to be controlled. For instance,
when including patients in a clinical trial or costly therapy,
onemaywish to avoid including patients whomay not benefit
from treatment. Moreover, we advise to use cutoffs that give
equal weight to false positives and false negatives for epi-
demiological neglect research. Future research is necessary
to develop cutoffs that balance false positives and false neg-
atives, while considering the impact of non-spatial errors on
false positives.

Search strategy and performance measures

Moreover, the current study focused on a simplified represen-
tation of clinical decision making. In clinical practice, neglect
diagnosis is informed by test scores, but clinicians can inte-
grate behavioural observations with test scores. Research has
shown that the ways in which patients search targets can pro-
vide valuable information (Behrmann, Watt, Black, &
Barton, 1997; Jalas, Lindell, Brunila, Tenovuo, &
Hamalainen, 2002), while current practice mostly relies on
performance rather than strategy measures (Dalmaijer
et al., 2014). Search strategy can indeed impact performance
measures.Chatterjee, Mennemeier, and Heilman (1992)

showed that instructing a patient to alternate cancelling tar-
gets on the left and right side, re-distributed cancellations,
with many cancellations on both sides of the page and few
cancellations in the center. Thus, future research into the
clinical relevance of strategy measures relative to perfor-
mance measures is necessary.

Can we still consider cancellation tasks a valid
method to assess neglect?

There has been debate about which task is most valid to assess
neglect. Some have argued that cancellation tasks should be
preferred over line bisection tasks (Ferber & Karnath, 2001;
Sperber & Karnath, 2016), but through changing the quanti-
fication of line bisection performance, McIntosh et al. found
better convergence between cancellation and bisection tasks
(McIntosh, Ietswaart, &Milner, 2017;McIntosh et al., 2005).
Similarly, the way in which cancellation performance is
quantified can affect its construct validity (Huygelier &
Gillebert, 2018). In sum, more research is required to under-
stand how each task and measure represents neglect.

CONCLUSIONS

To conclude, when you want to control false-positive neglect
diagnoses, we recommend to base diagnosis on adjusted
cutoffs that account for the total performance. Alternatively,
if you want to use fixed cutoffs, we recommend to use the
R-L score and a criterion of two unanimous test results or
the CoC score and a criterion of three unanimous test results.
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