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We study the evolution of three-dimensional (3-D), small-scale, small-amplitude
perturbations on a plane internal gravity wave using the local stability approach.
The plane internal wave is characterised by its non-dimensional amplitude, A, and
the angle the group velocity vector makes with gravity, Φ. For a given (A, Φ), the
local stability equations are solved on the periodic fluid particle trajectories to obtain
growth rates for all two-dimensional (2-D) and 3-D perturbation wave vectors. For
small A, the local stability approach recovers previous results of 2-D parametric
subharmonic instability (PSI) while offering new insights into 3-D PSI. Higher-order
triadic resonances, and associated deviations from them, are also observed at small
A. Moreover, for small A, purely transverse instabilities resulting from parametric
resonance are shown to occur at select values of Φ. The possibility of a non-resonant
instability mechanism for transverse perturbations at finite A allows us to derive a
heuristic, modified gravitational instability criterion. We then study the extension
of small A to finite A internal wave instabilities, where we recover and build
upon existing knowledge of small-scale, small-amplitude internal wave instabilities.
Four distinct regions of the (A, Φ)-plane based on the dominant instability modes
are identified: 2-D PSI, 3-D oblique, quasi-2-D shear-aligned, and 3-D transverse.
Our study demonstrates the local stability approach as a physically insightful and
computationally efficient tool, with potentially broad utility for studies that are based
on other theoretical approaches and numerical simulations of small-scale instabilities
of internal waves in various settings.

Key words: geophysical and geological flows, instability, internal waves

1. Introduction
Spatial and temporal growth of small-amplitude perturbations represent important

pathways towards dissipation, and subsequently mixing, for internal gravity waves
in the atmosphere, ocean and planetary systems. Moreover, wave instabilities are
potentially relevant for understanding the internal wave spectra observed in the
ocean (Garrett & Munk 1975). A myriad of linear instabilities have previously been
identified in internal waves of various spatial profiles, summaries of which can be
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Three-dimensional small-scale instabilities of plane internal gravity waves 703

found in Lombard & Riley (1996), Sonmor & Klaassen (1997), Staquet & Sommeria
(2002) and Dauxois et al. (2018).

Heuristic arguments and approximations based on static vertical profiles have been
useful in identifying certain instabilities in large-amplitude internal waves (Fritts
& Yuan 1989; Thorpe 1994), although they are also known to ignore important
dynamical effects (Hines 1971). By contrast, Floquet theory fully incorporates, and
takes advantage of, the spatial and temporal periodicity of plane internal waves while
placing no restriction on the amplitude (Mied 1976; Drazin 1977; Klostermeyer
1982). Additionally, Floquet theory makes no assumptions on the spatial scale of the
perturbations, although it relies on the assumption of small-amplitude perturbations,
and requires the truncation of an infinite sum in its solution, with the required number
of terms being greater for larger internal wave amplitudes (Sonmor & Klaassen 1997).
For certain large-amplitude internal waves, the required number of terms in the
Floquet sum can be several hundred, thus significantly increasing the computational
requirement to solve the resulting eigenvalue problem for a given perturbation wave
vector. Furthermore, the solution form in Floquet theory, as assumed in Sonmor &
Klaassen (1997), is not applicable if the temporal or spatial periodicity of the internal
wave field does not hold, e.g. a plane internal wave with steady background shear or
an internal wave beam.

Using Floquet theory alongside an energy budget analysis, Lombard & Riley
(1996) calculated and characterised two-dimensional (2-D) and three-dimensional
(3-D) instabilities of finite amplitude internal gravity waves. Lombard & Riley
(1996) concluded that small-amplitude plane internal waves can succumb to 2-D
instabilities related to second-order wave–wave interactions, and that large-amplitude
plane internal waves are also prone to 3-D instabilities that may be related to
higher-order resonant interactions. Using a similar approach, Sonmor & Klaassen
(1997) showed that the dominant linear instabilities in large-amplitude plane internal
waves can be traced back to resonant instabilities at small amplitude. These resonant
wave–wave interactions, which underlie the instabilities of large-amplitude internal
waves observed by Lombard & Riley (1996) and Sonmor & Klaassen (1997),
comprise the formation of a resonant wave triad between the primary internal
wave and two perturbation waves. The particular class of triads corresponding to
small-scale perturbations propagating at half the temporal frequency of the primary
wave is known as parametric subharmonic instability (PSI) (McEwan & Robinson
1975), and has been the subject of several experimental (Bourget et al. 2013) and
numerical (Koudella & Staquet 2006) studies. The potential for PSI to serve as a
mechanism that can transfer energy from large to small scales has made them the
subject of studies focusing on oceanic phenomena (McComas & Bretherton 1977;
MacKinnon & Winters 2005). Apart from PSI, higher-order resonant interactions that
lead to the growth of shear-aligned perturbations at a frequency that is half of an
integer multiple of the primary wave frequency have also been studied (Sonmor &
Klaassen 1996). As we will show, the local stability approach that we employ in
this paper recovers some well-established features of PSI and higher-order resonance
occurring for small-amplitude internal waves.

The local stability equations (Lifschitz & Hameiri 1991), which are a set of
ordinary differential equations governing the evolution of perturbation amplitude
and wave vector on fluid particle trajectories in the base flow, are restricted to
perturbations whose spatial scales are small relative to the base flow length scale.
Being much simpler to solve than the corresponding linear stability equations that
govern perturbations of arbitrary spatial scales, the local stability equations have
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proven to be very useful in identifying and analysing short-wavelength instabilities
in steady but strongly non-parallel flows such as a vortex. Local stability studies
have focused on the centrifugal (Sipp & Jacquin 2000; Nagarathinam, Sameen &
Mathur 2015), elliptic (Bayly 1986) and hyperbolic (Leblanc 1997) instabilities in a
number of idealized vortex models that incorporate the effects of background rotation
(Godeferd, Cambon & Leblanc 2001), stratification (Miyazaki & Fukumoto 1992) or
a combination of these factors (Miyazaki 1993). The local stability approach has also
been applied to unsteady vortex models (Bayly, Holm & Lifschitz 1996). Moreover,
the instabilities of vortical or tidal motions of stratified fluids have been shown,
using local stability theory, to resonantly excite internal gravity waves (Miyazaki &
Fukumoto 1992; Le Reun, Favier & Le Bars 2018). The correspondence between the
local and global (normal mode) stability approaches, however, remains an intriguing
question, although some studies (Sipp & Jacquin 2000; Mathur et al. 2014) have
reported on this aspect for the centrifugal instability; local stability studies of
numerically simulated 2-D vortex flows have also performed some comparisons
with the growth rates obtained from global stability analyses (Gallaire, Marquillie &
Ehrenstein 2007; Aravind, Mathur & Dubos 2017). Recent local stability studies of
geophysical flows have helped identify small-scale instabilities of Gerstner’s waves
(Leblanc 2004), equatorially trapped waves (Constantin & Germain 2013) and edge
waves on a sloping beach (Ionescu-Kruse 2014, 2015).

In this paper, we elucidate the various small-scale 2-D and 3-D linear instabilities
of a plane internal gravity wave using the local stability approach. In doing so,
we demonstrate the local stability approach to be a physically insightful and
computationally efficient tool to study internal waves in various settings. It is worth
highlighting that it is a priori unknown which instabilities present in a global stability
approach, like the Floquet theory of Mied (1976) and Sonmor & Klaassen (1997),
may be captured in our local stability analysis. As we will show, the local stability
approach recovers established results of small-scale internal wave instabilities, and
sheds light on previously unexplored 3-D instabilities.

The paper is organized as follows. Section 2 presents a description of the base flow,
and the local stability equations that govern the evolution of small-scale perturbations
of plane internal waves. In § 3, we present our calculations and results spanning
a large range of non-dimensional wave amplitudes and orientation angles, and
offer comparisons with previous literature. A geophysical application of the local
stability approach is presented in § 4. Finally, a summary of our results followed by
conclusions and suggestions for future work are presented in § 5.

2. Theory
We consider an unbounded, non-rotating, uniformly stratified fluid of constant

buoyancy frequency N. The total velocity U, pressure P and buoyancy B fields are
a superposition of small-amplitude, short-wavelength perturbations onto an internal
wave base flow:

U= ū+ u′, (2.1)
P=−¯̄ρgz+ p̄+ p′, (2.2)

B= ¯̄b+ b̄+ b′, (2.3)

where ¯̄ρ(z)= ρ0− (ρ0/g)N2z is the stable background linear density stratification; ¯̄b=
( ¯̄ρ/ρ0)g is the background buoyancy field; ρ0 is a reference density; ū, p̄ and b̄ are the
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velocity, pressure and buoyancy fields of the internal wave, respectively, (u′, p′, and
b′ are the corresponding perturbation fields); and g=−gêz is gravity. The momentum,
incompressibility and mass conservation equations – under the inviscid, non-diffusive,
Boussinesq approximations – are, respectively,

Ut +U · ∇U=−∇(P/ρ0)− Bêz, (2.4)
Bt +U · ∇B= 0, (2.5)
∇ ·U= 0. (2.6)

The base flow is described by a 2-D plane internal gravity wave:

ψ̄ =Ψ cos(k · x−ωt), p̄=−
ρ0ω

k
ψ̄z, b̄=−

kN2

ω
ψ̄, (2.7a−c)

subject to the dispersion relation:

ω

N
=±

k
|k|
=± cosΦ, (2.8)

where ψ̄ is the streamfunction of the velocity field ū = (−ψ̄z, 0, ψ̄x), Ψ is the
streamfunction amplitude, x = (x, y, z) is the spatial coordinate, k = (k, 0, m) is the
wave vector, t is time, ω is the wave frequency and Φ is the inclination angle of the
wave vector k to the horizontal x-axis (or alternatively, the inclination of the constant
phase lines to the vertical z-axis), as shown in figure 1. We note that (2.7a–c)
are solutions to the linearised and fully nonlinear version of (2.4)–(2.6), and that
equations (2.7b,c) follow from the linearised forms of (2.4) and (2.5), respectively
(see Tabaei & Akylas 2003, § 2).

Using (2.8) to compute the group velocity vector cg = (∂kω, 0, ∂mω), one finds
that as Φ, and thus k, approach the x-axis, cg approaches the z-axis by virtue of
k and cg being orthogonal (see Kundu, Cohen & Dowling 2012, § 7.8). As a result,
the internal wave energy propagates at a steep (shallow) angle for small (large) Φ.
Figure 1 illustrates the internal wave base flow and relevant system parameters.

Choosing N−1 and |k|−1 as representative time and length scales, respectively, we
write the following dimensionless parameters to characterise the base flow:

A=
|k|2

N
Ψ , Φ = tan−1

(m
k

)
, (2.9a,b)

where A is the dimensionless net-velocity amplitude of the base flow and Φ is a
measure of the base flow orientation. We introduce a metric of isopycnal steepness
defined as

s=
max(ū)

cx
= A sinΦ, (2.10)

where max(ū) is the maximum horizontal velocity of the base flow and cx = ω/k is
the horizontal phase velocity. The condition s> 1 is sufficient for the existence of at
least one time instance during the internal wave period when overturned isopycnals
occur, i.e. ∂z( ¯̄ρ + ρ̄) > 0. The characteristics of such locally overturned regions are
known to be related to internal wave breaking (Thorpe 1994).
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FIGURE 1. (Colour online) An illustration of the base flow ψ̄ : a plane internal gravity
wave in the (x, z)-plane. The initial wave vector κ0 of the perturbation that is superposed
onto the base flow makes an angle θ0 with its projection on the (x, z)-plane, and its
projection on the (x, z)-plane makes an angle φ0 with the x-axis. The angle Φ is the
inclination angle of the base flow wave vector (group velocity vector) relative to the x-axis
(z-axis).

Following Lifschitz & Hameiri (1991), we write the short-wavelength perturbations,
which we superimpose onto the base flow, in the Wentzel–Kramers–Brillouin–Jeffreys
(WKBJ) form:

(u′, p′, b′)= exp(iΘ/ε)[(a, p, b)+ ε(aε, pε, bε)+ · · ·], (2.11)

where a(x, t), p(x, t) and b(x, t) are, respectively, the complex leading order velocity,
pressure and buoyancy perturbation amplitudes, Θ(x, t) is a real-valued phase function,
0< ε� 1 is the parameter reflecting the length scale ratio of the perturbation to the
base flow and κ=∇Θ/ε is the perturbation wave vector. Substituting (2.11) into (2.4)–
(2.6) and retaining O(ε−1) and O(ε0) terms yields the following equations governing
the evolution of the perturbation wave vector κ and the leading order perturbation
amplitudes (a, b) (Miyazaki & Fukumoto 1992):

dκ

dt
=−(∇ū)> · κ, (2.12)

da
dt
=−∇ū · a− bêz +

κ

|κ |2
[2(∇ū · a) · κ + bêz · κ], (2.13)

db
dt
=−a · ∇( ¯̄b+ b̄), (2.14)

where d/dt = ∂t + ū · ∇ is the material time derivative with respect to the base flow
ū. The local stability equations, (2.12)–(2.14), are, therefore, ordinary differential
equations to be solved on fluid particle trajectories in the base flow. We will hereafter
be working in a dimensionless framework, using |k|−1, N−1 and N2

|k|−1 as the length,
time and buoyancy scales, respectively.

Fluid particle trajectories x̄(t)= (x̄, 0, z̄) in the base flow are given by

x̄= x0 + A(tanΦ, 0,−1)[cos(ϑ0 − cosΦt)− cos ϑ0], (2.15)
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where x0= (x0, 0, z0) is the initial particle position at t= 0 and ϑ0= cosΦx0+ sinΦz0.
With no loss of generality, we assume (x0, z0)= (0, 0), as all trajectories on the (x, z)-
plane are equivalent for a plane wave. All fluid particle trajectories, irrespective of
initial location, are periodic in time, i.e. x̄(t= 2π/ cosΦ)= x̄(t= 0).

Since the local stability equations (2.12)–(2.14) are linear in κ , it suffices to
consider only initial perturbation wave vectors of unit magnitude:

κ0(φ0, θ0)= cos θ0 cos φ0êx + sin θ0êy + cos θ0 sin φ0êz, (2.16)

where θ0 is the angle made by κ0 with its projection on the (x, z)-plane, and φ0 is
the angle that the projection of κ0 on the (x, z)-plane makes with the x axis (see
figure 1); θ0= 0◦ corresponds to 2-D perturbations and any θ0> 0◦ corresponds to 3-D
perturbations. The limit θ0= 90◦ represents a wave vector aligned entirely along the y
axis, i.e. purely transverse perturbations, where the value of φ0 is irrelevant. Equation
(2.12), subject to the initial condition (2.16), is solved for the perturbation wave vector
to give

κ = κ0 + A(sinΦκ0,x − cosΦκ0,z)(1, 0, tanΦ)[sin(ϑ0 − cosΦt)− sin ϑ0], (2.17)

where κ0,x and κ0,z are the x and z components of the initial perturbation wave vector
κ0, respectively. For all (A,Φ), every κ specified by an initial condition (φ0, θ0) in the
range [0◦,360◦]× [−90◦,90◦] is periodic over one internal wave time period. Thus, the
growth rate associated with every κ0 is computed following the approach of Mathur
et al. (2014).

A fourth-order Runge–Kutta scheme is used to numerically solve (2.13) and (2.14),
for κ spanning various (φ0, θ0), along x̄ (with a temporal resolution such that one
internal wave period is represented using 500 points). We use four different initial
condition vectors of the form c0 = [ax,0 ay,0 az,0 b0] such that the initial condition
matrix, [c0,1; c0,2; c0,3; c0,4], is equal to the identity matrix. Thus, for each c0, we
numerically obtain amplitude vectors at t= 2π/ cosΦ as cf ,1=[ax,1 ay,1 az,1 b1], cf ,2=

[ax,2 ay,2 az,2 b2], cf ,3 = [ax,3 ay,3 az,3 b3], and cf ,4 = [ax,4 ay,4 az,4 b4]. The instability
growth rates are then calculated as (Chicone 2000)

σ =
max(Re(log(eigenvalues of M)))

2π/ cosΦ
, (2.18)

where M = [cf ,1; cf ,2; cf ,3; cf ,4]. The growth rate σ is periodic over φ0 ∈ [0◦, 180◦]
and symmetric about θ0=0◦; our subsequent analysis of σ is, therefore, presented over
φ0 ∈ [0◦, 180◦] and θ0 ∈ [0◦, 90◦]. We moreover note that σ is dimensionless, with a
growth rate scale of N.

3. Results
3.1. Instability growth rates

In figure 2, we present the growth rate σ (2.18) over the (φ0, θ0)-plane for nine
different pairs of base flow parameters (A, Φ). As noted in § 2, the growth rates are
periodic in φ0 over [0◦, 180◦] and symmetric about θ0 = 0◦. In figure 2, the internal
wave base flow progresses from steep (Φ = 15◦) in the leftmost column to shallow
(Φ = 75◦) in the rightmost column, and from small-amplitude (A = 0.1) in the top
row to large-amplitude (A= 10) in the bottom row.
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FIGURE 2. (Colour online) Growth rate, σ , presented as a function of φ0 and θ0 for A=
0.1, 1, 10 (top, middle and bottom rows, respectively), and Φ= 15◦, 45◦, 75◦ (left, middle
and right columns, respectively). Stable regions of the (φ0, θ0)-plane where σ < 10−10 have
been coloured white. The dotted vertical lines in each panel denote φ0 =Φ.

For (A, Φ) = (0.1, 15◦), i.e. small-amplitude, steep internal waves (figure 2a), we
observe, in the limit of 2-D perturbations (θ0= 0◦), two thin instability peaks centred
at φ0 = 61◦ and φ0 = 119◦. These instability peaks extend towards regions of 3-D
perturbations (θ0 > 0◦) to form two instability ridges on the (φ0, θ0)-plane; the two
instability ridges, labelled I and II in figure 2(a), seem to have similar maximum
growth rates, both of which occur on the θ0 = 0◦ axis. Significantly, the growth rates
on the θ0 > 0◦ portions of the ridges are comparable to those on the θ0 = 0◦ axis,
suggesting that a continuous range of perturbation wave vectors on these ridges are
of similar growth rates. It is also noteworthy that the variation of σ with θ0 on
ridges I and II is different, with ridge II retaining larger values of σ up to larger
θ0. As θ0 approaches a threshold value of 29◦, the two instability ridges approach
each other; above the threshold θ0, ridges I and II vanish. As θ0 increases towards
even larger values, a third, notably weaker, thin instability ridge appears (labelled
III in figure 2a). Ridge III seems to extend all the way to θ0 = 0◦, the axis of 2-D
perturbations. Interestingly, ridge III becomes aligned with φ0 = Φ (vertical dotted
lines in figure 2), indicating the emergence of shear-aligned instabilities as the ridge
approaches the θ0= 0◦ axis. The existence of distinct instability bands in an otherwise
stable landscape suggests the occurrence of select resonant wave–wave interactions in
the small s limit, which we discuss further in §§ 3.2–3.4.

At a moderate internal wave angle, i.e. Φ = 45◦, as shown in figure 2(b), we
similarly observe only three thin instability ridges over a (φ0, θ0)-plane that is
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mostly stable. The range of 3-D wave vectors to which ridges I and II extend is
smaller when compared with the case of Φ = 15◦ in figure 2(a). Ridge I appears to
be noticeably stronger than ridge II in figure 2(b). Moreover, a third instability ridge
is also identified in figure 2(b), although it is nearly indiscernible given its relatively
weak growth rates. For a shallow propagating internal wave, as shown in figure 2(c)
for Φ = 75◦, only three ridges are faintly visible due to the growth rates being an
order of magnitude weaker than their Φ= 15◦ and 45◦ counterparts, and for the range
of θ0 to which they extend being notably limited.

For the moderate-amplitude, steep-propagation case of (A, Φ)= (1, 15◦) (figure 2d),
the growth rate distribution is qualitatively similar to that of figure 2(a), but with
wider regions of the (φ0, θ0)-plane that are unstable. The difference between regions
I and II is more dramatic than what is observed at small-amplitude (figure 2a).
Moreover, region III (which was a ridge in figure 2a) contains growth rate magnitudes
comparable to that of regions I and II. The larger instability regions on the
(φ0, θ0)-plane imply that there is now a wider, continuous range of perturbation
wave vectors whose growth rates are of comparable magnitude. At an even larger
value of A= 10 (figure 2g), nearly the entire (φ0, θ0)-plane is unstable, with a fourth
region – narrowly separated from region III – that encompasses purely transverse
(θ0= 90◦) perturbations (which was not the case for weaker amplitude internal waves
in figure 2a,d). As in figure 2(a), the outer boundary of region III in both figure 2(d,g)
aligns with φ0 =Φ (shear-aligned perturbations) as θ0→ 0◦.

At a moderate-amplitude and intermediate internal wave angle, i.e. (A,Φ)= (1, 45◦)
(figure 2e), the instability islands cover a large part of the (φ0, θ0)-plane, but are
nestled among a still sizeable region of stability. When compared with figure 2(b,e)
has an additional region of instability (region IV) close to the θ0 = 90◦ axis, apart
from the fact that the original instability regions from A = 0.1 have become wider
and stronger for A = 1. Similar to what is seen in figure 2(d,g), as A increases to
10 for Φ = 45◦ (see figure 2h), the entire (φ0, θ0)-plane becomes effectively unstable.
Strikingly, there are at least two more separate instability regions for A=10 (figure 2h)
when compared with A= 1 (figure 2e). The largest growth rate for (A, Φ)= (10, 45◦)
occurs for purely transverse perturbations (θ0 = 90◦). There is, however, a ridge-like
feature spanning nearly all of θ0 along φ0 ≈ 45◦, on which the growth rate is quite
close to the maximum growth rate (which occurs on θ0 = 90◦). Interestingly, the
perturbation wave vectors corresponding to this near-vertical ridge are shear-aligned,
i.e. φ0 ≈Φ, in the (x, z)-plane of the base flow.

In the shallow internal wave regime of Φ = 75◦, the instability landscape of
moderate amplitude internal waves of A= 1 are characterised by an array of several
relatively thin unstable ridges, as shown in figure 2( f ). We recall that only three
instability ridges are discernible at A = 0.1 in figure 2(c). As the internal wave
amplitude increases to A=10 (figure 2i), the instability landscape changes significantly.
The unstable ridges in figure 2( f ) all seem to widen such that the entire (φ0, θ0)-plane,
except for a small patch around (φ0, θ0)= (75◦, 0◦), is unstable. Remarkably, there is
now a vertical ridge (spanning the entire θ0 range of 0◦6 θ0 6 90◦) at φ0= 75◦ along
which the growth rate is large and nearly uniform. The overall maximum growth rate
in figure 2(i) still occurs on θ0 = 90◦ although the shear-aligned wave vectors on the
vertical ridge are not far behind. Furthermore, at A= 10, the maximum growth rates
at Φ = 75◦ are now comparable in magnitude to the growth rates at Φ = 45◦ and 15◦,
suggesting that the dependence of maximum growth rate on Φ is weaker at larger
amplitudes.

Some of the distinct instability ridges seen across Φ for A = 1 in figure 2(d–f )
appear to be amplified extensions of the thin instability ridges observed at A = 0.1
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in figure 2(a–c). For example, the first three instability regions (I, II and III) in
figure 2(d,e) clearly have thinner, weaker counterparts in figure 2(a,b). Similarly, the
broad and barely separated regions of instability in figure 2(g–i) at A = 10 seem
to be extensions of the A = 1 unstable regions in figure 2(d–f ), but not necessarily
with one-to-one correspondence between scenarios of the same Φ. For example, the
fourth instability region in figure 2(g) does not have a counterpart in figure 2(d).
Additionally, the number of seemingly separate instability regions in figure 2(h) is
larger than the number in figure 2(e). The unstable regions I–III at Φ = 15◦, 45◦ and
75◦ for A = 0.1 (in figure 2), suggest that the instabilities occurring at large A may
be linked to instabilities at small A, in line with Klostermeyer (1991), who proposed
a connection between small A resonances and all instability modes at all internal
wave angles. Sonmor & Klaassen (1997) reaffirmed the conjecture of Klostermeyer
(1991) by concluding that there exist no instabilities in finite-amplitude plane internal
waves that cannot be traced back to resonant instabilities at small A. The connection
between small A resonances and finite A instabilities is addressed more rigorously in
§§ 3.4 and 3.5.

3.2. Two-dimensional PSI
In the limit of 2-D perturbations, i.e. θ0= 0◦ and small A, the local stability approach
shows the existence of two distinct values of φ0 at which thin instability peaks are
present (figure 2a–c). In this section, we verify that these peaks arise from a resonant
wave triad, and proceed to establish correspondence with existing results on 2-D
PSI. Furthermore, the local stability approach facilitates an investigation of how 2-D
PSI continuously extends towards large internal wave amplitudes as well as 3-D
perturbations (we discuss the latter in § 3.3).

Resonant triad interaction (RTI) represents a mechanism by which a pair of
subharmonic or superharmonic internal waves extract energy from a primary internal
wave through the formation of a resonant triad (Mied 1976). Such a resonant triad is
formed when the spatial and temporal resonant conditions are satisfied:

k1 + k2 = nk, (3.1)

and

ω1 +ω2 = nω, (3.2)

where the internal wave (k,ω) resonantly interacts with the internal waves (k1,ω1) and
(k2, ω2), and n is any positive integer (Hasselmann 1967; Drazin 1977). In the context
of RTI, (k, ω) denote the primary wave properties presented in (2.7), the subscripts
1 and 2 denote subharmonic daughter waves and n+ 1 is the order of the resonance.
In this section and the next (§ 3.3), we will focus on second-order wave interactions,
which take place for n= 1; higher order resonances (n> 1) are discussed in § 3.4.

To illustrate the main features of 2-D RTI, i.e. resonant triads formed in the plane
of the primary wave, we begin by considering an arbitrary pair of daughter waves,
(k1, ω1) and (k2, ω2), for a given primary wave (k, ω). The conditions (3.1) and
(3.2) with n = 1, together with the dispersion relation (2.8) for all three waves,
can be solved to obtain a relation between m1 and k1, where k1 = (k1, 0, m1) (see
Bourget et al. 2013, equation (3.29)). A plot of m1 (normalised by the primary
vertical wavenumber m) as a function of k1 (normalised by the primary horizontal
wavenumber k) is shown in figure 3(a). Any point on this resonance curve describes
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FIGURE 3. (a) The k1 resonance curve (solid black line) for a primary wave k= (k, 0,m)
(depicted by the arrow starting at the origin and ending at point (1, 1)) obtained from
the solution to the set of equations comprising the resonant conditions (3.1) and (3.2)
(for n = 1) and the dispersion relation (2.8). Superposed onto the resonance curve is a
representative PSI resonant triad: k (——), k1 (— · —), and k2 (· · ·). (b) The instability
growth rates (solid line), as derived by Koudella & Staquet (2006), corresponding to the
resonance curve in panel (a) for (A, Φ)= (0.1, 45◦). The asymptotic values of the growth
rate in the PSI limit for branch-A and branch-B (denoted byE andA, respectively), as
derived by Sonmor & Klaassen (1997), are consistent with Koudella & Staquet (2006).

the tip of k1, which when subtracted from the primary wave vector k – located at
(1, 1) in figure 3(a) – will yield the k2 that completes the resonant triad (Phillips
1977). An example resonant triad is presented in figure 3(a).

Of particular relevance to our study is the limit where the magnitudes of k1 and
k2 are significantly larger than k, which translates to short-wavelength perturbations
(i.e. daughter waves) relative to the base flow (i.e. primary wave). In this limit
(|k1| → ∞ and k1 lying on the resonance curve in figure 3a), k1 and k2 become
increasingly anti-parallel, and both ω1 and ω2 approach ω/2. The class of resonant
triads characterised by long, anti-parallel perturbation wave vectors with frequencies
that are half the primary wave frequency is referred to as PSI (McComas & Bretherton
1977; Dauxois et al. 2018).

Since the local stability approach and PSI both concern small-scale perturbations,
we proceed to investigate the extent to which the local stability approach recovers 2-D
PSI characteristics, i.e. the daughter wave vectors and associated growth rates. We
focus on the case presented in figure 2(b), i.e. (A, Φ)= (0.1, 45◦), which corresponds
to an isopycnal steepness of s ≈ 0.07. For 2-D perturbations (θ0 = 0◦), the local
stability approach identifies instabilities at φ0,1 ≈ 69◦ and φ0,3 ≈ 111◦, and (by virtue
of the periodicity of σ with φ0) at φ0,2=φ0,1+ 180◦ and φ0,4=φ0,3+ 180◦. The wave
vectors κ0,1 = κ0(φ0,1, θ0 = 0◦) and κ0,2 = κ0(φ0,2, θ0 = 0◦), together with the base flow
wave vector k, satisfy the spatial triadic resonance condition (3.1) as

κ0,1 + κ0,2 = 0, (3.3)

where κ0,1 and κ0,2 are anti-parallel to each other, and represent wave vectors of
much larger magnitude than the base flow wave vector due to the short-wavelength
approximation. Thus, the wave vectors κ0,1 and κ0,2 are consistent with the daughter
wave vectors in the PSI limit shown in figure 3(a).
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If κ0,1 and κ0,2 are to represent internal wave vectors, then the corresponding
frequencies based on the dispersion relation should be ω1/N = cos φ0,1 ≈ 0.36 and
ω2/N = −cosφ0,2 ≈ 0.36, both of which equal approximately half of the base flow
wave frequency ω/N = cosΦ ≈ 0.71. Given that the local stability framework allows
the perturbation wave vectors to evolve in time, we verify that the PSI triadic
resonance conditions are satisfied over the entire time period 0 6 t cos Φ < 2π by
computing κ0,1(t) and κ0,2(t) via (2.17) and confirming them to be effectively constant
in time, with .5 % variation (the variation decreases as A decreases). We have thus
established that the internal waves at the unstable wave vectors κ0,1 and κ0,2 from the
local stability approach indeed satisfy the classical PSI triadic resonance conditions
with the base flow wave vector. A similar calculation reveals that the internal waves
at the unstable wave vectors κ0,3 and κ0,4 are also in PSI triadic resonance with k. In
summary, each of the two pairs of unstable 2-D perturbation wave vectors from the
local stability approach represent a daughter wave pair that is in PSI resonance with
k. We proceed to investigate the growth rate at these unstable wave vectors.

For small isopycnal steepness (s � 1) of the primary wave, the growth rate
corresponding to any resonant triad in the plane of the primary wave is (Koudella &
Staquet 2006, § 4.3.1)

σKS = A cos2 Φ
√

S1S2, (3.4)

where

Sp =
mrkq −mqkr

4k2
3|kp|

2
[(|kq|

2
− |kr|

2)+ |kp|(|kq| − |kr|)]; (3.5)

the subscripts p, q, r= 1, 2, 3 form a circular permutation, with 1 and 2 denoting the
daughter waves and 3 denoting the primary wave.

Figure 3(b) shows σKS as a function of k1/k, from which we see that the growth
rate approaches two different asymptotic values at the PSI limits k1→±∞. The larger
asymptote (corresponding to the maximum PSI growth rate) occurs as k1→∞, and
is referred to as branch-A PSI. The smaller asymptote occurs in the limit k1→−∞,
and is referred to as branch-B PSI. The growth rates in these two limits are (Sonmor
& Klaassen 1997, § 3):

σSK = lim
k1→±∞

σKS =
A
16

cosΦ[±2 sin3
|Φ| + (1+ 2 cos2 Φ)

√
4− cos2 Φ], (3.6)

where the upper and lower signs correspond to branch-A and -B, respectively (in
figure 3(b) we confirm that σKS approaches σSK at the PSI limits). We denote the
2-D PSI growth rates in (3.6) associated with branch-A and branch-B as σA and σB,
respectively.

We find, for (A, Φ)= (0.1, 45◦), the local stability growth rates to be σ(φ0,1, θ0 =

0◦)= σ(φ0,2, θ0 = 0◦)= 0.01970, which is within 0.002 % of σA = 0.01966. Similarly,
σ(φ0,3, θ0= 0◦)= σ(φ0,4, θ0= 0◦)= 0.01349, which is within 0.006 % of σB= 0.01341.
Summarising our investigations at other Φ, we conclude that the local stability
approach, for small A internal waves and 2-D perturbations, recovers sharp instability
peaks at φ0,1 = cos−1(cos Φ/2) and φ0,2 = φ0,1 + 180◦, the growth rates at which
match with that of branch-A PSI. The local stability approach also recovers sharp
instability peaks at φ0,3 = cos−1(−cosΦ/2) and φ0,4 = φ0,3 + 180◦, the growth rates
at which match with that of branch-B PSI. We now perform a more comprehensive
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FIGURE 4. (Colour online) 2-D PSI growth rates (a–c) and corresponding wave vector
orientations (d–f ) presented as a function of A for Φ = 15◦, 45◦ and 75◦ (left, middle
and right columns, respectively). The solid and dashed lines in panels (a–c), respectively,
denote the branch-A and branch-B PSI growth rates derived by Sonmor & Klaassen (1997)
in (3.6); the solid and dashed lines in panels (d–f ) denote the corresponding perturbation
wave vector orientations given by cos−1(± cosΦ/2). Our local stability results are denoted
by E and A for branch-A and branch-B PSI, respectively. The vertical lines associated
with our results in panels (d–f ) denote the width of the PSI peaks, with the colour
intensity indicating the growth rates normalised by the corresponding growth rates plotted
in panels (a–c). The value s = 0.1 is indicated in each panel by a dotted vertical line,
indicating the upper limit of the small s regime.

comparison of 2-D PSI growth rates derived by Sonmor & Klaassen (1997) (σA and
σB) and our local stability approach (σ L

A and σ L
B ).

For a given (A,Φ), we calculate the maximum growth rate σ L
A within the instability

peak associated with φ0,1 = cos−1(cos Φ/2) for 2-D perturbations (θ0 = 0◦); the
corresponding location of locally maximum growth rate is denoted φ∗0,1, which equals
φ0,1 only for sufficiently small A since the peaks around φ0,1 (and φ0,3) expand into
finite-width instability regions as A increases. Similarly, the maximum growth rate
within the instability peak around φ0,3 = cos−1(−cosΦ/2) is denoted as σ L

B , and the
corresponding location of locally maximum growth rate is φ∗0,3. In the top row of
figure 4, we plot σ L

A and σ L
B as a function of A for three different internal wave

orientations (Φ = 15◦, 45◦, and 75◦ in figure 4a–c, respectively). For all three Φ,
there is excellent quantitative agreement between σ L

A,B (denoted by E and A for
branch-A and -B, respectively) and the σA,B growth rates of Sonmor & Klaassen
(1997) (denoted by solid and dashed lines for branch-A and -B, respectively) for
s < 0.1 (s = 0.1 is indicated by the vertical dotted lines in all panels of figure 4).
The bottom row of figure 4 shows the variation of φ∗0,1 and φ∗0,3 with A, which are
in excellent agreement with φ0,1 and φ0,3, respectively, for s < 0.1. Also shown in
the bottom row of figure 4 (using vertical bars) are the widths, along φ0 of the
corresponding instability regions; the widths remain close to zero for s < 0.1 at all
Φ.

As A, and thus s, increases, there is a noticeable deviation of the local stability
growth rates from the PSI growth rates of Sonmor & Klaassen (1997) (top row of
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figure 4). Around s ≈ 0.5, PSI theory breaks down regardless of the specific A and
Φ values. For each Φ, in the large A limit, σ L

A and σ L
B converge and saturate at ≈ 1,

which, in dimensional time, corresponds to a growth rate of ≈N. In summary, branch-
A PSI dominates branch-B PSI at small A, but the growth rates of both branches
converge to a similar value at large A. We note that the intriguing convergence of
the local stability PSI growth rates in the large A limit revealed by the local stability
approach is beyond the scope of classical PSI theories. We further note that as A
increases, the unstable perturbation wave vectors initialised at κ0(φ

∗

0,1−4, θ0= 0◦) begin
to substantially evolve along the base flow fluid particle trajectories and can no longer
be classified as internal waves.

For s > 0.1, φ∗0,1 and φ∗0,3 deviate noticeably from the branch-A and -B PSI
theoretical estimates φ0,1 and φ0,3, respectively. As Φ increases, however, the
deviations of φ∗0,1 from φ0,1 decrease, while the deviations of φ∗0,3 from φ0,3 increase
(for Φ = 75◦, φ∗0,1 ≈ φ0,1 even at large A). We note that the branch-A (φ∗0,1) and
branch-B (φ∗0,3) instabilities become anti-parallel to each other at large A (i.e.
separated by 180◦), consistent with σ L

A and σ L
B converging at large A. As wave

steepness increases (or as A increases for fixed Φ), the branch-A peak gradually
widens, although, for large Φ, the width of the peak is quite small even at large A.
The width of the branch-B peak increases with A as well, with the increase being
larger than that of branch-A; for Φ = 75◦ (figure 4f ), the width of the branch-B
peaks becomes very large, spanning 90◦. φ0 . 250◦ at large A. The wider PSI peaks
at large A indicate a larger range of instability, as we have seen in figure 2.

3.3. Three-dimensional PSI
The instability ridges for (A,Φ)= (0.1, 45◦) (figure 2b), at θ0= 0◦, comprise branch-A
(φ0,1 ≈ 69◦ and φ0,2 = φ0,1 + 180◦) and branch-B (φ0,3 ≈ 111◦ and φ0,4 = φ0,3 + 180◦)
PSI peaks. The extension of these peaks towards 3-D perturbation wave vectors, i.e.
θ0 > 0◦, suggests the existence of 3-D PSI. To confirm this, we first compute σ over
the (φ0, θ0)-plane for A = 0.01 and various values of Φ in the small s regime, and
then trace the instability ridges that emerge from the θ0 = 0◦ axis (figure 5a–c). The
3-D perturbation wave vectors corresponding to these traces satisfy the spatial resonant
condition,

κ(φ0,±θ0)+ κ(φ0 + 180◦,∓θ0)= 0, (3.7)

along the curves in figure 5(a–c) (we recall from § 2 that σ(φ0, θ0)= σ(φ0+ 180◦, θ0)
and σ(φ0,±θ0)= σ(φ0,∓θ0)). The equal and opposite wave vector components in y
for the two daughter waves in (3.7) are a consequence of the primary wave vector k
being entirely in the (x, z)-plane.

Requiring the two daughter waves in (3.7) to satisfy the 3-D internal wave
dispersion relation,

ω

N
=
|kxy|

|k|
, (3.8)

(where kxy= (k, `, 0) is the wave vector projected onto the xy-plane), and the temporal
resonance condition in (3.2) for n= 1 yields the relation

φ0 = cos−1

±√1
4

cos2 Φ

cos2 θ0
− tan2 θ0

 for |θ0|6 sin−1

(
|cosΦ|

2

)
, (3.9)
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FIGURE 5. Traces of 3-D PSI ridges in the (φ0, θ0)-plane (a–c), and corresponding growth
rates (d–f ) for a base flow of A = 10−2 and Φ = 15◦, 45◦, 75◦ (left, middle and right
columns, respectively); the corresponding isopycnal steepnesses are, respectively, s≈ 0.003,
0.007 and 0.01. The trace segments associated with branch-A and branch-B PSI are
denoted by the solid and dash-dotted lines, respectively. Superposed onto panels (a–c) are
discrete points of (3.9) (denoted by the circle markers), and the threshold values of θ0
(denoted by the asterisk markers).

with the daughter waves at frequency ω/2. In figure 5(a–c), we superpose points
corresponding to (3.9) onto the instability traces; the excellent agreement confirms
that the temporal resonant condition is satisfied by the 3-D perturbation wave vectors
that comprise each trace. Furthermore, we verify that the perturbation wave vectors
on these instability traces are effectively invariant in time, with .1.5 % variation over
0 6 t< 2π/ cosΦ. In summary, the perturbation wave vectors κ(φ0,±θ0) and κ(φ0 +

180◦, ∓θ0) are in 3-D PSI triadic resonance with the primary wave vector k, where
(φ0, θ0) is any point on the curves shown in figure 5(a–c).

Having confirmed that the instability ridges that exist at small s are indeed a 3-D
manifestation of PSI, we proceed to elucidate the growth rate variation along the
curves in figure 5(a–c). Each ridge has a point at which the growth rate approaches
zero, which we use to separate the trace into two segments, branches-A and -B,
based on which 2-D PSI branch the segment is on at θ0 = 0◦ (ridges I and II in
figure 2a, respectively). The growth rates corresponding to each trace are presented
in figure 5(d–f ). For 2-D perturbation wave vectors (θ0 = 0◦), the maximum growth
rate corresponds to branch-A regardless of Φ. For Φ = 15◦ in figure 5(d), however,
branch-B is dominant for practically the entire range of θ0 > 0◦. Moreover, for both
Φ = 15◦ and 75◦ (figure 5d, f, respectively), the maximum branch-B growth rate is
comparable to the maximum branch-A growth rate. Looking at 2-D PSI alone for
Φ = 75◦, one would conclude that branch-A clearly dominates branch-B; in 3-D,
however, the maximum branch-B growth rate is almost as strong as branch-A is in
two dimensions.

As Φ increases, we observe five general features of 3-D PSI: (i) the range, in
φ0, of PSI decreases; (ii) the range, in θ0, of branch-A (solid line in figure 5)
shortens; (iii) the branch-B growth rate curve evolves from one that is monotonically
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decreasing to one that increases and achieves a maximum growth rate in the vicinity
of the threshold θ0 (asterisk marker in figure 5a–c); (iv) the overall magnitudes of σ
decrease; and (v) the threshold value of θ0 decreases substantially, thereby restricting
the three-dimensionality of the resonant wave interaction between the 3-D perturbation
wave vectors and the internal wave base flow.

3.4. Higher-order resonances
To understand the origin of various large A instabilities, we plot, in figure 6, the
growth rates in the (φ0, θ0)-plane for Φ = 15◦ 45◦, and 75◦ for three base flow
amplitudes that reasonably span the transition from small to large A: A= 0.3, 0.5 and
0.7. Moreover, we superpose on figure 6 the contours along which the corresponding
perturbation wave vectors are in second- or higher-order triadic resonance with the
primary wave, i.e. equation (3.9) modified to include any order of resonance (n> 1):

φ0 = cos−1

±√n2

4
cos2 Φ

cos2 θ0
− tan2 θ0

 for |θ0|6 sin−1
(n

2
|cosΦ|

)
, (3.10)

where the daughter waves are now at frequency nω/2. The second-order (n = 1)
resonance contour is closest to the θ0 = 0◦-axis; as n increases, the higher-order
resonance curves expand outwards and approach the θ0 = 90◦ axis. As Φ increases,
the frequency ω/N decreases [see (2.8)], which, in turn, allows for a greater number
of higher-harmonics (i.e. n) to fit within the internal wave passband 0 < nω/2 < N.
From (3.10), the highest possible order of resonance is specified by n= 2 for Φ= 15◦
and 45◦, and n = 7 for Φ = 75◦. Interestingly, for quasi-2-D perturbations (θ0 ≈ 0◦),
(3.10) simplifies to φ0 ≈ Φ (i.e. perturbations that are shear aligned) for n = 2
(third-order resonance). This explains the orientation of ridge III near the θ0= 0◦ axis
in figure 2(a,b) given that ridge III corresponds to third-order resonance, as we will
show below.

For (A, Φ) = (0.3, 15◦) (figure 6a), the instability ridges are of finite width. The
n = 1 resonance contour overlaps with its corresponding instability ridges I and II,
as was reported in § 3.3. In contrast, the n= 2 resonance contour does not necessarily
capture the most unstable locations within the corresponding instability region. Instead,
the n=2 contour accurately captures the upper boundary of instability region III. As A
decreases, however, the instability region III of Φ= 15◦ becomes progressively thinner
(and weaker) and overlaps with the n = 2 resonance contour. For Φ = 45◦ and 75◦
(figure 6b,c, respectively), the theoretical resonance curves nicely capture all of the
instability ridges, although the ridges are very thin and weak for Φ = 75◦.

Slightly increasing A to 0.5 (figure 6d–f ) yields results similar to A= 0.3. At Φ =
15◦, a deviation from theoretical resonance happens in the form of a widening of the
instability ridges, although the signature of the higher-order resonance curves are still
clearly present. The upper boundary of instability region III is still nicely captured
by the n= 2 contour. Deviation of the instability ridges from higher-order resonance
curves is notable at Φ = 75◦, although there is overlap near φ0 = 90◦. The deviations
taking place for Φ=75◦ are unsurprising given that s increases with Φ, and we expect
deviations to occur beyond the PSI regime for large s. Interestingly, a new instability
region appears in the vicinity of the θ0 = 90◦ axis for Φ = 45◦ (figure 6e), and it
seems to have no corresponding theoretical resonance contour in its neighbourhood.
We investigate this new instability region in § 3.5.
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FIGURE 6. (Colour online) Growth rate, σ , in the (φ0, θ0)-plane for Φ = 15◦, 45◦ and
75◦ (left, middle and right columns, respectively) for A = 0.3, 0.5 and 0.7 (top, middle
and bottom rows, respectively). Superposed onto each panel are the higher-order resonance
curves (dashed lines) given by (3.10); the innermost curve corresponds to n= 1, with n
incrementally increasing outwards. Stable regions of the (φ0, θ0)-plane where σ < 10−10

have been coloured white.

The results for A = 0.7 depict a departure from alignment between the instability
ridges and the higher-order resonance curves. Either the instability ridges widen
substantially to cover a larger band of the (φ0, θ0)-plane (as for Φ = 15◦ and 45◦ in
figure 6g,h, respectively), or they remain relatively thin but completely fall out of
alignment and into a non-trivial pattern (as for Φ = 75◦ in figure 6i). What is most
striking, however, is the connection observed between the instability ridges and the
higher-order resonance curves for small A and the persistence of that connection as A
increases. It appears that many features of the instability landscape, especially those
corresponding to the maximum growth rates, originate from higher-order resonances
in the small A regime, a result that is consistent with the conclusions of Klostermeyer
(1991) and Sonmor & Klaassen (1997).

3.5. Transverse instabilities
In figure 6(e,h), we note the existence of an instability region near θ0 = 90◦ that is
seemingly independent of the higher-order resonance curves. Equation (3.10) informs
us that the higher-order resonance curves approach the θ0= 90◦ axis as Φ→ 90◦. The
appearance of the instability region at and around θ0 = 90◦ for Φ = 45◦ (figure 6e,h),
and its absence for Φ = 15◦ (figure 6d,g) and 75◦ (figure 6f,i), suggests that the
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FIGURE 7. (Colour online) (a) Growth rate as a function of (A, Φ) for θ0 = 90◦ (φ0 is
arbitrarily set to 0◦). Stable regions of the (A,Φ)-plane where σ <10−10 has been coloured
white. The origin of the largest instability tongue at A = 0, which occurs at Φ1 ≈ 48◦,
is marked by the left-most vertical dotted line. Additional tongues occur at half-integer
multiples of secΦ1, as shown in panel (b). The threshold for gravitational stability, (3.14),
is denoted by the dashed line, and the modified gravitational stability threshold, (3.15), is
denoted by the dash-dotted line.

transverse θ0 = 90◦ instability is unrelated to higher-order resonances. We note that
the perturbation wave vector giving rise to the purely transverse instability is normal
to the plane of the base flow, and thus invariant in time [by virtue of (2.12)].

To better understand this transverse instability, we plot the growth rate for θ0= 90◦
(and φ0 arbitrarily set to 0◦) as a function of (A,Φ) in figure 7. Interestingly, there are
distinct instability tongues spanning the (A,Φ)-plane. These tongues seem to originate
at specific points along the Φ-axis at A= 0, where the growth rates are infinitesimal.
Substituting purely transverse perturbations (κ0 = êy) into equations (2.13) and (2.14)
yields a set of coupled ordinary differential equations for ax and az:

d2ax

dt2
+ A cos2 Φ sinΦ sin(ϑ0 − cosΦt)ax

=−A sin2 Φ cosΦ sin(ϑ0 − cosΦt)az

−A sinΦ cos(ϑ0 − cosΦt)
(

cosΦ
dax

dt
+ sinΦ

daz

dt

)
, (3.11)

d2az

dt2
+ [1− A sinΦ(1+ cos2 Φ) sin(ϑ0 − cosΦt)]az

= A(cos3 Φ + cosΦ) sin(ϑ0 − cosΦt)ax

+A cosΦ cos(ϑ0 − cosΦt)
(

cosΦ
dax

dt
+ sinΦ

daz

dt

)
. (3.12)

After neglecting the forcing and damping terms on the right-hand side of (3.12), we
obtain a Mathieu-like equation for az which describes a parametrically forced system
that has instability tongues in the (A, Φ)-plane corresponding to regions of parametric
resonance. These tongues originate at A = 0 from the following points (Bender &
Orszag 1999, chap. 11.4):

Φ = cos−1

(
2

n+ 2

)
, n= 1, 2, 3, . . . . (3.13)
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The points given by (3.13), which are denoted by vertical dotted lines in figure 7,
accurately predict the points along the Φ-axis from which the tongues emanate. As A
increases, the points widen into instability regions with finite and increasing growth
rates. We do observe, however, a detachment of the tongues (especially for large Φ)
from the A= 0 axis, which we attribute to the damping and forcing terms in the right-
hand side of (3.11) and (3.12) (Nayfeh & Mook 1995, chap. 1.5).

The first tongue originating at Φ1≈ 48◦ spans the largest region of the (A,Φ)-plane,
and the bulk of the tongue appears to take form at relatively smaller values of A.
It is this tongue that we observe in figure 6(e) at (A, Φ) = (0.5, 45◦); the other
tongues at larger Φ have not taken form by A= 0.5, which explains the absence of a
transverse instability in figure 6( f ) at Φ = 75◦. We note that it is the peculiar shape
of the instability tongues (the inclined upper boundary in particular) that accounts for
(A, Φ) = (1, 45◦) having no purely transverse instabilities (figure 2e), in contrast to
smaller A= 0.5 and 0.7 for Φ= 45◦ (figure 6e,h) having purely transverse instabilities.
Another consequence of the non-trivial formation of transverse instabilities is region
IV in figure 2(e). Although it has detached from the θ0 = 90◦ axis, region IV is an
extension of the transverse instability seen at smaller A in figure 6(h). (For Φ = 45◦,
we observe the detachment of region IV from the θ0 = 90◦ axis at some A in 0.95<
A< 0.96.)

The density of tongues grows as Φ→ 90◦ and remapping the growth rates to the
(A, sec Φ)-plane better reveals the formation of instability tongues (figure 7b). We
superpose on each plot in figure 7 the threshold amplitude below which statically
unstable layers do not occur at any time during the internal wave period:

max
06t<2π/ cosΦ

(
d ¯̄ρ
dz
+
∂ρ̄

∂z

)
< 0, or A<

1
sinΦ

, (3.14a,b)

where ¯̄ρ(z) is the background density stratification and ρ̄(x, t) is the density field of
the internal wave base flow. The minimum A at which the instability tongues form
increases with Φ and appears to approach the gravitational stability curve (dashed line
in figure 7) at large Φ. The region above the gravitational stability curve is largely
unstable, although thin bands of stability separate the unstable tongues.

Without parametric pumping (i.e. the time dependency in the coefficient of az),
equation (3.12), with the right-hand side set to zero, would have neutrally stable
oscillatory solutions if

A<
1

sinΦ(1+ cos2 Φ)
, (3.15)

which appears to be a slightly modified version of the static gravitational stability
criterion (3.14). The inclusion of parametric pumping, however, allows for unstable
solutions (i.e. parametric resonance) – even if the coefficient of az is positive over
the entirety of the forcing period – provided that the pumping occurs at half-integer
multiples of the natural period of the system (3.13). In an effort to separate the
influence of parametric pumping on wave stability, we identify, in (3.15), a heuristic
measure of stability by requiring the coefficient of az in (3.12) to be positive at all
times. The criterion in (3.15), which is plotted as a dash-dotted curve in figure 7,
adequately separates the bulk of the instability tongues from the stems connecting
them to A = 0. The region above (3.15) in figure 7 is overwhelmingly unstable due
to both parametric and gravitational-like instability given that the coefficient of az in
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the left-hand side of (3.12) is negative for a substantial portion of the wave period;
the thin instability stems below (3.15) exist entirely due to parametric resonance.

Although the transverse instability regions and other instability ridges seen in
figure 6 both originate at small A, the former arises from parametric resonance
and the latter from RTI. The instabilities associated with transverse perturbations,
therefore, offer another mechanism, separate from RTI, by which large A instabilities
can form. Our findings remain in line with the position of Klostermeyer (1991) and
Sonmor & Klaassen (1997), who conclude that all large A instabilities are linked to
small A resonances.

3.6. Dominant instability modes
To identify the dominant instability mode for a given (A, Φ), we calculate σ over
the entire (φ0, θ0)-plane and then select the maximum growth rate, which we denote
σ ∗. The corresponding φ0 and θ0 of σ ∗, denoted φ∗0 and θ∗0 , respectively, reflect the
initial wave vector orientation of the most unstable perturbation. Figures 8(a)–8(c),
respectively, plot σ ∗, θ∗0 and φ∗0 over a range of base flow parameters (A, Φ).
Moreover, we derive from figure 8 a regime diagram for the various dominant
instability modes, which we present in figure 9. We superpose on each plot in
figures 8 and 9 the boundary below which the gravitational stability criterion given
by (3.14) is satisfied (dashed line), and the boundary below which the classical shear
stability criterion is satisfied (dotted line):

min
06t<2π/ cosΦ

Ri>
1
4

or A<
2

sin2 Φ
, (3.16a,b)

where Ri = N2/(dū/dz)2 is the instantaneous Richardson number associated with
the base flow without accounting for the unsteady density gradients associated
with the internal wave. We note that (3.14) represents the stability criterion for a
steady, one-dimensional (1-D), vertical density gradient with no shear flow; similarly,
(3.16) is strictly valid only for 1-D shear and density profiles along the direction of
gravity. Despite their limitations, (3.14) and (3.16) do provide points of reference for
evaluating the relevance of classical gravitational and shear instability criteria to the
emergence of various instabilities in the local stability approach. Interestingly, if we
include the unsteady density gradients associated with the internal wave base flow
in the definition of the Richardson number, i.e. Ri = (N2

− (g/ρ0) dρ̄/dz)/(dū/dz)2,
then the boundary given by min06t<2π/ cosΦ Ri > 1/4 coincides with the gravitational
stability boundary in (3.14).

In general, σ ∗ monotonically increases with A for a given Φ. For a given A,
however, σ ∗ decreases with Φ for A� 10 because the dominant instability in that
regime is PSI (as discussed below and shown in figure 9), for which we know that σA

decreases with Φ (as shown in figure 4a–c). For A& 10, σ ∗ decreases with Φ below
some Φ value, past which σ ∗ abruptly begins to increase. This dual-behaviour of σ ∗
for A & 10 is linked to a transition of the dominant instability mode, as discussed
later in this section.

The corresponding θ∗0 values, shown in figure 8(b), clearly indicate a number of
distinct regimes of the dominant instability mode. Up to A∼1, the dominant instability
is 2-D by virtue of the perturbation wave vectors having θ0 = 0◦. As we have shown
in § 3.2, the dominant instability mode for small A and 2-D perturbations is 2-D PSI.
As further evidence, we note that the corresponding φ∗0 values in this regime (shown
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FIGURE 8. (Colour online) (a) Maximum growth rate, σ ∗, as a function of A and Φ,
and the corresponding perturbation wave vector orientations (b) θ∗0 and (c) φ∗0 . The dashed
(– –) and dotted (· · ·) lines denote threshold boundaries of gravitational and shear stability,
respectively.

15 45 75
Ï (deg.)

102

101

100

10-1

A

3-D transverse

2-D PSI

3-D oblique

quasi-2-D shear-aligned

FIGURE 9. (Colour online) Regime diagram indicating the dependence of the dominant
instability mode on the base flow orientation, Φ, and amplitude, A. The thresholds for
gravitational and shear stability are denoted by the dashed (– –) and dotted (· · ·) lines,
respectively.

in figure 8c) are independent of A and approach 90◦ as Φ increases, both of which
are in agreement with the behaviour of branch-A PSI in figure 4(d–f ). The boundary
for classical shear stability (dotted line in figures 8 and 9) appears to nicely delineate
this limit of the PSI regime for sufficiently large Φ.

Beyond the upper boundary of the 2-D PSI regime, there is another distinct regime
where θ∗0 is close to 90◦ (figure 8b), which corresponds to a dominant mode that
is transverse to the base flow. This 3-D instability dominates for large A, with the
threshold in A decreasing as Φ → 90◦. We note that there are only certain points
in this regime where θ∗0 is precisely 90◦; the mean and standard deviation of θ∗0
are approximately 81◦ and 6.5◦, respectively. In figure 7, we see that the instability
tongues for purely transverse perturbations are separated by thin stability bands along
the Φ axis at large A. The transverse dominant instability mode may, therefore, be
slightly offset from θ∗0 = 90◦, as we see in figure 8(b), due to the presence of these
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thin stability bands. Despite transverse perturbations having the maximum growth rate
in the (φ0, θ0)-plane at large A, we recall that there are instabilities spanning nearly
the entire range of θ0 at φ∗0 ≈ Φ with growth rates close to σ ∗ (see, for example,
figure 2i).

Sandwiched between the distinct 3-D transverse and 2-D PSI regimes are two
intermediary regimes: one where the dominant perturbation wave vector is effectively
2-D and shear-aligned, and another regime where the perturbation wave vector is 3-D
over a range of oblique angles. We identify the shear-aligned regime as one where
φ∗0 is within 15◦ of Φ and is thus aligned with the direction of shear in the base
flow. Moreover, the corresponding θ∗0 values are all less than 15◦, which translates
to perturbation wave vectors that are effectively two-dimensional. From figures 8(c)
and 9, we can see that the shear-aligned regime hugs the lower boundary of the 3-D
transverse regime and, for small A and large Φ, overlaps with the 2-D PSI regime.
The overlap of the shear-aligned and 2-D PSI regimes is to be expected since the φ0
values for branch-A PSI approach 90◦ as Φ→ 90◦ (as can be seen in figure 4d–f ).
The lower boundary of the non-PSI shear-aligned regime is nicely captured by the
shear stability curve, as shown in figure 9.

The classical shear stability curve nicely separates the shear-aligned regime from the
remaining regime, which is located below the shear stability curve and above the 2-D
PSI regime. This regime corresponds to perturbation wave vectors with oblique 3-D θ∗0
(40◦. θ∗0 .50◦) and a range of φ∗0 that is strongly dependent on A and Φ. Interestingly,
this 3-D oblique regime is situated between two regimes that are predominantly two-
dimensional.

Figure 9 presents a summary diagram of the four dominant instability regimes
(listed in increasing A): 2-D PSI, 3-D oblique, quasi-2-D shear-aligned, and 3-D
transverse (with the quasi-2-D shear-aligned and 2-D PSI regimes overlapping
for Φ > 70◦). The shear stability curve separates the 2-D PSI and 3-D oblique
regimes from the quasi-2-D shear-aligned and 3-D transverse regimes. Given how
our calculations are restricted to small-scale instabilities, it is only our 2-D branch-A
PSI regime, at small A, that is in agreement with the dominant instability regime
diagram of Sonmor & Klaassen (1997, figure 22); both of our studies also recover
a shear-aligned regime, but the shear-aligned regime of Sonmor & Klaassen (1997)
overlaps with our 3-D transverse regime in the (A, Φ)-plane. A more quantitative
comparison of the other regimes in figure 22 of Sonmor & Klaassen (1997) are
precluded because they are derived from finite-scale instabilities, which are beyond
the scope of the local stability approach.

4. Geophysical application

To estimate the instability regimes in which oceanic internal waves could lie, we
consider parameter values that are representative of the region around the Kaena
ridge near the Hawaiian islands, known to be a location for enhanced internal tide
generation (Rudnick et al. 2003).

Internal tides occur predominantly at the semi-diurnal frequency of ω ≈ 1.4 ×
10−4 rad s−1, and a typical stratification profile in the region shows a value of
N ≈ 7.6 × 10−4 rad s−1 in the deep ocean, where the stratification is effectively
uniform (Echeverri & Peacock 2010). Neglecting background rotation, these values
of ω and N correspond to Φ ≈ 79.4◦ (2.8) in the deep ocean. For a given barotropic
velocity amplitude U, linear models of internal tide generation at the Kaena ridge
predict that the internal tide horizontal velocities are of the order of 10U and the
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horizontal length-scale of the internal tides are ≈ 25 km (Echeverri & Peacock 2010;
Mathur, Carter & Peacock 2016). Assuming U≈ 2 cm s−1, a resulting estimate for A
is 0.37 (2.9). We note, however, that the uncertainties in U and the length scale of
the internal tides introduce significant uncertainty into our estimate for A.

For values of (A,Φ) around (0.37,79.4◦), figure 9 identifies the dominant instability
mode to be 2-D PSI, with the growth rate distribution on the (φ0, θ0)-plane resembling
the instability ridges shown in figure 6(c). From figure 8(a), we find the corresponding
maximum growth rate to be approximately 0.017, which is ≈10 % of the internal
wave frequency cos Φ, i.e. the rate of energy extraction from the primary plane
wave could occur on a time scale that is ≈10 times longer than the internal tide
time period. Moreover, for values of Φ as large as 79.4◦, a number of higher-order
resonances are possible (as shown in figure 6(c, f ) for Φ = 75◦), which have finite
growth rates that can possibly give rise to further redistribution of internal wave
energy. We note that, apart from the uncertainties in the estimate of A and Φ, the
exclusion of background rotation from our calculations could also affect the accuracy
of our conclusions regarding the Kaena ridge. Nonetheless, the identification of 2-D
PSI as the dominant instability mode is consistent with the observations of Alford
et al. (2007) near the Hawaiian ridge.

Viscous effects, which have thus far been absent in our study, are likely to have an
effect on the local instabilities. Assuming weak viscous effects, i.e. ν ∼O(ε2) [where
ν is the kinematic viscosity and ε is the short-wavelength parameter introduced in
(2.11)], the viscous correction to the inviscid growth rates is given by (Landman &
Saffman 1987):

ν

T

∫ T

0
|κ |2 dt, (4.1)

where T is the time period of the fluid particle trajectory on which the local stability
equations are solved. In non-dimensional terms, ν would be replaced by the inverse
of the appropriately defined Reynolds number, which in our study is Re=N/(ν|k|2).

We assume an initial perturbation wave vector of the form in (2.16), but with its
magnitude κ0 not necessarily restricted to unity. Using the closed form expression in
(2.17) for the evolution of κ , the viscous correction to the inviscid growth rate is
analytically evaluated to give

σν = σ − κ̃
2
0
ν

N

[
1+

A2

2
cos2 θ0

cos2 Φ
sin2(Φ − φ0)

]
, (4.2)

where σν is the viscous growth rate, σ is the numerically calculated inviscid local
instability growth rate and κ̃0 = |k|κ0 is the dimensional magnitude of the initial
perturbation wave vector. We recall that σ and σν are non-dimensional, with N−1

used as the time scale.
Using the expression in (4.2), we write the threshold wavenumber

κ̃T
0 =

√
σN
ν

[
1+

A2

2
cos2 θ0

cos2 Φ
sin2(Φ − φ0)

]−1

, (4.3)

above which viscous effects completely suppress the inviscid instability of growth
rate σ . Correspondingly, λ̃0= 2π/κ̃0 is the shortest dimensional wavelength for which
viscous effects do not completely suppress the inviscid instability; the horizontal and
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vertical wavelengths are λ̃0,x = 2π/(κ̃0|cos θ0 cos φ0|) and λ̃0,z = 2π/(κ̃0|cos θ0 sin φ0|).
Interestingly, (4.3) simplifies to κ̃T

0 =
√
σN/ν in the limit of either θ0 = 90◦ (purely

transverse perturbations) or φ0 =Φ (shear-aligned perturbations).
As discussed earlier in this section, (A, Φ) ≈ (0.37, 79.4◦) in the Kaena ridge

region and the resulting maximum σ ≈ 0.017 occurs at (φ∗0 , θ
∗

0 )≈ (85.1◦, 0◦). These
values, along with N ≈ 7.6 × 10−4 rad s−1 and ν = 10−6 m2 s−1, are substituted
into (4.3) to give λ̃0 ≈ 1.8 m, λ̃0,x ≈ 20.7 m, λ̃0,z ≈ 1.8 m, suggesting that the
small-scale instability predicted by the local stability framework would indeed occur
for short-wavelength perturbations since the internal tide length scales are at least
an order of magnitude larger than these cut-off wavelengths. Even if the effective
kinematic viscosity is increased to ν ∼ 10−4 m2 s−1 (by small-scale turbulence, for
example), the cut-off wavelengths only increase by a factor of 10 and still remain
relatively small. For (A,Φ)≈ (0.37, 79.4◦), there is also a local maximum of σ ≈ 0.01
at (φ0, θ0)≈ (91.3◦, 5◦). With N= 7.6× 10−4 rad s−1 and ν= 10−6 m2 s−1, the cut-off
wavelengths are λ̃0 ≈ 2.4 m, λ̃0,x ≈ 105 m and λ̃0,z ≈ 2.4 m. Again, with an enhanced
effective diffusivity of ν= 10−4 m2 s−1, these cut-off wavelengths increase by a factor
of 10 and are still well below internal tide length scales. While viscous effects would
suppress the inviscid instabilities at sufficiently small perturbation length scales, it
seems unlikely that they would significantly affect the dominant local instabilities
under typical oceanic conditions of strong internal tide generation.

5. Summary and conclusions
We have applied the local stability approach to gain insights into 3-D, small-scale,

linear instabilities of plane internal gravity waves. The short-wavelength approximation
reduces the linearised perturbation equations to a set of ordinary differential equations
governing the evolution of the perturbation wave vector and leading-order perturbation
amplitude along fluid particle trajectories in the plane internal wave. The resulting
local stability equations are computationally inexpensive to solve, and hence allow us
to obtain detailed plots of growth rates as a function of the coordinates characterising
the initial perturbation wave vector, (φ0, θ0). We subsequently extend our calculations
to a continuous range of (A, Φ), parameters which, respectively, characterise the
amplitude and orientation of the plane internal wave. It is noteworthy that the extent
to which the local stability approach recovers existing knowledge of plane internal
wave instabilities was a priori unknown. An important outcome of this paper is,
therefore, the demonstration of quantitative agreement between the local and global
stability approaches (in the appropriate limit of small-scale perturbations) for a plane
internal wave.

Small A internal waves are characterised by thin instability ridges in the (φ0, θ0)-
plane. The number of such ridges seemed to generally increase with Φ, i.e. shallow
internal waves correspond to the presence of more instability ridges. At moderate A,
the weak, thin instability ridges from small A evolve into stronger, wider instability
regions. For a given Φ, we also observe newer instability regions emerge in the
neighbourhood of purely transverse perturbations at moderate A. At sufficiently
large A, purely transverse instability seems to become dominant at all Φ, although
shear-aligned perturbations spanning some or all of θ0 are not far behind in growth
rate. For small A and 2-D perturbations, we showed that the two instability ridges
recover the well-known PSI branch-A and -B characteristics, including both the
secondary wave vectors and the growth rate magnitudes; at sufficiently large A,
the growth rates of the two PSI branches become equally strong, and the ridges
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become significantly wider in the range of unstable wave vectors. It is noteworthy
that the local stability approach requires no additional assumptions to capture the
large amplitude extension of 2-D PSI. Three-dimensional manifestations of branch-A
and branch-B PSI were then highlighted, an aspect that is potentially important in
the ocean and the atmosphere. At small A, while branch-A 2-D PSI is dominant, we
showed that the 3-D extension of both branch-A and -B may have similar growth
rates; for branch-B, the 3-D perturbations are sometimes more unstable than their
2-D counterparts.

We then proceeded to show that the remaining unstable ridges in the (φ0, θ0)-plane
for small A are also manifestations of unstable resonant triads, but of higher-order
RTI. The PSI and higher-order resonances at small A were shown to continuously
evolve into complex instability regions in the (φ0, θ0)-plane at moderate and large A.
A notable exception was an instability region encompassing (or located close to) the
axis of purely transverse perturbations (θ0 = 90◦), which had no apparent connection
to triadic resonance of any order. A detailed investigation of purely transverse
instabilities showed that a parametric resonance mechanism results in instabilities
at specific Φ at small A. The parametric resonance regions were then shown to
expand into instability tongues as A increased, nearly occupying the entire range of
Φ for A > 2. A modified form of the classical gravitational instability criterion was
then shown to accurately capture the threshold amplitude above which the transverse
instability regions encompass large portions of the (A, Φ)-plane.

Subsequently, we investigated the dominant instability for any (A, Φ), although our
earlier results suggest that an identification of a unique dominant instability mode may
potentially ignore, particularly at large A, several other perturbation wave vectors that
have quantitatively similar growth rates to the dominant instability. The local stability
approach identifies four distinct dominant instability regimes in the (A, Φ)-plane: 2-D
PSI, 3-D oblique, quasi-2-D shear-aligned and 3-D transverse.

The relevance of classical gravitational instability (i.e. the appearance of statically
unstable layers) and shear instability (Ri < 1/4) were then addressed by plotting
the corresponding curves in the (A, Φ)-plane of the dominant instability mode
regime diagram. The gravitational instability criterion reasonably serves the purpose
of identifying when 2-D PSI ceases to be the dominant instability mode, except
for steep internal waves. Similarly, the classical shear instability criterion seems to
somewhat delineate the regions of 3-D oblique and quasi-2-D shear-aligned dominant
instabilities. For any given Φ, at sufficiently large A, a transverse instability that
arises from a combination of parametric resonance and gravitational-like instability
becomes dominant, although non-transverse shear-aligned perturbations are strongly
unstable as well. In summary, while the classical instability criteria based on idealized,
1-D base flow profiles have some role in understanding the regions of various
instability mechanisms, the use of Ri< 1/4 criterion as a signature of turbulence in
an internal wave dominated flow field represents an over simplification. In actuality,
the scope of 3-D small-scale instabilities in an internal wave field is rather complex,
as demonstrated by figure 9. The fact that flows in the ocean and atmosphere are
by nature three-dimensional further underscores the importance of understanding the
behaviour of 3-D instabilities. Typical values of oceanic parameters from the Kaena
ridge suggest that 2-D PSI may be dominant, but is present alongside other 3-D
instabilities. We conclude by quantitatively estimating the role of weak viscous effects
in suppressing the inviscid instabilities derived from the local stability framework.

Typical studies concerning the estimation of RTI characteristics involve a two-step
procedure: (i) the identification of all wave vectors that are in triadic resonance
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with a given primary wave field and (ii) the derivation of evolution equations (based
on weakly nonlinear expansions) that are then solved by analytical or numerical
means. In a uniform stratification, the identification of all possible resonant triads that
contain the primary wave involves simultaneously solving the spatial and temporal
resonance conditions, along with the dispersion relation for the secondary waves. In
a non-uniform stratification, however, even the identification of resonant triads for a
plane wave or mode is in itself a complex task (e.g. Varma & Mathur 2017) since
there is no unique vertical wavenumber associated with the wave field, contrary to
the case of a plane wave or mode in a uniform stratification. Moreover, theoretical
studies are often restricted to specific resonant triads, like 2-D PSI (where the
daughter waves have half the primary wave frequency), which imposes the dominant
instability mechanism in the problem formulation. Even if the dominant resonant triad
is correctly selected for the problem at hand, we have shown that the most-unstable
perturbation wave vectors are not necessarily in exact triadic resonance with the
primary wave, but offset from theoretical RTI contours.

The local stability approach circumvents the two-step procedure described in the
previous paragraph and instead provides a direct growth rate estimate associated
with all possible perturbation wave vectors for a given base flow internal wave; the
approach is not necessarily restricted to perturbations that are in triadic resonance
with the primary wave. The Floquet solution form used by Mied (1976) and Sonmor
& Klaassen (1997) does achieve the same goal of providing growth rate estimates for
all perturbation wave vectors, but it is restricted to spatially and temporally periodic
primary wave fields. It is possible, however, to account for spatial non-periodicity in
the Floquet solution by methods discussed by Kataoka & Akylas (2013, § 2), albeit
at significantly higher computational cost than for spatially periodic waves. Unless
additional assumptions are made, like long-wavelength perturbations in Kataoka &
Akylas (2013), the Floquet problem requires an infinite series be truncated to a
finite number of modes. In contrast to Floquet theory, the local stability approach
is computationally efficient – even for large-amplitude internal waves and 3-D
perturbations – and does not require spatial periodicity of the primary wave field.
Local stability may, therefore, offer an alternative approach to interpreting both
resonant and non-resonant instabilities in various settings studied by laboratory
experiments, numerical simulations and field studies. In fact, the local stability
approach could even identify specific regions conducive to instabilities in a spatially
non-uniform internal wave field. For example, the generation of higher harmonics or
subharmonics when an internal wave beam impinges on a pycnocline (Mercier et al.
2012; Gayen & Sarkar 2013) can be the result of an instability on the underlying
linear wave field.

The local stability approach does have its limits, however. Our study is restricted
to short-wavelength perturbations of an internal wave, which is a reasonable
assumption for geophysical flows, but not so for laboratory experiments. Moreover,
the local stability approach requires periodic particle trajectories and wave vectors;
the relevance of non-periodic fluid particle trajectories and wave vectors remains
largely unexplored. Even for periodic wave vectors, the physical interpretation of an
evolving, non-constant wave vector along the fluid particle trajectories, and hence
the construction of an equivalent global eigenmode, remains unclear. Finally, the
incorporation of finite-wavenumber effects (Bayly 1986) in the local stability approach
remains an important step in making it more representative of realistic settings and
establishing a connection with the global stability approach.

A natural extension of our study would be to incorporate the effects of background
rotation. One could also investigate if the local stability approach recovers, and
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provides additional insight into, the instabilities that are attributed to the finite-width
feature of internal wave beams (Karimi & Akylas 2014; Dauxois et al. 2018). It
would also be worthwhile to consider the effects of background shear and individual
or combinations of internal wave modes. Finally, the local stability approach
may motivate targeted 3-D direct numerical simulations to investigate the actual
path towards turbulence, dissipation and mixing depending on the dominant linear
instability mode.
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