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Magneto-gravitational convection in a vertical
layer of ferrofluid in a uniform oblique

magnetic field
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The stability of base gravitational convection in a layer of ferrofluid confined between
two vertical wide and tall non-magnetic plates, heated from one side, cooled from
the other and placed in a uniform oblique external magnetic field is studied. Two
distinct mechanisms, thermo-gravitational and thermo-magnetic, are found to be
responsible for the appearance of various stationary and wave-like instability modes.
The characteristics of all instability modes are investigated as functions of the
orientation angles of the applied magnetic field and its magnitude for various values
of magnetic parameters when both the thermo-magnetic and gravitational buoyancy
mechanisms are active. The original three-dimensional problem is cast in an equivalent
two-dimensional form using generalised Squire’s transformations, which significantly
reduces a computational cost. Subsequently, full three-dimensional instability patterns
are recovered using the inverse Squire’s transformation, and the optimal field and
pattern orientations are determined.

Key words: bifurcation, magnetic fluids, magneto convection

1. Introduction

Ferrofluids are non-conducting nanofluids containing solid single-domain ferro-
magnetic (e.g. magnetite, cobalt) nanoparticles with an average size of 10 nm
suspended in an organic (e.g. kerosene, transformer oil) carrier or water (e.g. Charles
2002). The application of a magnetic field leads to a magnetisation of the solid
phase that depends on the temperature (Curie effect). Because of their small size, the
particles are assumed to be uniformly distributed in the bulk of a carrier fluid by their
Brownian motion. Thus, at the macro scale, the magnetisation of individual particles
is seen as the effective magnetisation of the fluid itself. As the temperature of the
fluid increases, such bulk fluid magnetisation decreases due to the thermal expansion
of a carrier fluid that reduces the effective concentration of magnetic particles and
due to the disorientation of magnetic moments of individual particles by Brownian
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motion (Rosensweig 1985; Bashtovoy, Berkovsky & Vislovich 1988). As a result,
the so-called ponderomotive Kelvin force arises that drives the stronger magnetised
colder fluid to the regions with a stronger magnetic field. Such a motion is referred
to as magnetoconvection.

A pure magnetoconvection flow in a differentially heated ferrofluid layer placed in
an oblique magnetic field was considered in Rahman & Suslov (2015). The prototype
applications justifying such an investigation deal with flows that arise in situations
where the gravitational buoyancy-driven convection is impossible, for example, in
congested spaces of microelectronic devices or in microgravity conditions (Blums,
Maiorov & Tsebers 1989; Odenbach 1995, 2002). It is known that the intensity
of gravitational convection increases with the value of the Grashof number (e.g.
Gershuni, Zhukhovitsky & Nepomniaschy 1989), which is proportional to the product
of the gravity and the cube of the characteristic size of the domain filled with a
fluid. Therefore the value of the Grashof number tends to 0 in outer space and
in microelectronics applications. At the same time the magnetic Grashof number
controlling magnetoconvection is independent of gravity and is proportional to only
a square of the characteristic domain size. Thus magnetoconvection can be induced
in a gravity-free environment, and it is easier to initiate in congested spaces than
buoyancy-driven convection enabling the perspective use of magneto-convective flows
for heat removal (Mukhopadhyay et al. 2005).

It is typical to model ferrofluids as single-component isotropic liquids with average
transport properties that are close to those of a pure carrier fluid. However, such a
simplified treatment can only be adopted if sufficient care is taken in determining
the validity limits of such an approximation. The compositional inhomogeneity of
a ferrofluid can in certain conditions lead to spatial dehomogenisation of the fluid
invalidating simple constitutive models used for its description (Blums et al. 1989;
Pshenichnikov & Ivanov 2012; Sprenger et al. 2015). The calibration and validation of
such models must rely heavily on the results of experimental observations, which are
quite rare to this day. There are objective reasons for that. Unfortunately, it is virtually
impossible to conduct such experiments in environments directly corresponding to the
potential working conditions of ferrofluids: direct flow observations in microelectronic
devices are impossible due to the microscopic size of flow domains and the
experimental studies on board space stations are prohibitively expensive. Therefore the
majority of experimental ferrofluid flow investigations are conducted in ground-based
experiments in finite-size (of the order of a few centimetres) non-magnetic containers
(Bozhko & Putin 2003; Zablotsky, Mezulis & Blums 2009) shaped similarly to those
found in potential applications (a rectangular geometry is common). However, this
creates another serious problem on the way of the analysis. The magnetic field
lines necessarily curve near the non-magnetic walls of the container that separate
ferromagnetic medium from surroundings (the magnetic field is ‘sucked into’ a
ferrofluid layer through its edges). Experiments reported in Suslov et al. (2010, 2012)
show that the influence of such edge effects can extend far into the ferrofluid layer,
so that they cannot be fully ignored.

A similar strong influence of the edge effects could be expected in free-surface
ferrofluid layers of finite extent. Experiments and computations of Gollwitzer
et al. (2009) performed in a small container confirm this. However, experimental
photographs presented, for example, in Reimann et al. (2005), Groh et al. (2007)
indicate that the magnetically forced periodic free-surface deformation patterns
observed in the central part of a wide container appear to extend almost to its physical
boundaries, thus downplaying the importance of the edge effects. The plausible
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Magneto-gravitational convection in an oblique field 849

explanation of this drastic difference between free-surface and magnetoconvection
experiments is that in the former case the focussing of a magnetic field under the
curved fluid surface leads to a comparable or even stronger distortion of the applied
field than that caused by the refraction of the magnetic field at the edges. In contrast,
in fully a enclosed magnetoconvection system the deformation of the fluid surface is
precluded so that the edge effects continue to play a dominant field-distorting role far
away from the boundaries of a container. This is also supported by an experimental
fact that even a slight deformation of the solid plate covering the fluid in wide-layer
experiments of Suslov et al. (2012) caused by touching it with a (non-magnetic)
thermometer led to a visible change of the local convection pattern that overpowered
the variations caused by the edge effects in the absence of the cover deformation.

Since the curvature of magnetic field lines depends strongly on minor random
imperfections of the experimental set-up and cannot be rendered easily to the analysis.
To make progress in understanding physical processes taking place in ferrofluid
convection in the gravity-free environment a compromise treatment was suggested
by Rahman & Suslov (2015). Instead of simulating the flows in a finite ferrofluid
layer and the distorted non-uniform magnetic field around it, which could only be
done numerically for a limited set of governing parameters, the authors suggested to
consider an infinite fluid layer subjected to an oblique magnetic field mimicking the
magnetic field distortion in the near-edge regions of an experimental set-up.

The introduction of gravity expands the set of the governing parameters and, as
will be evidenced by the reported stability results, leads to qualitatively different
instabilities than those observed in a gravity-free setting. The analysis of various
types of instabilities caused by the interaction of magnetic Kelvin and gravitational
buoyancy forces is the major emphasis of this study. The other important aspect first
reported in Rahman & Suslov (2015), which we will continue studying here, is the
symmetry-breaking effect caused by the nonlinear variation of fluid magnetisation
across the layer. The stability of a non-isothermal flow in a vertical layer of ordinary
fluid is one of the classical problems of natural convection (Gershuni & Zhukhovitsky
1953; Batchelor 1954). It is known that for a class of large-Prandtl-number fluids
to which kerosene- and transformer-oil-based ferrofluids belong to, the instability in
this configuration occurs in the form of two waves counter-propagating along the
direction of the gravity (Kirdyashkin, Leont’ev & Mukhina 1971). On the other hand
the most dangerous instability mode detected in a normal magnetic field in the small
gravity limit consists of stationary rolls with the axes parallel to the direction of the
gravity (Suslov 2008). At the same time it has been shown in Rahman & Suslov
(2015) that the oblique magnetic field tends to align the axes of the rolls with its
in-layer component. Therefore it remains to be seen what exactly pattern orientation
will result when an oblique magnetic field and the gravity act simultaneously. The
study of such combined influences is what distinguishes the current investigation from
previous research reported, for example, in Finlayson (1970), Bozhko & Putin (1991),
Shliomis & Smorodin (2002), Hennenberg et al. (2006), Suslov (2008), Suslov et al.
(2012) and references therein.

Prior to proceeding with the detailed mathematical formulation and the discussion
of the governing parameters in § 2 we note that the considered physical problem
is inherently three-dimensional. Yet, quite remarkably, we have been able to reduce
the stability equations derived in § 3 to an equivalent two-dimensional formulation
that enabled us to produce comprehensive stability results reported in § 4 without
prohibitively expensive computations. The overall conclusions are given in § 5.
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FIGURE 1. Sketch of the problem geometry. The vector of external magnetic field, He

forms angles δ and γ with the coordinate axes.

2. Problem formulation and governing equations
Consider a layer of a ferromagnetic fluid that fills a gap between two infinitely

long and wide parallel vertical non-magnetic plates as shown in figure 1. The plates
are maintained at constant different temperatures T∗ ± Θ . The right-hand system of
coordinates (x, y, z) with the origin in the mid-plane of the layer is introduced in such
a way that the plates are located at x=±d and the y and z axes are parallel to the
plates. The gravity g = (0, −g, 0) acts vertically down along the plates. An oblique
external uniform magnetic field He = (He

x,He
y,He

z ) such that |He| =He and

He
x =He cos δ, He

y =He sin δ cos γ , He
z =He sin δ sin γ , (2.1a−c)

where δ and γ are the field inclination and orientation angles, respectively, is applied
to the layer. This field induces a magnetic field H, |H| = H within the layer. The
magnetic field causes fluid magnetisation M, |M| = M, which is assumed to be
co-directed with the internal magnetic field: M = χ∗H, where χ∗ is the integral
magnetic susceptibility of the fluid. Assuming that the temperature difference 2Θ
between the walls is sufficiently small we adopt the Boussinesq approximation of
the continuity, Navier–Stokes, and thermal energy equations that are complemented
with the Maxwell equations for the magnetic field written in the magneto-static form
due to the negligible electrical conductivity of ferrofluids (Rosensweig 1985). As
discussed in Suslov (2008), the non-dimensional governing equations for velocity
v= (u, v,w), temperature variation θ , pressure P, magnetic field H and magnetisation
M read

∇ · v = 0, (2.2)
∂v

∂t
+ v · ∇v =−∇P+∇2v −Gr θeg −Grmθ∇H, (2.3)

∂θ

∂t
+ v · ∇θ = 1

Pr
∇2θ, (2.4)
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∇×H= 0, (2.5)

(1+ χ)(∇ ·H−∇θ · e)+ (χ∗ − χ)N − (1+ χ)θ
H

(∇ ·H−∇H · e)= 0, (2.6)

M= [χH + (χ∗ − χ)N − (1+ χ)θ ]e (2.7)

with the boundary conditions

[((1+ χ)(H ± 1)+ (χ∗ − χ)N)e−He] · n= 0, (2.8)

v = 0, θ =∓1 at x=±1, (2.9a,b)

where e= (e1, e2, e3)≡H/H.
The dimensionless groups appearing in the problem are

Gr= ρ
2
∗β∗Θgd3

η2∗
, Grm = µ0ρ∗K2

∗Θ
2d2

η2∗(1+ χ)
, Pr= η∗

ρ∗κ∗
, N = H∗(1+ χ)

K∗Θ
,

(2.10a−d)

where ρ∗ is the density, η∗ is the dynamic viscosity, β∗ is the coefficient of thermal
expansion, κ∗ is the thermal diffusivity, χ = ∂M/∂H|(H∗,T∗) is the differential magnetic
susceptibility, K∗ = −∂M/∂T|(H∗,T∗) is the pyromagnetic coefficient of the fluid and
µ0 = 4π× 10−7 H m−1 is the magnetic constant. The subscript ∗ denotes the values
of the fluid properties evaluated at the reference temperature T∗ and magnetic field
H∗. The thermo-gravitational and magnetic Grashof numbers Gr and Grm characterise
the importance of buoyancy and magnetic forces, respectively, the Prandtl number Pr
is the ratio of viscous and thermal diffusion transports, and parameter N describes
the strength of the magnetic field at the reference location relative to the variation
of fluid magnetisation due to thermal effects. Unless specified otherwise, we fix the
value of Prandtl number to Pr = 55 and choose χ = χ∗ = 3 (which corresponds to
a linear magnetisation regime) as in experiments of Bozhko et al. (2013). We also
consider smaller values of χ = 1.5 and 0.5 and of χ = 2.5 and 1.5 that correspond to
the near-saturation magnetic regimes, see Rahman & Suslov (2015).

The thermo-magnetic sensitivity of ferrofluids is characterised by the pyromagnetic
coefficient K∗ (see figure 2b in Rahman & Suslov (2015)). Non-dimensionally,
this is accounted for by the values of the parameter N defined in (2.10) or,
equivalently, by the magnitude of the non-dimensional applied magnetic field He,
see figure 2(d) in Rahman & Suslov (2015). Since both N and He are inversely
proportional to K∗, more thermomagnetically sensitive fluids are characterised by
the smaller values of these parameters. To compare the behaviour of fluids with
different thermo-magnetic sensitivities the results are reported for the representative
magnitudes of the non-dimensional external magnetic field He= 100 and He= 10. The
first value corresponds to the experimental conditions of Suslov et al. (2010, 2012),
Bozhko et al. (2013) and Sidorov (2016), while the second is chosen consistently
with Rahman & Suslov (2015) to highlight the effects caused by the nonlinearity of
magnetic field within the fluid layer.

Our computations and recent experimental studies (Sidorov 2016) demonstrate a
rapid stabilisation of ferrofluid flows in the considered geometry as the applied field
deviates from normal. For this reason only relatively small field inclination angles
0◦ 6 δ 6 15◦ will be considered here. In contrast, all possible field orientations 0◦ 6
γ 6 180◦ will be inspected. No a priori limitations will be imposed on the values of
Grashof numbers Gr and Grm.
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3. Basic flow and linearised stability equations
As shown in Suslov (2008) and Rahman & Suslov (2015), (2.2)–(2.9) admit steady

solutions

θ0 =−x, v0 = Gr
6
(x3 − x), P0 =Grm

∫ x

0
x̃e10DHx0 dx̃+C, (3.1a−c)

Hy0(x)=He
y, Hz0(x)=He

z , (3.2a,b)

where D≡ d/dx, C is an arbitrary constant and

e0(x)≡ (e10(x), e20(x), e30(x))=
(

Hx0

H0
,

He
y

H0
,

He
z

H0

)
(3.3)

is the unit vector in the direction of the magnetic field. The nonlinear variation of an
oblique magnetic field across the fluid layer cannot be given in a closed form and has
to be computed numerically by solving the equation

((1+ χ)(H0 − θ0)+ (χ∗ − χ)N)Hx0 =He
xH0, (3.4)

where H0≡
√

H2
x0 +H2

y0 +H2
z0. Once the magnetic field within the layer is determined

the unperturbed fluid magnetisation is computed using

M0 ≡
√

M2
x0 +M2

y0 +M2
z0 = χH0 + (χ∗ − χ)N − (1+ χ)θ0. (3.5)

The nonlinearity of the function Hx0(x) that occurs in ferrofluids with large magnetic
susceptibilities has been shown to play a symmetry-breaking role, which in turn leads
to significant qualitative and quantitative changes in stability characteristics of the
considered flow. In particular, the appearance of wave-like instability patterns that do
not exist in a normal field have been linked to the curvature of magnetic field lines
within a ferrofluid layer (Rahman & Suslov 2015). Of the main interest in the current
study is how such a thermomagnetically induced symmetry breaking interacts with yet
another feature of a realistic physical set-up, the loss of the spatial degeneracy due to
the introduction of the preferred direction along the gravity vector.

To investigate a linear stability of the basic state with respect to infinitesimal y and
z-periodic disturbances the perturbed quantities are written in a normal form

(v, P, θ,H,H,M,M)= (v0, P0, θ0,H0,H0,M0,M0)

+ [(v1(x), P1(x), θ1(x),H1(x),H1(x),M1(x),M1(x))eσ t+i(αy+βz) + c.c.], (3.6)

where σ = σ R+ iσ I is the complex amplification rate, α and β are real wavenumbers
in the y and z directions, respectively and c.c. denotes the complex conjugate of the
expression in brackets. Upon introducing the magnetic potential φ1(x)eσ t+i(αy+βz) such
that H1(x)= (Dφ1, iαφ1, iβφ1) and applying Squire’s transformations

(x, y, z)= (x̃, ỹ, z̃), θ0 = θ̃0, Hx0 = H̃x0, H0 = H̃0, σ = σ̃ ,
α2 + β2 = α̃2, β = β̃, u1 = ũ, αv1 + βw1 = α̃ṽ, w1 = w̃, θ1 = θ̃ ,

P1 = P̃, φ1 = φ̃, αGr= α̃G̃r, Grm = G̃rm, Pr= P̃r, N = Ñ,
χ = χ̃ , χ∗ = χ̃∗,





(3.7)

e10 = ẽ10, αe20 + βe30 = α̃ẽ20 (3.8a,b)
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the linearised perturbation equations are written as

0=Dũ+ iα̃ṽ, (3.9)

σ̃ ũ+ (α̃2 + iα̃ṽ0 −D2)ũ+DP̃+ ẽ10G̃rmDH̃x0θ̃ + G̃rmθ̃0ẽ10D2φ̃

+ G̃rmθ̃0

[
iα̃ẽ20 + (1− ẽ2

10)
DH̃x0

H̃0

]
Dφ̃ − iα̃G̃rmθ̃0ẽ10ẽ20

DH̃x0

H̃0
φ̃ = 0, (3.10)

σ̃ ṽ +Dṽ0ũ+ (α̃2 + iα̃ṽ0 −D2)ṽ + iα̃P̃− G̃rθ̃ + α̃G̃rmθ̃0(ĩe10Dφ̃ − α̃ẽ20φ̃)= 0, (3.11)

σ̃ w̃+ (α̃2 + iα̃ṽ0 −D2)w̃+ iβ̃P̃+ β̃G̃rmθ̃0(ĩe10Dφ̃ − α̃ẽ20φ̃)= 0, (3.12)

σ̃ θ̃ +Dθ̃0ũ+
(
α̃2 −D2

P̃r
+ iα̃ṽ0

)
θ̃ = 0, (3.13)

0 = (D2 − α̃2)φ̃ + (1− ẽ2
10)

(
χ̃∗ − χ̃
1+ χ̃ Ñ − θ̃0

)
D2φ̃

H̃0
−
[
(1− ẽ2

10)Dθ̃0

+ ẽ10

(
χ̃∗ − χ̃
1+ χ̃ Ñ − θ̃0

)(
2iα̃ẽ20 + 3(1− ẽ2

10)
DH̃x0

H̃0

)]
Dφ̃

H̃0

−
[(

χ̃∗ − χ̃
1+ χ̃ Ñ − θ̃0

)(
α̃2(1− ẽ2

20)+ iα̃ẽ20(1− 3ẽ2
10)

DH̃x0

H̃0

)

− iα̃ẽ20ẽ10Dθ̃0

]
φ̃

H̃0
−
(

iα̃ẽ20 + (1− ẽ2
10)

DH̃x0

H̃0

)
θ̃ − ẽ10Dθ̃ , (3.14)

with the boundary conditions
(

1+ χ̃ + (1− ẽ2
10)
(χ̃∗ − χ̃)Ñ ± (1+ χ̃)

H̃0

)
Dφ̃

± |α̃|φ̃ − iα̃ẽ10ẽ20
(χ̃∗ − χ̃)Ñ ± (1+ χ̃)

H̃0
φ̃ = 0, (3.15)

ũ= ṽ = w̃= θ̃ = 0 at x̃=±1. (3.16)

Only (3.12) contains w̃ and β explicitly. Therefore this equation can be split from
the rest of the transformed system and, if necessary, solved afterwards. The remaining
equations form an equivalent two-dimensional problem that can be formally obtained
by setting w= β = 0, that is by assuming the two-dimensionality of the perturbation
field and its periodicity in the y direction. This enables one to significantly reduce the
computational cost of stability calculations. However, even if β and w are set to 0
the external applied magnetic field (2.1) still remains three-dimensional in the above
Squire-transformed linearised equations and thus the field inclination and orientation
angles δ and γ still act as independent control parameters entering the problem via
the expressions for ẽ20. Note that in contrast to the analysis of Rahman & Suslov
(2015), where the direction of the y axis was linked to that of the in-layer component
of the applied magnetic field, here it is rigidly linked to the direction of the gravity
while the orientation of the magnetic field is chosen independently. In general, the
orientation of instability patterns in flows considered here is not known beforehand
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and thus will have to be determined by applying the inverse Squire’s transformation
after the equivalent two-dimensional problem formulated above is solved. However,
if as a result of solving the equivalent two-dimensional problem it is established
that the instability occurs (i.e. σ̃ R monotonically increases from negative to positive
values) as G̃r increases while G̃rm remains fixed then a definite conclusion can be
made about the orientation of the most amplified perturbation patterns without the
necessity of inverting Squire’s transformation in each computational run. Indeed,
according to (3.7) while the value of the disturbance amplification rate is invariant
with respect to Squire’s transformation (σ = σ̃ ) the value of Gr for the original
three-dimensional problem is always equal to or larger than that of G̃r for the
equivalent two-dimensional problem:

Gr= α̃
α

G̃r=
√
α2 + β2

α
G̃r > G̃r. (3.17)

This means that in this case instability indeed first sets in the form of two-dimensional
y-periodic patterns that correspond to β = 0, the full original and Squire-transformed
problems have identical solutions and Squire’s theorem holds. This fact will be used
extensively in the discussion of numerical results in § 4.

Note that it follows from the problem geometry and Squire’s transformation (3.7)
that

αHe
y + βHe

z

He
= α sin δ cos γ + β sin δ sin γ = α̃ H̃y

He
= α̃ sin δ cos γ̃ , (3.18)

or, for an oblique field with δ 6= 0◦, α cos γ + β sin γ =√α2 + β2 cos γ̃ . Then

γ = tan−1 β

α
± γ̃ . (3.19)

In particular, if β = 0 then γ = ±γ̃ . However, when α = 0 then γ = 90◦ ± γ̃ . It
is convenient to choose γ̃ as an independent problem parameter characterising the
magnetic field orientation keeping in mind its meaning given by (3.19).

To simplify the notation, in the subsequent sections we will use tilde to denote only
the non-trivially transformed quantities α̃, ṽ, G̃r, γ̃ and ẽ20.

4. Flow stability characteristics
4.1. Numerical procedure and comparison with selected previous numerical results

The numerical code based on the pseudo-spectral Chebyshev collocation method (see
Rahman & Suslov (2015) and references therein for details) that was used for solving
(3.9)–(3.16) was tested against the known results. The critical values of G̃r= 502.35
and α̃= 1.405 were computed for a pure gravitational (Grm= 0) convection at Prandtl
number Pr= 0.71. After multiplying by the corresponding scaling factors of 16 and 2,
respectively, arising due to a different non-dimensionalisation they agree with results
reported in Suslov & Paolucci (1995). The onset of gravitational convection is also
computed for Pr= 7 and the set of critical values (G̃r, α̃)= (491.78, 1.38) is obtained,
which agrees closely with that presented in Belyaev & Smorodin (2010). The critical
values (Grm, α̃)= (1.387, 1.928) found for the magnetoconvection threshold (G̃r= 0)
in a perpendicular (δ= 0◦) external magnetic field for Pr= 130 and χ = χ∗= 4 agree
well with (Grm, α̃)= (1.385, 1.95) computed from the corresponding data reported in
Finlayson (1970).
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4.2. Stability characteristics of flows in a normal field
The stability characteristics of a ferromagnetic fluid flow in a vertical differentially
heated layer placed in a normal magnetic field have been investigated previously by
Suslov (2008). However, there the author discussed only flow stability for a fluid
with the specific Prandtl number Pr= 130 and in a linear magnetisation regime with
χ = χ∗ = 5. Subsequently, Belyaev & Smorodin (2010) reported results for a similar
geometry, but for different values of Prandtl number and magnetic susceptibilities. The
results reported in this section are chosen to make the subsequent discussion self-
contained and to complement the data reported previously. In particular, the aspects
related to the x→−x symmetry-breaking effect of a nonlinear cross-layer variation
of the fluid’s magnetisation have not been discussed in literature before and will be
addressed here. Unless specified otherwise the numerical results will be presented for
Pr= 55, which corresponds to the fluid used in experiments of Bozhko et al. (2013).

As reported in Suslov (2008), three main types of instability patterns corresponding
to magnetic, thermo-gravitational and magneto-gravitational convection have been
found to exist in a normal magnetic field in the considered geometry. Similar
to Rayleigh–Bénard and Rayleigh–Marangoni convection, pure magnetoconvection
patterns appearing in a normal magnetic field possess full planar (y, z) symmetry
(Finlayson 1970). The vertical gravity acting along the fluid layer breaks this
symmetry leading to the appearance of preferential thermo-gravitational convection
patterns that are periodic in the vertical (y) direction, and preferential
magnetoconvection patterns, which are periodic in the horizontal z direction. The
interaction of the two convection mechanisms may lead to the appearance of
three-dimensional patterns that are periodic in both y and z directions. The typical
leading eigenvalues (the amplification rate σ R(α̃) and the frequency σ I(α̃)) are shown
in figure 2. In the first case (Grm→ 0) one maximum of the disturbance amplification
rate σ R exists for a pair of leading complex conjugate eigenvalues, see figure 2(a,d).
This indicates the existence of two counter-propagating thermal waves (see, for
example, Kirdyashkin et al. (1971), Gershuni et al. (1989) and references therein for
a historical overview) corresponding to the thermo-gravitational convection instability.
The two waves caused by the gravitational buoyancy propagate up and down near the
hot and cold walls, respectively. Since they have equal growth rates they are expected
to form fully symmetric perturbation patterns illustrated in figure 3. If Grm = 0 such
patterns are fully independent of the characteristics of the applied magnetic field. As
discussed in Suslov (2008), their qualitative structure remains unchanged for moderate
non-zero values of Grm, however their quantitative characteristics do depend on the
magnetic Grashof number. In the subsequent text we will refer to this instability,
which is caused mainly by thermal waves, as the Type I instability.

In the second limiting case (G̃r→ 0) one maximum of the disturbance amplification
rate σ R is also found but now the leading eigenvalues are real, see figure 2(b,e). This
situation corresponds to stationary magnetoconvection patterns illustrated in figure 4.
It is caused by the action of the ponderomotive Kelvin force. Such a force leads to the
so-called magnetic buoyancy when cooler and thus stronger magnetised fluid particles
are driven toward the hotter regions with a stronger magnetic field and vice versa. In a
vertical fluid layer heated and cooled from the sides the magnetic buoyancy force acts
in the horizontal direction across the fluid layer. For brevity the instability caused by
the magnetic buoyancy will be referred to as the Type II instability. The perturbation
cells in this case are centrally located and symmetric with respect to the mid-plane of
the layer. Because of this the disturbances remain stationary as the basic flow velocity
at the centre of the layer is zero. As will be shown in the subsequent sections, this
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FIGURE 2. Leading disturbance temporal amplification rates σ̃ R (a–c) and frequencies σ̃ I

(d–f ) as functions of the transformed wavenumber α̃ for (a,d) (G̃rm, G̃r) = (0, 65.335)
(onset of thermo-gravitational convection), (b,e) (G̃rm, G̃r)= (3.241, 0) (onset of stationary
magnetoconvection) and (c, f ) (G̃rm, G̃r)= (41.03, 11.26) at δ= 0◦, χ̃ = χ̃∗= 3 and P̃r= 55.
In plot (c), the left, right and middle local σ̃ R maxima correspond to small- and large-
wavenumber waves and a stationary roll pattern, respectively.

symmetry breaks when the applied magnetic field is not strictly normal to the layer,
which causes the drift of magnetoconvection patterns. The Type II instability in the
absence of gravity has been discussed in detail in Rahman & Suslov (2015). Thus in
the present article we will focus mostly on the influence that the gravity has on the
Type II instability rather than on its physical nature described elsewhere.

In the third case (G̃r 6= 0, Grm 6= 0), up to three maxima of the disturbance
amplification rate σ R can exist (see figure 2c), of which the left- and right-most
maxima correspond to small- and large-wavenumber waves while the middle one
corresponds to a stationary magnetoconvection pattern. The comparison of figures 3
and 5, and 4 and 6 demonstrates that the perturbation fields are similar in these
cases, so that the left and middle maxima of the σ(α̃) curves correspond to the
Type I and Type II instabilities, respectively (see also discussion in Suslov (2008)).
While always present for Grm 6= 0, the magnetic effects do not change the thermal
waves significantly in normal magnetic field.

Figure 6 demonstrates that in the presence of gravity the magnetically driven
Type II instability detected for non-zero G̃r still takes the form of centrally located
cells, which however are now sheared by the basic flow velocity with a cubic
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FIGURE 3. Instantaneous perturbation fields of (a) the fluid velocity v1, (b) the
temperature θ1, (c) the magnetisation M1 and (d) the magnetic field H1 for thermo-
gravitational convection in a normal field (δ = 0◦) for He = 100, χ = χ∗ = 3 and at the
critical point for Grm = 0, G̃r= 65.335 and α̃ = 1.127.

profile (3.1), where fluid rises near the hot left wall and sinks near the cold right wall.
The short-wave instability corresponding to the right maximum of the leading σ(α̃)
branch in figure 2(c) will be referred to as the Type III instability. The corresponding
perturbation fields appear to be similar to thermo-gravitational waves, compare
figures 3 and 7, however their exact nature cannot be determined via a parametric
continuation from either of the two limiting cases mentioned above (Suslov et al.
2012).

As mentioned previously, in the absence of a magnetic field (or, equivalently, when
Grm = 0) the problem under consideration possesses symmetry that results in thermo-
gravitational instability in the form of two thermal waves with equal linear growth
rates propagating with equal speeds in the opposite directions. Computational results
presented previously in Suslov (2008) indicated that such a symmetry is preserved
when a normal magnetic field is applied to a fluid layer. Yet our current computational
data given in table 1 demonstrate that even the normal field is capable of breaking
the symmetry between the two counter-propagating waves. This apparent discrepancy
with the previous results is traced back to the form of the magnetisation equation
(2.7) used in computations. In Suslov (2008) it was linearised by assuming small
variations of the magnitude of a magnetic field so that a cross-layer symmetry of
fluid magnetisation was enforced. Here we choose to perform calculations using (2.7)
directly without simplifying it any further. Then for δ = 0◦ the magnetic potential
equation (3.14) becomes

(
D2 − 1+ χ∗

1+ χ
α̃2

1− x/N

)
φ −Dθ = 0 . (4.1)
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FIGURE 4. Same as figure 3 but for Grm = 3.241, G̃r= 0 and α̃ = 1.915.
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FIGURE 5. Same as figure 3 but for Grm = 41.03, G̃r= 11.26 and α̃ = 1.384.
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FIGURE 6. Same as figure 3 but for Grm = 41.03, G̃r= 11.26 and α̃ = 2.11.
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FIGURE 7. Same as figure 3 but for Grm = 41.03, G̃r= 11.26 and α̃ = 3.342.
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Wave propagating downward Wave propagating upward

χ χ∗ α̃c G̃rc c̃c α̃c G̃rc c̃c

5 5 1.219 57.39 −3.655 1.215 57.60 3.670
3 5 1.240 54.88 −3.486 1.236 55.15 3.504
3 3 1.220 56.89 −3.622 1.218 57.01 3.631
1.5 2.5 1.239 54.58 −3.467 1.237 54.70 3.476
0.5 1.5 1.250 52.78 −3.347 1.248 52.86 3.353

TABLE 1. The critical values of Grashof number G̃r, wavenumber α̃ and disturbance wave
speed c̃ = −σ I/α̃ for the two leading waves of magneto-gravitational convection in a
normal magnetic field (δ = 0◦) for Grm = 15, He = 100, Pr = 55 and various values of
χ and χ∗.

It differs from (51) in Suslov (2008) due to the presence of the term −x/N in
the denominator. As has been discussed in Rahman & Suslov (2015), in typical
applications this term is of the order of 10−2 or smaller and can be safely neglected
if computational results are to be compared with experimental observations. However,
one of our goals here is to investigate the symmetry-breaking effects, which this
term contributes to. Therefore here we work with a full version of the magnetisation
equation (2.7).

The representative computational results for Grm = 15 demonstrating the symmetry-
breaking effect of a nonlinear magnetisation distribution are given in table 1. These
data show that the basic flow becomes unstable with respect to the downward
wave at slightly smaller values of G̃r. At their respective onsets the downward waves
propagate with a slightly smaller wave speeds and have a slightly shorter wavelengths
than their upward counterparts. This is in contrast to the completely symmetrical
thermal waves observed at Grm = 0 and characterised by the critical values of
(G̃r, α̃, c̃)= (65.34, 1.127,±4.202) at Pr= 55. In addition to the symmetry-breaking
effect of the fluid’s magnetisation, the data in table 1 reveal that the application
of a normal magnetic field always leads to the reduction of the critical value of
the Grashof number. Thus we conclude that the normal magnetic field (or the
normal component of the applied oblique magnetic field) plays a destabilising role.
Somewhat counter-intuitively, the data also show that the basic flow of stronger
magnetisable fluids with a larger differential magnetic susceptibility χ remains more
stable indicating a subtle interplay between the fluid magnetisation on one hand and
its ability to ‘screen’ the applied magnetic field on the other. The instability also is
promoted as the fluid approaches magnetic saturation (when both χ and χ∗ decrease
and χ becomes smaller than χ∗).

4.3. Wave-like instabilities in an oblique field
In this section we will discuss in detail the characteristics of the Type I instability
appearing in the form of two counter-propagating waves. The representative critical
values similar to those given in table 1 for this instability observed in an oblique
magnetic field are presented in table 2 for various field inclination angles. As follows
from the data in these tables, the basic flow becomes more stable when the field
inclination angle increases beyond δ = 5◦. The main (but not the only) reason for
this stabilisation is the geometrical reduction of the normal component of the applied
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δ = 5◦ δ = 10◦ δ = 15◦

χ χ∗ α̃c G̃rc c̃c α̃c G̃rc c̃c α̃c G̃rc c̃c

Wave propagating upward
3 3 1.232 57.03 3.643 1.200 61.05 3.921 1.163 65.14 4.201

1.232 56.88 3.632 1.215 59.85 3.841 1.180 63.73 4.106
1.5 2.5 1.244 55.21 3.521 1.206 60.02 3.852 1.168 64.42 4.152

1.246 54.94 3.502 1.221 58.81 3.771 1.183 63.22 4.071

Wave propagating downward
3 3 1.231 57.12 −3.649 1.195 61.39 −3.944 1.159 65.47 −4.223

1.223 57.91 −3.703 1.174 63.18 −4.065 1.142 66.94 −4.321
1.5 2.5 1.243 55.31 −3.528 1.202 60.33 −3.874 1.164 64.68 −4.170

1.234 56.13 −3.584 1.183 61.90 −3.979 1.150 65.85 −4.249

TABLE 2. The critical values of Grashof number G̃r, wavenumber α̃ and disturbance wave
speed c̃=−σ I/α̃ for magneto-gravitational convection waves in oblique magnetic fields for
Grm = 15, γ̃ = 0◦, Pr = 55, He = 100 (odd-numbered lines) and He = 10 (even-numbered
lines).

magnetic field responsible for the appearance of the cross-layer ponderomotive Kelvin
force enhancing the instability. The wavenumber of the disturbance waves decreases,
and as a result the disturbance wavelength increases. The disturbance waves also
propagate quicker with the increase of the field inclination angle.

The inclination of the magnetic field in the vertical plane (δ> 5◦, γ̃ = 0◦) changes
the asymmetry in the behaviour of the Type I waves. In contrast to the normal field
case, in an oblique field the upward propagating waves become unstable at the slightly
smaller values of G̃r than those for downward waves. The waves propagating upward
are characterised by somewhat larger wavenumbers than those of their counterparts
moving downward and their wave speeds are always smaller than those of the
downward waves. These trends remain when the fluid approaches magnetic saturation
and its magnetic susceptibilities are reduced.

As follows from table 2, regardless of whether the fluid is close to magnetic
saturation (χ <χ∗) or not (χ = χ∗) the wave propagating upward in a thermomagneti-
cally more sensitive (He = 10) fluid is characterised by a larger wavenumber and
smaller wave speed than those of its less sensitive counterpart (He = 100). The basic
flow becomes less stable with respect to this wave when He decreases. The trends
detected for the downward waves are exactly opposite: they become more stable,
longer and propagate faster as the fluid’s thermo-magnetic sensitivity increases. These
observations lead us to a qualitative conclusion that in an oblique field the waves
propagating upward are expected to be observed experimentally first, and the faster
they grow the shorter they become and the slower they propagate.

To this point the dependence of flow stability characteristics on the values of χ ,
χ∗ and the field inclination angle δ has been investigated for the zero azimuthal
field orientation angle γ̃ . To investigate the influence of the field orientation angle
γ̃ the stability results are computed for a representative value of Grm = 15. The
critical parameter values for the case of a linear magnetisation law χ = χ∗ = 3
are shown in figure 8 as functions of the magnetic field inclination and orientation
angles. The flow is stable in the regions below the respective curves in figure 8(a).
Therefore according to the discussion given in § 3 this type of instability occurs in
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FIGURE 8. Comparison of the critical parameter values: (a) Grashof number Gr (the
flow is stable under the respective curves), (b) wavenumber α and (c) wave speeds c as
functions of the field inclination and orientation angles δ and γ for Grm = 15, He = 100,
Pr= 55 and χ = χ∗ = 3.

the form of two-dimensional patterns that are periodic in the vertical y direction
with a wavenumber α̃ = α. In this case γ̃ = γ and G̃r = Gr and thus in the rest
of this section the tildes are omitted. Regardless of the field orientation the basic
flow becomes more stable at larger field inclination angles δ. This is primarily due
to the geometric reduction of the active normal component of the applied magnetic
field, which is proportional to cos δ (see discussion in Rahman & Suslov (2015)).
With the increase of the field inclination angle δ the wavenumber decreases (see
figure 8b) so that the distance between the instability rolls increases. It follows from
figure 8(c) that as the field inclination angle increases the wave speed also increases.
The similar numerical results for a stronger magnetisable fluid with χ =χ∗= 5 remain
qualitatively the same. Thus they are not presented here. However, we note that the
basic convection flow of a stronger magnetisable fluid generally becomes more stable
for all field orientation angles γ , and its instability patterns are characterised by a
smaller wavenumber and a faster wave speed.

As seen from figure 8(a), the instability detected for γ = 180◦ occurs at noticeably
higher values of Grc than those for γ = 0◦. This indicates that the up–down symmetry
of the field influence is broken. This can be traced back to the curvature of magnetic
field lines within the layer of ferrofluid discussed in Rahman & Suslov (2015).
Specifically, as follows from figures 9–11 in Rahman & Suslov (2015), in the absence
of the gravitational field changing the field orientation angle γ from 0◦ to 180◦
reverses the sign of the curvature of magnetic field lines. This leads to the reversal of
the sign of the wave speed of thermomagnetically driven disturbances. At the same
time when the gravity is taken into account, the computational data reported so far
indicates that the wave propagating upward near the hot wall remains most dangerous,
at least for δ > 5◦. Thus changing the field orientation angle γ by 180◦ leads to the
change from the arrangement when gravitationally and thermomagnetically induced
disturbances propagate in the same direction to that when they counter-propagate, and
the overall instability is suppressed in the latter case.

The most prominent feature of figure 8(a) is the existence of the minima of the
Grc(γ ) curves. Such minima are more pronounced in stronger magnetisable fluids
characterised by the larger value of χ (not shown in the figure). Their existence
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demonstrates that for each field inclination angle δ there exists a preferred field
orientation angle γ that promotes the onset of magneto-gravitational instability
the most.

As shown in Rahman & Suslov (2015), in zero gravity environment the most
dangerous instability patterns are aligned with the in-layer component of the applied
magnetic field. It is also known (Kirdyashkin et al. 1971) that in the absence of
magnetic field (i.e. when Grm = 0) the thermo-gravitational waves arising in a
large-Prandtl-number fluid consist of the horizontally uniform structures. Therefore
intuitively one might expect that when both Gr and Grm are non-zero the least
stable situation would occur when the direction of the in-layer component of the
applied oblique magnetic field is horizontal, that is when γ = 90◦ and He

y = 0. Yet
the computational results presented in figure 9(a) show that the field orientation
angle γmin for which the instability first occurs tends to 90◦ only for sufficiently
large field inclination angles δ, that is when the in-layer component of the magnetic
field becomes sufficiently large. When such a component is small (δ . 3.5◦) the
instability depends on the field orientation only weakly and the most unstable
situation corresponds to γ = 0◦. However, for larger field inclination angles the
behaviour of γmin becomes a sensitive function of δ. The likely reason for such
a peculiar behaviour is due to the fact reported in Rahman & Suslov (2015) for
pure magnetic convection. It was demonstrated there that, similar to the gravity, an
inclined magnetic field breaks a planar symmetry of the arising convection flows
so that the most amplified instability patterns align with the in-layer component
of the applied magnetic field (see also Groh et al. (2007), where a similar effect
of an oblique magnetic field is discussed in the context of free-surface phenomena
in magnetic fluids). Such preferentially aligned patterns remain stationary in the
absence of gravity. Therefore even though the geometrical optimality might favour
the alinement of the two instability patterns described above the competition between
travelling thermo-gravitational waves and stationary magnetoconvection rolls would,
to some degree, hinder the development of the overall instability. On the other hand,
it was also shown in Rahman & Suslov (2015) that the thermo-magnetic instability
patterns that are not aligned with the in-layer component of the magnetic field
(i.e. observed for γ 6= 90◦ in the current context), while characterised by a smaller
growth rate have a non-zero wave speed. Such non-stationary wave-like patterns
therefore could be favoured when the magnetic instability overlaps with the vertically
propagating horizontally uniform thermo-gravitational waves. Therefore the choice
of γmin 6= 90◦ appears to be due to the competition between the two optimality
criteria: maximising the amplification rate of combined thermo-gravitational and
thermo-magnetic instabilities and matching their propagation speeds.

It follows from figure 9(b) that there always exists the overall optimal orientation
of magnetic field (δmin, γmin), which minimises the value of the critical Grashof
number Grc,min. In particular, for Grm = 15, χ = χ∗ = 3 and Pr = 55, Grc,min ≈ 56.16,
δmin ≈ 2◦ and γmin = 0◦. Such a global minimum corresponds to a disturbance
waves with a wavenumber αc,min ≈ 1.234, see figure 9(c). Figure 9(d) indicates
another noteworthy feature of the wave-like instabilities detected in an oblique field:
the upward propagating wave becomes the most dangerous for all optimal field
orientations at δ & 3.5◦. For smaller field inclination angles the most unstable wave
propagates downward (consistently with findings reported in table 1 for normal field)
although the stability characteristics of the wave propagating upward remain very
close. At larger field inclination angles the symmetry-breaking effect of a magnetic
field becomes more pronounced and the switch of the dominant instability mode to
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FIGURE 9. (a) The value of the field orientation angle γmin at which the instability first
occurs and (b–d) the corresponding critical parameters as functions of the field inclination
angle δ for Grm = 15, He = 100, Pr= 55 and χ = χ∗ = 3.

the upward propagating wave occurs, see figure 9(d). This switch is accompanied
by the appearance of a well-defined non-zero optimal field orientation angle as seen
in figure 9(a). The comparison of the critical parameters for the waves propagating
upward and downward is presented in figure 10 for a representative field inclination
angle δ= 5◦ in a linear magnetisation regime χ = χ∗= 3. The difference between the
characteristics of the two waves becomes finite but remains relatively small so that
the waves are expected to co-exist in realistic experiments. Therefore the experimental
ability to observe both waves is important.

Figure 10 demonstrates that the critical parameter curves for both waves have
qualitatively similar shapes. The basic flow becomes unstable with respect to the
upward wave for somewhat smaller values of Gr. Quantitatively, the differences
between the critical parameters for the two waves are more evident for γ → 0◦
or γ → 180◦, that is when the applied magnetic field belongs to a vertical plane
perpendicular to the fluid layer walls. For such a field orientation the wavelength of
the upward propagating waves is slightly shorter than that of the downward waves.

Our computations (not shown here) confirm that when the fluid approaches magnetic
saturation (i.e. both χ and χ∗ decrease and become unequal) qualitatively the critical
parameter curves for the wave-like disturbances remain similar to those seen in
figure 10. However, the values of both the critical Grashof number and the optimal
field orientation angle γ decrease (e.g. from Grc ≈ 56.96 and γ ≈ 38◦ at χ = χ∗ = 3
to Grc ≈ 55.15 γ ≈ 35◦ at χ = 1.5 and χ∗ = 2.5).

In conclusion of this section we compare the stability characteristics of the basic
flow with respect to wave-like disturbances of Type I for thermomagnetically less
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FIGURE 10. Comparison of the critical parameter values for the waves propagating
upward (solid line) and downward (dashed line): (a) Grashof number Gr (the flow is stable
under the respective curves), (b) wavenumber α and (c) wave speeds c as functions of the
azimuthal angle γ for Grm = 15, He = 100, Pr= 55, δ = 5◦ and χ = χ∗ = 3.

(He= 100) and more (He= 10) sensitive fluids, see figure 11. The waves propagating
upward remain the most dangerous in both types of fluids, so only the critical
parameters corresponding to them are shown. There are a number of general trends
that are evident from figure 11. Firstly, the flows of thermomagnetically more sensitive
fluids placed in a magnetic field with a predominantly vertical in-layer component
(γ close to 0 or 180◦) are generally less stable than those of their less sensitive
counterparts. When the applied oblique magnetic field is mostly horizontal (γ ∼ 90◦),
that is when the curvature of the magnetic field lines within the fluid layer (Rahman
& Suslov 2015) is in the plane perpendicular to the direction of the gravity, the
magnetic sensitivity of a fluid does not appear to play a significant role in defining
the flow stability parameters. Secondly, the wave-like instability patterns arising in
a more thermomagnetically sensitive fluid are characterised by a larger wavenumber
and thus by convection structures that are closer packed in the direction of the gravity
when γ > 90◦, once again demonstrating the symmetry-breaking effect of an oblique
magnetic field. Thirdly, the instability waves arising in a thermomagnetically more
sensitive fluid generally have a somewhat smaller wave speed. Therefore increasing
the fluid’s thermo-magnetic sensitivity quenches the propagation of disturbance waves.
This is consistent with the findings reported in Rahman & Suslov (2015) that the
most amplified thermomagnetically driven instability patterns remain stationary in the
absence of gravity. The computational data (not shown) also demonstrate that these
trends are not affected when the fluid approaches its magnetic saturation with χ <χ∗.

4.4. Stability diagrams for an equivalent two-dimensional problem
In § 4.3 the flow instability properties associated with the wave-like Type I
disturbances have been discussed in detail. The goal of this section is to identify
parametric regions where different physical mechanisms lead to the onset of instability
in the considered geometry. To do that the representative complete stability diagrams
for an equivalent two-dimensional problem have been computed and presented in
figure 12.
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FIGURE 11. Comparison of the critical parameter values for thermomagnetically less
(He= 100, solid line) and more (He= 10, dashed line) sensitive fluids: (a) Grashof number
Gr (the flow is stable under the respective curves), (b) wavenumber α and (c) wave speeds
c as functions of the azimuthal angle γ for Grm = 15, Pr = 55, δ = 5◦ and χ = χ∗ = 3.
Type I instability.

4.4.1. Normal field
We start with the discussion of a typical stability diagram for a normal magnetic

field shown in figure 12(a–c). While computed for different values of Prandtl number
and magnetic susceptibilities, qualitatively, this diagram is similar to that given in
figure 2 for Pr= 130 in Suslov (2008). This demonstrates that the dependence of the
flow stability characteristics on thermo-viscous properties of the fluid placed in the
normal magnetic field and on its magnetic susceptibilities is just quantitative.

The stability diagram consists of three lines each representing a different type of
instability characterised by its own wavenumber as follows from figure 12(b). The
solid line in figure 12(a) starts from Grm = 0, which corresponds to the threshold of
a classical thermo-gravitational convection instability (Kirdyashkin et al. 1971; Chait
& Korpela 1989; Gershuni et al. 1989; Wakitani 1996). As discussed earlier, this is
the Type I instability characterised by two counter-propagating waves. The basic flow
is subject to such an instability above the solid line in figure 12(a). Therefore as
discussed in § 3 the Type I instability corresponds to vertically propagating patterns
with α = α̃ and β = 0 that are y-periodic and uniform in the horizontal z-direction.
Recollect that in this case γ̃ = γ .

The dashed line in figure 12(a) starts from G̃r = 0 and therefore corresponds
to the threshold of magnetoconvection. In this case, the disturbance amplification
rate σ R is real (see figure 2b,e). As follows from an earlier discussion, this is the
Type II instability that is stationary in the normal field (see also Finlayson (1970),
Belyaev & Smorodin (2010)). The basic flow is unstable below the dashed line in
figure 12(a) and therefore an additional analysis of the inverse Squire’s transformation
is required to determine the spatial orientation of such patterns. To perform it refer
to figure 13(a), where the linear amplification rate σ R is plotted as the function of
the Squire-transformed (‘two-dimensional’) Grashof number G̃r (see relationships
(3.7)). The maximum amplification rate of the Type II instability (the dashed line)
is detected when G̃r → 0. The inverse Squire’s transformation then states that the
disturbance amplification rate of three-dimensional perturbations, which is invariant
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FIGURE 12. Variation of stability diagrams (a,d,g,j), wavenumbers (b,e,h,k) and wave
speeds (c, f,i,l) with the magnetic field inclination for He = 100, Pr = 55, χ = χ∗ = 3,
γ̃ = 0◦ and (a–c) δ = 0◦, (d–f ) δ = 5◦, (g–i) δ = 10◦ and ( j–l) δ = 15◦.

under Squire’s transformation, will be observed at any value of a non-transformed
(‘three-dimensional’) Grashof number Gr related to G̃r as

αGr=
√
α2 + β2G̃r. (4.2)

This means that the maximum amplification rate observed for the Type II instability
when G̃r→ 0 will be observed at an arbitrary value of the non-transformed Grashof
number Gr provided that α→ 0. That is β→ α̃, where α̃ is the left-most value along
the dashed line in figure 13(b). In other words, the Type II instability in the form of
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FIGURE 13. (a,d) Maximum amplification rate for an equivalent two-dimensional problem;
(b,e) the corresponding wave numbers α̃ and (c, f ) wave speeds for Grm = 35, He = 100,
Pr = 55 and χ = χ∗ = 3 in normal ((a–c), δ = 0◦) and oblique ((d–f ), δ = 5◦, γ̃ = 0◦)
magnetic fields.

vertical magnetoconvection rolls (so that γ = γ̃ + 90◦ for this instability mode) will
arise for arbitrary values of Gr once Grm exceeds the critical value corresponding
to the left-most point along the dashed line in figure 12(a). For any values of Gr
exceeding those corresponding to the solid line in figure 12(a) the stationary vertical
rolls of the Type II instability will overlap with the vertically propagating Type I
instability waves.

Given that the inverse Squire’s transformation indicates that for sufficiently large
values of Grm the flow is always unstable with respect to vertical thermo-magnetic
rolls regardless of the value of Gr the physical meaning of the dashed line in
figure 12(a) needs to be clarified. When the gravity is absent and Gr= 0 the arising
magnetoconvection rolls can be arbitrarily oriented as all directions in the fluid layer
plane are equivalent. When the gravity is introduced and Gr becomes non-zero the
basic gravitational convection flow arises and removes the spatial degeneracy so
that the vertically oriented rolls are preferred. Yet it is clear that at small values
of Gr rolls of all other orientations still can exist even though vertical rolls now
have a larger growth rate. As the value of the Grashof number increases, the growth
rate of the vertical rolls remains the same at fixed Grm, but the growth rate of
non-vertical rolls becomes smaller. Eventually, when the value corresponding to the
dashed line in figure 12(a) is reached, horizontal rolls cannot grow anymore and
disappear. Above the dashed line there exists a maximum roll inclination angle
beyond which the Type II instability cannot be observed. To clarify this consider
the following example. Computations show that in the normally applied field the
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flow stabilisation occurs when the value of the Squire-transformed Grashof number
G̃r exceeds 9.55 for Grm = 35 and χ = χ∗ = 3 (this corresponds to the point in
figure 13(a) where the dashed line crosses zero and to the respective critical point
(Grmc, G̃rc)= (35, 9.55) on the dashed line in figure 12a). Say, the experimental value
of interest is Gr = 15. Then we conclude that in such experimental conditions it is
expected that the instability patterns will be in the form of stationary vertical rolls
that however could be modulated by weaker rolls with the axes forming the angle of
up to

sin−1 α

α̃c
= sin−1 G̃rc

Gr
= sin−1 9.55

15
≈ 40◦, (4.3)

with the vertical y-direction. The larger the experimental value of Gr is the smaller the
allowed modulation angle becomes. This has a straightforward physical explanation:
the increase in the value of Grashof number intensifies the vertical basic flow velocity
(see (3.1)), which in turn results in a stronger vertical alignment of the instability
patterns.

The Type III instability boundary is shown in figure 12(a) by the dash-dotted line.
The basic flow is stable with respect to this mode below it. As seen from figure 12(b),
the corresponding instability patterns have larger wavenumbers (dash-dotted line) than
those of the Type I and Type II instabilities (solid and dashed lines, respectively).
As follows from figure 12(c), similar to the Type I instability, the Type III instability
arises in the form of two waves counter-propagating with speeds that become faster
than those of the Type I waves for sufficiently large values of Grm. The peculiar
feature of the Type III instability seen in figure 12(a) is that its boundary appears
to end abruptly at certain values of gravitational and magnetic Grashof numbers
(this feature is also observed at small non-zero field inclination angles, see point
C in figure 12d). Such an unusual behaviour was discussed in detail in Suslov
(2008). There it was shown that the Type III instability appears as a result of a
sudden qualitative change in the problem’s dispersion relation when its branches
corresponding to either the Type I or Type II instabilities bifurcate resulting in the
appearance of the Type III waves. Experimentally, the appearance of the Type III
instability could be detected either by observing a sudden transition from stationary
(Type II) to non-stationary (Type III) patterns at relatively small values of G̃r or from
one unsteady pattern (Type I) to another (Type III) with a shorter wavelength.

Another feature distinguishing the Type III instability from its Type I and Type II
counterparts, whose patterns are characterised by a fixed spatial orientation, is that
the main periodicity direction for the Type III instability depends on the value of the
Grashof number. For example, as follows from figure 13(a) for Grm= 35 the Type III
instability has the largest growth rate at G̃rc = 5.07 (the left end of the dash-dotted
line) where it has the form of vertically propagating waves with α = α̃ ≈ 3.636 and
β = 0. However according to the inverse Squire’s transformation, for any larger value
of the Grashof number it will be seen as a pair of oblique waves counter-propagating
along the direction forming the angle cos−1(G̃rc/Gr) with the vertical y direction.
In other words, as the Grashof number (and thus the vertical basic flow velocity)
increases the axes of the Type III instability rolls approach the vertical, and the
patterns drift almost horizontally. At the same time, the Type I instability patterns
remain horizontal and propagate vertically. For example, at Gr = 15 the Type III
instability waves are expected to propagate along the direction forming the angle
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of cos−1(5.07/15) ≈ 70◦ with the vertical direction rather than vertically and their
spanwise direction is expected to form the angle of sin−1(5.07/15) ≈ 20◦ with the
vertical.

4.4.2. Field inclined in the plane containing the main periodicity direction (γ̃ = 0◦)
The magnetic field inclination adds further complexity to the already quite

complicated instability picture in the presence of both gravitational and magnetic
effects. The stability diagram for an oblique magnetic field (δ = 5◦, γ̃ = 0◦) is
shown in figure 12(d). The comparison with figure 12(a) for a normal field shows
that the flow stability region becomes larger in an oblique magnetic field. This
is consistent with the numerical results given in tables 1 and 2. As follows from
figure 12(e), similar to the normal field case the Type I instability is characterised
by a smaller wavenumber (the solid line) compared to that of the Type III instability
(the dash-dotted line). However the symmetry of the disturbance thermal waves
propagation is broken in an oblique field and the upward wave becomes more
dangerous. Therefore in figure 12( f ) only the critical wave speed for this wave is
shown. It increases monotonically with Grm.

It is remarkable that the qualitative change in stability diagram occurs even for
such small field inclination angles. The solid and dashed stability boundary lines
distinguished in figure 12(a) merge in figure 12(d) indicating that the distinction
between the Type I and Type II instabilities becomes blurred when the applied
magnetic field is inclined in a plane containing the periodicity direction. The
dash-dotted line in the lower right corner in figure 12(a) becomes much shorter
meaning that the Type III instability could be hard to detect experimentally in an
oblique field. Even though the solid line originates from G̃r = 0 in figure 12(d),
it corresponds to non-stationary magnetoconvection, see the lower part of the solid
curve in figure 12( f ). This is consistent with the results presented in Rahman &
Suslov (2015) where it has been shown that the thermo-magnetic instability patterns
that are not aligned with the in-layer component of the applied magnetic field are
always non-stationary.

While the orientation of the Types II and III instability patterns remains qualitatively
unaffected by the small field inclination, the qualitative changes occur in the
orientation of the Type I instability patterns at sufficiently large values of Grm.
As seen from figure 13(d), the σ R(G̃r) curve crosses the zero level twice at points
A and B (see also the corresponding points in figure 12d). According to the inverse
Squire’s transformation the decreasing segment of the σ R(G̃r) curve to the left of
point B in figure 13(d) indicates the existence of oblique instability structures with
the orientation depending on the value of Gr. For the relatively small values of
Gr < GrB the fastest growing Type I instability pattern is almost horizontal with
β = 0, but as Gr increases the most unstable patterns turn and approach vertical
(β increases at the expense of α). This continues until Gr reaches the value of GrA.
At this point another pair of the Type I waves appears that are horizontally uniform
(β = 0) and propagate vertically. Figure 13(c, f ) also confirms the conclusion made
earlier that due to the symmetry-breaking effect of nonlinear fluid magnetisation the
most dangerous Type I pattern switches from the wave propagating downward in a
normal field to the one propagating upward in an oblique field. However the growth
rates of both waves remain close so that a counter-propagating wave pair is likely to
be seen in experiments. Figure 13(a,d) also demonstrates that for the sufficiently large
values of Grm the Type II instability has a much larger growth rate than those of the
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Type I and Type III patterns. Therefore stationary vertical thermo-magnetic rolls are
expected to dominate the overall disturbed flow. Yet the presence of the Type I and
III instabilities should be visible experimentally as non-stationary three-dimensional
modulations of vertical rolls, which has indeed been detected in experiments reported
in Suslov et al. (2010, 2012).

The magnetic field inclination continues to play a very important role in shaping
the parametric stability boundaries of the considered flow when δ is increased further.
The stability diagram for δ= 10◦ and γ̃ = 0◦ shown in figure 12(g) demonstrates that a
significant stabilisation of the flow with respect to the Type I disturbances is observed
(the area bounded by the solid line increases). The Type I and Type II instabilities
are again easily distinguished. The waves propagating upward still remain the most
dangerous for the non-zero values of the magnetic Grashof number.

At even larger field inclination angles another qualitative change occurs. As seen
from figure 12( j), for δ = 15◦ the Type III instability is not detected over the
investigated range of the governing parameters. The critical values of G̃r for the Type
I instability now increase monotonically with Grm. This is traced back to the aligning
influence of the applied magnetic field. With the increasing field inclination angle δ
and γ̃ = γ = 0◦ the vertical in-layer field component increases as well and so does
its ‘pattern aligning’ effect. Thus the vertically propagating and horizontally uniform
Type I waves are suppressed by the inclined field applied in a vertical plane and
require a much stronger gravitational buoyancy characterised by G̃r to arise. The Type
II instability characteristics presented for the field inclined at δ = 15◦ and shown in
figure 12( j–l) change in a peculiar manner. For small values of the magnetic Grashof
number the Type II instability boundary (the basic flow is unstable below the dashed
line) rises almost linearly and the critical wavenumber remains almost constant at
α̃ ≈ 2.5. This instability remains nearly stationary up to Grm ∼ 300 (e.g. point D
in figure 12j). However for larger values of Grm the slope of the stability boundary
changes rapidly (even though in a continuous manner) to a larger value, (e.g. point E
in figure 12j) and so does the value of α̃. The critical wave speed becomes non-zero
and starts growing.

In conclusion of this section we note that our computations not discussed here in
detail show that the main effect of the approaching magnetisation saturation regime
χ < χ∗ is the disappearance of the Type III instability even at the field inclination
angles as small as δ= 5◦. However, the Types I and II instabilities remain qualitatively
unchanged. Thus no detailed discussion of magnetic saturation regimes will be given
here. We have also explored the influence of the fluid’s thermo-magnetic sensitivity
on the stability characteristics of the flow by computing the results for He= 10. Again
it was found that the only qualitative effect the variation of this parameter leads to
is the disappearance of the Type III instability in a more magnetically sensitive fluid.
Therefore the specific results presented in this section appear to be robust. They
provide a sufficiently complete view of the instability processes taking place in the
considered geometry for a wide range of physical conditions.

4.4.3. Arbitrary field orientation
All stability diagrams discussed so far have been computed for γ̃ = 0◦. It is of

interest now to compare the flow stability characteristics in the applied fields of
different orientations. This is done in figure 14 for δ= 10◦. The figure demonstrates a
sensitive dependence on the choice of γ̃ . However this variation is not monotonic. As
γ̃ increases from 0◦, the parametric stability region in figure 14(a) initially shrinks
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FIGURE 14. Comparison of the critical values for He = 100, Pr = 55, χ = χ∗ = 3,
δ = 10◦ and various field orientation angles γ̃ : (a) stability diagram for an equivalent
two-dimensional problem; (b) critical wavenumber α̃c and (c) the corresponding wave
speeds along the stability boundaries shown in plot (a).

and then starts growing. Therefore the general conclusion is that there exists an
optimal field orientation angle γ̃ for which the basic flow becomes most unstable.
The existence of the optimal field orientation angle γmin for the Type I instability has
been discussed in detail in § 4.3 and here we will focus on the Type II instability.

The most unstable pattern of the Type II instability corresponds to vertical rolls
with α = 0 and β = α̃. However rolls of all other orientations can also exist up to
Gr= G̃rc corresponding to the values shown in figure 15(a) (computed for Grm = 15
as an example). The vertical alinement of instability patterns occurs for the larger
values of Gr. The value of G̃rc depends on the field orientation angle γ̃ . As follows
from figure 15(a), such an alignment for Grm = 15 and δ = 5◦ is most delayed when
the field is oriented at the angle γ = 90◦ ± γ̃ ≈ 237◦ or −57◦ to the vertical y axis.
Figure 15(b) demonstrates that the orientation of the applied magnetic field also
affects the wavelength of the Type II instability patterns: it slightly increases as the
field orientation angle approaches the optimal value. As follows from figure 15(c)
the Type II instability in this example remains essentially stationary for all field
orientation angles (this, however, is not the case for larger values of Grm, as seen
from figure 12f ).

For the larger values of Grm the dependence of the critical values on the field
orientation angle γ̃ becomes more complicated. As seen from figure 16 unlike
for smaller values of Grm both the Type II (dashed line) and Type I (solid line)
instabilities can be detected when varying γ̃ . The two types of instabilities here are
distinguished by the values of their wavenumbers (the Type I instability has a longer
wavelength, see figure 16b) and wave speeds (the Type I instability is wave-like while
the Type II patterns are virtually stationary, see figure 16c). Both instabilities have
their own optimal field orientation angles (shown by symbols). Namely, as follows
from the inverse Squire’s transformation discussed earlier, for the representative value
of Grm = 35 the vertical alignment of the Type II instability patterns is delayed the
most (up to Gr ≈ 9.142) if the field is oriented at γ = 90◦ ± γ̃ ≈ 241◦ or −61◦.
At the same time such a delay (up to Gr ≈ 15.023) in the vertical alignment of
the Type I instability patterns is most evident for the field orientation angles in the
range 0◦ < γ̃ < 90◦ (see the maximum of the solid curve marked by the square
in figure 16a). Therefore we conclude that the orientation of the applied magnetic
field can have a profound influence on the type of the observed convection patterns,
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above the curve), (b) wavenumber α̃ and (c) wave speeds c̃ as functions of the field
orientation angle γ̃ for δ = 5◦, Grm = 15, He = 100, Pr= 55 and χ = χ∗ = 3.
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FIGURE 16. Same as figure 15 but for Grm = 35.

which indeed has been observed near the edges of the ferrofluid layer, where the
field inclination is essential and unavoidable, in experiments reported in Suslov et al.
(2010, 2012).

5. Conclusions
The linear stability of the base convection flow in a vertical differentially heated

layer of ferrofluid placed in an oblique magnetic field was investigated. The essentially
three-dimensional original problem was cast in an equivalent two-dimensional form
using Squire’s transformation to reduce computational cost. Subsequently, a full three-
dimensional dynamics was recovered using the inverse Squire’s transformations. The
characteristics of all instability modes were investigated as functions of the inclination
and orientation angles and the magnitude of the applied magnetic field for various
values of magnetic parameters and for linear and nonlinear magnetisation laws.
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It has been shown that two distinct mechanisms, thermo-gravitational (buoyancy-
driven) and thermo-magnetic, acting simultaneously are responsible for the appearance
of various instability modes. Three main types of instability patterns corresponding
to thermo-gravitational, thermo-magnetic and magneto-gravitational convection are
found to exist. A thermo-magnetic convection is caused by the variation of the
fluid magnetisation and magnetic field across the non-uniformly heated layer,
while a magneto-gravitational convection instability arises due to the combined
action of the gravitational and magnetic buoyancy. It has been shown that in the
magneto-gravitational instability regime two waves propagate inside the layer: up
near the hot wall and down near the cold one. The upward propagating wave
becomes more dangerous when the field inclination angle becomes larger than 3◦–5◦.
The comparison of the up and downward propagating waves shows that the former
is characterised by a slightly lager critical wavenumber.

The basic flow becomes generally more stable and the disturbance waves propagate
quicker when the field inclination angle increases. The stability characteristics of
the basic flow with respect to wave-like disturbances have been compared for
thermomagnetically less (He = 100) and more (He = 10) sensitive fluids, and it
has been found that the upward propagating wave remains the most dangerous in
both types of fluids. It is established that for each field inclination angle there exists
a preferred field orientation angle that promotes the onset of magneto-gravitational
instability the most. While for a thermo-magnetic instability at very small values
of the gravitational Grashof number the field inclined in a vertical plane is found
to promote the instability the most, for other types of instability the optimal field
orientation depends on the choice of the governing physical parameters.

It is also demonstrated that the inclination of the external magnetic field breaks the
cross-layer flow symmetry and leads to the preferential shift of instability structures
toward the hot wall, which is more pronounced in magnetically more sensitive fluids
characterised by a smaller non-dimensional magnetic field magnitude.
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