
Words in puddles of sound: modelling psycholinguistic
effects in speech segmentation*

PADRAIC MONAGHAN

Department of Psychology and Centre for Research in Human Development

and Learning, Lancaster University, Lancaster, UK

AND

MORTEN H. CHRISTIANSEN

Cornell University, Ithaca NY, USA

(Received 26 November 2008 – Revised 25 August 2009 – Accepted 5 December 2009 –

First published online 22 March 2010)

ABSTRACT

There are numerous models of how speech segmentation may proceed

in infants acquiring their first language. We present a framework for

considering the relative merits and limitations of these various

approaches. We then present a model of speech segmentation that aims

to reveal important sources of information for speech segmentation,

and to capture psycholinguistic constraints on children’s language

perception. The model constructs a lexicon based on information about

utterance boundaries and deduces phonotactic constraints from the

discovered lexicon. Compared to other models of speech segmentation,

our model performs well in terms of accuracy, computational

tractability and the number of components of the model. Finally, our

model also reflects the psycholinguistic effects of language learning, in

terms of the early advantage for segmentation provided by the child’s

name, and by revealing the overlap in usefulness of information for

segmentation and for grammatical categorization of the language.

INTRODUCTION

The speech that infants hear is generally produced in a continuous stream,

without pauses that reliably indicate where words begin and end. Indeed, if
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pauses do occur, then this can be at misleading points in speech, occurring

within words before consonants with long voice onsets (Slis, 1970), though

pauses are also frequent between phrases in speech (Wightman, Shattuck-

Hufnagel, Ostendorf & Price, 1992). The problem of speech segmentation

has therefore been characterized as words occurring in a ‘sea of sound’

(Saffran, 2001) from which lexical items have to be identified and extracted.

Consequently, an array of subtle, interacting, probabilistic indicators to

word boundaries have been proposed as cues that assist in solving the

segmentation problem, including cues such as lexical stress and prosodic

patterns across utterances (Curtin, Mintz & Christiansen, 2005; Cutler &

Carter, 1987; Johnson & Jusczyk, 2001), transitional probabilities between

syllables (Saffran, Aslin & Newport, 1996) and phonotactic constraints

between phonemes (Hockema, 2006; Mattys, White & Melhorn, 2005).

Several computational models have been proposed to account for the

developmental processes involved in early speech segmentation. Some of

these models take as input raw speech, and such approaches have produced

up to 54% accuracy on very small corpora (e.g. Roy & Pentland, 2002).

An alternative approach is to take as input unsegmented phonological

transcriptions of speech (e.g. Batchelder, 2002; Brent, 1999; Brent &

Cartwright, 1996; Frank, Goldwater, Mansinghka, Griffiths & Tenenbaum,

2007). These latter models considerably simplify the complexities of the

raw speech input in identifying phonemes or phoneme features, but they do

highlight the potential statistical sources of information useful for reflecting

word boundaries in child-directed speech (CDS), and have been successfully

related to psycholinguistic studies of children’s language acquisition.

Previous developmental models of speech segmentation differ substantially

across a number of parameters, including whether the model builds a lexicon,

segments words by clustering smaller units or breaking down larger units,

or incorporates external constraints on performance (see Batchelder, 2002,

for a review). From a developmental psycholinguistics perspective, it is not

clear which model(s) should be preferred. In this paper, we therefore first

propose a set of psychologicallymotivated criteria for assessing developmental

models of speech segmentation before presenting our own computational

model.

CRITERIA FOR ASSESSING DEVELOPMENTAL MODELS OF SPEECH

SEGMENTATION

Precision and recall

Previous work on speech segmentation has quite rightly focused on assessing

computational models in terms of their ability to correctly segment a corpus

into words, as determined by an objective parse of the speech. The best

performance of developmental models of speech segmentation appear to be
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converging to approximately three-quarters of words in CDS corpora.

However, it is unclear what level of segmentation performance best reflects

the child’s ability. Nonetheless, all else being equal, a model that shows it can

exploit information in a way that maximizes the correct segmentation of a

CDS corpus is to be preferred.When all else is not equal, then roughly similar

performance to comparable models provides a useful benchmark level.

Computational tractability

The second criterion concerns the plausibility of the model as a reflection of

the cognitive processing of the infant learning the language. The model

should be computationally tractable – memory limitations should be

observed, and optimal learning should not be assumed. Critical for

computational tractability is whether the model is incremental or whether

the whole corpus must be considered in segmenting a particular utterance.

Thus, an incremental model – in which the segmentation of a target utterance

depends only on what has preceded the utterance in the child’s exposure – is

to be preferred. However, there may be incremental approximations of

models that process the whole corpus, and thus preferring an incremental

model as a decision criterion requires proof that a ‘batch’ model would not

operate effectively in an incremental mode. Moreover, everything else being

equal, a model that requires small memory capacity, and limited search and

computational resources, is preferable. Models that require close

approximation to optimal learning conditions – where all the input can be

stored and accessed simultaneously – should be rejected as models of the

infant’s cognitive process, though they may have substantial value in

reflecting the potential information present in the child’s language input.

External components

Some models may include external components that do not emerge from the

basic processing principles of that model. As an example, Frank et al. (2007)

and Brent & Cartwright (1996) use a vowel constraint, whereby a candidate

lexical item must contain a vowel to be considered. For these specific

models, this qualifies as an external constraint, as it is a constraint applied to

the model, and which cannot be inferred from the language exposure alone.

We suggest that, all else being equal, a model with few external components

is to be preferred for reasons of parsimony.

Psycholinguistic features

Perhaps the most important criterion of all for the assessment of the models

is the extent to which they can reflect psycholinguistic observations of the
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infant learning to segment speech. For example, Brent (1999) demonstrated

that certain predictions of a computational model of segmentation can be

tested in experimental studies of language learning (e.g. Dahan & Brent,

1999), and Perruchet & Vinter (1998) explicitly tested the artificial

languages of Saffran et al. (1996) to determine whether a chunking strategy,

elicited by transitional probabilities, could account for participants’

segmentation performance based on these materials. The particular

psycholinguistic effects we feature for our modelling are reported in the next

section, where we outline the basic principles of our model’s functioning.

SOURCES OF INFORMATION IN CHILD-DIRECTED SPEECH

Our model aims to advance on previous models with respect to these criteria

for assessing developmental models of speech segmentation, though there is

a large degree of overlap between our approach and previous models of

speech processing. One advantage is that we provide a model that is

computationally tractable, in that it does not assume a large lexicon, nor

does it require multiple, competing decisions about the match between the

lexicon and the utterance string. Furthermore, the model is incremental in

its processing of utterances. Along with the Perruchet & Vinter (1998)

PARSER model, the memory resources and computational requirements

are minimal. However, unlike PARSER, our model can process at the

phoneme level, and does not require the syllable structure to be provided to

the model. The second advantage we claim for our approach is that it does

not require additional constraints that lie outwith the model’s discovery of

the lexicon itself. The third advantage of our modelling approach is an

attempt to draw together the modelling approach with features of infant

speech processing that highlights what may be the important aspects of

CDS that are formative for language learning (though see also Batchelder,

2002). In particular, we focus on two features of CDS that we believe are

critical for language learning: utterance boundaries and the interspersal of

high frequency words in speech.

Utterance boundaries provide a rich source of information about word

boundaries, represented either by physical pauses in speech, or indicated by

alternations between conversational partners. Though MacWhinney &

Snow (1985) estimated that only about one in seven words were spoken in

isolation in CDS, this still presents a potentially large number of words that

can then be bootstrapped into segmenting multi-word utterances. From the

English CDS section of the CHILDES corpus, of 1,369,574 utterances,

358,397 (26.2%) are single-word utterances; Table 1 shows proportions

of utterances of various lengths in words. Relying solely on utterance

boundaries to indicate word boundaries, however, is likely to be insufficient

for infant speech segmentation (Brent & Cartwright, 1996). First, though a
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large proportion of utterances consist of a single word, the majority of

utterances are multi-word sequences and there are no proposed methods for

distinguishing between single- and multi-word utterances (Christophe,

Dupoux, Bertoncini &Mehler, 1994). Second, many words very rarely occur

as single-word utterances, such as determiners (e.g. the only occurs 129 times

as a single-word utterance in the combined CHILDES corpus of English

CDS).

Although highly frequent function words seldom occur as single-word

utterances, other high-frequency words may occur in isolation a substantial

number of times. Proper names, for instance, can occur frequently as single-

word utterances in CDS, and have been proposed to be important for

assisting the learning of other words from the child’s speech input. In the

set of corpora we use for the analyses in this paper, the child’s own name

occurred as a single-word utterance in a total of 1.3% of all utterances in

the combined corpora. Importantly, though, as much as 23.7% of the

occurrences of the proper name were in a single-word utterance.

But what contribution do utterance boundaries make alongside the wealth

of other cues to indicate word boundaries available in speech? Though

accurate speech segmentation clearly does not involve processing each

utterance as a separate lexical item, this does not preclude the possibility

that learning to segment speech may at least be facilitated by such

information. Several models of speech segmentation have included utterance

boundary information as input to the model (Aslin, Woodward, LaMendola

& Bever, 1996; Batchelder, 2002; Brent, 1999; Brent & Cartwright, 1996;

Christiansen, Allen & Seidenberg, 1998), whereas other models incorporate

it as an upper bound on the possible length of a candidate word (Perruchet

& Vinter, 1998).

Our model utilizes utterance boundaries to determine, in an incremental

fashion, word boundaries in continuous speech; we term this the

TABLE 1. Proportion of utterances from child-directed speech of different

lengths of words

Utterance length
(in words)

Proportion
of corpus

1 0.26
2 0.14
3 0.13
4 0.12
5 0.10
6 0.08
7 0.06
8 0.04
>8 0.09
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‘Phonotactics from Utterances Determine Distributional Lexical Elements’

(or PUDDLE) model of speech segmentation. The PUDDLE model

initially treats each utterance as a lexical item, but breaks up longer utterances

into shorter lexical items if another stored lexical item is a part of the longer

utterance. Indeed, Dahan & Brent (1999) showed that, for adults listening

to an artificial language, a novel utterance will be processed as a lexical item

providing it contains no known words. The segmented sections of the

longer utterance are then each entered as separate lexical items.

However, matching utterances within other utterances is not sufficient

for a model of segmentation, as short, frequently occurring utterances are

likely to be segmented within larger word-level chunks resulting in an

over-segmentation of words into their segmental phonology. As an example,

given the utterances ‘oh’ and ‘no’, the unconstrained model will store ‘oh’

as a candidate lexical item, and then divide up ‘no’ into ‘n’ and ‘o’, as, in

terms of their phonological transcription, the ‘o’ matches the stored utterance

‘oh’. Then, all future occurrences of utterances containing ‘n’ will be divided,

resulting eventually in a set of lexical candidates that are the individual

phonemes of English. To overcome such over-segmentation, our model

incorporates a boundary constraint derived from its lexicon (as described

below).

There were several, related aims to our computational model of

segmentation in terms of connecting with the developmental literature on

language learning. First, we wanted to indicate that single-word utterances

are identifiable in speech, and can be extracted as lexical items from CDS

corpora. Second, we wanted to explore which words emerge as those earliest

identified, and which are consequently the most useful indicators of word

boundaries. If a small set of frequent words can be accurately identified by

the model, then these may be useful for carving up the rest of the speech

stream into its constituent words, just as frequent words are useful for

determining the grammatical categories of the content words that surround

them (Monaghan, Christiansen & Chater, 2007). In this respect, too,

we wanted to determine whether the child’s name is one of these early-

identified words. Third, we wanted to plot the model’s discovery of

words over time. Children learn language in an item-based manner where

frequently co-occurring words are initially processed as single words

(MacWhinney, 1982; Tomasello, 2000), and only later are they distinguished

into their constituents (see also Bannard & Matthews, 2008, for an empirical

demonstration of this phenomenon).

We now present the PUDDLE model of speech segmentation, and report

its performance on six corpora of English CDS. Testing the model on

several CDS corpora presents an advance on previous models of speech

segmentation that have typically focused on a single corpus (e.g. the models

reviewed in Brent, 1999), and provides insight into the generalizability of
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the model’s performance across corpora, as well as highlighting distinctive

properties of CDS in terms of their influence on speech segmentation

performance, such as the use of proper nouns.

THE PUDDLE MODEL OF SPEECH SEGMENTATION

Method

Algorithm. The model has two components: a lexicon and a list of

beginning and ending phoneme pairs, generated from the lexicon. The model

begins by inputting the first utterance into the lexicon. The model searches

through the current utterance starting at the first phoneme, and testing

whether there is a match with any of the stored lexical items. If there is a

match then the word is extracted, the phonemes occurring before the

matched word are taken to constitute a new lexical item, and the search for

the next lexical item in the utterance recommences at the first phoneme in

the utterance following the matched word. If there is no match at a

particular phoneme position, then the model proceeds to the next phoneme

in the utterance string, until the end of the utterance is reached. If the end

of the utterance is reached without a match, then the phonemes following

the last match of a word in the utterance are taken to be a new lexical item.

The next utterance is then presented to the model.

As an example, consider the set of utterances ‘kitty’, ‘ that’s right kitty

yes’ and ‘look kitty’, illustrated in Figure 1. The model will begin with the

/k/ in the first utterance ‘kitty’. The lexicon is empty, so there are no

matches, and the model will move on to consider /I/ from the first utterance.

There is again no match, and so the model will proceed through to the end

of the utterance with no matches and will code the entire utterance – in this

case the string ‘kitty’ – as a lexical item. At the end of processing the first

Utterance1:

Utterance2:

Utterance3:

kitty

INPUT LEXICON

thatsrightkittyyes

lookkitty

word activation

kitty ki ty

tykitty ki

kitty ki

thatsright ight

ight

es

es

ook

ty

tha

thatsright tha

yes ye

look loo

yes

1

2

3

1

1

1

1

1 ye

Beginnings Endings 

Fig. 1. The PUDDLE model operating on the first few utterances of a corpus.
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utterance, then, there is one item in the lexicon. Then the model proceeds

to the second utterance, and attempts to match any of the lexical items

with each phoneme in turn. There is just one match: ‘kitty’ matches at the

/k/, and the string preceding the match – ‘that’s right’ – will be entered

into the lexicon. Then, for the remaining phonemes in the second

utterance, comprising the word ‘yes’, the model will attempt to match with

the set of lexical items starting at each phoneme in turn. There are no

matches, and so ‘yes’ will then be entered as a new lexical item. So, at the

end of the second utterance there are three candidate lexical items. For the

third utterance, the model will attempt to match all the lexical items ‘kitty’,

‘ that’s right’ and ‘yes’ at each phoneme position. Once again, there is only

one match at the second /k/, and so ‘look’ will also be entered as a new

lexical item. (Note that utterances and lexical items are encoded as phoneme

sequences; the terms in speech-marks and the transcriptions in Figure 1

indicate a short-hand version of these phoneme sequences for ease of

interpretation.)

Each item in the model’s lexicon has associated with it an activity level, as

in the PARSER model (Perruchet & Vinter, 1998). Each time a word is

matched in an utterance its activity increases by 1, as shown in Figure 1 for

the word ‘kitty’ when matched in the second utterance. For new lexical

items, activity is initially set at 1. To simulate forgetting of the lexical items,

a decay parameter can be used such that the activity of every lexical item

reduced by a set amount each time a new utterance was presented. This has

the effect of long utterances that are rarely repeated dropping out of the

lexicon, but words that occur frequently maintaining a high activity level.

Pilot studies indicated that setting the decay rate too high resulted in a very

small lexicon, and consequently under-segmentation of the corpus, hence

precision was high but recall was low. In the following simulations, we

report the results when decay is 0, indicating the model’s performance when

the learning capacity of word items was high.

A further parameter that influences the model’s performance is the order

in which the lexical items are searched for matches. We assume that the

lexical items most available to be matched to input speech are those that

occur with the highest frequency of identification in the child’s previous

exposure, and so we sorted the candidate lexicon according to the activity of

each lexical item.

To reduce over-segmentation, phonotactic information about legal word

boundaries was derived from the model’s lexicon and used as a boundary

constraint. Once a word produced a match in the utterance, the match was

processed only if the phonemes around the matched segment were

represented already within the lexicon as possible word endings or word

beginnings. We implemented this by requiring that the two phonemes

preceding the matched segment ended one of the candidate words in the
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lexicon and the two phonemes succeeding the matched segment began one

of the candidate words. If the lexical item was shorter than two phonemes

in length, then it did not contribute to the beginnings and endings list.

Figure 1 illustrates that a list of all the beginning and ending phoneme pairs

is constructed from the lexicon. Listeners are sensitive to whether pairs of

phonemes are likely to occur within or across word boundaries (Mattys

et al., 2005) and the distributions of within- and between-word phoneme

bigrams is potentially valuable information for speech segmentation

(Hockema, 2006). This constraint was important in order to prevent

individual phonemes becoming candidate lexical items. In the example

above, ‘kitty’ would only be matched in ‘that’s right kitty yes’ if the last

two phonemes of ‘right’ and the first two phonemes of ‘yes’ ended and

began words in the lexicon, respectively. If there had been no input prior to

the first utterance in this example then all three utterances would have been

entered as lexical items, and the beginnings and endings of these utterances

only would be listed as potential word boundaries.

Corpus preparation. We selected six English CDS corpora from the

CHILDES database (MacWhinney, 2000) : Eve (Brown, 1973), Peter

(Bloom, Hood & Lightbown, 1974), Naomi (Sachs, 1983), Nina (Suppes,

1974), Anne and Aran (Theakston, Lieven, Pine & Rowland, 2001). We only

included speech spoken in the presence of children aged 2;6 or younger,

and only adult speech was included. The corpora are orthographically

transcribed in the CHILDES database, including indicators of speech

pauses in the transcription. Pauses and changes in speaker were encoded as

utterance boundaries. The numbers of utterances, words and phonemes in

each corpus are shown in Table 2.

To generate the spoken form of the speech, we streamed the orthographic

transcription through the Festival speech synthesiser (Black, Clark,

Richmond, King & Zen, 2004), which produced a sequence of phonemes for

each utterance, together with a separate transcription that also included

objective marking of which phonemes were generated for each word. This

method of phonological transcription has the advantage that some phoneme

TABLE 2. Size and characteristics of each child-directed speech corpus

Corpus
Number of
utterances

Mean words
per utterance

Mean phonemes
per word

Anne 27,474 3.37 3.07
Aran 27,794 3.81 3.07
Eve 17,327 3.55 3.05
Naomi 8,318 3.56 3.12
Nina 17,865 4.01 3.03
Peter 20,091 3.61 3.01
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variation according to part-of-speech context was encoded within the

corpus, for instance, ‘a’ was pronounced either as /eI/ as a noun and /e/
when used as a determiner, similarly, ‘uses’ was pronounced with a /z/ as a

verb and /s/ as a noun. The resulting input is therefore closer to the actual

speech that children hear than what was used in most previous simulations

of speech segmentation (e.g. Batchelder, 2002; Brent, 1999; Brent &

Cartwright, 1996; Christiansen et al., 1998; Hockema, 2006; Venkataraman,

2001), in which the same citation form (taken from a pronunciation

dictionary) is used every time a word occurs independent of its context

(though see Aslin et al., 1996, for a similar approach). Also, influences of

lexical stress on vowel pronunciation were also encoded by Festival in the

speech, so that when unstressed, vowels were often realised as schwa (see,

e.g., Gerken, 1996).

Scoring. The model’s performance was measured on blocks of 1,000

utterances. The model’s performance was scored on-line as the model

proceeded through the corpus, so the model’s performance was determined

on portions of the corpus that it had not yet been exposed to. The model’s

segmentation was compared to the segmentation that reflected the

orthographic transcription intowords from the original corpus.We computed

true positives, false positives and false negatives in the model’s segmentation.

True positives were words that were correctly segmented by the model – a

word boundary occurred immediately before and after the word but with no

incorrect boundaries in between. False positives were sequences segmented

by the model that did not match to individual words in the Festival

segmentation. False negatives were words in the Festival segmentation that

were not correctly segmented by the model. To quantify the performance of

the model we used the complementary measures of PRECISION and RECALL,

which have been used as conservative measures of model performance

in previous research (e.g. Batchelder, 2002; Brent & Cartwright, 1996;

Christiansen et al., 1998; Hockema, 2006; Venkataraman, 2001). Precision

was computed as true positives divided by the sum of true positives and

false positives. Recall was computed as true positives divided by the sum of

true positives and false negatives. Thus, precision provides a measure of

how many of the words that the model found are actual words, whereas

recall indicates how many of the words in the corpus the model was able to

find.

As a baseline, we created a ‘word-length model’ (e.g. Brent &

Cartwright, 1996; Christiansen et al., 1998) that randomly inserted word

boundaries into the speech stream given the correct number of word

boundaries found across the whole corpus. Note that this baseline provides

information about how many words there are in the corpus but not where

the boundaries occur, so it is likely to perform better than a truly random

baseline that lacks this information.
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Results and discussion

Themodel’s performance was assessed for each 1,000-utterance block in each

corpus, until the first 10,000 utterances had been processed. For corpora

smaller than 10,000 utterances, performance for the final block of 1,000

utterances was reported. Figure 2 reports the model’s segmentation

performance on each corpus with zero decay, compared to the word length

segmentation baseline. At the 10,000-utterance block, the improvement

over baseline performance was significant for both precision (t(5)=71.25,

p<0.0001), and recall (t(5)=61.98, p<0.0001). The model was also highly

significantly different from chance for precision and recall at all points in

training, from 1,000 to 10,000 utterance exposures (all to10, all p<0.0005).

The model’s performance was consistent in its precision and recall across

the different CDS corpora. The worst performance of the model was for

the Naomi corpus, which was the smallest, so the model’s training had

completed by approximately 8,000 utterance exposures. Yet, the model’s

performance even on this corpus was 0.70 precision and 0.70 recall, compared

to 0.11 precision and 0.09 recall baseline. The best performance of the model

was on the Aran corpus, with 0.76 precision and 0.79 recall, compared to

0.11 and 0.10 baselines for precision and recall, respectively.

Though the model represented an extremely simple algorithm for

discovering words, it compared well to more complex incremental models

of speech segmentation (Batchelder, 2002;Brent, 1999;Venkataraman, 2001).

After 10,000 words had been processed for a single CDS corpus, precision

and recall was approximately 0.75–0.80 for the BMDP1 model (Brent,

1999; see Figures 3 and 4 in Brent, 1999). In the same paper, other

algorithms were also compared, and all performed substantially worse than

the PUDDLE model : the SRN model of Christiansen et al. (1998):

precision 0.40–0.45, recall 0.40–0.45; Olivier (1968): precision 0.50–0.55,

recall 0.35–0.40. Venkataraman (2001) reports slightly reduced precision

and recall for the BMDP1 model for a similarly derived CDS corpus of

0.65–0.70 and 0.70–0.75, respectively, and the best performance of his

model with a trigram-based algorithm performed with precision 0.70–0.75

and recall 0.70–0.75. Batchelder (2002) reported precision and recall in

a similar range for her model with the word length constraint set to its

optimal level on one corpora, but other corpora tested yielded slightly

reduced precision and recall.

However, despite our model being quantitatively comparable to other

methods in terms of precision and recall of segmentation performance, it is

the qualitative behaviour of the model that we wish to focus on. Tables 3

and 4 show the model’s performance in terms of the twenty most highly

activated words in the lexicon for the six corpora after 1,000 and 10,000

utterance exposures. Evident from the tables are that the model very early
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in training identifies words with a high degree of precision. After 1,000

utterances, the model identifies no false positives in the top twenty words in

each corpus, but includes several frequently occurring word sequences as
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Fig. 2. (A) Precision and (B) recall for the PUDDLE model of speech segmentation.
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potential word candidates (so counting as misses in the analyses), such as

‘ isn’t it ’, ‘you tell me’ and ‘that’s right’. By 10,000 word utterances nearly

all of these have been correctly broken down into their constituent words, so

that across the top twenty words in all six corpora, only three remain (two

for Aran and one for Naomi).

Also of note in the most highly activated words in each corpus is the

presence of the child’s name. Even after a small amount of exposure – to

1,000 utterances – the child’s name had been identified and occurred in

the top twenty most highly activated words for four of the six corpora. For

the other corpora, ‘Aran’ was identified in the lexicon but occurred as the

TABLE 3. The most highly activated words in each corpus after 1,000 utterance

exposures

Corpus Top 20 ‘words’
Word overlap with
grammatical cues

Anne a, there, you, in, it, what, are, is, no, that, anne, on, and,
shall, sit, look, whoops, then, pardon, thank

7

Aran what, isn’t_it, yes, hm, that, what’s, come_on, a, are_you, and,
it, is_it, one, there’s, erm, didn’t_we, that’s, do_you, is, bang

5

Eve what, you, yes, no, do, a, want, there, is_that, that, well,
and, you_tell_me, where, would, eve

5

Naomi naomi, say, achey, yes, blanket, what’s_this, is, that’s, what,
the, no, what’s, brush, birdie, that, broken, good, honey,
goldie, yah

4

Nina what, is, a, where, that’s_right, yah, you, on, doing, are, do,
shall, okay, that’s, these, let’s, happened, darlie*?, here, no

7

Peter see, you, a, what, there, is, it, peter, right, say, that, that’s, lets,
are_you, the, yah, here, and, sit, look

6

TABLE 4. The most highly activated words in each corpus after 10,000

utterance exposures

Corpus Top 20 ‘words’
Word overlap with
grammatical cues

Anne you, a, it, the, are, there, what, that, to, we, on, in, do, is,
yah, right, one, no, going, anne

10

Aran you, it, are, is, what, to, that, the, I, we, a, going, there,
and, on, hm, no, isn’t_it, in, come_on

9

Eve you, what, it, that, is, no, the, yes, I, a, on, eve, in, do,
well, and, are, there, your, that’s

9

Naomi naomi, you, it, what, the, to, that, I, honey, on, no, ee*,
yes, is, want, are, okay, do_you, that’s, right

7

Nina you, what, is, to, it, the, are, do, I, w*, on, did, where, in,
that, a, put, no, this, nina

9

Peter you, it, the, that, there, a, what, is, in, see, to, put, I,
on, mhm, no, right, can, an, peter

7
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thirty-sixth word, and ‘Nina’ was forty-fourth. By 10,000 utterances, the

child’s name maintains its prominence, and in five of the six corpora it

occurs in the top twenty most highly activated words, and for the other

corpus, ‘Aran’ occurs thirty-third in the lexicon.

The identity of the other words that were most highly activated, and

formed the basis of the model’s segmentation performance, also provide

qualitative data about the model’s performance. They were generally the

words that occurred with the highest frequency in the corpus and were

principally constituted of pronouns and determiners, but also included

some prepositions, conjunctions, interjections and high-frequency verbs.

Whereas some of these words can occur as single-word utterances (such

as proper names and interjections), other words, as noted earlier, such as

determiners, seldom occur in isolation. ‘The’, for instance, was reliably

identified as a word in the model and occurred in the top twenty for all six

corpora.

Though there is a correspondence with the frequency of the word’s

occurrence, this was not the only factor influencing it becoming highly

activated, and a consequent basis for segmenting words that occur around

it. The distributional pattern of the word is also important for determining

whether it becomes highly activated in the lexicon. In previous work, we

have found that certain words are more useful than others for indicating the

grammatical category of words with which they co-occur. In order to

determine whether the words that are useful for indicating grammatical

categories in language learning are the same as those identified early, and

useful for, speech segmentation, we examined the top twenty words for each

corpus in terms of whether they were words that significantly distinguished

nouns and verbs (data from Monaghan et al., 2007). The words were he, we,

are, no, your, that’s, in, do, is, to, a, the and you. The analyses indicated that

many of these words were highly activated in the PUDDLE model’s

lexicon. The final column of Tables 3 and 4 indicates how many of these

thirteen word cues were in the top twenty highly activated words in each

corpus. The words useful for segmentation substantially overlap with those

distributional word cues useful for grammatical categorization.

GENERAL DISCUSSION

The PUDDLE model of speech segmentation was designed to provide an

explicit test of how far utterance boundaries alone can provide a bootstrap

into identifying word boundaries from continuous CDS. Considering each

utterance as a potential word candidate, the model discovered which

utterances were single-word utterances accurately, and the rarer multi-word

occurrences were less highly activated as candidates for the lexicon. Using

these identified words, the model was successful in segmenting the speech

MONAGHAN AND CHRISTIANSEN

558

https://doi.org/10.1017/S0305000909990511 Published online by Cambridge University Press

https://doi.org/10.1017/S0305000909990511


corpora to a level of precision and recall similar to other, more sophisticated

models that assume substantially more computational complexity and

memory load for the child. Another important component of the model was

the boundary constraint, which required that, before a lexical candidate

could be entered into the lexicon, the boundaries around the candidate in

the speech must form a legal phonotactic context. In pilot modelling, we

found that this constraint was necessary in order for the language to be

segmented effectively. However, the boundaries were discovered by the

model as a consequence of establishing a lexicon, and so the constraint was

not external to the model’s functioning, but emerged as a consequence of its

functioning. No other constraints were found to be required in order for the

model to learn to an effective level.

In terms of the four criteria for assessing developmental models of speech

segmentation, our model fulfils many of them more effectively than other

models of segmentation (see Table 5). This is not a simple consequence of

the decisions we made about the assessment criteria, which we see as more

generic principles that ought to apply to models of other domains of

language acquisition (see, e.g., Brent, 1996; Christiansen & Chater, 2001).

We intend these criteria as a snapshot of the current state of the field, rather

than a criticism of previous models of segmentation. The extent to which

each model meets the criteria in Table 5 was not always possible to deduce

from the relevant papers, and thus we have sought to err on the side of

caution in our ratings.

For the reasonable precision and recall, the connectionist models

(Christiansen et al., 1998) and Olivier’s (1968) model fall short of the levels

of performance of the other approaches. We imagine that the Perruchet &

Vinter (1998) model will also perform poorly on this criterion if the model

is given free reign on phoneme transcriptions rather than syllables, for

similar reasons to those we outlined for the PUDDLE model’s failure

TABLE 5. Criteria for assessing developmental models of speech segmentation

Model

Reasonable
precision
and recall

Computationally
tractable

No external
components

Psycholinguistic
effects

Batchelder (2002) Y N N Y
Brent (1999) Y Y Y Y
Brent & Cartwright (1996) Y N N Y
Christiansen et al. (1998) N Y Y Y
Olivier (1968) N N ? ?
Perruchet & Vinter (1998) N Y N Y
Frank et al. (2007) Y N ? ?
Venkataraman (2001) Y N Y ?
PUDDLE model Y Y Y Y
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without the boundary constraint. In terms of computational tractability,

we contend the Batchelder (2002) and Venkataraman (2001) models will

require highly computationally intensive processing, particularly after

extensive training. This is because all possible individual segments and their

combinations are stored in the lexicon (though in the case of Batchelder’s

model, a decay parameter can remove them from the lexical store). Such a

store can become extremely large very quickly, and a model that does not

consider all possible combinations of sequences of segments should be

preferred. Brent & Cartwright’s (1996) model and the Frank et al. (2007)

models are both idealized learners, and so require simultaneous processing

of the entire corpus, rather than taking an incremental approach, to achieve

accurate speech segmentation performance. It is not, however, established

that incremental versions of these models could not effectively learn to

segment speech, and so the ‘N’ in Table 5 against computational tractability

indicates that, in their current form, these models do not yet meet this

criterion. In terms of external constraints, all the models except the

connectionist models, Brent’s (1999) model, Venkataraman’s (2001) model

and the PUDDLE model have additional components that are not

discovered by themodel. For the final criterion, othermodels may be effective

in simulating particular aspects of children’s performance in speech

segmentation, but such explicit tests have not always been reported, so it

is as yet unclear whether these other models would simulate the

psycholinguistic effects on which we have focused.

The future benchmark that merits most development, we believe, is the

extent to which models can reflect what is known about the psycholinguistic

properties of segmentation in infants and the hypotheses they raise for

future studies in this regard. The PUDDLEmodel has indicated how proper

nouns, in particular the child’s name, can emerge early in language

processing as a word candidate, and can form a critical basis for speech

segmentation of the words that occur around it. Bortfeld, Morgan,

Golinkoff & Rathbun (2005) showed that the words occurring immediately

after the child’s name were attended to more than words that occurred in

other contexts. Our model demonstrates that this benefit of the child’s name

can be discovered by a model of speech segmentation based on the

distributional properties of the name. In the PUDDLE model, the child’s

own name can be discovered early and can then act as a basis for the

segmentation of words around it. As a caveat, however, the Bortfeld et al.

(2005) study also showed that co-occurrence of a word with ‘mommy’ also

demonstrated an advantage in terms of the infant’s learning of the target

word. ‘Mommy’ occurs rarely in several of the CDS corpora in our study,

and so was unlikely to emerge as useful cue for segmentation. In the Aran

and Anne corpora it occurred zero times. It occurred most frequently in

the Peter corpus, with a frequency of 1.3 per thousand words, and was
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identified as a word in the lexicon for the model, but with low activation.

However, the model is also sensitive to local aberrations in the occurrence

of words, so if a lexical item occurs frequently in a portion of the corpus

then it will increase in activation and consequently increase in its usefulness

for segmenting other words with which it co-occurs.

An additional developmental psycholinguistic property of the model is

its use of phonotactic information about legal word boundaries. Pilot studies

of the model without this word boundary constraint resulted in over-

segmentation of the speech into individual phonemes. An alternative to

the boundary constraint would be to impose other constraints on legal

segmentations of the speech, such as the vowel constraint, utilized by

models such as Brent & Cartwright (1996). We prefer to use the boundary

constraint, however, as this emerges from the discovered lexicon in the

model itself rather than being an external property imposed on the model.

Additionally, when we implemented the vowel constraint as a requirement

that segmented words must contain at least one vowel, we found this

constraint to be less effective as a supplement to the PUDDLE model than

the boundary constraint. Introducing the vowel constraint, but omitting the

boundary constraint, resulted in mean precision of 0.43 and recall of 0.52

after 10,000 utterance exposures, so the boundary constraint resulted in

20–30% better precision and recall in speech segmentation across the six

corpora. Including both the vowel constraint and the boundary constraint

resulted in performance similar to the boundary constraint alone: mean

precision was 0.73, mean recall was 0.75. It may be that sensitivity to

phonotactic constraints in language learners, in terms of word-internal

phoneme pairs, may be a consequence of their importance as a constraint

for constructing hypotheses about which phoneme sequences may

constitute a word.

The errors that the model makes in its speech segmentation are also

instructive in terms of the information potentially available to the child

from their speech environment, and the range of computational processes

that may react to this information. In particular, the under-segmentation of

certain frequent phrases bears a resemblance to the item-based model of

language learning proposed byTomasello (2000). In themodel’s performance

at early stages of learning, several candidatewordsweremulti-wordutterances

that occurred frequently in the speech. Whereas the model eventually

learned to accurately decompose these frequent co-occurrences into their

constituent words, this indicates that the PUDDLE model’s utterance-

based approach to segmentation is consistent with such developmental

trends, which now have behavioural support (e.g. Bannard & Matthews,

2008).

One of the insights generated from this model was that the words that

emerged as useful for segmenting speech are precisely those that are also
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useful for indicating grammatical category. Peña, Bonatti, Nespor & Mehler

(2002) claimed that segmentation and learning of grammatical structure are

separable and sequential processes in language learning. They claimed, on

the basis of results from artificial language learning tasks, that generalization

of the grammar cannot occur before the problem of speech segmentation

has been accomplished. However, their artificial language did not contain

the distributional properties of natural language that the PUDDLE model

indicates are potentially extremely useful for both speech segmentation

and grammar learning. Instead, their model only contained transitional

probability information, in non-adjacent syllables, to indicate word and

language structure. The PUDDLE model cannot reveal whether speech

segmentation precedes grammatical category learning, but it does indicate

that the same high-frequency words within a natural language corpus can

serve both these tasks and are discoverable extremely early in language

acquisition.

As may by now be apparent, the PUDDLE model we have presented is

not inconsistent with other approaches to speech segmentation. Our aim

was to highlight how models of segmentation can be informed, and in turn

can inform, developmental studies of the cues that are useful and used by

children in segmenting speech. In summary, this paper presents a novel

framework for comparing developmental models of speech segmentation in

qualitative as well as quantitative terms. Based on these criteria, the

PUDDLE model performs comparably to other models in terms of the

precision and recall of segmentation and presents an advance on other

models in its ability to reflect qualitative aspects of children’s early speech

segmentation performance. The PUDDLE model suggests that when a

child embarks on language acquisition she does not have to swim through

a vast sea of sound to discover the words of her native language but instead

is faced with the relatively easier (though non-trivial) task of looking for

words in small puddles surrounded by helpful boundary information to

facilitate segmentation.
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