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Abstract. We consider the excitation and dispersion of ion acoustic waves in ex-
panding ultracold plasmas, taking into account the influence of boundary conditions.
A cylindrical plasma geometry is assumed. We show that temporal changes in the
medium lead to a wave frequency shift, associated with an evolving radial and
standing wave mode structure, and to the temporal change of the background
plasma parameters. A non-collisional model for the cylindrical geometry is also
proposed.

1. Introduction
In recent years, an increasing attention has been given to
ultracold neutral plasmas, or Rydberg plasmas
(Killian et al. 2007; Rolston 2008). This plasma medium
contrasts with the traditional views of a plasma as a
very hot gas, due to its low electron temperatures of
a few Kelvin, and ion temperatures in the milli-Kelvin
domain. They also display novel properties, such as self-
ionization of Rydberg atoms (Robinson et al. 2000),
strongly correlated ions (Shukla and Avinash 2011),
and new wave dispersive properties (Mendonça et al.
2009, 2010). Several waves and oscillations have been
identified, such as electron plasma waves (Kulin et al.
2000), Tonks-Dattner modes (Fletcher et al. 2006), and
electron drift instabilities (Zhang et al. 2008).

In ultracold plasmas, the thermal energy of the
charged particles (mostly ions) can be much less than
the Coulomb interaction energy between nearest neigh-
bors, making them strongly coupled systems, similar to
dusty plasmas with strongly correlated highly charged
dust grains (Fortov et al. 2005). In strongly coupled
ultracold plasmas, we have the possibility of Coulomb
crystallization of the positive ions. It was recently shown
that the dispersion relation of ion acoustic waves can
be significantly modified in a strongly coupled plasma
(Shukla 2010). Therefore, the study of non-stationary
plasmas can eventually reveal the existence of strong
ion coupling, and be used as a diagnostic technique to
estimate the ion coupling parameter.

Here, we consider another aspect of ultracold plas-
mas, by addressing the problem of ion acoustic waves
propagating in a non-stationary and strongly coupled
plasma. This is related to recent experiments (Castro
et al. 2010), as discussed theoretically by (Mendonça
and Shukla 2011), where however strong coupling and
boundary conditions were ignored. As we will show,
these two features are determinant for the understanding
of wave excitation in ultracold plasmas.

In this work, we deal with the properties of global
plasma wave modes in a time-varying well-defined spa-
tial structure. In particular, we focus on the case of an
expanding plasma with cylindrical shape. This allows us
to describe some of the main features that have been
observed in the experiments by (Castro et al. 2010), by
an explicitly evaluation of the various contributions to
wave dispersion. These are (i) the boundary conditions,
(ii) the time-varying plasma parameters and (iii) the
viscosity effects associated with strong coupling. We use
modified ion fluid equations, where a source term associ-
ated with the ionization and/or recombination processes
and a non-local viscosity term associated with ion–ion
coupling are included. We assume that the electrons
are in Boltzmann equilibrium in the wave potential. We
consider an arbitrary temporal variation of the plasma
density, associated not only with plasma expansion but
also with ionization and/or recombination processes.
We determine the temporal evolution of the dispersion
properties of ion acoustic modes, showing that these
modes satisfy a time-varying dispersion relation. This
will characterize the spectrum of ion acoustic waves,
which can eventually be excited in ultracold plasma
experiments.

2. Basic description
The excitation of ion acoustic waves in a strongly
coupled and time-varying plasma can be described by
the ion fluid equations for the ion mean density ni and
mean velocity vi. We use the ion continuity equation with
a source term Si which accounts for ionization and/or
recombination processes

∂ni

∂t
+ ∇ · (niv) = Si, (2.1)

and the modified momentum equation with a viscosity
term associated with the ion–ion coupling, as given by
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(Kaw and Sen 1998),

dvi
dt

= −Ze

mi

∇φ+
∇Pi

mini
+

∫ t

−∞
dt′

∫
vol.

dr′ηi(r−r′, t−t′)vi(r
′, t′),

(2.2)
where Pi is the ion pressure, and ηi is a non-local vis-
coelastic operator which accounts for the non-local and
memory effects, to be specified below. The electrostatic
potential φ is determined by the Poisson equation

∇2φ =
e

ε0
(ne − Zni) , ne = n0e exp(eV/Te), (2.3)

where Z is the degree of ionization, n0e ≡ n0(r)f(t) is
the quasi-equilibrium plasma density, where f(t) is a
temporal form function, and the electron density ne is
assumed in the Boltzmann equilibrium at a temperature
Te �= Ti. A plasma quasi-equilibrium is established on a
very short time scale as compared with the long ion time
scales to be considered here. This allows the equilibrium
plasma density and temperature to vary on such a long
time scale.

In order to establish the viscoelastic operator, we
notice that the memory effects are generically character-
ized by a relaxation time τm. The space and time Fourier
transform of ηi can be written as (Kaw and Sen 1998)

ηi(k, ω) =
1

(1 − iωτm)min0i

[
ηk2 +

(η

3
+ ζ

)
k(k· )

]
,

(2.4)
where η and ζ are considered here as phenomenological
parameters. We assume that a plasma quasi-equilibrium
can been achieved, such that n0i = n0ef(t)/Z and vi = 0.
We then consider ni = n0i(t) + ñ, where ñ describes the
ion wave perturbation. We take the form function f(t)
as independent from the ionization rate S , because the
temporal changes in the plasma can be due to expansion,
and not just to ionization. In the absence of expansion,
we simply have S = n0(df/dt). Linearizing the above
fluid equations, we get the equation

Dτ

[
∂2

∂t2
ñ − β∇2φ

]
=

1

min0i

[(η

3
+ ζ

)
∇(∇ · ñ) + η∇2ñ

]

− v2
thi∇2ñ + F(t), (2.5)

with Dτ = (1 + τm∂/∂t), β = Zeni0(1 − R)/mi, and
R = e2/4TeλDe . The source term associated with the
temporal plasma variation is defined as

F(t) = ν(t)

[
∂ñ

∂t
− Si

]
+

dSi

dt
, (2.6)

and where the quantity ν(t) and the ion plasma frequency
ωpi(t) are defined by

ν(t) = d ln f(t)/dt , ω2
pi(t) =

Ze2n0f(t)

ε0M
. (2.7)

Equation (2.6) has to be coupled with the linearized
Poisson’s equation, which can be written as

∇2V = ω2
pi(t)

MV

ZTe

− Z
eñ

ε0
. (2.8)

3. Cylindrical plasma
Let us assume a cylindrical plasma shape, with radius
a ≡ a(t) and length L ≡ L(t), assumed as slowly varying
functions of time. To solve (2.6)–(2.8), we write the
Laplacian in cylindrical coordinates r = (r, θ, z) and
seek for a general solution of the form

V (r, t) =
∑
lm

Vlm(z, t)Jm(klmr) exp(imθ), (3.1)

with m integer, and klm = αlm/a, where αlm are the
lth zeros of the Bessel functions Jm. This satisfies the
(moving) boundary conditions, V (r = a(t)) = 0. In this
solution, we also use

Vlm =
∑
j

ajlm(t) sin(kjz) , kj =
2πj

L(t)
. (3.2)

This also satisfies the additional boundary conditions
V (z = 0) = 0 and V (z = L(t)) = 0. In order to derive the
dispersion relation, we can therefore use perturbations of
the form (V , ñ)jlm ∝ Jm(klmr) exp(imθ + ikjz). Replacing
this in the Poisson’s equation (2.8), we get

−
[
K2 + ω2

pi

mi

ZTe

]
V = −Ze

ε0
ñ , K2 = (k2

lm+k2
j ). (3.3)

On the other hand, (2.6) becomes

Dτ

[(
∂2

∂t2
+ v2

thiK
2

)
ñ + βK2V

]
= − η∗

min0i

∂

∂t

(
K2ñ

)
,

(3.4)
where η∗ = (η/3+ζ). Here, we have neglected the source
term in (2.6) F(t) ∼ 0. At this point, we should notice
that K2, β and vthi can be slowly time-varying quantities.
Assuming that (V , ñ) behave as exp −i

∫ t
ω(t′)dt′, and

that the frequency ω(t) satisfies at any time t the linear
dispersion relation, we obtain

(
ω2 − K2

jlmv
2
thi

)
− v2

acK
2
lmn(1 − R)

1 + K2
klmλ

2
De

+ i
ωK2

jlmη∗

ρi(1 − iωτm)
= 0,

(3.5)
with v2

ac = ω2
piλ

2
De = ZTe/mi. This is the modified ion

acoustic wave, similar to that recently discussed by
(Shukla 2010) for strongly correlated plasmas, but with
time-dependent parameters corresponding to an expand-
ing plasma cylinder. In particular, we have introduced
the quantity

K2
jlm(t) =

[
αlm

a(t)

]2

+

[
2πj

L(t)

]2

. (3.6)

This leads to a time-dependent frequency, ω = ω(Kjlm).
Such a time dependence is due not only to the slow
temporal evolution of the plasma parameters, such as
the background density and temperature, but also due
to the expansion of the boundaries, which imply the
temporal variation of the wavenumber of the plasma
eigenmodes. This frequency shift is a characteristic fea-
ture of time refraction, a concept first introduced by
(Mendonça 2001), in the case of transverse photons,
and later extended to longitudinal photons or plasmons
(Mendonça 2009).
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4. Ionization regime
Let us now consider the opposite case of a very slow
expansion, such that we can neglect mode reflection, but
in the presence of a significant ionization rate S ≡ S(r, t)
which dominates the process. In this case, we can start
with a spatial Fourier transformation of (2.6) and (2.8),
leading to [

d2

dt2
+ ω2

jlm(t)

]
njlm =

d

dt
Sjlm, (4.1)

where njlm(t) and Sjlm are the components of ñ and
S on the basis of the cylindrical eigenmodes, and the
mode frequency ωjlm is determined by the dispersion
relation (3.5). For simplicity, we neglect the first term in
the source function F(t) of (2.6), which corresponds to
the case where ionization overtakes expansion. Equation
(4.1) can easily be solved, leading to

njlm(t) = Njlm(t) exp

[
−i

∫ t

ωjlm(t′)dt′
]
, (4.2)

where the mode amplitude is determined by

Njlm(t) =
1

2

∫ t

Sjlm(t′) exp

[
i

∫ t′

ωjlm(t′′)dt′′

]
dt′. (4.3)

This generalizes the results previously obtained by us
(Mendonça and Shukla 2011), for an unbounded plasma,
to the case of an expanding cylindrical plasma. In the
case of photoionization, as induced by a laser beam
with a periodic modulation mask, we can assume that
the laser beam propagates in some direction defined by
θ = const., and the ionization mask is located in a plane
Oyz, perpendicular to that direction. We can then write
for the relevant mask component

Sjlm =
1

4π

∫ a

−a

ydyJm(klm|y|)S(y, z)e−i2πjz/Ldz (4.4)

in the axial direction Oz, we can write the ionization
rate as

S(r, t) = S0(t) cos(k0z). (4.5)

In this case, an expanding (but standing) ion acoustic
mode will be excited in the plasma, such that kj(0) = k0,
where the initial wavelength is imposed by the ionization
mask, and a spectrum of transverse cylindrical modes
(lm) is determined by the y dependence of the mask.
This is valid for very short laser pulses, as used in
current experiments (Castro et al. 2010), with duration
much sorter than the period of the ion acoustic wave
2π/ωk , where it is appropriate to use S0(t) = N0δ(t =
0). The resulting space and time-varying ion acoustic
perturbation will then be given by

ñ(r, t) =
1

4
N0

∑
lm

exp

[
ikjt − i

∫ t

ωjlm(t′)dt′
]
+c.c., (4.6)

where ωjlm(0) ≡ ωjlm(kj(0) = k0).

5. Expansion process
Let us now consider the expansion process. It is currently
assumed that the expansion of ultracold plasmas can
be described by a non-collisional model, where the
kinetic expansion dominates over the collision-induced
ambipolar diffusion. According to these non-collisional
expansion models (Manfredi et al. 1993; Robicheaux and
Hanson 2003), we expect the expansion to be governed
by the ion acoustic velocity vac. A direct application of
this assumption to the cylindrical geometry leads to the
following expansion law for the plasma radius:

a(t) = a0

√
1 + t2/τ2

a , τa =
a(0)

vac(0)
= a0

√
mi

Te(0)
. (5.1)

Similarly, of the plasma length, we get

L(t) = L0

√
1 + t2/τ2

L , τL =

(
L0

a0

)
τa. (5.2)

The total number of particles being assumed constant
during plasma expansion, the mean plasma density will
evolve as

n0(t) = n0(0)f(t) , f(t) =
1

(1 + t2/τ2
a)(1 + t2/τ2

L)1/2
.

(5.3)
As for the temperatures, we can use the law

Tj(t) = Tj(0)f2/3(t) , (j = e, i). (5.4)

For the usual spherical model, where τa = τL = τexp,
this reduces to the well-known expression (Killian et al.
2007),

Tj(t) =
Tj(0)

(1 + t2/τ2
exp)

. (5.5)

If we now replace these results in (3.6), the quantity K2
jlm

becomes

K2
jlm(t) =

k2
lm(0)

(1 + t2/τ2
a)

+
k2
j (0)

(1 + t2/τ2
L)
. (5.6)

Finally, the electron Debye length will evolve as

λ2
De =

λ2
De(0)

f1/3(t)
. (5.7)

Replacing all these assumptions in the dispersion re-
lation (3.5), and making assumptions on the temporal
evolution of the phenomenological parameters η∗(t), τm(t)
and R(t), we will be able to determine the temporal evol-
ution of the frequency ω, associated with the modified
ion acoustic modes in a strongly coupled expanding
plasma.

6. Conclusions
In conclusion, in this work we have considered the
temporal evolution of modified ion acoustic modes,
which can be excited in expanding plasma cylinders.
This is valid for long time scales, such that the typical
expansion time is much larger than the wave period,
ωτa�1. We have shown that the resulting frequency
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shifts are due to two distinct factors. First, the temporal
changes of the background plasma parameters, such as
density and electron and ion temperatures. Second, the
temporal changes of the mode wavenumbers, which are
imposed by the moving boundary conditions. A compar-
ison of these features with experiments can eventually
give us access to the internal properties of the expanding
plasmas, and in particular to the importance of the ion
coupling. The present analysis is in good qualitative
agreement with the experiments in ultracold plasmas
(Castro et al. 2010). Our model could also be easily
extended to the case of dust acoustic waves in strongly
coupled plasmas (Shukla et al. 2003).
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