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Abstract Let F : X — X be aC*(X), k = [0, oo], map on a topological space (smooth
manifold) X, A : X — End(C™) and let{U,} be an F-invariant covering ofX. We
introduce spaces of cohomologies associated @ity and an operatof = I — R, where
(Rp)(x) = A(x)¢(F(x)) is a weighted substitution operator @ (X). This yields a
correspondence between frand ImT|U,, and the description of Irfi in cohomological
terms. In particular, it is proven that for any structurally stable diffeomorphism on a circle
and for large enough, the operatofl is semi-Fredholm, and a similar result holds for
the substitution operators generated by simple multidimensional maps. On the other
hand, we show that, in general, the closures offlmnd ImT|U,, are independent.

1. Introduction

1.1. Operator equation. Let F : X — X be aC*(X), k = [0, 0], map on a
locally compact, countable at infinity topological space (smooth manifold). GiVgx)
functionsA : X — End(C™) andy : X — C™, the mapF generates a linear functional
equation in operator form:

(Tr.a9)(x) = ((I = RrA)P)(x) = ¢ (x) = AP (F(x)) =y (x). 1

If m =1 andA(x) = 1, equation (1) is called theomology equation

OperatorsR and T act in the spac&€*(X) of continuous (smooth) functions ax,
endowed with a standard topology of convergence with all the derivatives up tolorder
on each compact subset &f and are, obviously, continuous.

We note that equation (1) is typical in normal forms theory; for instance, it naturally
appears in the problems of conjugacy of local diffeomorphisthgiist as the homology
equation appears in the corresponding problem for transitive diffeomorphisms of the
circle.
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1.2. Algebraic obstacles to solvability.Due to the well-known equalitym7 =
(KerT*), involving the conjugate operatdf* in the dual spacgC*(X))*, we may
describe algebraic obstacles to the solvability of equation (1) as functibralser T*.

It is also clear from this, that the sufficiency of ‘algebraic’ solvability (by this we mean
the inclusiony (x) € (KerT*),) in continuous (smooth) functions is equivalent to the
closure of the subspace I On the other hand, the closure of firmay be interpreted

as thenormal solvabilityof our equation, i.e. the case when given a convergent sequence
of functionsy, (x) on the right-hand side of (1), we can guarantee that their it
belongs to InT" and that the corresponding solutions converge.

1.3. Spectral data. If X is a compact manifold ank < oo, then the operatoR acts
in the Banach spac€*(X), its spectrum having been studied i [the Kamowitz—
Sheinberg theorem for scalar substitution operatoxs®i(x)) and [7] (the general scalar
case). It was shown that’,;, the residual spectrum at, is an annulus, so the operator
T, = I — (1/2) R cannot be semi-Fredholm iflies on the boundary circles (non-isolated
boundary point of spectrun®]).

Thus, we may reformulate our goal as the study, for a class of miapd the fine
structure ofx% at its interior points.

1.4. Invariant covering. Suppose mapF has a number of invariant domairig,
forming a covering ofX. Though closure of the image is, in general, not a hereditary
property, it often turns out much easier to investigate images of restricfigiis, so we
can pose the natural question of how the properties df lamd the ImT"|U,, are related.
In particular, we are interested in finding the conditions which can provide the closure
of Im T, provided the InT'|U, are closed.

Before stating the general scheme§B) in §2 we study in detail the leading example
of a structurally stable*-diffeomorphism of the circles?, which, obviously, allows the
covering by invariant arcs. In the cage= oo, A € C*®(S?), the operatorT acts in
C*(X) for any k and the following theorem holds.

THEOREM 1.1. Let F be a structurally stable diffeomorphism of the circle and let the
matrix A(x) be non-degenerate for al € S*. Then there existky = ko(F, A) such that
for k > ko the operatorT is semi-Fredholm with closeldn 7 anddimKerT < oc.

The explicit value ofkg, and the description of Ifi, as well as comments on I
for k < ko, are presented in this case. Actually, we sketch the proof of the following.

THEOREM 1.2. For any structurally stable diffeomorphism of the circle and non-
degenerate matrix, the operatorR is semi-Fredholm in all interior points af%, with
the possible exception of a finite number of resonant circles.

In §3 we introduce spaces of cohomologiB (T, /) associated with the operator
T and covering{U,,} and the homomorphisi, which is a chain of an exact sequence,
such that the following holds.

THEOREM 1.3. ImT = Ker6 andIm T is closed iffd is continuous.
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Note that the spaced” (T, U) and the homomorphism for the homology equation
were built in [l]. The above theorem provides us with some tools for the investigation
of ImT as corollaries.

In §4 we consider a collection of multidimensional examples illustrating the interaction
of F and F|U,. These examples show that, in general, closure df Idoes not imply
closure of F|U,, nor does closure of'|U, imply closure of ImT.

Nevertheless, another result is as follows.

THEOREM 1.4. Let k = oo and let F be a gradient-like diffeomorphism of a compact
manifold. Then the homology equation is normally solvable.

2. ImT for a structurally stable diffeomorphism oft

2.1. Let us recall that any structurally stable diffeomorphigimof the circle S*

has an even number of non-degenerate periodic peints ., xo,(n > 0) of the same
period N, which are in turn attractors and repellers. Without loss of generality we may
consider orientation-preserving maps so that all periodic points of the diffeomorphism
F = H" are fixed and the corresponding derivatives at the fixed pointa;are., Az,
0<X <1<hiy1 LetQ(x) = A(x)A(Hx)--- A(HY 1x), and letlg}, ..., ¢, g/ # O}

be different eigenvalues of the matricégx;). Set

ko= n’lla><{—lan/lnki}.

THEOREM 2.1. Let F be a structurally stable*-diffeomorphism and let (x) be a non-
degenerataC*-operator functionk > k. Then the subspaden T is closed inC*(S?t)
anddimKerT < co. If F, A € C*®(SY), thenIm T is closed inC*®(S1).

If £ < ko, then it may happen that Iff is not closed. For example, consider the
homology equation fok = 0. It was proved in]] that this equation on a compact space
is normally solvable iffF is a periodic map. Since a structurally stable diffeomorphism
is not periodic, InT" is not closed.

The proof of Theorem 2.1 will follow from lemmas we prove below. Our first step
is to pass fromH to F = HV.

LEMMA 2.1. Let R be a continuous linear operator in a linear topological spagend
let the subspacem(I — R") be closed. Thetm(/ — R) is closed as well.

Proof. Evidently,
N-1
Im(I — RY) = { Y Rleleeim( — R)} c Im(I — R).
i=0
Now lete,, € Im(I —R); e,, — e. ThenY V' Rie,, € Im(I —RV). Since Im{I —R") is
by assumption closed anil is continuous,ZfV:‘ol Rie,, — w, wherew e Im(I — RY).
Thus, there exists an elemente Im(I — R) such thatw = Y7 ;' Riv. Defining

u = e — v, we obtain

N-1
Z Ri(e, —v) — 0, i.e. Z Riu =0. (2)
i=0 i
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Finally, lety = —1/N Y¥.*iRV~~14. Immediate calculations show that (2) implies
(I —R)y=u,orueclm(I —R),ande =u —v € Im(I — R). O

Note, that it follows from Lemma 2.1 that for equation (1) with periodic nkaghe
subspace Inf is always closed. Actuallyg" = I, and the space

Im(I — RY) = {y(x) € C*(X), y(x) € Im(I — R, p). x € X}

is closed.
In this way (and since Ke&f — R) C Ker(I — R")), we only need to prove the theorem
for the operator

T¢=(U—RYyDp=U—Rro. ©)

2.2. Open arc¥; = (x;_1, xi41),i =0, ..., 2n, form an openF-invariant covering
of S1, i.e.UU; = S, F(U;) = U;. Denote byT|U; a restriction of the operator (3) on
the arcU;. In the presence orfesonancesk{ - g} = 1 for somej, 1, we arrive at the
finite number of conditions necessary fere C*¥(S*) to belong to InT|U;. Namely, if
y(x) = (y1(x), ..., ym(x)), then for each resonant triple;, /, wherej < k, we should
haveformal resonance restrictions:

v’ (x;) =0, for simple eigenvalueg;,

v (i) =0, for jordan blocks of ordet/().

LEMMA 2.2.If k > ko, andy e CK(S?) satisfies formal resonance restrictions, then
belongs tdm T'|U; for everyi =1, ..., 2n. In other wordsim(T'|U;) = (Ker(T'|U;)*) .,
and, thereforelm(T'|U;) is closed for each arc.

Proof. Given y satisfying these formal restrictions, we may fipce C*(U;) such that
(T —P(x) =0, j<k @)

Then the substitution (x) — ¢ (x)+¢(x) leads to (1) with the new functiop = T¢—y.
First, suppose.; < 1. Set

00

P(x) = Q) Q(Fx)-- QF 'x)p(Fx). (5)

j=0

If k > ko then|g/ - A¥| < 1,1 = 1,...,m, and we conclude from (4) that series (5)
converges uniformly in every compact set i with all its derivatives up to théth
order. Obviously¢(x) satisfies (3). IfA; > 1, making use of the non-degeneracy of
matrix Q(x), we consider the series

o0

)= 0 ®QNF x) - QTHF )P (F V). (6)

j=1
Like the previous series, it yields @*-solution if k > ko, |g/ - A¥| < 1 for all
[=1...,m. O
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2.3. Assume now thay € ImT|U; for everyi = 1,...,2n, i.e. y|U; = T¢; for
someg; € C*(U;). Let us define

[v]1x) ={pia(x) —¢i(x)}, forxeUaNU;, i=1,...,2n.

This set of functions depends on the choice of solutigrs), but in any case its entries
are elements of KeF|U; 1 N U;.

LEMMA 2.3. The functiony belonging tolm T'|U; for everyi = 1,...,2n, liesinlmT
iff there exist functions; € Ker T |U; such that

V1) = {ciax) —ci(x)}, i=1...,2n. (7)

Proof.Lety € ImS?, y = T¢. Then foreveni =1, ..., 2n we havey|U; € Im(T|U;),
i.e.y|U; = T¢;. SOci(x) = ¢p(x) — ¢;(x) € Ker(T|U;), and

d(x) =c¢i(x) + i (x) = ciy1+ piya(x), x €U1NU;.

Thus we have established thaf {x) = {¢;11(x) —c; (x)}, this property being independent
of the choice of solutiong; (x).

On the other hand, if (7) holds, st = ¢; + ¢;. Then, sincep;(x) = ¢;1(x) for
x € U;;1 N U;, the function

¢ (x) = (i (x), x € U}

is Ck-smooth ons* andy = T¢. This proves Lemma 2.3. O

2.4. Let us now describe KeF|U;) for k > k.
LEMMA 2.4. Providedk > kg, the spac&Ker T |U; is finite-dimensional for each arc.

Proof. Here we may think ofU; as ]— oo, oo[, x; = 0. Let j; be anorder of the first
resonance This means thaf; = min{; : 3/, A{ -gl = 1}. We setj; = 0 in the absence
of resonances. Considering function p satisfying the equatiop(x) = Q(x) p(Fx),
x € U;, we note thatp®(0) = 0, s < j;. Settingp“?(0) = c¢; € C™, one can uniquely
computep® (0), s < j», up to the next resonance order etc. Thus, the finite number (not
more than the number of resonances) of derivatiye$(0) = ¢; for resonance values
J < k uniquely defines the Taylor series pfat the origin.

To prove our assertion we only need to show that for any such vegtdngre exists
at most one functiop € Ker(T'|U;) with the prescribed Taylor series. Indeed, if we are
given two such functions, their differeneds an element of Ke&f'|U;) with zero Taylor
series. Then for any integer one has

r(x) = Q) Q(Fx)--- Q(F tx)r(Fix).

Taking into account thatr(Fix)/(Féx)¥ — 0 asd — oo, we see that
O(xX)Q(Fx)--- Q(F4tx) - (Flx)k = 0, if k > ko. Hencer(x) = 0. O
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Proof of Theorem 2.1Suppose > ko, and we are given a convergent sequepce> y,
y, € ImT. Then the restrictions,|U; belong to ImT'|U;,i = 1,...,2n. According
to Lemma 2.1, there exist such functiog$ < ckU,), i = 1,...,2n, such that
vslUi =T}, ¢] — ¢, y|Ui =T,

Furthermore, according to Lemma 2.3,

[vs] () = {¢] 1 (x) — & ()} = {c], 1(x) — ¢; ()} = {Bir1(x) — i (%)}

for somec; € Ker(T|U;). Thus, the sequences;,  (x) — ¢ (x)} C*-converge in
Ul'+1ﬁ U,',i = 1,...,2”.

Now, since according to Lemma 2.4 the subspace(Rgr;,1) ® Ker(T|U;) C
Ker(T|U;+1(\ U;) is finite-dimensional, we deduce that

[Y]1(x) = ¢ipa(x) — ¢i(x) = cipa(x) — ¢i(x)

for somec; € Ker(T|U;). Finally, applying the ‘opposite arrow’ of Lemma 2.3, we
obtain the inclusiory € ImT'|S. O

2.5. Do global obstructions to solvability really exist?

ProPosITION1. (Realization of the obstruction cocycleBor each set ofC*-functions
{t:(x) € KerT|U;;1 N U;}?", one may choose a functignix) € C*(S?) such that
[¥](x) = {t: ()}
Proof. ChooseC*-functions ¢;(x) on U; such thatg,;1(x) — ¢;(x) = #;(x) for x e
Uit1NU;. Let
y(x)=T¢)x), xeU,i=1...,6 2.
Theny (x) € CA(SY), and f](x) = {1:(x)}. -
Thus, although the subspace Tmin this case is always infinite-dimensional,

restriction (7) is very severe; in fact, dim K&t U; 1N U;) = oo, but dimKerT|U; < m.

2.6. Now we will give Theorem 2.1 a slightly different form, considering the
homology equation for the map with fixed points. For the latter, the only resonances
are those of zero ordekg = 1, and KelT'|U; = {¢; = constant. Further, the condition
y(x) € ImT, for k > 1 is, as we saw when proving Lemma 2.3, equivalent to the
conditions

yx) =0, [y](x)={ciq1—c} (8)
Fix a number of arbitrary point&'= {z; € U;;1NU;}?",. Taking into account (5) and (6)
we obtain that

Cip1— ¢ =ina(x) —¢i(x) =Y y(F/ ().

Let Ay < 1. Definehy € KerT* by

(hr,y) = Y. { D Iy (Fl(zai-0) — y (o] + ) _[y(F 7 (zai-1) — V(xzi)]}

i=1 Uj=0 j=1

+y { D Iy (Fl @) — y Gaig)] + ) _ly (F7 (za) — v (x20)] }
j=1

i=1 U j=0
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Thus, writing down conditions (8), we may reformulate Theorem 2.1 in greater detail as
follows (see the next section for tike= 0 case).

COROLLARY 2.1. AssumeF is a structurally stable map on the circle wilerF = Fix F
andk > 1. Then the homology equation for the functipre C*(S%) has aC*-solution
iff y(x;) =0,i =1,...,2n, and(hy, y) = O for every set¥’.

Thus, ImT = (Ker(T)*),, KenT)* = {é&,,hxr}. A similar representation of
ImT holds for an arbitrary non-singular matrix(x) and a structurally stable map
F:S'— si

2.7. Concluding this section, we should comment on whether the assumptions of
Theorem 2.1 are necessatry.

(i) First consider equation (1) fotr = 0. As was proved in1], for the homology
equation on a compact space, Tnis closed inC°(X) iff F is a periodic map. Since a
structurally stable map is not periodic, linis not closed inC°(St).

(i) On the other hand, Inf is closed for allnon-resonant valuesf k < kqg. In order
not to complicate the proof, we will briefly sketch the additional aspects to be dealt with.
Lemma 2.2 still applies, although the solutions to (1) on the arcs are no longer given
by convergent series, and one needs to reduce m@ti»y to the block form (seed)).

In this case the space K&rmay be infinite-dimensional (then dimKe&f < co and T

is still semi-Fredholm), but the general scheme of the next section makes it possible to
complete the proof. Note that in the case of more than two periodic points, resonant
circles may lie inside the spectrum &f This implies the following.

THEOREM 2.2. For any structurally stable diffeomorphism of the circle and any non-
degenerate matrixA, operator R is semi-Fredholm in all interior points oE%, with
the possible exception of a finite number of resonant circles.

(i) For a constant matrix4, the non-degeneracy condition is redundant (Lemma 2.2
still holds), but it is essential in the general case.

3. Spaces of cocycles

In this section we generalize the scheme developed above for the maps on the circle.
Let 4 = {U,} be an open countablé-invariant covering ofX : X = UU,,

F(U,) = U,. This yields the natural continuous injections

Ju 1 CKX) — CMUL); i IMT — Ny j 2 (M(T |U,y)).
The latter inclusion is, as a rule, strong and as we will showdtfect space
L(T;U) = N jo H(IM(T|U,))/i(IM T)

may be described in cohomological terms.

Consider the sheaf of*-function germs onX. The covering{ generates a space
of p-cochainsCh? ) [4], which we endow with the topology of a direct product.
Actually, p = 0,1, 2 suffice for our purposes. As usual,: Ch?U) — Ch"*U)
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is the coboundary operatoB” (/) = Imé and Z? (/) = Ker§ are the corresponding
spaces of coboundaries and cocycles.
Now we introduce linear spaces associated with the covéfitagnd operatofl

Ch?(T;U) = {c = (Cap..) | Cag.., € KENT|N_g Us,)},
ZP(T;U) = ZP(U) N ChP(T;U); BP(T; U) = §(ChP~YX(T; U)).

In a standard way, the space of cohomologies generatéd, iy is
HP(T;U) = ZP(T; U)/BP(T; U).
Lety € N, j;X(IMT|U,), i.e. yo = T, for someg, € C¥(U,). Setting
[V]ap(x) = ¢ (x) — Pp(x),

we obtain a cocycleyf] € ZX(T; U). Thus we have defined the homomorphism

o) =I[yl. 0:Naj, (AIMT|Uy) — ZN(T: U).
We will see below, that continuity of is a characteristic feature of, T.
THEOREM 3.1. The following sequence of homomorphisms

0— IMT > N j XM T|U) > HYT:U) — 0
is exact.
Thus we arrive at the following description of the ‘defect’ space and the image:

L(T:U)=HYT;U); i(ImT)=Kers.

Proof. (i) Imi c Kerf. Namely, ify = T¢, we may sety|U, = T¢, and¢, = ¢|U,.
Therefore, {]op(x) = ¢o(x) — ¢p(x) for x € U, N Ug, andé(y) = 0.
(i) Ker6 c Imi. Actually, if y, = T¢,, andd(y) = 0, then

[V]ap(x) = ca(x) —cp(x), o € Ker(T|Uy).

Defining ¢ (x) = ¢o(x) — ¢p(x) (x € Uy), we obtain ack-function on X such that

y =T¢.
(i) Im 6 = HY(T; U). For everyc = {cup} € ZX(T; U) one has

cop € (KeN(T|U, NUp)), 8(c) =0.

Since our sheaf is fine2], there exist functionsp, € C*(U,) such thatc,s =
$a(x) — ¢p(x). The functiony(x) = (T9)(x) (x € Us,) lies in the intersection
Nej; X(IM(T|U,)). Obviously,6(y) = c. -

Let us draw consequences from the above theorem.

COROLLARY 3.1. Assume that all the subspades(T' |U,,) are closed. Then the following
conditions are equivalent:
(@ ImT is closed;
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(b) BX(T:U) is closed,;
(c) HYT;Uu) is Hausdorff;
(d) 6 is a continuous map.

Proof. (b)<(c). This is a well-known fact from the theory of linear topological spaces.
(a)=(b). Let{c"} be a sequence iBY(T; /) converging to an elemeate Z'(T; U).
We need to show that e BX(T; /). Choosey so that |] = ¢ and again set

YIUe =T¢o;  Cap = Pa(x) — Pp(x).

Since ZY(U) = BYU) = §(Ch°U)) (the sheaf is fine)s : ChO%WU) — Z U) is a
normally solvable operator. Thus one can find sequefigl° ,, ¢; € C*(U,), such
that ¢} — ¢, asn — oo andcy, = ¢ — ¢ Defining y"|U, = T¢y, we obtain
that y* € ImT and y" — y. Closure of InT" implies thaty € ImT, and hence
c e BNT:; U).

(b)=(d). Given a sequence"’ € N, j; *(IM(T|U,)) converging to zero, we will prove
thatd(y") — 0. Since all the ImiT'|U,) are closed, choosg! € C*(U,) satisfying the
conditionsy” = T¢", ¢! — 0 (n — o0). Then, sinceB(T; ) is closed,

[V'leg =05 — &5 —> 0 0(") =[y"] > 0.

(d)=(a) follows from the equality InT = Ker6. O

COROLLARY 3.2. Assume that the subspadex(T' |U,) are closed and
dimKerT|U, < co. Thenim T is closed.

Proof. Indeed, in this case the spa@@h®(T; i{)) is also finite-dimensional, so recalling
the definitionBY(T; U) = §(Ch°(T; U)) and the fact thas is a continuous map, we see
that item (b) of Corollary 3.1 is applicable.

4. Examples and applications

4.1. Corollary 3.1 provides us with a straightforward tool to studyr'lfior maps of
Morse—Smale type8] which have a finite number of hyperbolic periodic points, their
basins of attraction covering the whole manifdld Corollary 3.2 yields another result
for a natural generalization of maps 6h from §2 as follows.

Example 4.1Consider ac*-diffeomorphismF on the sphere”, having only two fixed
points: an attractox; with the eigenvalues of its linear patty, ..., 4,}, 0 < |A;| < 1,
and a repeller, with the eigenvalue$us, ..., w.}, 1 < |uil. Let{qi,...,q.,, q} # O}
be the eigenvalues of non-degenerate matrices), i = 1, 2, and letky be defined as
in the case ofS'. Let us show that the subspace Tiris closed ifk > ko. Indeed, the
coveringU; = §"\{x»}, U> = §"\{x1} is finite and F-invariant. Arguments identical to
those for Lemma 2.4 show that spaces Kdr; and KerT'|U, are finite-dimensional.
In order to apply Corollary 3.2, we only need to convince ourselves that fok, both
spaces InT'|U; and ImT|U, are closed. But due to the choice &, we may repeat
the arguments from Lemma 2.2 showing that the formal series (5) and (6) yield smooth
solutions. Therefore, Irfi is closed.
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4.2. We further show that, in general, closure of i@/, does not imply closure of
ImT.

Example 4.2L et the spaceX be a punctured quadrant on the plane:

X ={(& n) € RA\{0};&,n>0};

and let the mapF be a linear saddleF(&,7) = (A&, un), 0 < A <1 < u;m =1,
A = Id. Take the covering/ = {U; = X\{& = 0}; U, = X\{n = 0}}.

First we show that InT'|Uy, and ImT'|U- are closed irC*(X) foranyk = O, ..., co.
Actually, both operatord’|U; and T'|U, are surjective, and to show this for, say,U;
we introduce two closed non-intersecting stripglin

Po={&n,2<8<00,0=n=<1l, P ={¢1n.0<&<10<n<o0}.

Every C*-function y (£, ) on U, may be written as a sum = y, + y_ of C*-functions
such thaty, =0in P. andy_ =0 in P_. Thus, if T¢. = y4, thenT (¢, +¢_) = y.
For the first equations set
o.M =Y ye(FIEm). ¢-E.m=) y-(F/E ).
j=0 j=1

Since each pointg, n) is mapped uniformly with its small neighborhood inky by F
and into P_ by F~1, these are actuallg*-solutions. The case df|U, does not differ.

Now let us convince ourselves th&E(7'; i) is not closed. Ifp (&, n) € Ker(T|Uy),
i.e. p(A&, un) = @&, n) for n > 0,& > 0O, setg(x,y) = d(explxIni), exp(y Inp)).
Then we obtain the equivalent equation

dx+1,y+1D) =¢(x,y), —00<x<00,—00<y < 00. (9)

Any solution to (9) is defined by its values on the stfipbounded by the lines = —x
andy = —x + 2. Dividing it into squares with sides of lengti’2, we may shift
D to the vertical strip 1< x < 3. Since the functionp(&, n) is bounded on any
compact set separated from thie = O}-line, the functioné(x, y) is bounded on the
half-strip 1 < x < 3,y < 0, or, equivalently, as we have seen, in the half-strip
{D,x > 0,y < 0}. This means that each functiah(¢, n) € KerT|U; is bounded
at zero. Identical arguments show that every functién n) € KerT|U, has the same
property. Hence, each functiariz, n) € BX(T; 1) is bounded at zero as well.

Finally, definev = Inu/InA and letr; R! — (0,1) be aC*-function such that
t(t)=t,1t€(0,3). Set

n
E M=)y L—TtE"n), x=(En el
j=0
Evidently, ¢* € Kern(T|Uy) ¢ BYT;U) and this sequence converges in the space
C*®(U1(Uy) to the function ¥z(¢"n), which, as just established, cannot belong to
BY(T; U). Hence, InT is not closed.
Another way to see that Iffi is not closed is to note thdt has no invariant compact

subsets and as a consequence has no invariant measures. It follows from this that
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KerT* = {0}, hencelmT = C*(X). However,T is not surjective. For instance, the
Abelian equation
p(Fx) =¢x)+1

has no continuous solution. Indeed, ¢ebe some solution, then

e'Em) =pE, u ") +n

and, lettingn — oo, we see thap cannot be continuous.

In order to demonstrate the converse (i.e. that closure df li; not a hereditary
property), we only have to add zero to the quadrant: X U {0}, and consider another
coveringb? = {U1 = X, U, = X}. As we have just seen, Ifi|U; is not closed. On the
other hand, at a hyperbolic saddle point every for@&l-solution can be restored to a
smooth one3d], so ImT is closed inC®(X).

4.3. Let us now show that Iffi is closed inC*(X) for the following model example:

Example 4.3Let X be a closed half-strip on the plane:
X={¢neR50<&<1n>0}

and let F(¢,n) now have two fixed points: a saddle at the origin with eigenvalues
0 <X <1< pu and arepeller at the point, 0); let A = Id. For simplicity we assume
that the saddle point is non-resonant.

Further letO,. be an opere-ball in X centered at zero. Lél; = U_oo <o F"(Oy),
which maked/; ane-hyperbolic neighborhood of the global stable manifétg = {& =
0} and the global unstable manifold; = {0 < & < 1,5 = 0} of the saddle. Also
take U, = X\{¢ = 0} = W, , whereW, stands for the global unstable manifold of the
repeller. Obviouslyld = {U,, U,} is an open finiteF-invariant covering.

As we have just mentioned, every formal solution to (1) at zero can be restored to a
C*-solution inO, and by definition to the whole domalry, and anyC*°-function which
is zero at the pointl, 0) belongs to InGT'|U,). Thus, both In§7'|U1) and Im(T |U,) are
closed, and due to the absence of higher-order resonanceg;|Kgr = { D = constant.

We further show that the spacB(T;i) is closed and, hence, according to
Corollary 3.1, ImT itself is closed. Namely, first let th€>°-diffeomorphismG (&, n) =
(g1(&, ), g2(&, n)) linearize F in O, (hence inU;) [9]. Then we obtain the following
equation equivalent t@'¢ = 0:

Vx,y) =¥ Qx, uy), (x,y) € GWU); @& n) =v(gE 0, g, ). (10)

Recall that the elements & (T"; /) in this case are functions, n) defined inU,NU,
which may be represented as

c&.m=¢E n—-38GEn, ¢ecKenTUy), &eKen(T|U2). (11)

Now let the sequence

ca(E, ) = @u(&, ) — D, € BAT; U)
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converge inC>®(U; (\Uy) to ¢ € Ker(T|Uy () Uz). We need to show thate BY(T; U).
To this end let us set

on(E,m) = Va(g1(E, M), 826, 1), Culx, y) = ¥u(x,y) — D,.

Thené, — ¢ in the domainG (U () Ua).

Due to the absence of resonances(x, y) = w,(x, y) + ¥,(0), wherew,(x, y) is
equal to zero with all its derivativeffat, i.e. it is flat on the coordinate cros#," [ W, .
Thus

Ch=w, —k, > ¢, k,=D,—vy,0). (12)
Sincec¢ € Ker(T|G (U1 () Uz2)), we have a representation
c(x,y) =w(x,y)+c(x,0, O0<x<l1

wherew (x, y) is flat on the interval0 < x < 1, y = 0}. Settingy = 0 in (12) we obtain
k, — ¢(x,0), hencec(x,0) = k = constant, andv,(x, y) — w(x, y) in the domain
G (U1 Uy). Settingw(0, y) = 0 by definition, let us show thab € C*(G(Uy)). This
means that € BY(T; U).

Let z, = (x., y.) — (0,y0). Sincew(x,,y,) = w(ix,, Ly,) we can choosed,
such that all point§(A~"x,, »"y,)} lie in the compact set separated from thg"-
line (Example 4.2). Since, additionally,~y, — 0, we obtainw(z,) — 0. Applying
identical arguments to all the derivatives ofwe see thato(x, y) is a C*-function in
G(Uy). Hence, InT is closed.

4.4. Next we prove that if map has the trivial sort of dynamics, glued together from
the models of Example 4.3, then the homology equation is nhormally solvable. Consider
the generalizing as follows.

Example 4.4Let X be a compact/-dimensionalC*-manifold and letF be a Morse—
SmaleC*-diffeomorphism onX. We want to exclude heteroclinic structures from our
considerations, so we will assume thatis a gradient-like map§] and, as above, all
the saddles are non-resonant. Under this assumption we obtain the following.

THEOREM 4.1. The homology equation is normally solvableGrr.

Proof. Naturally, we substitute for the initial map the map’, whose only periodic
points are fixed. So we have

1 _ r r. a a. S S
FIXF = {xq, ..., x5 x0, .., X5 XL, o, X, )

>t m

where subscripts r, a, s stand for repeller, attractor and saddle respectively,taadd

W~ for the global stable and unstable manifolds, respectively, of a fixed point. For each
saddle seV; = U_o <0 F"(0.), Where O, is a full neighborhood of the saddle point

so small that it does not contain any other elements offfiConsider the covering

U=Whi=1..  kWs j=1.. Vs, p=1...,m)
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In the same way as in Example 4#4,is an open finiteF-invariant covering such that
y e ImT|U, & y(x,) = 0 for everyy € C*(U,). Therefore InT|U, is closed for
eacho.

Again, let{c,(x)} — {c(x)} be in BX(T; ). Now we take into account simple facts
about our covering:
(i) for i # j, one always has

WENWE=0, W ,NW; =4,
and all elements of KeF|W %, W are constants;

(i) we can choose&), so small t'hatV,/c[s) NV =0 for p+#gq;
(iii) with the exception of the circle with two fixed points, all the domains

+ - + -
Wx’_a ﬂ Vx;, ijr ﬂ Vx;, WK? ﬂ ijr

are connected;
(iv)
Ves\fxp) = {(U;Vis N W;/_a) UV N WXE)}'

Thus{c,(x)} is of the form

C! — B, —¢,(x), x¢€ W;’; N Vx;; cr, DJ’?, B;, = constant
{ea0)}={ Df — B, —¢,(x), x€ WaVisr ¢,(x) € KerT|Vis, ¢, (x;) = B,
C - Dy, X e W;,;ﬂWxE; ¢n(x) — By is flat oanEUWx‘;

This means that sequencg§(x) converge everywhere in the punctured domains
Vis\{x;} (item (iv)), and carrying over the arguments from Example 4.4, we see that

qb;(x) — ¢,(x) for all x € Vis, p= 1,...,m, whereg,(x) € KerT|Vx;.
Then we have
¢ —B),— Ry, D}—-B,—S, C—-D—T;

In this way, we have reduced our case to the finite-dimensional case, and by Corollary 3.2
we can choose constants, D;, B, such that
C; _¢p(x), X € W;; N Vxﬁ; (15,,()6) € COO(Vxﬁ)
{c(x)} = Dj - ¢p(-x)s X € WXE N Vxls,; ¢p(x) € KerTIVx;
C; — Dj, x€WLinWy; C;, D; = constant
U J

Thus {c(x)} € BXT;U) and ImT|X is C®-closed. The last step is to return to the
initial map using Lemma 2.1.
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