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Abstract. Let F : X → X be aCk(X), k = [0,∞], map on a topological space (smooth
manifold) X, A : X → End(Cm) and let {Uα} be anF -invariant covering ofX. We
introduce spaces of cohomologies associated with{Uα} and an operatorT = I−R, where
(Rφ)(x) = A(x)φ(F (x)) is a weighted substitution operator inCk(X). This yields a
correspondence between ImT and ImT |Uα and the description of ImT in cohomological
terms. In particular, it is proven that for any structurally stable diffeomorphism on a circle
and for large enoughk, the operatorT is semi-Fredholm, and a similar result holds for
the substitution operators generated by simple multidimensional maps. On the other
hand, we show that, in general, the closures of ImT and ImT |Uα are independent.

1. Introduction
1.1. Operator equation. Let F : X → X be a Ck(X), k = [0,∞], map on a
locally compact, countable at infinity topological space (smooth manifold). GivenCk(X)

functionsA : X → End(Cm) andγ : X → C
m, the mapF generates a linear functional

equation in operator form:

(TF,Aφ)(x) = ((I − RF,A)φ)(x) = φ(x)− A(x)φ(F (x)) = γ (x). (1)

If m = 1 andA(x) ≡ 1, equation (1) is called thehomology equation.
OperatorsR andT act in the spaceCk(X) of continuous (smooth) functions onX,

endowed with a standard topology of convergence with all the derivatives up to orderk

on each compact subset ofX, and are, obviously, continuous.
We note that equation (1) is typical in normal forms theory; for instance, it naturally

appears in the problems of conjugacy of local diffeomorphisms [1], just as the homology
equation appears in the corresponding problem for transitive diffeomorphisms of the
circle.
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1.2. Algebraic obstacles to solvability.Due to the well-known equalityIm T =
(KerT ∗)⊥, involving the conjugate operatorT ∗ in the dual space(Ck(X))∗, we may
describe algebraic obstacles to the solvability of equation (1) as functionalsh ∈ KerT ∗.
It is also clear from this, that the sufficiency of ‘algebraic’ solvability (by this we mean
the inclusionγ (x) ∈ (KerT ∗)⊥) in continuous (smooth) functions is equivalent to the
closure of the subspace ImT . On the other hand, the closure of ImT may be interpreted
as thenormal solvabilityof our equation, i.e. the case when given a convergent sequence
of functionsγn(x) on the right-hand side of (1), we can guarantee that their limitγ (x)

belongs to ImT and that the corresponding solutions converge.

1.3. Spectral data. If X is a compact manifold andk < ∞, then the operatorR acts
in the Banach spaceCk(X), its spectrum having been studied in [5] (the Kamowitz–
Sheinberg theorem for scalar substitution operators inC0(X)) and [7] (the general scalar
case). It was shown that6k

R, the residual spectrum ofR, is an annulus, so the operator
Tz = I − (1/z)R cannot be semi-Fredholm ifz lies on the boundary circles (non-isolated
boundary point of spectrum [6]).

Thus, we may reformulate our goal as the study, for a class of mapsF , of the fine
structure of6k

R at its interior points.

1.4. Invariant covering. Suppose mapF has a number of invariant domainsUα
forming a covering ofX. Though closure of the image is, in general, not a hereditary
property, it often turns out much easier to investigate images of restrictionsT |Uα, so we
can pose the natural question of how the properties of ImT and the ImT |Uα are related.
In particular, we are interested in finding the conditions which can provide the closure
of Im T , provided the ImT |Uα are closed.

Before stating the general scheme in§3, in §2 we study in detail the leading example
of a structurally stableCk-diffeomorphism of the circleS1, which, obviously, allows the
covering by invariant arcs. In the casek = ∞, A ∈ C∞(S1), the operatorT acts in
Ck(X) for any k and the following theorem holds.

THEOREM 1.1. Let F be a structurally stable diffeomorphism of the circle and let the
matrixA(x) be non-degenerate for allx ∈ S1. Then there existsk0 = k0(F,A) such that
for k ≥ k0 the operatorT is semi-Fredholm with closedIm T and dim KerT < ∞.

The explicit value ofk0, and the description of ImT , as well as comments on ImT
for k < k0, are presented in this case. Actually, we sketch the proof of the following.

THEOREM 1.2. For any structurally stable diffeomorphism of the circle and non-
degenerate matrixA, the operatorR is semi-Fredholm in all interior points of6k

R, with
the possible exception of a finite number of resonant circles.

In §3 we introduce spaces of cohomologiesHp(T ,U) associated with the operator
T and covering{Uα} and the homomorphismθ , which is a chain of an exact sequence,
such that the following holds.

THEOREM 1.3. ImT = Kerθ and Im T is closed iffθ is continuous.
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Note that the spacesHp(T ,U) and the homomorphismθ for the homology equation
were built in [1]. The above theorem provides us with some tools for the investigation
of Im T as corollaries.

In §4 we consider a collection of multidimensional examples illustrating the interaction
of F andF |Uα. These examples show that, in general, closure of ImT does not imply
closure ofF |Uα, nor does closure ofF |Uα imply closure of ImT .

Nevertheless, another result is as follows.

THEOREM 1.4. Let k = ∞ and letF be a gradient-like diffeomorphism of a compact
manifold. Then the homology equation is normally solvable.

2. ImT for a structurally stable diffeomorphism onS1

2.1. Let us recall that any structurally stable diffeomorphismH of the circle S1

has an even number of non-degenerate periodic pointsx1, . . . , x2n(n > 0) of the same
periodN , which are in turn attractors and repellers. Without loss of generality we may
consider orientation-preserving maps so that all periodic points of the diffeomorphism
F = HN are fixed and the corresponding derivatives at the fixed points areλ1, . . . , λ2n,
0< λi < 1< λi+1. LetQ(x) = A(x)A(Hx) · · ·A(HN−1x), and let{qi1, . . . , qim, qil 6= 0}
be different eigenvalues of the matricesQ(xi). Set

k0 = max
l,i

{− ln qil / ln λi}.

THEOREM 2.1. Let F be a structurally stableCk-diffeomorphism and letA(x) be a non-
degenerateCk-operator function,k ≥ k0. Then the subspaceIm T is closed inCk(S1)

and dim KerT < ∞. If F,A ∈ C∞(S1), thenIm T is closed inC∞(S1).

If k < k0, then it may happen that ImT is not closed. For example, consider the
homology equation fork = 0. It was proved in [1] that this equation on a compact space
is normally solvable iffF is a periodic map. Since a structurally stable diffeomorphism
is not periodic, ImT is not closed.

The proof of Theorem 2.1 will follow from lemmas we prove below. Our first step
is to pass fromH to F = HN .

LEMMA 2.1. LetR be a continuous linear operator in a linear topological spaceE and
let the subspaceIm(I − RN) be closed. ThenIm(I − R) is closed as well.

Proof. Evidently,

Im(I − RN) =
{ N−1∑
i=0

Rie | e ∈ Im(I − R)

}
⊂ Im(I − R).

Now let em ∈ Im(I−R); em → e. Then
∑N−1

i=0 R
iem ∈ Im(I−RN). Since Im(I−RN) is

by assumption closed andR is continuous,
∑N−1

i=0 R
iem → w, wherew ∈ Im(I − RN).

Thus, there exists an elementv ∈ Im(I − R) such thatw = ∑N−1
i=0 R

iv. Defining
u = e − v, we obtain

N−1∑
i=0

Ri(em − v) → 0, i.e.
N−1∑
i=0

Riu = 0. (2)
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Finally, let y = −1/N
∑N−1

i=1 iR
N−i−1u. Immediate calculations show that (2) implies

(I − R)y = u, or u ∈ Im(I − R), ande = u− v ∈ Im(I − R). �

Note, that it follows from Lemma 2.1 that for equation (1) with periodic mapH the
subspace ImT is always closed. Actually,HN = I , and the space

Im(I − RN) = {γ (x) ∈ Ck(X), γ (x) ∈ Im(I − RI,Q), x ∈ X}
is closed.

In this way (and since Ker(I−R) ⊂ Ker(I−RN)), we only need to prove the theorem
for the operator

T φ = (I − RNH,A)φ = (I − RF,Q)φ. (3)

2.2. Open arcsUi = (xi−1, xi+1), i = 0, . . . ,2n, form an openF -invariant covering
of S1, i.e. ∪Ui = S1, F(Ui) = Ui . Denote byT |Ui a restriction of the operator (3) on
the arcUi . In the presence ofresonancesλji · qil = 1 for somej, l, we arrive at the
finite number of conditions necessary forγ ∈ Ck(S1) to belong to ImT |Ui . Namely, if
γ (x) = (γ1(x), . . . , γm(x)), then for each resonant triplei, j, l, wherej ≤ k, we should
haveformal resonance restrictions:


γ
(j)

l (xi) = 0, for simple eigenvaluesqil ,

γ
(j)

l+d(l)(xi) = 0, for jordan blocks of orderd(l).




LEMMA 2.2. If k ≥ k0, and γ ∈ Ck(S1) satisfies formal resonance restrictions, thenγ
belongs toIm T |Ui for everyi = 1, . . . ,2n. In other wordsIm(T |Ui) = (Ker(T |Ui)∗)⊥,
and, therefore,Im(T |Ui) is closed for each arc.

Proof. Given γ satisfying these formal restrictions, we may findφ̂ ∈ Ck(Ui) such that

((T φ̂)− γ )(j)(xi) = 0, j ≤ k. (4)

Then the substitutionφ(x) → φ(x)+φ̂(x) leads to (1) with the new function̂γ ≡ T φ̂−γ .
First, supposeλi < 1. Set

φ(x) =
∞∑
j=0

Q(x)Q(Fx) · · ·Q(F j−1x)γ̂ (F jx). (5)

If k ≥ k0 then |qil · λki | < 1, l = 1, . . . , m, and we conclude from (4) that series (5)
converges uniformly in every compact set inUi with all its derivatives up to thekth
order. Obviously,φ(x) satisfies (3). Ifλi > 1, making use of the non-degeneracy of
matrixQ(x), we consider the series

φ(x) =
∞∑
j=1

Q−1(x)Q−1(F−1x) · · ·Q−1(F−j x)γ̂ (F−j x). (6)

Like the previous series, it yields aCk-solution if k ≥ k0, |qil · λki | < 1 for all
l = 1, . . . , m. �
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2.3. Assume now thatγ ∈ Im T |Ui for every i = 1, . . . ,2n, i.e. γ |Ui = T φi for
someφi ∈ Ck(Ui). Let us define

[γ ](x) ≡ {φi+1(x)− φi(x)}, for x ∈ Ui+1 ∩ Ui, i = 1, . . . ,2n.

This set of functions depends on the choice of solutionsφi(x), but in any case its entries
are elements of KerT |Ui+1 ∩ Ui .

LEMMA 2.3. The functionγ belonging toIm T |Ui for everyi = 1, . . . ,2n, lies in Im T

iff there exist functionsci ∈ KerT |Ui such that

[γ ](x) = {ci+1(x)− ci(x)}, i = 1, . . . ,2n. (7)

Proof. Let γ ∈ Im S1, γ = T φ. Then for everyi = 1, . . . ,2n we haveγ |Ui ∈ Im(T |Ui),
i.e. γ |Ui = T φi . So ci(x) = φ(x)− φi(x) ∈ Ker(T |Ui), and

φ(x) = ci(x)+ φi(x) = ci+1 + φi+1(x), x ∈ Ui+1 ∩ Ui.

Thus we have established that [γ ](x) = {ci+1(x)−ci(x)}, this property being independent
of the choice of solutionsφi(x).

On the other hand, if (7) holds, setφ̃i = φi + ci . Then, sinceφ̃i(x) = φ̃i+1(x) for
x ∈ Ui+1 ∩ Ui , the function

φ(x) = {φ̃i(x), x ∈ Ui}

is Ck-smooth onS1 andγ = T φ. This proves Lemma 2.3. �

2.4. Let us now describe Ker(T |Ui) for k ≥ k0.

LEMMA 2.4. Providedk ≥ k0, the spaceKerT |Ui is finite-dimensional for each arc.

Proof. Here we may think ofUi as ]− ∞,∞[, xi = 0. Let j1 be anorder of the first
resonance. This means thatj1 = min{j : ∃l, λji · qil = 1}. We setj1 = 0 in the absence
of resonances. Considering aCk functionp satisfying the equationp(x) = Q(x)p(Fx),
x ∈ Ui , we note thatp(s)(0) = 0, s < j1. Settingp(j1)(0) = c1 ∈ C

m, one can uniquely
computep(s)(0), s < j2, up to the next resonance order etc. Thus, the finite number (not
more than the number of resonances) of derivativesp(j)(0) = cj for resonance values
j ≤ k uniquely defines the Taylor series ofp at the origin.

To prove our assertion we only need to show that for any such vectorscj there exists
at most one functionp ∈ Ker(T |Ui) with the prescribed Taylor series. Indeed, if we are
given two such functions, their differencer is an element of Ker(T |Ui) with zero Taylor
series. Then for any integerd one has

r(x) = Q(x)Q(Fx) · · ·Q(Fd−1x)r(F dx).

Taking into account thatr(F dx)/(F dx)k → 0 as d → ∞, we see that
Q(x)Q(Fx) · · ·Q(Fd−1x) · (F dx)k → 0, if k ≥ k0. Hencer(x) ≡ 0. �
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Proof of Theorem 2.1.Supposek ≥ k0, and we are given a convergent sequenceγs → γ ,
γs ∈ Im T . Then the restrictionsγs |Ui belong to ImT |Ui, i = 1, . . . ,2n. According
to Lemma 2.1, there exist such functionsφsi ∈ Ck(Ui), i = 1, . . . ,2n, such that
γs |Ui = T φsi , φ

s
i → φi , γ |Ui = T φi .

Furthermore, according to Lemma 2.3,

[γs ](x) = {φsi+1(x)− φsi (x)} = {csi+1(x)− csi (x)} → {φi+1(x)− φi(x)}
for some csi ∈ Ker(T |Ui). Thus, the sequences{csi+1(x) − csi (x)} Ck-converge in
Ui+1 ∩ Ui, i = 1, . . . ,2n.

Now, since according to Lemma 2.4 the subspace Ker(T |Ui+1) ⊕ Ker(T |Ui) ⊂
Ker(T |Ui+1

⋂
Ui) is finite-dimensional, we deduce that

[γ ](x) = φi+1(x)− φi(x) = ci+1(x)− ci(x)

for someci ∈ Ker(T |Ui). Finally, applying the ‘opposite arrow’ of Lemma 2.3, we
obtain the inclusionγ ∈ Im T |S1. �

2.5. Do global obstructions to solvability really exist?

PROPOSITION1. (Realization of the obstruction cocycle.)For each set ofCk-functions
{ti(x) ∈ KerT |Ui+1 ∩ Ui}2n

i=1 one may choose a functionγ (x) ∈ Ck(S1) such that

[γ ](x) = {ti(x)}.
Proof. ChooseCk-functions φi(x) on Ui such thatφi+1(x) − φi(x) = ti(x) for x ∈
Ui+1 ∩ Ui . Let

γ (x) ≡ (T φi)(x), x ∈ Ui, i = 1, . . . ,2n.

Thenγ (x) ∈ Ck(S1), and [γ ](x) = {ti(x)}. �
Thus, although the subspace ImT in this case is always infinite-dimensional,

restriction (7) is very severe; in fact, dim Ker(T |Ui+1∩Ui) = ∞, but dim KerT |Ui ≤ m.

2.6. Now we will give Theorem 2.1 a slightly different form, considering the
homology equation for the map with fixed points. For the latter, the only resonances
are those of zero order,k0 = 1, and KerT |Ui = {ci = constant}. Further, the condition
γ (x) ∈ Im T , for k ≥ 1 is, as we saw when proving Lemma 2.3, equivalent to the
conditions

γ (xi) = 0, [γ ](x) = {ci+1 − ci}. (8)

Fix a number of arbitrary pointsX= {zi ∈ Ui+1∩Ui}2n
i=1. Taking into account (5) and (6)

we obtain that

ci+1 − ci = φi+1(x)− φi(x) =
∞∑

−∞
γ (F j (zi)).

Let λ1 < 1. DefinehX ∈ KerT ∗ by

(hX , γ ) ≡
n∑
i=1

{ ∞∑
j=0

[γ (F j (z2i−1))− γ (x2i−1)] +
∞∑
j=1

[γ (F−j (z2i−1))− γ (x2i )]

}

+
n∑
i=1

{ ∞∑
j=0

[γ (F j (z2i ))− γ (x2i+1)] +
∞∑
j=1

[γ (F−j (z2i ))− γ (x2i )]

}
.
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Thus, writing down conditions (8), we may reformulate Theorem 2.1 in greater detail as
follows (see the next section for thek = 0 case).

COROLLARY 2.1. AssumeF is a structurally stable map on the circle withPerF = FixF
and k ≥ 1. Then the homology equation for the functionγ ∈ Ck(S1) has aCk-solution
iff γ (xi) = 0, i = 1, . . . ,2n, and(hX , γ ) = 0 for every setX .

Thus, ImT = (Ker(T )∗)⊥, Ker(T )∗ = {δxi , hX }. A similar representation of
Im T holds for an arbitrary non-singular matrixA(x) and a structurally stable map
F : S1 → S1.

2.7. Concluding this section, we should comment on whether the assumptions of
Theorem 2.1 are necessary.

(i) First consider equation (1) fork = 0. As was proved in [1], for the homology
equation on a compact space, ImT is closed inC0(X) iff F is a periodic map. Since a
structurally stable map is not periodic, ImT is not closed inC0(S1).

(ii) On the other hand, ImT is closed for allnon-resonant valuesof k < k0. In order
not to complicate the proof, we will briefly sketch the additional aspects to be dealt with.
Lemma 2.2 still applies, although the solutions to (1) on the arcs are no longer given
by convergent series, and one needs to reduce matrixQ(x) to the block form (see [3]).
In this case the space KerT may be infinite-dimensional (then dim KerT ∗ < ∞ andT
is still semi-Fredholm), but the general scheme of the next section makes it possible to
complete the proof. Note that in the case of more than two periodic points, resonant
circles may lie inside the spectrum ofR. This implies the following.

THEOREM 2.2. For any structurally stable diffeomorphism of the circle and any non-
degenerate matrixA, operatorR is semi-Fredholm in all interior points of6k

R, with
the possible exception of a finite number of resonant circles.

(iii) For a constant matrixA, the non-degeneracy condition is redundant (Lemma 2.2
still holds), but it is essential in the general case.

3. Spaces of cocycles
In this section we generalize the scheme developed above for the maps on the circle.

Let U = {Uα} be an open countableF -invariant covering ofX : X = ∪Uα,
F(Uα) = Uα. This yields the natural continuous injections

jα : Ck(X) → Ck(Uα); i : Im T → ∩αj−1
α (Im(T |Uα)).

The latter inclusion is, as a rule, strong and as we will show, thedefect space

L(T ;U) = ∩αj−1
α (Im(T |Uα))/i(Im T )

may be described in cohomological terms.
Consider the sheaf ofCk-function germs onX. The coveringU generates a space

of p-cochainsChp(U) [4], which we endow with the topology of a direct product.
Actually, p = 0,1,2 suffice for our purposes. As usual,δ : Chp(U) → Chp+1(U)
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is the coboundary operator,Bp(U) = Im δ andZp(U) = Kerδ are the corresponding
spaces of coboundaries and cocycles.

Now we introduce linear spaces associated with the coveringU and operatorT :

Chp(T ;U) = {c = (cα0...αp ) | cα0...αp ∈ Ker(T | ∩pi=0 Uαi )},
Zp(T ;U) = Zp(U) ∩ Chp(T ;U);Bp(T ;U) = δ(Chp−1(T ;U)).

In a standard way, the space of cohomologies generated byU , T is

Hp(T ;U) = Zp(T ;U)/Bp(T ;U).
Let γ ∈ ∩αj−1

α (Im T |Uα), i.e. γα = T φα for someφα ∈ Ck(Uα). Setting

[γ ]αβ(x) = φα(x)− φβ(x),

we obtain a cocycle [γ ] ∈ Z1(T ;U). Thus we have defined the homomorphism

θ(γ ) = [γ ], θ : ∩αj−1
α (Im T |Uα) → Z1(T ;U).

We will see below, that continuity ofθ is a characteristic feature ofU , T .

THEOREM 3.1. The following sequence of homomorphisms

0 → Im T
i→ ∩αj−1

α (Im T |Uα) θ→ H 1(T ;U) → 0

is exact.

Thus we arrive at the following description of the ‘defect’ space and the image:

L(T ;U) = H 1(T ;U); i(Im T ) = Kerθ.

Proof. (i) Im i ⊂ Kerθ . Namely, if γ = T φ, we may setγ |Uα = T φα andφα = φ|Uα.
Therefore, [γ ]αβ(x) = φα(x)− φβ(x) for x ∈ Uα ∩ Uβ , andθ(γ ) = 0.

(ii) Ker θ ⊂ Im i. Actually, if γα = T φα, andθ(γ ) = 0, then

[γ ]αβ(x) = cα(x)− cβ(x), cα ∈ Ker(T |Uα).
Defining φ(x) = φα(x) − φβ(x) (x ∈ Uα), we obtain aCk-function onX such that
γ = T φ.

(iii) Im θ = H 1(T ;U). For everyc = {cαβ} ∈ Z1(T ;U) one has

cαβ ∈ (Ker(T |Uα ∩ Uβ)), δ(c) = 0.

Since our sheaf is fine [2], there exist functionsφα ∈ Ck(Uα) such thatcαβ =
φα(x) − φβ(x). The function γ (x) = (T φ)(x) (x ∈ Uα) lies in the intersection
∩αj−1

α (Im(T |Uα)). Obviously,θ(γ ) = c. �

Let us draw consequences from the above theorem.

COROLLARY 3.1. Assume that all the subspacesIm(T |Uα) are closed. Then the following
conditions are equivalent:
(a) ImT is closed;
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(b) B1(T ;U) is closed;
(c) H 1(T ;U) is Hausdorff;
(d) θ is a continuous map.

Proof. (b)⇔(c). This is a well-known fact from the theory of linear topological spaces.
(a)⇒(b). Let {cn} be a sequence inB1(T ;U) converging to an elementc ∈ Z1(T ;U).

We need to show thatc ∈ B1(T ;U). Chooseγ so that [γ ] = c and again set

γ |Uα = T φα; cαβ = φα(x) − φβ(x).

SinceZ1(U) = B1(U) = δ(Ch0(U)) (the sheaf is fine),δ : Ch0(U) → Z1(U) is a
normally solvable operator. Thus one can find sequences{φnλ}∞n=1, φnλ ∈ Ck(Uα), such
that φnλ → φλ as n → ∞ and cnαβ = φnα − φnβ . Defining γ n|Uα = T φnα, we obtain
that γ n ∈ Im T and γ n → γ . Closure of ImT implies thatγ ∈ Im T , and hence
c ∈ B1(T ;U).

(b)⇒(d). Given a sequenceγ n ∈ ∩αj−1
α (Im(T |Uα)) converging to zero, we will prove

that θ(γ n) → 0. Since all the Im(T |Uα) are closed, chooseφnλ ∈ Ck(Uα) satisfying the
conditionsγ n = T φnα, φnλ → 0 (n → ∞). Then, sinceB1(T ;U) is closed,

[γ n]αβ = φnα − φnβ → 0; θ(γ n) = [γ n] → 0.

(d)⇒(a) follows from the equality ImT = Kerθ . �

COROLLARY 3.2. Assume that the subspacesIm(T |Uα) are closed and
dim KerT |Uα < ∞. ThenIm T is closed.

Proof. Indeed, in this case the space(Ch0(T ;U)) is also finite-dimensional, so recalling
the definitionB1(T ;U) = δ(Ch0(T ;U)) and the fact thatδ is a continuous map, we see
that item (b) of Corollary 3.1 is applicable.

4. Examples and applications
4.1. Corollary 3.1 provides us with a straightforward tool to study ImT for maps of
Morse–Smale type [8] which have a finite number of hyperbolic periodic points, their
basins of attraction covering the whole manifoldX. Corollary 3.2 yields another result
for a natural generalization of maps onS1 from §2 as follows.

Example 4.1.Consider aCk-diffeomorphismF on the sphereSn, having only two fixed
points: an attractorx1 with the eigenvalues of its linear part{λ1, . . . , λn}, 0< |λi | < 1,
and a repellerx2 with the eigenvalues{µ1, . . . , µn}, 1< |µi |. Let {qi1, . . . , qim, qil 6= 0}
be the eigenvalues of non-degenerate matricesA(xi), i = 1,2, and letk0 be defined as
in the case ofS1. Let us show that the subspace ImT is closed ifk ≥ k0. Indeed, the
coveringU1 = Sn\{x2}, U2 = Sn\{x1} is finite andF -invariant. Arguments identical to
those for Lemma 2.4 show that spaces KerT |U1 and KerT |U2 are finite-dimensional.
In order to apply Corollary 3.2, we only need to convince ourselves that fork ≥ k0 both
spaces ImT |U1 and ImT |U2 are closed. But due to the choice ofk0, we may repeat
the arguments from Lemma 2.2 showing that the formal series (5) and (6) yield smooth
solutions. Therefore, ImT is closed.
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4.2. We further show that, in general, closure of ImT |Uα does not imply closure of
Im T .

Example 4.2.Let the spaceX be a punctured quadrant on the plane:

X = {(ξ, η) ∈ R2\{0}; ξ, η ≥ 0};
and let the mapF be a linear saddle:F(ξ, η) = (λξ, µη),0 < λ < 1 < µ;m = 1,
A ≡ Id. Take the coveringU = {U1 = X\{ξ = 0};U2 = X\{η = 0}}.

First we show that ImT |U1, and ImT |U2 are closed inCk(X) for anyk = 0, . . . ,∞.
Actually, both operatorsT |U1 andT |U2 are surjective, and to show this for, say,T |U1

we introduce two closed non-intersecting strips inU1:

P+ = {(ξ, η),2 ≤ ξ < ∞,0 ≤ η ≤ 1}, P− = {(ξ, η),0< ξ ≤ 1,0 ≤ η < ∞}.
EveryCk-functionγ (ξ, η) onU1 may be written as a sumγ = γ+ + γ− of Ck-functions
such thatγ+ ≡ 0 in P+ andγ− ≡ 0 in P−. Thus, if T φ± = γ±, thenT (φ+ + φ−) = γ .
For the first equations set

φ+(ξ, η) =
∞∑
j=0

γ+(F j (ξ, η)), φ−(ξ, η) =
∞∑
j=1

γ−(F−j (ξ, η)).

Since each point(ξ, η) is mapped uniformly with its small neighborhood intoP+ by F
and intoP− by F−1, these are actuallyCk-solutions. The case ofT |U2 does not differ.

Now let us convince ourselves thatB1(T ;U) is not closed. Ifφ(ξ, η) ∈ Ker(T |U1),
i.e. φ(λξ, µη) = φ(ξ, η) for η ≥ 0, ξ > 0, set φ̂(x, y) = φ(exp(x ln λ),exp(y lnµ)).
Then we obtain the equivalent equation

φ̂(x + 1, y + 1) = φ̂(x, y), −∞ < x < ∞,−∞ < y < ∞. (9)

Any solution to (9) is defined by its values on the stripD bounded by the linesy = −x
and y = −x + 2. Dividing it into squares with sides of length 21/2, we may shift
D to the vertical strip 1< x < 3. Since the functionφ(ξ, η) is bounded on any
compact set separated from the{ξ = 0}-line, the functionφ̂(x, y) is bounded on the
half-strip 1 < x < 3, y < 0, or, equivalently, as we have seen, in the half-strip
{D, x > 0, y < 0}. This means that each functionφ(ξ, η) ∈ KerT |U1 is bounded
at zero. Identical arguments show that every functionδ(ξ, η) ∈ KerT |U2 has the same
property. Hence, each functionc(ξ, η) ∈ B1(T ;U) is bounded at zero as well.

Finally, defineν = lnµ/ ln λ and let τ ; R
1 → (0,1) be aC∞-function such that

τ(t) = t , t ∈ (0, 1
4). Set

cn(ξ, η) =
n∑
j=0

(1 − τ(ξνη))j , x = (ξ, η) ∈ U1.

Evidently, cn ∈ Ker(T |U1) ⊂ B1(T ;U) and this sequence converges in the space
C∞(U1

⋂
U2) to the function 1/τ(ξνη), which, as just established, cannot belong to

B1(T ;U). Hence, ImT is not closed.
Another way to see that ImT is not closed is to note thatF has no invariant compact

subsets and as a consequence has no invariant measures. It follows from this that
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KerT ∗ = {0}, henceIm T = Ck(X). However,T is not surjective. For instance, the
Abelian equation

ϕ(Fx) = ϕ(x)+ 1

has no continuous solution. Indeed, letϕ be some solution, then

ϕ(λnξ, η) = ϕ(ξ, µ−nη)+ n

and, lettingn → ∞, we see thatϕ cannot be continuous.
In order to demonstrate the converse (i.e. that closure of ImT is not a hereditary

property), we only have to add zero to the quadrant,X̂ = X ∪ {0}, and consider another
coveringÛ = {U1 = X,U2 = X̂}. As we have just seen, ImT |U1 is not closed. On the
other hand, at a hyperbolic saddle point every formalC∞-solution can be restored to a
smooth one [3], so ImT is closed inC∞(X̂).

4.3. Let us now show that ImT is closed inC∞(X) for the following model example:

Example 4.3.Let X be a closed half-strip on the plane:

X = {(ξ, η) ∈ R2; 0 ≤ ξ ≤ 1, η ≥ 0},
and letF(ξ, η) now have two fixed points: a saddle at the origin with eigenvalues
0< λ < 1< µ and a repeller at the point(1,0); let A ≡ Id. For simplicity we assume
that the saddle point is non-resonant.

Further letOε be an openε-ball in X centered at zero. LetU1 = ∪−∞<n<∞Fn(Oε),
which makesU1 anε-hyperbolic neighborhood of the global stable manifoldW+

1 = {ξ =
0} and the global unstable manifoldW−

1 = {0 ≤ ξ < 1, η = 0} of the saddle. Also
takeU2 = X\{ξ = 0} = W−

2 , whereW−
2 stands for the global unstable manifold of the

repeller. Obviously,U = {U1, U2} is an open finiteF -invariant covering.
As we have just mentioned, every formal solution to (1) at zero can be restored to a

C∞-solution inOε and by definition to the whole domainU1, and anyC∞-function which
is zero at the point(1,0) belongs to Im(T |U2). Thus, both Im(T |U1) and Im(T |U2) are
closed, and due to the absence of higher-order resonances, Ker(T |U2) = {D = constant}.

We further show that the spaceB1(T ;U) is closed and, hence, according to
Corollary 3.1, ImT itself is closed. Namely, first let theC∞-diffeomorphismG(ξ, η) =
(g1(ξ, η), g2(ξ, η)) linearizeF in Oε (hence inU1) [9]. Then we obtain the following
equation equivalent toT φ = 0:

ψ(x, y) = ψ(λx, µy), (x, y) ∈ G(U1); φ(ξ, η) = ψ(g1(ξ, η), g2(ξ, η)). (10)

Recall that the elements ofB1(T ;U) in this case are functionsc(ξ, η) defined inU1 ∩U2

which may be represented as

c(ξ, η) = φ(ξ, η)− δ(ξ, η), φ ∈ Ker(T |U1), δ ∈ Ker(T |U2). (11)

Now let the sequence

cn(ξ, η) = ϕn(ξ, η)−Dn ∈ B1(T ;U)
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converge inC∞(U1
⋂
U2) to c ∈ Ker(T |U1

⋂
U2). We need to show thatc ∈ B1(T ;U).

To this end let us set

ϕn(ξ, η) = ψn(g1(ξ, η), g2(ξ, η)), ĉn(x, y) = ψn(x, y)−Dn.

Then ĉn → ĉ in the domainG(U1
⋂
U2).

Due to the absence of resonances,ψn(x, y) = ωn(x, y) + ψn(0), whereωn(x, y) is
equal to zero with all its derivativesflat, i.e. it is flat on the coordinate crossW+

1

⋃
W−

1 .

Thus

ĉn = ωn − kn → ĉ, kn = Dn − ψn(0). (12)

Sinceĉ ∈ Ker(T |G(U1
⋂
U2)), we have a representation

ĉ(x, y) = ω(x, y)+ ĉ(x,0), 0< x < 1

whereω(x, y) is flat on the interval{0< x < 1, y = 0}. Settingy = 0 in (12) we obtain
kn → ĉ(x,0), henceĉ(x,0) = k = constant, andωn(x, y) → ω(x, y) in the domain
G(U1

⋂
U2). Settingω(0, y) = 0 by definition, let us show thatω ∈ C∞(G(U1)). This

means that̂c ∈ B1(T ;U).
Let zn = (xn, yn) → (0, y0). Sinceω(xn, yn) = ω(λxn, µyn) we can chooseln

such that all points{(λ−lnxn, µ−lnyn)} lie in the compact set separated from theW+
1 -

line (Example 4.2). Since, additionally,µ−lnyn → 0, we obtainω(zn) → 0. Applying
identical arguments to all the derivatives ofω we see thatω(x, y) is aC∞-function in
G(U1). Hence, ImT is closed.

4.4. Next we prove that if mapF has the trivial sort of dynamics, glued together from
the models of Example 4.3, then the homology equation is normally solvable. Consider
the generalizing as follows.

Example 4.4.Let X be a compactd-dimensionalC∞-manifold and letF be a Morse–
SmaleC∞-diffeomorphism onX. We want to exclude heteroclinic structures from our
considerations, so we will assume thatF is a gradient-like map [8] and, as above, all
the saddles are non-resonant. Under this assumption we obtain the following.

THEOREM 4.1. The homology equation is normally solvable inC∞.

Proof. Naturally, we substitute for the initial map the mapFN , whose only periodic
points are fixed. So we have

FixF = {xr
1, . . . , x

r
k; xa

1, . . . , x
a
l ; xs

1, . . . , x
s
m},

where subscripts r, a, s stand for repeller, attractor and saddle respectively, andW+ and
W− for the global stable and unstable manifolds, respectively, of a fixed point. For each
saddle setVi = ∪−∞<n<∞Fn(Oε), whereOε is a full neighborhood of the saddle point
so small that it does not contain any other elements of FixF . Consider the covering

U = {W+
xa
i
, i = 1, . . . , k;W−

xr
j
, j = 1, . . . , l;Vxs

p
, p = 1, . . . , m}.
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In the same way as in Example 4.4,U is an open finiteF -invariant covering such that
γ ∈ Im T |Uα ⇔ γ (xα) = 0 for everyγ ∈ C∞(Uα). Therefore ImT |Uα is closed for
eachα.

Again, let {cn(x)} → {c(x)} be inB1(T ;U). Now we take into account simple facts
about our covering:
(i) for i 6= j , one always has

W+
xa
i
∩W+

xa
j

= ∅, W−
xr
i
∩W−

xr
j

= ∅,

and all elements of KerT |W+
xa
i
, W−

xr
j

are constants;
(ii) we can chooseOε so small thatVxs

p
∩ Vxs

q
= ∅ for p 6= q;

(iii) with the exception of the circle with two fixed points, all the domains

W+
xa
i
∩ Vxs

p
, W−

xr
j
∩ Vxs

p
, W+

xa
i
∩W−

xr
j

are connected;
(iv)

Vxs
p
\{xs

p} = {(∪iVxs
p
∩W+

xa
i
) ∪ (∪jVxs

p
∩W−

xr
j
)}.

Thus{cn(x)} is of the form

{cn(x)}≡



Cni − Bnp − φnp(x), x ∈ W+

xa
i
∩ Vxs

p
; Cni ,D

n
j , B

n
p = constant,

Dn
j − Bnp − φnp(x), x ∈ W−

xr
j
∩ Vxs

p
; φnp(x) ∈ KerT |Vxs

p
, φnp(x

s
p) = Bnp

Cni −Dn
j , x ∈ W+

xa
i
∩W−

xr
j
; φnp(x)− Bnp is flat onW+

xs
p
∪W−

xs
p


 .

This means that sequencesφnp(x) converge everywhere in the punctured domains
Vxs

p
\{xs

p} (item (iv)), and carrying over the arguments from Example 4.4, we see that

φnp(x) → φp(x) for all x ∈ Vxs
p
, p = 1, . . . , m, whereφp(x) ∈ KerT |Vxs

p
.

Then we have

Cni − Bnp → Rip, Dn
j − Bnp → Sjp, Cni −Dn

j → Tij .

In this way, we have reduced our case to the finite-dimensional case, and by Corollary 3.2
we can choose constantsCi,Dj , Bp such that

{c(x)} ≡



Ci − φp(x), x ∈ W+

xa
i
∩ Vxs

p
; φp(x) ∈ C∞(Vxs

p
)

Dj − φp(x), x ∈ W−
xr
j
∩ Vxs

p
; φp(x) ∈ KerT |Vxs

p

Ci −Dj, x ∈ W+
xa
i
∩W−

xr
j
; Ci,Dj = constant


 .

Thus {c(x)} ∈ B1(T ;U) and ImT |X is C∞-closed. The last step is to return to the
initial map using Lemma 2.1.
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