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In this paper we study the existence of radially symmetric solitary waves for
nonlinear Klein–Gordon equations and nonlinear Schrödinger equations coupled with
Maxwell equations. The method relies on a variational approach and the solutions
are obtained as mountain-pass critical points for the associated energy functional.

1. Introduction

This paper has been motivated by the search of non-trivial solutions for the follow-
ing nonlinear equations of Klein–Gordon type,

∂2ψ

∂t2
− ∆ψ + m2ψ − |ψ|p−2ψ = 0, x ∈ R

3, (1.1)

or of Schrödinger type,

i�
∂ψ

∂t
= − �

2

2m
∆ψ − |ψ|p−2ψ, x ∈ R

3, (1.2)

where � > 0, m > 0, p > 2, ψ : R
3 × R → C.

In recent years, many papers have been devoted to finding standing waves of (1.1)
or (1.2), i.e. solutions of the form

ψ(x, t) = eiωtu(x), ω ∈ R.

With this ansatz, the nonlinear Klein–Gordon equation, as well as the nonlinear
Schrödinger equation, is reduced to a semilinear elliptic equation, and existence
theorems have been established to show whether u is radially symmetric and real
(see [8, 9]) or non-radially symmetric and complex (see [13, 16]). In this paper, we
investigate the existence of nonlinear Klein–Gordon or Schrödinger fields interacting
with an electromagnetic field E −H. Such a problem has been extensively pursued
in the case of assigned electromagnetic fields (see [2, 3, 12]). Following the ideas
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894 T. D’Aprile and D. Mugnai

already introduced in [5–7,10,11,14,15], we do not assume that the electromagnetic
field is assigned. Then we have to study a system of equations whose unknowns are
the wave function ψ = ψ(x, t) and the gauge potentials A, Φ,

A : R
3 × R → R

3, Φ : R
3 × R → R,

which are related to E − H by the Maxwell equations

E = −
(

∇Φ +
∂A

∂t

)
, H = ∇ × A.

Let us first consider equation (1.1). The Lagrangian density related to (1.1) is
given by

LKG =
1
2

[∣∣∣∣∂ψ

∂t

∣∣∣∣
2

− |∇ψ|2 − m2|ψ|2
]

+
1
p
|ψ|p.

The interaction of ψ with the electromagnetic field is described by the minimal
coupling rule, that is, the formal substitution

∂

∂t
�→ ∂

∂t
+ ieΦ, ∇ �→ ∇ − ieA,

where e is the electric charge. Then the Lagrangian density becomes

LKGM =
1
2

[∣∣∣∣∂ψ

∂t
+ ieψΦ

∣∣∣∣
2

− |∇ψ − ieAψ|2 − m2|ψ|2
]

+
1
p
|ψ|p.

If we set
ψ(x, t) = u(x, t)eiS(x,t),

where u, S : R
3 × R → R, the Lagrangian density takes the form

LKGM = 1
2{u2

t − |∇u|2 − [|∇S − eA|2 − (St + eΦ)2 + m2]u2} +
1
p
|u|p.

Now consider the Lagrangian density of the electromagnetic field E − H,

L0 = 1
2 (|E|2 − |H|2) = 1

2 |At + ∇Φ|2 − 1
2 |∇ × A|2. (1.3)

Therefore, the total action is given by

S =
∫∫

LKGM + L0.

Making the variation of S with respect to u, S, Φ and A, respectively, we get

utt − ∆u + [|∇S − eA|2 − (St + eΦ)2 + m2]u − |u|p−2u = 0, (1.4)
∂

∂t
[(St + eΦ)u2] − div[(∇S − eA)u2] = 0, (1.5)

div(At + ∇Φ) = e(St + eΦ)u2, (1.6)

∇ × (∇ × A) +
∂

∂t
(At + ∇Φ) = e(∇S − eA)u2. (1.7)
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We are interested in finding standing (or solitary) waves of (1.4)–(1.7), that is,
solutions having the form

u = u(x), S = ωt, A = 0, Φ = Φ(x), ω ∈ R.

Then equations (1.5) and (1.7) are identically satisfied, while (1.4) and (1.6) become

−∆u + [m2 − (ω + eΦ)2]u − |u|p−2u = 0, (1.8)

−∆Φ + e2u2Φ = −eωu2. (1.9)

In [6], the authors proved the existence of infinitely many symmetric solutions
(un, Φn) of (1.8), (1.9), under the assumption 4 < p < 6, by using an equivariant
version of the mountain-pass theorem (see [1, 4]).

The object of the first part of this paper is to extend this result as follows.

Theorem 1.1. Assume that one of the following two hypotheses hold:

(a) m > ω > 0 and 4 � p < 6; or

(b) m
√

p − 2 >
√

2ω > 0 and 2 < p < 4.

Then system (1.8), (1.9) has infinitely many radially symmetric solutions (un, Φn),
un �≡ 0 and Φn �≡ 0, with un ∈ H1(R3), Φn ∈ L6(R3) and |∇Φn| ∈ L2(R3).

In the second part of the paper, we study the Schrödinger equation for a particle
in an electromagnetic field.

Consider the Lagrangian associated to (1.2),

LS =
1
2

[
i�

∂ψ

∂t
ψ̄ − �

2

2m
|∇ψ|2

]
+

1
p
|ψ|p.

By using the formal substitution

∂

∂t
�→ ∂

∂t
+ i

e

�
Φ, ∇ �→ ∇ − i

e

�
A,

we obtain

LSM =
1
2

[
i�

∂ψ

∂t
ψ̄ − eΦ|ψ|2 − �

2

2m
|∇ψ − i

e

�
Aψ|2

]
+

1
p
|ψ|p.

Now take
ψ(x, t) = u(x, t)eiS(x,t)/�.

With this ansatz, the Lagrangian LSM becomes

LSM =
1
2

[
i�uut − �

2

2m
|∇u|2 −

(
St + eΦ +

1
2m

|∇S − eA|2
)

u2
]

+
1
p
|ψ|p.

Proceeding as in [5], we consider the total action

S =
∫∫ [

LSM +
1
8π

(|E|2 − |H|2)
]
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of the system ‘particle-electromagnetic field’. Then the Euler–Lagrange equations
associated to the functional S = S(u, S, Φ,A) give rise to the following system of
equations:

− �
2

2m
∆u +

(
St + eΦ +

1
2m

|∇S − eA|2
)

u − |u|p−2u = 0, (1.10)

∂

∂t
u2 +

1
m

div[(∇S − eA)u2] = 0, (1.11)

eu2 = − 1
4π

div
(

∂A

∂t
+ ∇Φ

)
, (1.12)

e

2m
(∇S − eA)u2 =

1
4π

[
∂

∂t

(
∂A

∂t
+ ∇Φ

)
+ ∇ × (∇ × A)

]
. (1.13)

If we look for solitary wave solutions in the electrostatic case, i.e.

u = u(x), S = ωt, Φ = Φ(x), A = 0, ω ∈ R,

then (1.11) and (1.13) are identically satisfied, while (1.10) and (1.12) become

− �
2

2m
∆u + eΦu − |u|p−2u + ωu = 0, (1.14)

−∆Φ = 4πeu2. (1.15)

The existence of solutions of (1.14), (1.15) was already studied for 4 < p < 6;
in [5], existence of infinitely many radial solutions was proved, while in [13] existence
of a non-radially symmetric solution was established. In the second part of the paper
we prove the following result.

Theorem 1.2. Let ω > 0 and 4 � p < 6. Then the system (1.14), (1.15) has at
least a radially symmetric solution (u, Φ), u �= 0 and Φ �= 0, with u ∈ H1(R3),
Φ ∈ L6(R3) and |∇Φ| ∈ L2(R3).

2. Nonlinear Klein–Gordon equations coupled with Maxwell equations

In this section we prove theorem 1.1. For the sake of simplicity, assume e = 1, so
that (1.8), (1.9) give rise to the following system in R

3:

−∆u + [m2 − (ω + Φ)2]u − |u|p−2u = 0, (2.1)

−∆Φ + u2Φ = −ωu2. (2.2)

Assume that one of the following hypotheses hold:

(a) m > ω > 0, 4 � p < 6; or

(b) m
√

p − 2 >
√

2ω > 0, 2 < p < 4.

We note that q = 6 is the critical exponent for the Sobolev embedding H1(R3) ⊂
Lq(R3).
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It is clear that (2.1), (2.2) are the Euler–Lagrange equations of the functional
F : H1 × D1,2 → R defined as

F (u, Φ) = 1
2

∫
R3

(|∇u|2 − |∇Φ|2 + [m2 − (ω + Φ)2]u2) dx − 1
p

∫
R3

|u|p dx.

Here, H1 ≡ H1(R3) denotes the usual Sobolev space endowed with the norm

‖u‖H1 ≡
(∫

R3
(|∇u|2 + |u|2) dx

)1/2

(2.3)

and D1,2 ≡ D1,2(R3) is the completion of C∞
0 (R3, R) with respect to the norm

‖u‖D1,2 ≡
(∫

R3
|∇u|2 dx

)1/2

. (2.4)

The following two propositions hold.

Proposition 2.1. The functional F belongs to C1(H1 × D1,2, R) and its critical
points are the solutions of (2.1), (2.2).

Proof. We refer to [6].

Proposition 2.2. For every u ∈ H1, there exists a unique Φ = Φ[u] ∈ D1,2 that
solves (2.2). Furthermore, the following hold.

(i) Φ[u] � 0.

(ii) Φ[u] � −ω in the set {x | u(x) �= 0}.

(iii) If u is radially symmetric, then Φ[u] is radial too.

Proof. For fixed u ∈ H1, consider the following bilinear form on D1,2:

a(φ, ψ) =
∫

R3
(∇ψ∇ψ + u2φψ) dx.

Obviously,
a(φ, φ) � ‖φ‖2

D1,2 .

Observe that, since H1(R3) ⊂ L3(R3), then u2 ∈ L3/2(R3). On the other hand,
D1,2 is continuously embedded in L6(R3), and hence, by Hölder’s inequality,

a(φ, ψ) � ‖φ‖D1,2‖ψ‖D1,2 + ‖u2‖L3/2‖φ‖L6‖ψ‖L6 � (1 + C‖u‖2
L3)‖φ‖D1,2‖ψ‖D1,2

for some positive constant C, given by the Sobolev inequality (see [20]). Therefore,
a defines an inner product, equivalent to the standard inner product in D1,2.

Moreover, H1(R3) ⊂ L12/5(R3), and then∣∣∣∣
∫

R3
u2ψ dx

∣∣∣∣ � ‖u2‖L6/5‖ψ‖L6 � c‖u‖2
L12/5‖ψ‖D1,2 . (2.5)

Therefore, the linear map

ψ ∈ D1,2 �→
∫

R3
u2ψ dx
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is continuous. By the Lax–Milgram lemma, we get the existence of a unique Φ ∈ D1,2

such that ∫
R3

(∇Φ∇ψ + u2Φψ) dx = −ω

∫
R3

u2ψ dx ∀ψ ∈ D1,2,

i.e. Φ is the unique solution of (2.2). Furthermore, Φ achieves the minimum

inf
φ∈D1,2

∫
R3

( 1
2 (|∇φ|2 + u2|φ|2) + ωu2φ) dx =

∫
R3

( 1
2 (|∇Φ|2 + u2|Φ|2) + ωu2Φ) dx.

Note that −|Φ| also achieves such a minimum; then, by uniqueness, Φ = −|Φ| � 0.
Now let O(3) denote the group of rotations in R

3. Then, for every g ∈ O(3) and
f : R

3 → R, set Tg(f)(x) = f(gx). Note that Tg does not change the norms in H1,
D1,2 and Lp. In lemma 4.2 of [6], it was proved that TgΦ[u] = Φ[Tgu]. In this way,
if u is radial, we get TgΦ[u] = Φ[u].

Finally, following the same idea of [17], with fixed u ∈ H1, if we multiply (2.2)
by (ω + Φ[u])− ≡ −min{ω + Φ[u], 0}, which is an admissible test function, since
ω > 0, we get

−
∫

Φ[u]<−ω

|DΦ[u]|2 dx −
∫

Φ[u]<−ω

(ω + Φ[u])2u2 dx = 0,

so that Φ[u] � −ω, where u �= 0.

Remark 2.3. The result of proposition 2.2 (ii) can be strengthened in some cases.
Indeed, take ū in H1(R3) ∩ C∞ radially symmetric such that ū > 0 in B(0, R) and
ū ≡ 0 in R

3 \ B(0, R) for some R > 0. Then we get

−ω � Φ[ū](x) � 0 ∀x ∈ R
3.

In fact, since Φ[ū] solves (2.2), by standard regularity results for elliptic equations,
ū ∈ C∞ implies Φ[ū] ∈ C∞. By proposition 2.2, Φ[ū] is radial; moreover, Φ[ū] is
harmonic outside B(0, R). Since Φ[ū] ∈ D1,2, then

Φ[ū](x) = − c

|x| , |x| � R,

for some c > 0. Setting Φ̃(r) = Φ[ū](x) for |x| = r, it follows that Φ̃′(R) > 0
and Φ̃(r) > Φ̃(R) for every r > R. Therefore, the minimum of Φ[ū] is achieved in
B(0, R). Let x̄ be a minimum point for Φ[ū]. Then (2.2) implies

Φ[ū](x̄) =
−ωū2(x̄) + ∆Φ[ū](x̄)

ū2(x̄)
� −ω.

In view of proposition 2.2, we can define the map

Φ : H1 → D1,2,

which maps each u ∈ H1 in the unique solution of (2.2). From standard arguments,
we have Φ ∈ C1(H1, D1,2) and from the very definition of Φ we get that

F ′
φ(u, Φ[u]) = 0 ∀u ∈ H1. (2.6)
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Now let us consider the functional

J : H1 → R, J(u) := F (u, Φ[u]).

By proposition 2.1, J ∈ C1(H1, R) and, by (2.6), we have

J ′(u) = F ′
u(u, Φ[u]).

By the definition of F , we obtain

J(u) = 1
2

∫
R3

(|∇u|2 − |∇Φ[u]|2 + [m2 − ω2]u2 − u2Φ[u]2) dx

− ω

∫
R3

u2Φ[u] − 1
p

∫
R3

|u|p dx.

Multiplying both members of (2.2) by Φ[u] and integrating by parts, we obtain
∫

R3
|∇Φ[u]|2 dx +

∫
R3

|u|2|Φ[u]|2 dx = −ω

∫
R3

|u|2Φ[u] dx. (2.7)

Using (2.7), the functional J may be written as

J(u) = 1
2

∫
R3

(|∇u|2 + [m2 − ω2]u2 − ωu2Φ[u]) dx − 1
p

∫
R3

|u|p dx. (2.8)

The next lemma states a relationship between the critical points of the functionals
F and J (the proof can be found in [6]).

Lemma 2.4. The following statements are equivalent.

(i) (u, Φ) ∈ H1 × D1,2 is a critical point of F .

(ii) u is a critical point of J and Φ = Φ[u].

Then, in order to get solutions of (2.1), (2.2), we look for critical points of J .

Theorem 2.5. Assume hypotheses (a) and (b). Then the functional J has infinitely
many critical points un ∈ H1 having a radial symmetry.

Proof. Our aim is to apply the equivariant version of the mountain-pass theorem
(see [1, theorem 2.13] or [18, theorem 9.12]). Since J is invariant under the group
of translations, there is clearly a lack of compactness. In order to overcome this
difficulty, we consider radially symmetric functions. More precisely, we introduce
the subspace

H1
r = {u ∈ H1 | u(x) = u(|x|)}.

We divide the remaining part of the proof into three steps.

Step 1. Any critical point u ∈ H1
r of J|H1

r
is also a critical point of J .

The proof can be found in [6].
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Step 2. The functional J|H1
r

satisfies the Palais–Smale condition, i.e. any sequence
{un}n ⊂ H1

r such that J(un) is bounded and J ′
|H1

r
(un) → 0 contains a convergent

subsequence.

For the sake of simplicity, from now on, we set Ω = m2−ω2 > 0. Let {un}n ⊂ H1
r

be such that
|J(un)| � M, J ′

|H1
r
(un) → 0

for some constant M > 0. Then, using the form of J given in (2.8),

pJ(un) − J ′(un)un

= ( 1
2p − 1)

∫
R3

(|∇un|2 + Ω|un|2) dx

− ω( 1
2p − 2)

∫
R3

u2
nΦ[un] dx +

∫
R3

u2
n(Φ[un])2 dx

� ( 1
2p − 1)

∫
R3

(|∇un|2 + Ω|un|2) dx − ω( 1
2p − 2)

∫
R3

u2
nΦ[un] dx. (2.9)

We distinguish two cases: either p � 4 or 2 < p < 4.
If p � 4, by (2.9), using proposition 2.2, we immediately deduce that

pJ(un) − J ′(un)un � ( 1
2p − 1)

∫
R3

(|∇un|2 + Ω|un|2) dx. (2.10)

Moreover, by hypothesis (a),

( 1
2p − 1)

∫
R3

(|∇un|2 + Ω|un|2) dx � c1‖un‖2, (2.11)

and, by assumption,

pJ(un) − J ′(un)un � pM + c2‖un‖ (2.12)

for some positive constants c1 and c2.
Combining (2.10), (2.11) and (2.12), we deduce that {un}n is bounded in H1

r .
If 2 < p < 4, by proposition 2.2 and (2.9), we get

pJ(un) − J ′(un)un � ( 1
2p − 1)

∫
R3

(|∇un|2 + Ω|un|2) dx − ω2(2 − 1
2p)

∫
R3

u2
n dx

= ( 1
2p − 1)

∫
R3

|∇un|2 + 1
2 (m2(p − 2) − 2ω2)

∫
R3

|un|2 dx.

By hypothesis (b), m2(p − 2) − 2ω2 > 0, and we repeat the same argument as for
p � 4 and obtain the boundedness of {un}n in H1

r .
On the other hand, using equation (2.2) and proceeding as in (2.5), we get∫

R3
∇Φ[un]|2 dx �

∫
R3

|∇Φ[un]|2 dx +
∫

R3
|un|2|Φ[un]|2 dx

= −ω

∫
R3

u2
nΦ[un] dx

� cω‖un‖2
L12/5‖Φ[un]‖D1,2 ,

which implies that {Φ[un]}n is bounded in D1,2.
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Then, up to a subsequence,

un ⇀ u in H1
r ,

Φ[un] ⇀ φ in D1,2.

If L : H1
r → (H1

r )′ is defined as

L(u) = −∆u + Ωu,

then
L(un) = ωunΦ[un] + |un|p−2un + εn,

where εn → 0 in (H1
r )′, that is,

un = L−1(ωunΦ[un]) + L−1(|un|p−2un) + L−1(εn).

Now note that {unΦ[un]} is bounded in L
3/2
r ; in fact, by Hölder’s inequality,

‖unΦ[un]‖
L

3/2
r

� ‖un‖L2
r
‖Φ[un]‖L6

r
� c‖un‖L2

r
‖Φ[un]‖D1,2 .

Moreover, {|un|p−2un} is bounded in Lp′

r (where 1/p + 1/p′ = 1). The immer-
sions H1

r ↪→ L3
r and H1

r ↪→ Lp
r are compact (see [8] or [19]), and thus, by duality,

L
3/2
r and Lp′

r are compactly embedded in (H1
r )′. Then, by standard arguments,

L−1(ωunΦ[un]) and L−1(|un|p−2un) strongly converge in H1
r . Then we conclude

that
un → u in H1

r .

Step 3. The functional J|H1
r

satisfies the geometrical hypothesis of the equivariant
version of the mountain-pass theorem.

First of all, we observe that J(0) = 0. Moreover, by proposition 2.2 and (2.8),

J(u) � 1
2

∫
R3

|∇u|2 dx + 1
2Ω

∫
R3

|u|2 dx − 1
p

∫
R3

|u|p dx.

The hypothesis 2 < p < 6 and the continuous embedding H1 ⊂ Lp imply that there
exists ρ > 0 small enough such that

inf
‖u‖H1=ρ

J(u) > 0.

Since J is even, the thesis of step 3 will follow if we prove that, for every finite-
dimensional subset V of H1

r , we have

lim
u∈V,

‖u‖H1→+∞

J(u) = −∞. (2.13)

Let V be an m-dimensional subspace of H1
r and let u ∈ V . By proposition 2.2,

Φ[u] � −ω, where u �= 0, so that

J(u) � 1
2

∫
R3

(|∇u|2 + Ω|u|2 + ω2u2) dx − 1
p

∫
R3

|u|p � c‖u‖2
H1 − 1

p
‖u‖p

Lp

and (2.13) follows, since all norms in V are equivalent.
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Proof of theorem 1.1. Lemma 2.4 and theorem 2.5.

Remark 2.6. In view of remark 2.3, the existence of one non-trivial critical point
for the functional J follows from the classical mountain-pass theorem; more pre-
cisely, with ū ∈ H1

r ∩ C∞ as in remark 2.3, since ‖Φ[ū]‖∞ � ω, we have

J(tū) � 1
2 t2

∫
R3

(|∇ū|2 + Ω|ū|2 + ω2ū2) dx − tp

p

∫
R3

|ū|p → −∞ as t → +∞.

3. Nonlinear Schrödinger equations coupled with Maxwell equations

For the sake of simplicity, we assume that � = m = e = 1 in (1.14), (1.15). Then
we are reduced to studying the following system in R

3:

− 1
2∆u + Φu + ωu − |u|p−2u = 0, (3.1)

−∆Φ = 4πu2. (3.2)

We will assume that

(a) ω > 0, and

(b) 4 � p < 6.

Of course, equalities (3.1), (3.2) are the Euler–Lagrange equations of the func-
tional F : H1 × D1,2 → R defined as

F(u, Φ) = 1
4

∫
R3

|∇u|2 dx− 1
16π

∫
R3

|∇Φ|2 dx+ 1
2

∫
R3

(Φu2 +ωu2) dx− 1
p

∫
R3

|u|p dx,

where H1 and D1,2 are defined as in the previous section.
It is easy to prove the analogous of proposition 2.1, i.e. that F ∈ C1(H1×D1,2, R)

and that its critical points are solutions of (3.1), (3.2).
Moreover, we have the following proposition.

Proposition 3.1. For every u ∈ H1, there exists a unique solution Φ = Φ[u] ∈
D1,2 of (3.2) such that the following hold.

(i) Φ[u] � 0.

(ii) Φ[tu] = t2Φ[u] for every u ∈ H1 and t ∈ R.

Proof. Let us consider the linear map

φ ∈ D1,2 �→
∫

R3
u2φ dx,

which is continuous by (2.5). By Lax–Milgram’s lemma, we get the existence of a
unique Φ ∈ D1,2 such that∫

R3
∇Φ∇φ dx = 4π

∫
R3

u2φ dx ∀φ ∈ D1,2,

i.e. Φ is the unique solution of (3.2). Furthermore, Φ achieves the minimum

inf
φ∈D1,2

{
1
2

∫
R3

|∇φ|2 − 4π

∫
R3

u2φ dx

}
= 1

2

∫
R3

|∇Φ|2 dx − 4π

∫
R3

u2Φ dx.
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Note that |Φ| also achieves such a minimum. Then, by uniqueness, Φ = |Φ| � 0.
Finally,

−∆Φ[tu] = 4πt2u2 = −t2∆Φ[u] = −∆(t2Φ[u]).

Thus, by uniqueness, Φ[tu] = t2Φ[u].

Proceeding as in the previous section, we can define the map

Φ : H1 → D1,2,

which maps each u ∈ H1 in the unique solution of equation (3.2). As before,
Φ ∈ C1(H1, D1,2) and

F ′
Φ(u, Φ[u]) = 0 ∀u ∈ H1.

Now consider the functional J : H1 → R defined by

J (u) = F(u, Φ[u]).

J belongs to C1(H1, R) and satisfies J ′(u) = Fu(u, Φ[u]). Using the definition of
F and equation (3.2), we obtain

J (u) = 1
4

∫
R3

|∇u|2 dx + 1
2ω

∫
R3

|u|2 dx + 1
4

∫
R3

|u|2Φ[u] dx − 1
p

∫
R3

|u|p dx.

As before, one can prove the following lemma.

Lemma 3.2. The following statements are equivalent.

(i) (u, Φ) ∈ H1 × D1,2 is a critical point of F .

(ii) u is a critical point of J and Φ = Φ[u].

Now we are ready to prove the existence result for equations (3.1), (3.2).

Theorem 3.3. Assume hypotheses (a) and (b). Then the functional J has a non-
trivial critical point u ∈ H1 having a radial symmetry.

Proof. Let H1
r be defined as in theorem 2.5.

Step 1. Any critical point u ∈ H1
r of J|H1

r
is also a critical point of J .

The proof is as in theorem 2.5.

Step 2. The functional J|H1
r

satisfies the Palais–Smale condition.

Let {un}n ⊂ H1
r be such that

|J (un)| � M, J ′
|H1

r
(un) → 0

for some constant M > 0. Then

pJ (un) − J ′(un)un

= ( 1
4p − 1

2 )
∫

R3
|∇un|2 + ( 1

4p − 1)
∫

R3
Φ[un]u2

n dx + ( 1
2p − 1)ω

∫
R3

|un|2 dx

� ( 1
4p − 1

2 )
∫

R3
|∇un|2 + ( 1

2p − 1)ω
∫

R3
|un|2 dx
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by proposition 3.1, since p � 4. Moreover,

( 1
4p − 1

2 )
∫

R3
(|∇u|2 + ω|u|2) dx � c1‖un‖2

and, by assumption,

pJ (un) − J ′(un)un � pM + c2‖un‖H1

for some positive constants c1 and c2.
We have thus proved that {un}n is bounded in H1

r .
On the other hand,

‖Φ[un]‖2
D1,2 = 4π

∫
R3

u2Φ[un] dx,

and then, using inequality (2.5), we easily deduce that {Φ[un]}n is bounded in D1,2.
The remaining part of the proof follows as in step 2 of theorem 2.5, after replac-

ing L with L : H1
r → (H1

r )′ defined as L(u) = − 1
2∆u + ωu.

Step 3. The functional J|H1
r

satisfies the three geometrical hypothesis of the moun-
tain-pass theorem.

By proposition 3.1, we have

J (u) � 1
4

∫
R3

|∇u|2 dx + 1
2ω

∫
R3

|u|2 dx − 1
p

∫
R3

|u|p dx.

Then, using the continuous embedding H1 ⊂ Lp, we deduce that J has a strict
local minimum in 0.

We introduce the following notation: if u : R
3 → R, we set

uλ,α,β(x) = λβu(λαx), λ > 0, α, β ∈ R.

Now fix u ∈ H1
r . We want to show that

Φ[uλ,α,β ] = (Φ[u])λ,α,2(β−α). (3.3)

In fact,

−∆Φ[uλ,α,β ](x) = 4πu2
λ,α,β(x) = 4πλ2βu2(λαx)

= −λ2β(∆Φ[u])(λαx) = −∆((Φ[u])λ,α,2(β−α))(x).

By uniqueness (see proposition 3.1), equation (3.3) follows.
Now take u �≡ 0 in H1

r and evaluate

J (uλ,α,β) = 1
4 (λ2β−α)

∫
R3

|∇u|2 dx + 1
2ωλ2β−3α

∫
R3

u2 dx

+ 1
4 (λ4β−5α)

∫
R3

u2Φ[u] dx − λβp−3α

p

∫
R3

|u|p dx.

We want to prove that J (uλ,α,β) < J (0) for some suitable choice of λ, α and β.
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For example, assume that

βp − 3α < 0,

βp − 3α < 2β − α,

βp − 3α < 2β − 3α,

βp − 3α < 4β − 5α.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.4)

Then it is clear that J (uλ,α,β) → −∞ as λ → 0.
So we look for a couple (α, β) which satisfies (3.4). From the third inequality, we

get β < 0. Combining the second and the fourth ones, we derive

4 − p <
2α

β
< p − 2. (3.5)

Such an inequality is satisfied by taking β = 2α, which also satisfies the first
inequality in (3.4).

In a similar way, one can prove that if

βp − 3α > 0,

βp − 3α > 2β − α,

βp − 3α > 2β − 3α,

βp − 3α > 4β − 5α,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.6)

then J (uλ,α,β) → −∞ as λ → +∞, with the same choice β = 2α.

Remark 3.4. Notice that the systems (3.4) or (3.6) have a solution for every p > 3.
More precisely, for every p > 3, there is a couple (α, β) which satisfies the inequal-
ity (3.5) and, consequently, J (uλ,α,β) → −∞. The restriction p � 4 appears in
proving the Palais–Smale condition.

Proof of theorem 1.2. Lemma 3.2 and theorem 3.3.
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