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Optimal growth over a time-evolving
variable-density jet at Atwood number
|At| = 0.25
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Secondary instabilities growing over a time-evolving variable-density round jet subject
to the primary Kelvin–Helmholtz (KH) instability at Atwood number |At| = 0.25 are
investigated with a non-modal linear stability analysis. Despite local modifications of
the base flow vorticity induced by the baroclinic torque, these disturbances experience
a short-term universal growth due to a combination of the Orr and lift-up mechanisms,
whatever the azimuthal wavenumber m. At Re = 1000, the secondary energy growth stems
from the development of elliptical and hyperbolic instabilities, with an E-type-to-H-type
transition as m and Re increase, as in the homogeneous case (Nastro et al., J. Fluid
Mech., vol. 900, 2020, A13). In the light jet at Re = 1000, after the KH mode saturation,
the high-m H-type instability is replaced by a perturbation organised as counter-rotating
streamwise vortices located in the base flow region of promoted strain rate. Increasing the
Reynolds number up to Re = 10 000 yields larger energy growths and a strong anisotropy
among energy and enstrophy components with a preferential increase of axial velocity
and azimuthal vorticity. Both come from the linearised baroclinic source that drives the
optimal response towards folded sheets of axial velocity that differ from those observed
in the variable-density plane shear layers. When the perturbation is injected around the
KH saturation time for Re = 10 000, the response to optimal perturbation takes the form
of fast growing secondary KH instabilities whatever m. We find these three-dimensional
secondary KH instabilities to be good candidates for the transition to turbulence in
variable-density jet flows.
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1. Introduction

Stability theory and transition in free shear flows have long been a subject of central
importance in much research involving fluid mixing flow. Because of its frequent use in
fluid engineering and its common occurrence in natural flows, the round jet is an archetypal
open shear flow that has drawn a great deal of interest. The round jet transition is primarily
governed by the development of co-rotating vortex ring structures associated with the
Kelvin–Helmholtz (KH) instability of the cylindrical shear layer (Becker & Massaro
1968). This inviscid inflectional instability (Drazin & Reid 1981; Rayleigh 1892) can be
properly characterised by a local linear modal stability analysis (Batchelor & Gill 1962;
Lessen & Singh 1973; Crighton & Gaster 1976; Morris 1976; Plaschko 1979; Michalke
1984). The intensity and the spatial organisation of these primary vortex rings determine
the dominant mechanism of the jet spreading through the entrainment of external quiescent
fluid. This phenomenon, also defined as the ‘gulping’ of outer fluid triggered by the
rolling-up of the axisymmetric jet shear layer, has been described by Dimotakis (1986) for
the plane mixing layer. By extending his considerations from the shear layer to the round
jet, three different stages can be distinguished in the evolution/spreading of a jet flow. The
first phase called induction involves large-scale entrainment of external fluid pulled into the
cylindrical shear layer as a result of the KH instability. There, a fluid element is deformed
by the local strain field until its length scale is small enough to be smeared out by mass
diffusion. This second stage is known as diastrophy and is also susceptible to hosting
three-dimensional secondary instabilities. In the third stage, called infusion, the flow
completes its transition to turbulence after a rapid development of small scales motions.
The dynamics between the phases of induction and diastrophy is of crucial importance to
understand the subsequent route to turbulence because the physical mechanisms involved
in these stages trigger flow bifurcations and transition. To take a further step in this
direction, we decompose the problem at stake into an unsteady base flow, developing a
standard KH instability we call primary, and a perturbation that grows over the primary
one which is therefore called secondary throughout this paper. Furthermore, when we refer
to homogeneity here, we are referring only to density homogeneity.

In the homogeneous case, the stability analysis of Nastro, Fontane & Joly (2020) on the
time-dependent KH vortex ring has highlighted the emergence of secondary elliptical and
hyperbolic instabilities. They are named in reference to the local streamlines distribution
and the associated deformation field in the region of the base flow where they develop.
The former is localised in the KH vortex core where streamlines are locally elliptical in the
frame of reference moving with the azimuthal vorticity maximum, whereas the latter yields
oscillations in the braid region where streamlines are locally hyperbolic (in the same frame
of reference). Following the work of Arratia, Caulfield & Chomaz (2013), they are referred
to as E-type and H-type instabilities, respectively. Specifically, the E-type instability is a
core-centred instability at small azimuthal wavenumber m ∼ 1. The H-type instability,
located on the braid, arises at larger wavenumbers m � 1. As advocated by Rogers &
Moser (1993) in plane mixing layers, the three-dimensionalisation of homogeneous round
jets thus results from the combined development of these two secondary instabilities
whose relative contribution depends on the azimuthal wavenumber m and on the Reynolds
number Re (Nastro et al. 2020). In free shear flows (jets, wakes and mixing layers), E-type
and H-type instabilities are themselves found to grow thanks to a combination of the Orr
(1907) and lift-up (Ellingsen & Palm 1975; Landhal 1975, 1980) transient mechanisms.
Recently, the study of Jimenez-Gonzalez, Brancher & Martinez-Bazan (2015) on both the
steady and the unsteady diffusing homogeneous jet profile showed the emergence of a
third mechanism called ‘shift-up’. This phenomenon is of the same nature as the lift-up
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mechanism because it is associated with a pair of counter-rotating streamwise vortices.
Nevertheless, it is very specific to the helical perturbation (m = 1) and induces a radial
displacement of the jet as a whole.

In the case of a density-contrasted round jet, the presence of a density difference between
the jet and the ambient flow substantially alters the KH vortex ring dynamics. We place
ourselves in the case of round jets at large Froude numbers in the beyond-Boussinesq
mixing regime. In this situation, when the jet-to-ambient density ratio S = ρj/ρ∞ is
below a critical threshold, the round jet exhibits self-sustained oscillations characterised
by a synchronised train of KH billows at a well-marked frequency. This oscillating
behaviour corresponds to the emergence of a nonlinear global axisymmetric mode of the
jet (Lesshafft et al. 2006; Lesshafft, Huerre & Sagaut 2007) which has been observed
experimentally both in heated jets by Monkewitz et al. (1990) and in binary mixing jets of
helium–air by Kyle & Sreenivasan (1993). This global mode is the symptom of an absolute
instability of the parallel flow within a sufficiently large streamwise extent starting from
the nozzle exit (Lesshafft et al. 2006, 2007). This so-called jet column mode is different
from the shear-layer mode associated with the classical KH instability because it exhibits
a pressure disturbance extending well beyond the jet shear layer, with a maximum intensity
on the jet axis (Jendoubi & Strykowski 1994). Its frequency is in good agreement with the
Strouhal number of the global nonlinear mode close to the critical density ratio but departs
significantly when S is decreased below this critical threshold (Lesshafft et al. 2006, 2007).
In their experiments of heated jets, Monkewitz et al. (1990) identified two global modes
with respective Strouhal numbers of St ∼ 0.3 and St ∼ 0.45 and corresponding to critical
density ratios of S = 0.73 and S = 0.63, whereas for helium–air jets, Kyle & Sreenivasan
(1993) only observed the second mode with a frequency of St ∼ 0.45 below a density
ratio of S = 0.6. Both the critical density ratio and the Strouhal number of this global
mode depend on various physical parameters (Lesshafft et al. 2006; Lesshafft & Huerre
2007; Lesshafft et al. 2007; Nichols, Schmid & Riley 2007): the Reynolds number Re, the
Mach number Ma, the jet aspect ratio α = �0/ϑ where �0 is the jet radius and ϑ is the
shear layer momentum thickness and the density ratio S (only for the global frequency).
Hallberg & Strykowski (2006) determined a universal scaling for the mode frequency
St ∼ Re α1/2(1 + S1/2) whereas the largest critical density ratio S = 0.73 is obtained for
incompressible jets at high aspect ratio and large Reynolds numbers (Monkewitz et al.
1990).

Another striking feature of low-density round jets lies in the spectacular side ejections,
inclined and distinct from the main jet, that were first observed experimentally by
Monkewitz & Bechert (1988) and Monkewitz et al. (1989). These side jets can exhibit
ejection angles as large as 90◦ with respect to the jet axis and they induce an increase
of the effluent to background fluid mixing and of the jet spreading. They are likely to
be related to the development of secondary instabilities of low-density jets and there has
been a consensus so far about the underlying physical mechanism that was first proposed
by Monkewitz & Pfizenmaier (1991) and later supported by Brancher, Chomaz & Huerre
(1994). This ejection mechanism relies on the amplification of radial velocity induction
between pairs of counter-rotating longitudinal vortices that develop in between consecutive
KH vortex rings. As such, the latter argument resorts to the intensification of a secondary
perturbation that is already a standard pattern of the transition of homogeneous shear
flows to three-dimensionality. The side ejections would not be driven then by any growth
mechanism specific to variable-density flows. Because Monkewitz et al. (1989, 1990)
observed these side ejections by heating or forcing acoustically the round jet, they were
well-founded to consider side ejections as only by-products of the strong coherence of the
self-sustained KH vortex rings either arising naturally below the critical density ratio or
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due to the acoustic forcing. However, the experimental results of Fontane (2005) showed
that side ejections could occur even if the density ratio is above the convective-absolute
threshold, thus weakening the advocated causality between the existence of a global mode
induced by an absolute primary instability and the existence of the side jets. In addition,
Lopez-Zazueta, Fontane & Joly (2016), stemming from their stability analysis of the
variable-density mixing layer, found that side jets may result from the convergence of
longitudinal velocity streaks near the braid saddle point. This convergence is promoted by
the linearised baroclinic torque contribution to the longitudinal velocity perturbation and
stands as an alternative to the induction mechanism already present in the homogeneous
situation. The physical mechanism at the origin of the side ejections thus remains an open
question.

The dynamics of variable-density jets is affected by the baroclinic production/destruction
of vorticity in response to the local misalignment between the density gradient, that
scales with the Atwood number At = (S − 1)/(S + 1), verifying At ∈ ] − 1, 1[, and
the flow acceleration. Most importantly, Lesshafft & Huerre (2007) showed that the
baroclinic torque is accountable for the change from a convective to an absolute
nature of the jet column mode. In variable-density plane shear layers, the baroclinic
vorticity production modifies significantly the secondary instabilities yielding a specific
three-dimensionalisation associated with longitudinal velocity streaks in place of the
pairs of counter-rotating longitudinal vortices arising in homogeneous shear flows
(Lopez-Zazueta et al. 2016). In addition, a new secondary two-dimensional KH mode
leading to fractal breakups has been also identified numerically (Reinaud, Joly &
Chassaing 2000; Fontane, Joly & Reinaud 2008; Lopez-Zazueta et al. 2016). These
secondary billows develop on the light side of the primary KH structure before being
convected towards its core as the primary KH wave overturns.

For the purpose of clarifying the conjecture about the origin of the side ejections, we
examine the secondary perturbation growth in the variable-density round jet. We thus
perform a non-modal stability analysis over the unsteady evolution of the axisymmetric
KH roll-up under substantial action of the density variation. Such analysis has not been
conducted so far although several investigations on local and global modes were carried
out for both the homogeneous (Garnaud et al. 2013a,b; Jimenez-Gonzalez et al. 2015;
Jimenez-Gonzalez & Brancher 2017) and the variable-density unperturbed jet (Coenen
et al. 2017). We set the Atwood number to |At| = 0.25, the negative and positive values
corresponding to the light and heavy jets, respectively. As an illustration Atwood numbers
At = −0.25 and At = −0.28 are representative of a jet of natural gas and a methane jet
issuing in ambient air, and these are real situations in which mixing promotion may be
sought. In addition, according to Fontane (2005), the corresponding density ratio S = 0.6
is low enough to place ourselves in the domain of natural occurrence of side jets.

Adopting a temporal approach, non-parallel effects such as the frequency and
wavenumber drifts are neglected. As the two-dimensional pairing is known to simply delay
the progression towards the three-dimensionalisation of the flow (Moser & Rogers 1993;
Rogers & Moser 1993; Arratia et al. 2013; Nastro 2020) but not to change the nature of
the subsequent stages, we consider pairing-free base flows and we restrict the analysis to
a time-dependent base flow with a streamwise extent coincident with the most amplified
primary KH mode wavelength. We follow the time evolving process in a frame of reference
moving with the constant phase velocity of the most unstable KH mode, with no bias on
the outcome of the analysis but improving the observability of perturbations growth. The
analysis addresses two distinct phases in the development of the base flow. The short-term
dynamics for which the linear growth of the primary mode slightly alters the otherwise
parallel base flow. In this first phase we also conduct a non-modal stability analysis of a

936 A15-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

45
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2022.45


Optimal growth over a time-evolving VD jet at |At| = 0.25

purely diffusing parallel jet, such as that carried out by Jimenez-Gonzalez et al. (2015)
for the homogeneous jet. Then we consider optimal growth over the second phase that
corresponds to the fully nonlinear roll-up into a vortex ring.

The paper is organised as follows. The governing equations and the numerical methods
are presented in § 2 together with a detailed description of the specific features of the
base flow that will influence the development of three-dimensional motions. The results
are discussed in § 3 through the influence of the Atwood number At, the azimuthal
wavenumber m, the optimisation interval (both the injection t0 and horizon T times) and
the Reynolds number Re. Conclusions and perspectives are finally addressed and discussed
in § 4.

2. Formulation of the problem

2.1. Governing equations
We consider a round jet of density ρj discharging into a quiescent fluid of density ρ∞.
The reference frame is cylindrical (r, θ, z) with the r, θ and z axes corresponding to
the radial, azimuthal and streamwise directions, respectively. We denote �0, u0 and ρ0
the characteristic length, velocity and density scales. We take �0 as the jet radius, u0
as the jet centreline velocity and ρ0 as the mean density (ρj + ρ∞)/2. Considering
an asymptotically small Mach number and constant dynamic viscosity μ and Fickian
diffusivity D , which is a fair approximation for a binary mixing of perfect gases (see
appendix A of Fontane 2005), the equation of state can be combined with the continuity
equation and the transport equation of the mass fraction of one of the species to show
that the non-solenoidal part of the velocity field is of diffusive nature (see Joseph 1990;
Sandoval 1995):

∇ · u = − 1
Re Sc

∇ ·
(

1
ρ

∇ρ

)
, (2.1)

where Re = (ρ0u0�0)/μ and Sc = μ/ρ0D are the Reynolds and Schmidt numbers. The
relative weight of the inertia compared with buoyancy is measured by the Froude number
Fr = u0/

√
g′�0 with the modified gravity acceleration being g′ = gAt. As we address

buoyancy-free flows, the Froude number is assumed to be large, i.e. Fr � 1, and the
dimensionless Navier–Stokes equations read

Dtρ = ρ

Re Sc
∇ ·

(
1
ρ

∇ρ

)
, (2.2)

ρDtu = −∇p + 1
Re

�u + 1
3Re

∇(∇ · u), (2.3)

where Dt = ∂t + (u · ∇) denotes the material derivative. The corresponding vorticity
equation is obtained by taking the curl of the momentum equation (2.3)

Dtω = ω · ∇u − ω(∇ · u) + 1
ρ2 ∇ρ × ∇p

+ 1
Reρ

�ω − 1
Reρ2 ∇ρ × �u − 1

3Reρ2 ∇ρ × ∇(∇ · u), (2.4)

where the third term on the right-hand side is the baroclinic torque b = (1/ρ2)∇ρ × ∇p
which becomes active as soon as isopycnals and isobars are not aligned. This source term
plays a key role in the evolution of the variable-density base flow as shown in § 2.2.
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As stated by (2.3) in the inviscid limit, the baroclinic torque can be rewritten by introducing
the flow acceleration a = Dtu = −(1/ρ)∇p:

b = a × 1
ρ

∇ρ, (2.5)

which underlines the universal nature of baroclinic vorticity production. In large-Froude-
number flows considered here, the local fluid particle acceleration a replaces the constant
external gravity acceleration g relevant to low-Froude-number stratified flows.

2.2. Time-dependent variable-density KH vortex rings
The two-dimensional base flow consists in a time-evolving axisymmetric jet which
undergoes the nonlinear development of the primary KH instability starting from the
classical profile proposed by Michalke (1971). The velocity U = [Ur, 0, Uz] and pressure
fields P are computed in a meridian plane of extent [−rmax, rmax] × [0, Lz] through a
direct numerical simulation using a two-dimensional Fourier–Chebyshev pseudo-spectral
method described in Joly, Fontane & Chassaing (2005), Joly & Reinaud (2007) and Nastro
et al. (2020). We adopt a dealiased Fourier and a Chebyshev collocation method for the
discretisation of the streamwise and radial directions, respectively. A free-slip boundary
condition is imposed at the radial boundaries (r = ±rmax) of the flow domain, whereas the
flow is periodic in the streamwise direction.

The velocity profile chosen for prescribing the initial condition corresponds to
Michalke’s profile number two (Michalke 1971) and the initial density profile is assumed
to have the same functional form (see Fontane 2005; Nichols et al. 2007):

Ūz(r) = 1
2

+ 1
2

tanh
[
α

4

(
1
r

− r
)]

, (2.6)

R̄(r) = 1 + At
1 − At

{
1 + tanh

[
αρ

4

(
1
r

− r
)]}

, (2.7)

where α = �0/ϑ is the jet aspect ratio with ϑ the shear layer momentum thickness and
αρ = �0/ϑρ is the aspect ratio of the density profile where ϑρ represents the gradient
density thickness. For comparison with the results of Nastro (2020) in the homogeneous
case, the aspect ratio α of the velocity profile is set at α = 10 throughout this paper. This
choice stems from the fact that this value stands as an intermediate value and allows
to gather the specific features of the cylindrical geometry. It should be recalled that for
α � 1 the shear layer momentum thickness ϑ is significantly small compared with the
jet radius �0, so that the flow development is not significantly affected by the cylindrical
geometry, whereas for α � 9.5 the Michalke profile is susceptible to host naturally a
helical primary KH mode rather than the axisymmetric one (Jimenez-Gonzalez et al.
2015). Moreover, we consider ϑρ ≡ ϑ so that the density aspect ratio coincides with
the radius-to-momentum thickness ratio, i.e. αρ ≡ α = 10. Two distinct base flows are
generated for the transient growth analysis over short times. First, the time evolution of a
purely diffusive unperturbed parallel jet is obtained by initialising the direct numerical
simulation with the velocity and density fields (2.6)–(2.7). Second, the nonlinear KH
roll-up is obtained by perturbing the axisymmetric jet defined by (2.6)–(2.7) with the
most unstable mode given by the temporal linear stability analysis, i.e. the primary KH
mode (see Nastro et al. 2020). The superposition of the Michalke profiles and the primary
KH mode (scaled by a small amplitude aKH) stands as the initial condition for the direct
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At S = ρj/ρ∞ �0 ϑciKH crKH rmax 100aKH Lz/�0 �GE|t→∞

−0.25 0.600 2.34 0.0444 0.562 16.4 1.43 2.69 2.05
0 1 2.39 0.0421 0.633 16.7 1.88 2.63 2.17
0.25 1.667 2.60 0.0410 0.689 18.2 1.98 2.42 2.38

Table 1. Main numerical parameters for the simulated KH base flow fields: Atwood number At; density ratio
S = ρj/ρ∞; jet radius �0; growth rate ciKH and phase velocity crKH of the primary KH mode; maximum radius
rmax; initial amplitude of the KH mode aKH ; ratio Lz/�0 between the domain streamwise extent and the jet
radius; and asymptotic additional energy gain �GE|t→∞ according to equation (A23) of Ortiz & Chomaz
(2011).

numerical simulation. Due to nonlinearities, the energy of the primary KH mode reaches
a maximum at the so-called saturation time Ts that depends on the amplitude aKH , the
flow dimensionless parameters (Re, Sc and At) and the aspect ratio α. The saturation time
also depends on the nature of the initial perturbation. We arbitrarily choose to seed the
base flow with the most amplified KH mode. We could have chosen to seed the base flow
with the optimal KH disturbance but it has been demonstrated in the homogeneous case
that the optimal secondary growth stays unaffected (Nastro 2020). The Reynolds number
is set to Re = 1000 (except in §§ 3.3 and 3.4, where its influence is considered), which
is large enough to ensure that the primary KH wave wraps itself into a finite-amplitude
energetic vortex ring. This value of the Reynolds number is representative of the values
for which side jets naturally arise in light jets (Fontane 2005). The Schmidt number is fixed
to Sc = 1 which is relevant for the binary mixing of perfect gases, as shown by Fontane
(2005). The initial amplitude aKH is set to ensure the existence of the same significant
linear phase of growth for all cases, i.e. αTs = 100. The jet radius �0 is set so that the
most amplified KH mode corresponds to a wavenumber of 2π/Lz and the radial extent of
the domain is chosen as rmax = 7�0. It has been checked to be large enough to ensure no
influence of the free-slip boundary condition on the flow evolution. For all simulations,
we use a mesh of 5122 points, which guarantees the numerical convergence of the results.
All the numerical settings for the variable-density KH base flow fields are summarised
in table 1. Furthermore, the long-term additional energy gain �GE|t→∞ related to the
primary direct/adjoint KH modes is evaluated through the asymptotic prediction of Ortiz
& Chomaz (2011) and is given in table 1. As the additional gain becomes larger as At
increases, it can be stated that the transient energy growth of the optimal KH excitation is
stronger for the heavy jet than for the light one. However, as already observed by Fontane
(2005), the growth rate of the direct KH mode developing over a light jet is significantly
higher than that measured for a heavy jet.

Because the structure of the base flow has a direct influence on the characteristics of
the secondary instabilities, the specific features of the variable-density KH vortex ring
are described and compared with its homogeneous counterpart. Figure 1 displays the
spatial structure of the baroclinic torque at the saturation time Ts for an Atwood number of
At = −0.25 and At = 0.25. It is mostly active along the braid in the form of a source–sink
dipole centred on the hyperbolic saddle point H. The inviscid expression (2.5) is used
to illustrate the local combination of acceleration and density-gradient yielding the two
main vorticity sources and sinks along the braid. Due to the kinematic blockage born by
the vicinity of the jet axis, the local acceleration field a is not symmetric with respect
to the elliptical stagnation point E unlike in the plane mixing-layer configuration. The
base flow acceleration is stronger on the side of the braid drifting away from the jet
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Figure 1. Baroclinic torque distribution for a KH vortex ring at saturation time developing on (a) a light jet
with At = −0.25 and (b) a heavy one with At = 0.25. Points H and E denote the hyperbolic and elliptical
stagnation points. The grey-shaded region corresponds to the domain where the base flow density is higher
than ρ0. Solid (dashed) contours correspond to positive (negative) values of the contoured quantity (here the
baroclinic torque). Only the upper half-plane is shown and the jet axis corresponds to the lower bound. These
conventions hold throughout the paper.

(a) (b) (c)

r

zzz

H E
H

E

H

E

Figure 2. Azimuthal vorticity field of a KH vortex ring at the KH saturation time Ts for (a) At = −0.25,
(b) At = 0 and (c) At = 0.25.

axis, i.e. the outer side, than that on the side of the braid pointing towards the axis,
i.e. the inner side. This results in a non-zero net balance of the baroclinic sources/sinks
in the jet half-plane. In the following statements, baroclinic azimuthal vorticity production
refers to a contribution of the same sign as the initial vorticity, and of opposite sign for
destruction. As illustrated in figure 1(a) for the light jet, the resulting baroclinic vorticity
destruction is larger than the baroclinic production. The reverse is true for the heavy
jet with a stronger vorticity production than the destruction, as shown in figure 1(b).
Importantly enough, these uneven contributions of the baroclinic torque emphasise the
loss of central symmetry with respect to the elliptical stagnation point already observable
in the homogeneous jet. This is illustrated in figure 2 which displays the azimuthal vorticity
field of a KH vortex ring at the saturation time Ts for the light, homogeneous and heavy
jets. In agreement with figure 1, a significant depletion of base flow vorticity is observed
on the outer side of the braid of the light jet, together with a slight increase of vorticity
on the inner side. In the heavy jet, the local baroclinic production on the outer side of the
braid yields a local maximum of vorticity of the same magnitude as that located in the
vortex core. The deformation of the isocontours on the inner side of the heavy jet braid
denotes a substantial local reduction of the azimuthal vorticity. This uneven redistribution
of vorticity is intensified with increasing Atwood and Reynolds numbers as illustrated
by the azimuthal vorticity of the same variable-density jets at Re = 10 000 in figure 3.
Increasing the Reynolds number results in sharper gradients of velocity and density which
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Optimal growth over a time-evolving VD jet at |At| = 0.25

r

z z z z z

t = 0 t = Ts / 2 t = 3Ts / 2 t = 2Tst = Ts

Figure 3. Temporal evolution of the azimuthal vorticity field of a perturbed round jet for Re = 10 000 with
At = −0.25 (lower half-plane) and At = 0.25 (upper half-plane). When comparing in the entire meridian plane,
the jet axis lies in the centre of the figure and this convention holds throughout the paper.

yield a layered distribution of the base flow vorticity as well as stronger baroclinic sources
and sinks. Their effect on the base flow is visible at the saturation time where vorticity
patches of opposite sign are observable on the inner side of the braid for the heavy jet and
on the outer side for the light one.

Another consequence, closely related to the base flow vorticity redistribution, lies in a
significant change in the strain field. Figure 4 shows the local distribution of the Euclidean
norm of the deviatoric strain rate tensor ‖D0‖2 for t = 0.8Ts, Ts, 1.2Ts (see Appendix A
for its definition). Before the KH saturation time, the maximum of the strain rate field is
located in the braid region. For the light jet, it spreads also towards the vortex core and its
magnitude is slightly lower than those observed for the homogeneous and heavy cases. At
the saturation time, the light jet exhibits a strong intensification of its strain rate field in a
region going from the vortex core to the outer side of the braid. A similar but less intense
trend is observed in the homogeneous case. For the heavy jet (At = 0.25), the strain rate
field remains concentrated within the outer side of the braid, i.e. in the same region where
the baroclinic torque is an active source term (see also figure 1b). After the KH saturation,
i.e. t = 1.2Ts, the magnitude of the strain rate in the light jet becomes significantly larger
than those of the homogeneous and heavy cases and peaks in a narrow zone located in the
outer part of the vortex ring between the elliptical and hyperbolic stagnation points.

2.3. Optimisation problem
The linear evolution of the three-dimensional perturbations [u, ρ, p] that are likely to
develop on the top of the variable-density KH vortex ring [U, R, P] is now considered.
We linearise the governing equations (2.1)–(2.3) around the two-dimensional base flow
and we retain only the equations for the small-amplitude perturbations:

∂ρ

∂t
= −(U · ∇ρ + u · ∇R) − ρ(∇ · U) − R(∇ · u), (2.8)

∂u
∂t

= −(U · ∇u + u · ∇U) − 1
R

∇p + ρ

R2 ∇P + 1
ReR

�u

− ρ

ReR2 �U + 1
3ReR

∇(∇ · u) − ρ

3ReR2 ∇(∇ · U), (2.9)
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t = 0.8Ts t = 1.2Tst = Ts

r

r

r

zz z

At = −0.25

At = 0.25

At = 0

Figure 4. Euclidean norm of the deviatoric strain rate tensor in the time interval [0.8Ts, 1.2Ts] for At = −0.25,
0, 0.25 and Re = 1000. Dashed contours correspond to 20 % of the maximal absolute value of the base flow
azimuthal vorticity Ωθ . The contour levels are the same for all figures.

∇ · u = − 1
ReSc

�
(ρ

R

)
. (2.10)

This linear system, referred to as the direct system, can be cast in the following compact
form:

N t · q + Nc · q + 1
Re

Nd · q = 0, (2.11)

where q = [u, ρ, p] and the three matrix operators are the temporal operator N t, the
operator of coupling between the base flow and the perturbation Nc and the diffusion
operator Nd, respectively. Their expressions are detailed in Appendix B.

In the frame of non-modal stability analysis, the temporal behaviour of the perturbations
is not prescribed and, considering the streamwise periodicity and the azimuthal
homogeneity of the base flow, the disturbances are sought under the form

[ur, uθ , uz, ρ, p](r, θ, z, t) = 1
2([ũr, iũθ , ũz, ρ̃, p̃](r, z, t) ei(μz+mθ) + c.c.), (2.12)
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Optimal growth over a time-evolving VD jet at |At| = 0.25

where m is the azimuthal wavenumber and μ ∈ [0, 1] the real Floquet exponent. We
restrict here the search for perturbations that have the same streamwise periodicity
as the base flow, i.e. μ = 0. This is motivated by the experimental evidence that
three-dimensional secondary instabilities involved in round jets develop in between two
consecutive KH vortex rings. Furthermore, Klaassen & Peltier (1991) and Fontane & Joly
(2008) found that the most unstable modes of both stratified and inhomogeneous mixing
layers did not vary appreciably with non-zero Floquet exponent.

Amongst all possible perturbations likely to grow over the KH vortex ring, we look for
those maximising the gain of kinetic energy E over a prescribed period of time [t0, T]:

GE(T, t0) = E(T)

E(t0)
= ‖q(T)‖u

‖q(t0)‖u
, (2.13)

where t0, T are called the injection and horizon times, respectively, and ‖ · ‖u denotes the
seminorm associated with the conventional inner product yielding the kinetic energy (see
Appendix C). Following the work of Farrell (1988), we look for the optimal perturbation
with the maximal energy gain

GE(T, t0) = max
q(t0)

{GE(T, t0)}, (2.14)

over all the possible initial conditions q(t0). Its determination resorts to solving an
optimisation problem with constraints (Gunzburger 2002) enforcing the perturbation to be
a solution of the linearised Navier–Stokes equations (2.11). The problem can be classically
transformed into an optimisation problem without constraint using the variational method
of the Lagrange multipliers (see Luchini & Bottaro 1998; Corbett & Bottaro 2000, 2001).
This requires the derivation of the so-called adjoint equations (Schmid 2007) associated
with the direct system (2.8)–(2.9):

−∂ρ†

∂t
= U · ∇ρ† + 1

R2 u† ·
[
∇P − 1

Re
�U − 1

3Re
∇(∇ · U)

]
− 1

ReScR
�p†, (2.15)

−∂u†

∂t
= [U · ∇u† + u†(∇ · U) − u† · ∇UT ] + ∇p† + R∇ρ†

+ 1
Re

�

(
u†

R

)
+ 1

3Re
∇

[
∇ ·

(
u†

R

)]
, (2.16)

∇ ·
(

u†

R

)
= 0. (2.17)

Likewise the direct system (2.11), the adjoint system can be reduced to the following
compact form:

− N t · q† + N†
c · q† + 1

Re
N†

d · q† = 0, (2.18)

where q† = [u†, ρ†, p†]. Solving the evolution of this dynamical system requires a
backward-in-time integration as signified by the minus sign before the temporal operator
N t. The expressions for the adjoint matrix operator N†

c of the coupling between the base
flow and the disturbance and the adjoint diffusion operator N†

d are given in Appendix B.
An iterative procedure allows to determine the optimal perturbation and the corresponding
optimal energy gain GE, as originally proposed by Luchini & Bottaro (2001) and Corbett
& Bottaro (2001). An initial condition q(t0) chosen as a white noise is integrated forward
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in time to the horizon time T using the direct system (2.11). The initial white noise
condition can be applied to every field of the perturbation, but we restrict it here to
the velocity field because the objective is to maximise the kinetic energy gain from a
purely kinematic initial perturbation. The resulting final state is used to compute the initial
condition q†(T) for the adjoint system (2.18) which is integrated backward-in-time back to
the injection time t0. After an appropriate normalisation, this perturbation candidate at t0
is used as the initial condition for the next direct-adjoint integration. Multiple iterations of
this forward–backward loop converge eventually to the optimal perturbation. Both direct
and adjoint systems are integrated with the linearised version of the two-dimensional
three-components dealiased pseudo-spectral method used for the generation of the base
flow. The outline of the optimisation algorithm is given in Appendix C and full details
are provided in § 2.3.3 of Nastro (2020). In practice, the convergence of this iterative
optimisation algorithm is very quick and the solution is currently obtained in about 10
iterations.

2.4. Diagnostics
In order to understand the physical mechanisms associated with the energy growth of the
optimal perturbations, we use diagnostics such as the evolution equation for the energy
growth rate of the perturbation σE = (1/E) dE/dt. It is obtained straightforwardly from
the transport equation for the perturbation kinetic energy E = ‖q‖u which reads

dE
dt

= −
∫
V

uruz

(
∂Ur

∂z
+ ∂Uz

∂r

)
dV

︸ ︷︷ ︸
ΠE1

−
∫
V

(
u2

r
∂Ur

∂r
+ u2

θ

Ur

r
+ u2

z
∂Uz

∂z

)
dV

︸ ︷︷ ︸
ΠE2

+
∫
V

‖u‖
2

(∇ · U) dV︸ ︷︷ ︸
ΠE3

−
∫
V

(u
R

· ∇p
)

dV︸ ︷︷ ︸
ΠE4

+
∫
V

ρ

R2

(u
R

· ∇P
)

dV︸ ︷︷ ︸
ΠE5

+ 1
Re

∫
V

φμ dV︸ ︷︷ ︸
ΠEΦ1

+ 1
Re

∫
V

Φμ dV︸ ︷︷ ︸
ΠEΦ2

, (2.19)

where φμ is the viscous dissipation coming from the perturbation velocity field defined by

φμ = 1
R

{
u · �u + 1

3
[u · ∇(∇ · u)]

}
, (2.20)

and Φμ is the viscous dissipation coming from the coupling with the base flow velocity
field defined by

Φμ = − ρ

R2

{
u · �U + 1

3
[u · ∇(∇ · U)]

}
. (2.21)

Different source/sink terms can be thus distinguished in (2.19): ΠE1 is the energy
production/destruction due to the base flow shear, ΠE2 the energy production/destruction
due to the base flow strain field, ΠE3 the energy production/destruction due to the base
flow dilatation, ΠE4 the energy production/destruction due to the perturbation pressure
gradient, ΠE5 the energy production/destruction due to the base flow pressure gradient,
ΠEΦ1

the viscous dissipation coming from the perturbation velocity field and ΠEΦ2
the
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Optimal growth over a time-evolving VD jet at |At| = 0.25

viscous dissipation involving the base flow velocity field. The terms ΠE3 , ΠE4 , ΠE5 and
ΠEΦ2

are specific to the variable-density case, and both ΠE4 and ΠE5 terms correspond to
the remnant of the baroclinic vorticity production in the kinetic energy equation.

It is also useful to derive the linearised version of the vorticity equation (2.4) which
reads

∂ω

∂t
+ U · ∇ω + u · ∇Ω = Ω · ∇u + ω · ∇U − Ω(∇ · u) − ω(∇ · U)

+ b + 1
ReR

(
�ω − ρ

R
�Ω − φR − φρ

)
, (2.22)

where b is the linearised baroclinic torque defined by

b = 1
R

∇R ×
(

1
R

∇p − ρ

R2 ∇P
)

︸ ︷︷ ︸
(i)

+∇
(ρ

R

)
× 1

R
∇P︸ ︷︷ ︸
(ii)

, (2.23)

φR and φρ are the coupling between the base flow density field and the perturbation
diffusion and the coupling between the perturbation density field and the base flow
diffusion, respectively. They are defined as follows:

φR = 1
R

∇R ×
(

f D − ρ

R
FD

)
, (2.24)

φρ = ∇
(ρ

R

)
× FD, (2.25)

where FD = �U + 1
3∇(∇ · U) and f D = �u + 1

3∇(∇ · u).
As already done for the baroclinic torque (2.5) in the base flow vorticity equation, the

pressure terms (i) and (ii) in (2.23) can be replaced by the flow accelerations in the limit
of Re → ∞

b = a × 1
R

∇R + A × ∇
(ρ

R

)
(2.26)

with a and A the perturbation and base flow accelerations:

a = ∂u
∂t

+ U · ∇u + u · ∇U = − 1
R

∇p + ρ

R2 ∇P, (2.27a)

A = ∂U
∂t

+ U · ∇U = − 1
R

∇P. (2.27b)

The equation for the perturbation enstrophy Z = ∫
V ω∗ · ω dV is derived from the

vorticity transport equation (2.22) to evaluate its growth rate σZ = (1/Z) dZ/dt budget:

dZ
dt

=
∫
V

ωrωz

(
∂Ur

∂z
+ ∂Uz

∂r

)
dV

︸ ︷︷ ︸
ΠZ1

+
∫
V

(
ω2

r
∂Ur

∂r
+ ω2

θ

Ur

r
+ ω2

z
∂Uz

∂z

)
dV

︸ ︷︷ ︸
ΠZ2

−
∫
V

‖ω‖2

2
(∇ · U) dV︸ ︷︷ ︸
ΠZ3

−
∫
V

[ω · (u · ∇Ω)T ] dV︸ ︷︷ ︸
ΠZ4

+
∫
V

[ω · (Ω · ∇u)T ] dV︸ ︷︷ ︸
ΠZ5
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−
∫
V
(ω · Ω)(∇ · u) dV︸ ︷︷ ︸

ΠZ6

+
∫
V
(ω · b) dV︸ ︷︷ ︸

ΠZ7

+ 1
Re

∫
V

φZ dV︸ ︷︷ ︸
ΠZΦ1

+ 1
Re

∫
V

ΦZ dV︸ ︷︷ ︸
ΠZΦ2

, (2.28)

where

φZ = 1
R

[ω · (�ω − φρ)] and ΦZ = − ρ

R2

[
ω ·

(
�Ω + R

ρ
φR

)]
. (2.29a,b)

In particular, we can distinguish different source/sink terms in (2.28): ΠZ1
is the enstrophy production/destruction due to the base flow shear, ΠZ2 the
enstrophy production/destruction due to the base flow strain, ΠZ3 the enstrophy
production/destruction due to the base flow dilatation, ΠZ4 the enstrophy production/
destruction due to the perturbation stretching, ΠZ5 the enstrophy production/destruction
due to the base flow vorticity advection, ΠZ6 the enstrophy production/destruction due to
the perturbation dilatation, ΠZ7 is the baroclinic enstrophy production/destruction, ΠZΦ1
the viscous dissipation coming from the perturbation vorticity field and ΠZΦ2

the viscous
dissipation resulting from the base flow vorticity field.

3. Optimal perturbations in variable-density jets

3.1. The universal first phase
We first consider the early evolution of optimal perturbations growing from the initial time
of the base flow evolution, i.e. t0 = 0, on both an unperturbed parallel jet experiencing
viscous spreading and a jet perturbed by a low-amplitude KH mode. The Reynolds number
is Re = 1000 and the Atwood number is At = −0.25 and At = 0.25 for the light and
heavy jets, respectively. Figure 5 displays the temporal evolution of the energy gain GE
of perturbations optimised for T = Ts/2 and T = Ts, for azimuthal wavenumbers ranging
from m = 0 to m = 5. The time variable is normalised by the KH saturation time Ts. For
comparison, the energy gains corresponding to the homogeneous case have been added
(Jimenez-Gonzalez et al. 2015; Nastro et al. 2020). When perturbations are optimised
for half the KH saturation time, the energy curves are all superimposed reaching a value
of GE ≈ 102, whether disturbances grow over an unperturbed or a perturbed jet. In the
interval [0, Ts/2], the Atwood number does not have much influence on the perturbation
growth either, because the energy gain follows the same route for all cases. For t > Ts/2,
the optimal growth becomes more sensitive to the Atwood number as the energy evolution
corresponding to the light and heavy jets slightly deviate from the one of the homogeneous
case. The difference between the perturbed and unperturbed jet base flows becomes also
perceptible after half the KH saturation time. For this reason, we consider Ts/2 as a
milestone that separates the evolution of optimal disturbances in two periods: an initial
time interval [0, Ts/2] characterised by a universal growth of the perturbation energy
regardless of the density variations and the low-amplitude KH wave, and a second period
starting at t ≈ Ts/2 when the evolution of the optimal perturbation starts becoming
sensitive to the Atwood number and the nonlinear development of the KH mode. This
initial energy growth has been recognised to be universal in all shear flows by Farrell &
Ioannou (1993) and has also been observed in the case of variable-density mixing layers
(Lopez-Zazueta et al. 2016). It is associated with energy growth driven by a combination
of Orr and lift-up mechanisms, as discussed in the following.

We now focus on the spatial distribution of the kinetic energy of perturbations optimised
for T = Ts/2. Figure 6(a) shows the temporal evolution of the kinetic energy field E from
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(c) (d)

(e) ( f )

T = Ts /2
T = Ts
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Figure 5. Temporal evolution of the energy gain GE for optimal perturbations growing over a diffusing
Michalke profile (thick lines) and over a perturbed jet (thin lines) for At = −0.25 (red), At = 0 (black)
and At = 0.25 (blue) and six azimuthal wavenumbers m ∈ [0; 5]. The thick continuous lines in the figure
corresponding to m = 0 represent the temporal evolution of the energy gain of the primary KH modes. The
symbols are located at the horizon time of each energy curve.

the injection time t0 = 0 to T = Ts/2 for the optimal perturbation growing over a parallel
jet under viscous spreading (lower half-plane) and a jet perturbed by the KH mode (upper
half-plane), both in the light jet case at At = −0.25. We consider the same values of
azimuthal wavenumber m as in figure 5. Figure 6(b) displays similarly the kinetic energy
of optimal perturbations in the case of a heavy jet characterised by At = 0.25. At injection
time, the optimal perturbations take the form of two elongated layers oriented along the
direction of maximal compression of the base flow very similar to those observed in the
homogeneous case (see Nastro et al. 2020). In the diffusing parallel jet, these structures are
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t = 0 t = 0.2Ts t = 0.5Ts t = 0 t = 0.2Ts t = 0.5Ts(a) (b)

r

r

r

r

r

r

m = 5

m = 4

m = 3

m = 2

m = 1

m = 0

m = 5

m = 4

m = 3

m = 2

m = 1

m = 0

Figure 6. Early time evolution of the kinetic energy field E of optimal perturbations growing over a diffusing
unperturbed parallel jet (lower half-plane) and a perturbed jet (upper half-plane), at (a) At = −0.25 and (b)
At = 0.25, for all the azimuthal wavenumbers considered in figure 5. The horizon time for the optimisation is
T = Ts/2. The energy is normalised by the maximum value at each time and 10 equally spaced contour levels
are used.
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z z

r

At = −0.25 At = 0.25

(a) (b)

Figure 7. Close-up views taken from figure 6 for m = 3 and T = Ts/2.

symmetric whereas the addition of a primary KH instability in the base flow induces an
asymmetry between the two layers: that located in the region that will form the outer side
of the braid is more energetic. The difference in the energy peak between the two layers is
more pronounced for the heavy jet than for the light one. For later times at At = −0.25,
the larger peak relocates from the outer side towards the inner side of the braid which
hosts the main source of baroclinic vorticity production. This loss of symmetry reflects
the one observed in the base flow. Despite that asymmetry, the optimal perturbations are
not very sensitive to the presence of the KH wave in the time interval [0, Ts/2] because
the energy gains are all overlapping and the spatial distribution of the kinetic energy is
quite comparable for both the unperturbed and the perturbed jet, as evidenced in figure 6.
The base flow mean shear leads to a gradual deformation of these layers before their
complete reorientation along the direction of maximal stretching of the base flow. This
is a result of the combined action of the Orr (1907) and lift-up (Ellingsen & Palm 1975)
mechanisms which are responsible for the transient energy growth of these so-called ‘OL’
perturbations, as already observed in homogeneous jets (Nastro et al. 2020) and in plane
shear layers (Arratia et al. 2013; Lopez-Zazueta et al. 2016). The intensification/attenuation
of one or the other layer over time conforms to the evolution of the base flow mean shear,
itself driven by the uneven baroclinic vorticity sources and sinks, as described in section
§ 2.2. As a consequence, the optimal perturbation evolution differs between the light and
the heavy jet. At t = Ts/2, the most energetic layer is located in the inner side of the
braid in the light jet whereas it is located in the outer side for the heavy jet (see also
the close-up views in figure 7 for the optimal perturbation with m = 3). Nevertheless,
this uneven distribution of energy between the two layers is balanced because the energy
gain remains comparable to that obtained in the homogeneous case. Interestingly, this
asymmetry is emphasised with increasing azimuthal wavenumber m in the heavy jet and
decreased in the light one.

The initial growth of these ‘OL’ perturbations ruled by the combination of the two
shear-driven transient mechanisms is generic of shear flows. The amplification of the
radial velocity ur by the Orr mechanism can strengthen the streamwise rolls involved in
the production of longitudinal velocity streaks at play in the lift-up mechanism (Farrell
& Ioannou 1993). Simultaneously, the intensification of the axial velocity uz, fed by the
lift-up mechanism, enhances the azimuthal vorticity and, as a consequence, affects the
circulation whose conservation substantiates the Orr mechanism according to the Kelvin
theorem.

936 A15-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

45
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2022.45


G. Nastro, J. Fontane and L. Joly

T/Ts T/Ts

0 0.5 1.0 1.5 2.0 0 0.5 1.0 1.5 2.0

0 0.5 1.0 1.5 2.0 0 0.5 1.0 1.5 2.0

0 0.5 1.0 1.5 2.0 0 0.5 1.0 1.5 2.0

100

101

102

103

100

101

102

103

100

101

102

103

100

101

102

103

100

101

102

103

100

101

102

103

GE

GE

GE

(a) (b)

(c) (d)

(e)
( f )

At = −0.25
At = 0
At = 0.25

m = 0

m = 2

m = 4

m = 1

m = 3

m = 5

Figure 8. Optimal energy gain GE as a function of the time ratio T/Ts for At = −0.25 (red), At = 0 (black) and
At = 0.25 (blue), and for the same six azimuthal wavenumbers considered in figure 5. The thick continuous
lines in the figure for the axisymmetric perturbation (m = 0), correspond to the temporal evolution of the
energy gain of the specific primary KH modes.

3.2. Second period [Ts/2, 2Ts]
We now consider the temporal evolution of the optimal perturbations in the period
[Ts/2, 2Ts] during which the axisymmetric shear layer progressively rolls up into a
nonlinear KH vortex ring. Figure 8 shows the optimal energy gain GE as a function of
the normalised horizon time T/Ts, for azimuthal wavenumbers m up to five.

The optimal energy gains of disturbances growing over a homogeneous vortex ring,
as obtained by Nastro et al. (2020), have been added for comparison. For At = −0.25 the
helical mode is the global optimal similar to the homogeneous case (At = 0). For the heavy
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jet (At = 0.25), the helical perturbation is the global optimal up to T ≈ 1.8Ts, after which
the m = 2 and m = 3 modes present larger energy gains. The paths of energy growth
of both the axisymmetric and helical perturbations do not show significant sensitivity
to the Atwood number. The energy gain of the axisymmetric mode decreases after the
KH saturation time, whereas the energy of the helical mode continues to grow slowly
after Ts. The picture is quite different for modes with larger azimuthal wavenumbers.
For m ≥ 2, the disturbances growing over a heavy jet experience a substantial increase
of their energy gains after the KH saturation time (especially for m = 3) on a similar trend
as the post-saturation growth observed in the homogeneous case. As their amplification
before saturation is more efficient than for their homogeneous counterparts there is an
offset between these two cases after Ts. However, in the light jet case, the energy gains
of the perturbations are saturating if not decreasing for T > Ts. As a result, the optimal
perturbations for At = −0.25 present smaller energy gains for T > 1.5Ts than those of the
perturbations growing on the homogeneous jet.

We now focus on the spatial distribution of the kinetic energy E of the optimal
perturbations during the time interval [Ts, 2Ts] as displayed in figure 9. The upper and
lower half-planes correspond to the heavy and light jet configurations, respectively. The
axisymmetric optimal perturbation for both At = −0.25 and At = 0.25 entails a linear
transient growth relying on the 2D Orr mechanism, not exploited by the primary mode.
This Orr-driven disturbance saturates due to the absence of any three-dimensional relay
mechanism for a secondary energy growth. At this quite low Reynolds number, the
optimal growth of the helical mode m = 1 is found to be particularly unaffected by
the modifications of the base flow field by density effects nor by the contribution of the
linearised baroclinic torque. For larger azimuthal wavenumbers, the optimal perturbations
in the heavy jet experience the combined development of E-type and H-type instabilities
starting with a predominance of the elliptical mode at m = 1 and evolving towards a
preponderance of the hyperbolic one at m = 5. This change in regions of energy growth
with increasing m is similar to what has been observed in the homogeneous case (Nastro
et al. 2020). In the light jet, if the helical perturbation stands as an E-type instability, the
structure of the perturbations at larger azimuthal wavenumbers differs from that observed
in the homogeneous and heavy cases. Shortly after the KH saturation time Ts, we note a
progressive concentration of the energy growth in a region located between the vortex core
and the braid (see figure 9 for m ≥ 2 at t = 5Ts/4) which corresponds precisely to the base
flow region hosting the largest strain intensity, as evidenced in § 2.2 (see figure 4).

The structure of the optimal perturbation with m = 4 for At = −0.25 is illustrated
in figure 10. In particular, we consider the spatial distribution of the three velocity
components of the optimal perturbation at t = 1.2Ts, i.e. the time for which the light
jet exhibits the relative maximum of the strain rate field. The axial velocity uz is shown
in the meridian plane whereas the radial ur and azimuthal uθ velocity components are
represented in the crosswise plane corresponding to the maximal value of the perturbation
kinetic energy identified in figure 9 and tagged as section K–K in figure 10. The axial
velocity is mainly concentrated in this region between the vortex core and the outer
side of the braid where the base flow strain field is maximum (see figure 4). In the
corresponding crosswise plane, periodic radial ejections/injections are observed and the
azimuthal velocity is in quadrature with the radial velocity. This spatial distribution of
perturbation velocity components in the K–K plane thus complies with the standard
pattern of strained longitudinal vortices. Figure 10(d,e) displays the axial vorticity ωz in
two distinct crosswise planes: a first lying in the braid in line with the hyperbolic stagnation
point (section H–H) and the second in the vortex core in line with the elliptical stagnation
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Figure 9. Temporal evolution of the kinetic energy field E of optimal perturbations from t = 3Ts/4 to t = 2Ts
for various azimuthal wavenumbers with At = 0.25 (upper half-plane) and At = −0.25 (lower half-plane). The
optimisation time is T = 3Ts/2. The energy is normalised by the maximum value at each time for a given
Atwood number and 10 equally spaced contour levels are used.
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Figure 10. (a) Radial, (b) azimuthal and (c) axial velocity components and (d,e) axial vorticity of the optimal
perturbation characterised by m = 4 at t = T = 1.2Ts and At = −0.25. Points K, E and H indicate the location
of the peak value of the perturbation energy, the elliptical and hyperbolic stagnation points, respectively. The
radial and azimuthal velocity components are displayed in the crosswise plane K–K, whereas the axial velocity
in the meridian plane. The axial vorticity ωz is represented in two crosswise planes: (d) plane H–H and
(e) plane E–E. Contour levels are normalised by the local maximal absolute value, solid (respectively, dashed)
contours correspond to positive (respectively, negative) values.

point (section E–E). In both cross-sections, four pairs of counter-rotating streamwise
vortices concentrated along the mean outer isopycnal line are visible. They span the entire
longitudinal extent of the jet and they induce the radial velocity field observed in the plane
K–K. This mechanism of energy growth conforms to the mechanism of side-jet generation
based on vortex induction advocated by Monkewitz & Pfizenmaier (1991) and, later, by
Brancher et al. (1994). Our results thus plead in favour of the standard scenario, at least
for a moderate negative Atwood number. In addition, the key ingredient of the distinct
mechanism proposed by Lopez-Zazueta et al. (2016), i.e. the convergence/divergence
towards the braid saddle point of longitudinal velocity streaks of opposite sign, is not
retrieved as seen from figure 10(c), at least for this value of the Reynolds number.

3.3. Influence of the Reynolds number
In this section, we discuss the effect of the Reynolds number Re on the optimal
perturbations. Figure 11 displays the temporal evolution of the energy gain GE for
disturbances optimised for T = 3Ts/2 at Re = 10 000 compared with those obtained at
Re = 1000, for the same azimuthal wavenumbers. Owing to the corresponding diminution
of the viscous dissipation, the increase in Reynolds number results in higher energy
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Figure 11. Temporal evolution of the energy gain GE of optimal perturbations at Re = 10 000 (solid lines) and
Re = 1000 (dashed lines) growing over a perturbed jet with At = −0.25 (red), At = 0 (black), At = 0.25 (blue)
and for six azimuthal wavenumbers m ∈ [0; 5]. The thick lines in the figure for m = 0 represent the temporal
evolution of the energy gain of the corresponding primary KH modes. The symbols are located at the horizon
time of each energy curve.

gains but the extra growth is larger for variable-density situations compared with the
homogeneous one, except for m = 1 where the homogeneous perturbation shows an
energy gain larger than that corresponding to the heavy jet case. For m ≥ 2, this extra
energy growth benefits more to the optimal perturbations of the light jet and yields a
different hierarchy between the perturbations. At Re = 10 000 the optimal energy gain for
At = −0.25 is comparable to that for At = 0.25 whereas it is lower at Re = 1000. The
largest energy gain is attributed to the double-helix disturbance for the light jet and to the
m = 3 mode for the heavy jet, at least for t up to T = 1.5Ts. However, the strong similarity
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Figure 12. Temporal evolution of the kinetic energy field E of the optimal perturbation with m = 4 and T =
3Ts/2 growing over the heavy one (upper half-plane) and the light jet (lower half-plane). Same conventions as
in figure 9.

between the amplification curves for m ≥ 2 at a given At is symptomatic of a loss of
scale selectivity of the underlying base flow. As evidenced experimentally by Liepmann
& Gharib (1992) and retrieved by the stability analysis of Nastro et al. (2020) in the
homogeneous case, increasing the Reynolds number hampers selection of the azimuthal
periodicity of secondary instabilities.

Figure 12 presents the time evolution of the kinetic energy field E from the injection
time to T = 3Ts/2 for the optimal m = 4 perturbation developing on the heavy jet (upper
half-plane) and on the light jet (lower half-plane). The optimal disturbance exhibits the
same structure than that observed at Re = 1000 but the two layers are much thinner as
expected. The evolution during the first phase in the time interval [t0, Ts/2] reflects the
shear-driven growth due to the Orr and lift-up mechanisms. However, as soon as t = Ts/2,
when the disturbance is aligned with the maximal stretching direction of the base flow,
the localisation of the energy maximum starts to move towards the side of the braid which
benefits from the baroclinic vorticity production (see figure 3). The subsequent evolution
shows a strong correlation of the localisation of the kinetic energy of the perturbation with
the regions of the base flow where the baroclinic vorticity production is active, at least up
to saturation time. At the horizon time T = 3Ts/2, the production and base flow advection
of the energy results in an optimal response essentially located at the outer periphery of
the vortex core for the light jet case and at the inner periphery of the billow for the heavy
jet.

For the light jet case, looking at the contribution of each velocity component to the
evolution of the perturbation energy gain in figure 13(a), it can be seen that the energy
growth is mainly due to the increase of the axial velocity uz. Figure 13(b) shows also that
the growth of the perturbation enstrophy is clearly driven by the azimuthal vorticity ωθ

which is almost two orders of magnitude larger than the other vorticity components at the
horizon time. The corresponding budgets for the energy and enstrophy growth rates rate
are given in figure 13(c,d) according to (2.19) and (2.22). Although the initial growth of
both quantities is driven by the base flow shear conversion owing to the Orr and lift-up
mechanisms, the growth in the second phase for t ≈ 7Ts/10 results from a combination of
the base flow strain conversion, measured by σE2 for the energy and σZ4+5 for the enstrophy,
and the action of the baroclinic torque, i.e. the terms σE4+5 for the energy and σZ7 for the
enstrophy. As stated by (2.26), the azimuthal component bθ of the linearised baroclinic
torque results from the sum of two contributions:

bθ = az
1
R

∂R
∂r

− ar
1
R

∂R
∂z︸ ︷︷ ︸

bθ1

+ Az
∂

∂r

(ρ

R

)
− Ar

∂

∂z

(ρ

R

)
︸ ︷︷ ︸

bθ2

. (3.1)
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Figure 13. Temporal evolution of (a) the kinetic energy growth rate σE and (b) the enstrophy growth rate σZ
for the optimal perturbation at m = 4 and At = −0.25 with their corresponding budgets (c) and (d), according
to (2.19) and (2.28), respectively. The horizon time is T = 3Ts/2 (as indicated by the symbol on each curve).

As observed also in the plane mixing layer by Lopez-Zazueta et al. (2016, figure 13),
although the first term bθ1 is predominant in the early development of perturbations,
the second phase proceeds with baroclinic production from the term bθ2 (not shown)
associated with large-amplitude density perturbation. Its evolution from t = 3Ts/4 to
t = 3Ts/2 is illustrated on the first row of figure 14 for the m = 4 optimal perturbation.
At t = 3Ts/4, it consists of two thin layers of density perturbation of opposite sign located
along the braid. Combined with the local base flow acceleration, it yields the specific
structure of azimuthal baroclinic torque supported by the sketch of vectors at t = 3Ts/4
shown in the second row of figure 14. This spatial distribution of bθ in the form of two
layers of opposite sign along the braid on either side of the saddle point yields a similar
azimuthal vorticity distribution. The structuration of the perturbation azimuthal vorticity
driven by the component bθ2 of the linearised baroclinic torque continues up to the horizon
time as indicated by the strong similarity between the two fields. According to Biot–Savart
induction, these vorticity layers yield elongated patches of longitudinal velocity at their
interface as seen in the last row of figure 14. At T = 3Ts/2, the disturbance axial velocity
field consists of two parallel elongated layers of opposite sign located at the outer periphery
of the vortex ring where the perturbation kinetic energy is concentrated, see figure 12. This
mechanism of secondary energy growth is the same as that identified by Lopez-Zazueta
et al. (2016) in the variable-density mixing layer but the structuration of the optimal
perturbation at the horizon is here quite different.

As for the heavy jet case, figure 15 shows similarly the energy (a) and enstrophy (b) gains
up to t = 2Ts along with the relative contribution of each velocity/vorticity component
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Figure 14. Temporal evolution of density ρ, azimuthal component of the baroclinic torque bθ , azimuthal
vorticity ωθ and axial velocity uz of the optimal m = 4 perturbation during the time interval [3Ts/4, 3Ts/2].
The perturbation is optimised for T = 3Ts/2 with At = −0.25.

for the same parameters, m = 4 and T = 1.5Ts. The corresponding contributions to the
temporal evolution of the energy and enstrophy growth rates according to (2.19) and
(2.22) are shown in figures 15(c) and 15(d). We denote a strong anisotropy in the energy
and enstrophy growths which are born by the axial velocity and the azimuthal vorticity,
respectively. Beyond the first phase of universal shear-driven growth ending around t ≈
7Ts/10, the energy increase is due to the baroclinic torque σE4+5 combined alternatively
with the base flow strain term σE2 and the base flow shear conversion term σE1 . As in the
light jet case, post-saturation enstrophy growth relies on baroclinic vorticity production σZ7
and the base flow strain conversion σZ4+5 . As illustrated in figure 16, the associated physical
mechanism is the same as for the optimal perturbation in the light jet. The structure
of the perturbation azimuthal vorticity is driven by the component bθ2 of the linearised
baroclinic torque which results from the combination of the local two-dimensional base
flow acceleration field and the perturbation density, as illustrated by the sketch of vectors
at t = Ts in the second row of figure 14. The distribution of ωθ leads to two elongated axial
velocity layers which are localised at the horizon time at inner periphery of the KH vortex
core, where the perturbation kinetic energy is concentrated in figure 12.

This optimal perturbation leading to an intense shear layer on the braid outer side for
the light jet and on the inner one for the heavy jet contrasts with that observed at smaller
Reynolds number. Therefore, this instability could be involved in the side-jet generation
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Figure 15. Temporal evolution of (a) the kinetic energy growth rate σE and (b) the enstrophy growth rate σZ
for the optimal perturbation with m = 4 and At = 0.25 with their corresponding budgets (c) and (d), according
to (2.19) and (2.28), respectively. The horizon time is T = 3Ts/2 (as specified by the symbol on each curve).

and the difference in the location of the perturbation between the light and heavy jets could
be related to the observation of side jets in the light case only.

For both the light and heavy jet, the increase in Reynolds number yields higher
energy gains which are associated with the same physical mechanism first identified
by Lopez-Zazueta et al. (2016) in the variable-density mixing layer. Here, the optimal
response takes the form of two layers of axial velocity both localised on the inner
side of the KH vortex core in the case of the heavy jet and on the outer side for the
light jet configuration. The density variation thus turns the paradigm of saddle-centred
counter-rotating streamwise vortices into a quite different optimal response. However, it is
slightly different from the longitudinal velocity streaks of opposite sign along the braid on
either side of the hyperbolic saddle point observed in the plane variable-density mixing
layer. Its stands as a third candidate path to three-dimensionalisation for variable-density
shear flows but its connection with side-jet generation remains unclear.

3.4. Influence of the injection time and fractal KH breakups
In § 3.1 we found that the Atwood number At has no influence on the early evolution
of optimal perturbations. We now delay the instant of perturbation beyond the first
universal phase to elucidate secondary growth mechanisms over a well developed but
unperturbed KH roll-up. An injection time of t0 = 7Ts/10 is thus selected in order to
leave out the short-time energy growth driven by both the Orr and lift-up mechanisms.
Figure 17 displays the time evolution of the energy gain GE for the corresponding optimal
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Figure 16. Temporal evolution of density ρ, azimuthal component of the baroclinic torque bθ , azimuthal
vorticity ωθ and axial velocity uz of the optimal m = 4 perturbation at At = 0.25 during the time interval
[3Ts/4, 3Ts/2]. The horizon time is T = 3Ts/2.

perturbations for all the azimuthal wavenumbers considered here. The horizon time is
T = 2Ts and two Reynolds numbers are considered, i.e. Re = 1000 and Re = 10 000. For
Re = 1000, the energy gain reached at the horizon time is, as expected, much lower than
when growth benefits from the powerful transient growth resulting from shear-driven
OL mechanisms in the initial stage (before 7Ts/10). This observation holds whatever
the Atwood number in the present range, presumably because mass diffusion at unitary
Schmidt number and vorticity diffusion in the base flow both prevent the secondary
growth that is strikingly steep for a higher Reynolds number. Although homogeneous
optimal perturbations for Re = 10 000 only weakly benefit from higher shear and lower
dissipation, the variable-density optimal growth with postponed injection exhibits intense
monotonic energy growth, with energy gains as high as around 106 at horizon time. We
have verified (not shown) that the delayed energy growth of secondary perturbations at
Re = 1000 resorts to standard E-type and H-type secondary instabilities. For the base flow
rolling-up into a high-Reynolds-number variable-density vortex ring, the supplementary
growth of energy is very likely to be associated with a different physical mechanism.
Figure 18 shows the contributions to the temporal evolution of the energy and enstrophy
growth rates according to (2.19) and (2.28) for the axisymmetric optimal perturbations
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Figure 17. Temporal evolution of the energy gain GE of optimal perturbations injected at t0 = 7Ts/10 for
Re = 10 000 (solid lines) and Re = 1000 (dashed lines) growing over a perturbed jet at At = −0.25 (red),
At = 0 (black) and At = 0.25 (blue) and for the same six azimuthal wavenumbers considered in figure 16. The
thick lines in the figure for m = 0 represent the temporal evolution of the energy gain of the corresponding
primary KH modes. The symbols are located at the horizon time of each energy curve.

(m = 0) optimised for T = 2Ts. The initial growth is seen to be driven by the base flow
shear conversion identified by term σE1 but it is shortly replaced by the term σE4+5
in (2.19) and σZ7 in (2.28) which correspond to the baroclinic vorticity production. In
agreement with the energy gains plotted in figure 17, the energy and enstrophy growth
rates of the disturbances developing on the light jet are slightly higher than those of the
perturbations for the heavy jet. Figure 19 presents the temporal evolution of the fields of
density and azimuthal vorticity of the axisymmetric optimal perturbation for both the light
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Figure 18. Temporal evolution of (a,b) the kinetic energy growth rate σE and (c,d) the enstrophy growth rate
σZ with their different contributions according to (2.19) and (2.28) for the axisymmetric optimal perturbation
growing over a KH vortex ring with (a,c) At = −0.25 and (b,d) At = 0.25. As evidenced by the symbol on
each curve, the horizon time is T = 2Ts.

and the heavy jet. The optimal excitation consists of small elongated spanwise vorticity
and density patches of alternate sign located along the outer side of the braid for the
heavy jet and the inner side of the braid for the light jet. It corresponds to the region
where the base flow baroclinic torque represents a source of azimuthal vorticity Ωθ (see
figure 1). This structure is characteristic of the secondary KH instability first observed
by Reinaud et al. (2000). The subsequent time evolution shows that the disturbance
is convected towards the core of the KH vortex ring. The same spatial distribution is
observed for all non-zero azimuthal wavenumbers. As demonstrated by Reinaud et al.
(2000), the baroclinic secondary KH instability is triggered when inertial baroclinic
vorticity production supersedes the stabilising effect of stretching along the vorticity braid.
Because baroclinic vorticity production benefits from the increase in Reynolds number
for fixed Atwood and Schmidt numbers, the secondary KH instability is expected to
emerge at some flow-dependant Reynolds number. We deduce that the onset of secondary
baroclinic KH instability occurs between Re = 1000 and Re = 10 000 in the present case.
Lopez-Zazueta et al. (2016) retrieved the secondary KH mode in the variable-density
mixing layer for a Reynolds number Re = 1000, based on the shear layer width. This
is consistent with the present value of Re = 10 000 based on the jet radius, provided
that the aspect ratio of the present jet is α = 10. It is demonstrated in Lopez-Zazueta
et al. (2016) that the secondary KH instability developing over a planar mixing-layer
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ρ

ωθ

t = t0 = 7Ts/10 t = T = 2Ts

Figure 19. Linear evolution of the axisymmetric optimal perturbation (m = 0) for Re = 10 000 with At = 0.25
(upper half-plane) and At = −0.25 (lower half-plane) from t = t0 = 7Ts/10 to t = T = 2Ts in terms of (upper
row) density ρ and (lower row) azimuthal vorticity ωθ . The quantities are normalised by the corresponding
maximum value at each time for a given Atwood number.

is a two-dimensional mechanism for which oblique versions with non-zero spanwise
wavenumbers exhibit weaker energy growth than the two-dimensional one, i.e. that with
a streamwise wave vector perpendicular to base-flow KH roll-ups. We stress that in the
present situation, the growth that builds up on the same mechanism, is only slightly
weaker for non-zero azimuthal wavenumbers. As seen from figure 17, the response to
optimal perturbations with oblique wave vectors is following almost exactly the same
route in terms of energy growth over a large range of azimuthal wavenumbers suggesting
a loss of azimuthal selectivity. The proposed temporal approach with delayed injection
gives an estimate of the potential of energy growth and of the associated receptivity
to ambient perturbations downstream the nozzle of a spatially developing jet. However,
because real-world perturbations are not controlled two-dimensional ones, we conjecture
that baroclinic secondary KH instabilities are more likely to occur in real jets than in plane
mixing layers.

We choose to illustrate this path for secondary growth even beyond the linear stage
by means of a nonlinear simulation stemming from a base flow perturbed with the
axisymmetric optimal perturbation. This results into the development of a secondary KH
instability as shown in figure 20 for both the light and the heavy KH vortex ring. In the
light jet, the inner side of the braid experiences undulations yielding the development
of secondary KH breakups within the primary vortex ring. In the heavy jet, a similar
evolution happens on the outer side of the braid (see figures 20a and 20b). At later times
we also observe the emergence of a curvature-driven Rayleigh–Taylor instability, similar
to the one observed by Joly et al. (2005). As illustrated by figures 20(e) and 20( f ), it occurs
at the interface between the jet and the surrounding fluid due to centripetal acceleration
induced by the curvature of fluid particle trajectories. It is evidenced by the formation
of opposite-sign secondary vortices (as opposed to like-signed ones for the secondary
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r

R

t = 4Ts/5 t = 6Ts/5 t = 7Ts/5t = Ts

z z z z
(a) (b) (c) (d)

Figure 20. Temporal development of the secondary KH instabilities for Re = 10 000 with At = 0.25 (upper
half-plane) and At = −0.25 (lower half-plane) for t = 4Ts/5, Ts, 6Ts/5, 7Ts/5: (a,b) close-up insets on the
KH vortex ring at t = Ts and (c,d) relative to t = 7Ts/5, as evidenced by the square-shaped regions showing
where the zoom is located. All pictures display the flow density field R.

KH instability, see figures 20c and 20d) yielding mushroom-shaped density contours, as
evidenced by figures 20(g) and 20(h). The late stages of evolution show a fast increase
of the length of isopycnic lines due to the stretching between secondary vortices, both
promoting mixing between the two fluids.

Though thriving in the nonlinear regime, the oblique secondary KH instability cannot be
related to side ejections in any way. Primary or secondary KH billows are organised as rows
of corotating vortices along shear layers, yielding a strong deformation of the hyperbolic
regions. As secondary structures developing in the present context over a primary KH
vortex ring, they promote local mixing but they cannot induce radial velocities. In contrast,
the onset of oblique secondary KH instability is likely to be the reason of the disappearance
of side jets at large Reynolds numbers and of the particularly short route to turbulence
observed in the light jets experiments of Fontane (2005).

4. Conclusions

In this paper, we have investigated the potential for transient growth of secondary
perturbations developing over a time-dependent variable-density round jet subject to the
primary KH instability. This base flow is calculated via a nonlinear direct numerical
simulation initialised with hyperbolic tangent velocity and density profiles (Michalke
1971; Fontane 2005; Nichols et al. 2007), perturbed by the most amplified axisymmetric
KH mode. We adopt a direct-adjoint approach to determine the optimal perturbation
maximising the gain of kinetic energy over a specific time interval [t0, T]. The aspect ratio
α between the jet radius and the shear layer momentum thickness has been fixed to α = 10.
We use two values for both the Atwood number, At = −0.25 and At = 0.25 for a light
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and heavy jet, respectively, and the Reynolds number, i.e. Re = 1000 and Re = 10 000.
The Schmidt number is set to Sc = 1 and represents a good approximation for the binary
mixing of gases.

The initially parallel base flow evolves towards a KH vortex ring which experiences
baroclinic vorticity production. The contributions of the baroclinic torque stands as an
asymmetric dipole centred on the braid saddle point. These variable-density sources
and sinks enhance the existing loss of central symmetry of the vorticity field, already
induced by the cylindrical geometry in the homogeneous case (Nastro et al. 2020). This
redistribution of vorticity comes along with an intensification of the strain field in a region
between the vortex core and the outer side of the braid for the light jet and the inner side
for the heavy one, shortly after the KH saturation.

Up to half the KH saturation time, the optimal perturbations grow according to a
universal path whatever the Atwood number At for both the perturbed and unperturbed
jet. They exhibit the classical ‘OL’ form characterised by two elongated layers which
are gradually deformed by the base flow mean shear and reoriented along the direction
of maximal stretching. Their transient energy growth relies on a combination of the Orr
(1907) and lift-up (Ellingsen & Palm 1975) mechanisms. At T = Ts/2, in the light jet,
the perturbation energy concentrates in a layer located on the inner side of the braid,
whereas in the heavy jet, it grows preferentially in a layer located on the outer side of the
braid.

Beyond Ts/2, the optimal energy gains become sensitive to the density variations
because the amplification curves branch off to different paths, except for the axisymmetric
(m = 0) and helical (m = 1) disturbances. For At = −0.25, the helical mode stands as
the global optimal, similar to the homogeneous case. For the heavy jet, the m = 1 mode
displays the largest values of GE until T ≈ 1.5Ts, after which the m = 2 and m = 3 modes
become more amplified. In the heavy jet, the structure of the optimal perturbations are
similar to those obtained in the homogeneous jet (Nastro et al. 2020): a combination of
a core-centred E-type and a braid-centred H-type instabilities whose distribution evolves
from a predominance of the E-type to the H-type when the azimuthal wavenumber is
increased. In the light jet, the perturbation kinetic energy peaks in the region between the
KH vortex core and the outer side of the braid, precisely where the base flow exhibits
a local intensification of the strain rate. In the crosswise plane corresponding to the
maximal value of the perturbation kinetic energy, the perturbation exhibits periodic radial
ejections/injections induced by counter-rotating streamwise vortices spanning the entire
longitudinal extent of the jet. This structure of the perturbation is similar to that observed
in homogeneous jets and supports the mechanism of side ejections proposed by Monkewitz
& Pfizenmaier (1991) and, later, by Brancher et al. (1994).

Increasing the Reynolds number by one order of magnitude results in a more efficient
transient energy growth for all perturbations. In the second period, high anisotropy in
energy and enstrophy growths is observed with a sustained amplification of the axial
velocity and the azimuthal vorticity with respect to the other components. The perturbation
density field is at the origin of this energy growth through its contribution to the azimuthal
baroclinic torque which drives the linear dynamics, as in the variable-density mixing layer
(Lopez-Zazueta et al. 2016). However, the resulting streamwise streaks of alternate signs
along the braid identified by Lopez-Zazueta et al. (2016) are replaced here by a shear layer
localised on the outer side of the KH vortex ring for the light jet and on the inner side for
the heavy jet case.

At Re = 10 000, delaying the disturbance injection past the time of nonlinear roll-up
of the variable-density KH vortex ring, triggers the emergence of the secondary KH
instability, originally identified by Reinaud et al. (2000) in plane mixing layers. Energy
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gains three order of magnitude larger than those observed in the homogeneous case
are evidenced at all azimuthal wavenumbers m. Considering the very large growth rate
associated with this mechanism, we conjecture that this instability might participate in the
rapid transition observed in high-Reynolds-number variable-density jet flows.

The causal relationship between absolute instability and side jets, which suffers from
some exceptions in the parameter space, does not exhaust all questions about the how of
side ejections: underlying mechanism and local structure of the flow, fixed streamwise
position of side ejections and their survival to interruptions by vortex rings passing
by the ejection section, variation of the ejection angle in the (S, Re)-plane, preferred
azimuthal periodicity. The transition to absolute instability below a critical S brings in
the period-to-period synchronisation of an oscillator, which is exactly realised in the
time-evolving approach. Although not suitable for addressing the already solved question
of convective-absolute transition, the present framework provides answers to the effect
of variable density on the vortex ring combined with the secondary baroclinic torque
production in the disturbance field. We propose to extend this global stability analysis
to higher Atwood number cases in order to emphasise the influence of baroclinic vorticity
sources, both in the base flow and the perturbation vorticity fields. We think this is highly
relevant to the three-dimensionalisation process of highly-contrasted variable-density jets
and we plan to pay particular attention to round jets with a density ratio representative of
the hydrogen–air couple, i.e. S = 0.07 and At = −0.87, because they stand as prototype
flows for fuel injectors in combustion chambers of future turbojet engines. With mixing
promotion in mind, an extension of this approach to the nonlinear regime with the
introduction of specific seminorms adapted to the optimisation of mixing (Foures,
Caulfield & Schmid 2014) would be of great interest.
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Appendix A. Strain tensor

The strain rate tensor D for the base flow takes the following form:

D = 1
2
(∇U + ∇UT) =

⎡
⎢⎢⎢⎢⎢⎢⎣

∂Ur

∂r
0

1
2

(
∂Uz

∂r
+ ∂Ur

∂z

)

0
Ur

r
0

1
2

(
∂Uz

∂r
+ ∂Ur

∂z

)
0

∂Uz

∂z

⎤
⎥⎥⎥⎥⎥⎥⎦

, (A1)

where the superscript T denotes the Hermitian transpose. Its deviatoric part is defined by
D0 = D − 1

3 (∇ · U)I where I is the identity tensor. In order to study the spatial distribution
of D0, we consider its Euclidean norm ‖D0‖2 ≡ tr(D2

0).
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Appendix B. Linear matrix operators

The linear matrix operators of the direct (2.11) and adjoint (2.18) systems take the
following form:

(1) the temporal operator

N t =

⎡
⎢⎢⎢⎢⎣

∂�

∂t
0 0

0
∂�

∂t
0

0 0 0

⎤
⎥⎥⎥⎥⎦ ; (B1)

(2) the direct operator of coupling between the base flow and the perturbation

Nc =

⎡
⎢⎢⎣

U · ∇ � +∇U · � − 1
R2 ∇P

1
R

∇�

∇R · �+ R∇ · � U · ∇ � + (∇ · U)� 0
∇ · � 0 0

⎤
⎥⎥⎦ ; (B2)

(3) the direct diffusion operator

Nd =

⎡
⎢⎢⎢⎣

− 1
R

[
� � + 1

3
∇(∇ · �)

]
�

R2

[
�U + 1

3
∇(∇ · U)

]
0

0 0 0

0
1
Sc

�
( �

R

)
0

⎤
⎥⎥⎥⎦ ; (B3)

(4) the adjoint operator of coupling between the base flow and the adjoint perturbation

N†
c =

⎡
⎢⎢⎢⎢⎣

−U · ∇ � − (∇ · U) � +∇UT · � −R∇� −∇�

− 1
R2 ∇P · � −U · ∇� 0

∇ ·
(�

R

)
0 0

⎤
⎥⎥⎥⎥⎦ ; (B4)

(5) the adjoint diffusion operator

N†
d =

⎡
⎢⎢⎢⎢⎣

−�
(�

R

)
− 1

3
∇

[
∇ ·

(�

R

)]
0 0

1
R2

[
�U + 1

3
∇(∇ · U)

]
· � 0

1
ScR

��

0 0 0

⎤
⎥⎥⎥⎥⎦ . (B5)

The symbol � denotes either the components of the direct vector q or adjoint vector q†.

Appendix C. The iterative optimisation algorithm

The outline of the iterative optimisation algorithm used to determine the optimal
perturbation is as follows.
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(1) A white noise perturbation q(i)(t0) is chosen as an initial condition for the direct
system (2.11). Its kinetic energy is given by

‖q(t0)‖u = E0, (C1)

where the seminorm
‖q‖u = ‖u‖ = [q | W u · q] (C2)

is associated with the inner product [� | �] defined by

[q1 | q2] =
∫ rmax

0

∫ 2π

0

∫ Lz

0
q∗

1 · q2r dr dθ dz + c.c., (C3)

where the exponent ∗ stands for the complex conjugate and the matrix operator W u

is defined by

W u =
⎡
⎣ 1 0 0

0 0 0
0 0 0

⎤
⎦ . (C4)

If any value for the constant E0 is possible in practice, it was fixed here to E0 = 1
for all cases.

(2) The direct system (2.11) is advanced in time from the injection time t0 up to the
horizon time T with the linearised version of the pseudo-spectral method used for
the simulation of the primary KH vortex ring.

(3) The energy gain G(i)
E of the direct perturbation is calculated as defined by (2.13).

Then, if the kinetic energy criterion

G(i)
E − G(i−1)

E

G(i−1)
E

≤ ε (C5)

is below a chosen threshold, here ε = 0.005, the iterative method has converged
towards the optimal perturbation. Otherwise, we turn to the next step.

(4) The final state of the perturbation q(T) is used to compute the initial condition for
the adjoint system (2.18) as follows:

W u · q†(T) = W u · q(T). (C6)

(5) The adjoint system (2.18) is integrated backward in time from T to t0 with the same
numerical pseudo-spectral method used for the direct equations.

(6) At the injection time t0, the new initial condition q(i+1)(t0) is obtained through the
optimality condition

ΛuW u · q(t0) − q†(t0) = 0, (C7)

where the Lagrange multiplier Λu is chosen so as to rescale the velocity field with
respect to (C1). Then we go back to step 2 until the convergence is reached.
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