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Let kp(G) denote the number of complete subgraphs of order p in the graph G. Bollobás

proved that any real linear combination of the form
∑

apkp(G) attains its maximum on a

complete multipartite graph. We show that the same is true for a linear combination of the

form
∑

apkp(G) + bpkp(G), provided bp > 0 for every p.

A theorem of Bollobás [2] (see the elegant proof on page 298 of [1]) states that if kp(G)

is the number of complete subgraphs of order p in a graph G, then the real linear

combination bkp(G) + ckq(G) finds its maximum (among graphs of given order) on a

complete multipartite graph; the same, therefore, also holds true for the minimum. The

proof readily generalizes to linear combinations involving more than two terms. However,

there can be no theorem like Bollobás’s involving general linear combinations of both

kp(G) and kp(G), where G is the complement of G. It is known that the minimum of

k3(G) + k3(G) is not attained on a complete multipartite graph or its complement if n is

odd (see Goodman [3] and Lorden [5]). Though finding the minimum of kp(G) + kp(G)

remains open for p > 4, it is certain that the extremal graphs are neither Turán graphs

nor their complements (see Jagger, Šťovı́ček and Thomason [4] and Thomason [7]).

Nevertheless, Bollobás’s theorem does extend to incorporate linear combinations in-

volving the terms kp(G) provided the coefficients of these extra terms are positive.

In fact, the theorem can be extended still further. Given a graph F , let iF (G) be the

number of induced subgraphs of G isomorphic to F . Thus kp(G) = iKp
(G). Then it can
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be shown that any real linear combination
∑

F αFiF (G), the sum being over complete

multipartite graphs F , finds its maximum on a complete multipartite graph G provided

αF > 0 whenever F is not complete.

Theorem 1. Let iF (G) denote the number of induced subgraphs of G isomorphic to F . Let

f(G) =
∑

F αFiF (G) be a real linear combination where each F is a complete multipartite

graph and where αF > 0 unless F is complete. Then, among graphs of given order, the

function f(G) finds its maximum on a complete multipartite graph.

Moreover, if αK3
> 0 then f(G) has no other maxima.

Proof. We may suppose that αK3
> 0, the case αK3

= 0 following by a limiting argument.

Choose a graph G of order n which maximizes f(G). Suppose G is not a complete

multipartite graph. Then G contains non-adjacent vertices x and y whose neighbourhoods

X and Y differ.

The number iF (G) comprises contributions from four different kinds of induced sub-

graph isomorphic to F , namely those containing, respectively, x but not y, y but not

x, both x and y, and neither x nor y. Note that the first contribution depends only

on X and the second only on Y . Moreover, the third depends only on X ∩ Y and

V − (X ∪ Y ) where V = V (G), since no copy of the complete multipartite graph F

can contain vertices outside these two sets if it contains both x and y. This fourfold

division of iF (G) gives rise to a corresponding partition of the sum f(G); we denote

this by f(G) = g(X) + g(Y ) + h(X ∩ Y , V − (X ∪ Y )) + C where C is independent of

X and Y . Note that h(A,B) 6 h(A′, B′) if A ⊂ A′ and B ⊂ B′ because iF (G) makes no

contribution to h(A,B) if F is complete and αF > 0 otherwise. Moreover, if B 6= B′ then

h(A,B) < h(A′, B′), because αK3
> 0 and iK3

(G) contributes exactly αK3
|B| to h(A,B).

We may suppose that g(X) > g(Y ) and, if g(X) = g(Y ), that |X| 6 |Y | and so

X 6= X ∪ Y . Therefore g(X) + h(X,V − X) > g(Y ) + h(X ∩ Y , V − (X ∪ Y )). Form H

from G by removing the edges between y and Y and inserting all edges between y and

X. Then f(H) = 2g(X) + h(X,V −X) + C > f(G), contradicting the choice of G.

This proof is, of course, essentially that of Bollobás. Curiously enough, though, the

addition of the extra terms makes the proof technically simpler; the need in the original

proof to introduce weights as a tie-breaking device is obviated here.

We remark that f(G) has no other maxima also in the case αP > 0 where P is the

graph of order 3 with 2 edges. In this case h(A,B) is strictly increasing in A and we choose

|X| > |Y | if g(X) = g(Y ).

Our interest in Theorem 1 was aroused by our need to find the minimum of the graph

function (|G|−2)e(G)+2k3(G)−2k3(G) which arose in our study of 4-cycles in the cube [6].

As an application of Theorem 1 we therefore offer the following.

Theorem 2. For every graph G of order n, the inequalities(
n

3

)
6 (n− 2)e(G) + 2k3(G)− 2k3(G) 6 2

(
n

3

)
hold. The upper bound is attained only when G is the complete bipartite graph Kk,n−k , where

0 6 k 6 n. The lower bound is attained only when G = Kk,n−k .

https://doi.org/10.1017/S0963548397003234 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548397003234


A Remark on the Number of Complete and Empty Subgraphs 219

Proof. There are not really two things to prove here; if we let f(G) = (n − 2)e(G) +

2k3(G)− 2k3(G) then f(G) + f(G) = 3
(
n
3

)
. So we establish just the upper bound.

Choose G so that f(G) is maximal; by Theorem 1, G is a complete q-partite graph for

some q > 1. It is easily checked that if q 6 2 then f(G) = 2
(
n
3

)
, as claimed. Suppose then

that q > 3. Let two of the vertex classes have orders a and b and let G′ be the complete

(q−1)-partite graph obtained from G by removing the ab edges between these two classes.

Then

f(G′)− f(G) = −(n− 2)ab+ 2

(
a

2

)
b+ 2a

(
b

2

)
+ 2ab(n− a− b) = ab(n− a− b) > 0,

a contradiction to the choice of G.

The parameter iF (G) equals zero if G is complete multipartite but F is not. It follows

that Theorem 1 cannot be extended to cover such graphs F; even the simple function

f(G) = iF (G) will find its maximum somewhere other than on a complete multipartite

graph.

A somewhat more informative example is the following. Let Q be the path of length 3

and let R be the triangle with a pendant edge. Neither Q, R nor their complements appear

as induced subgraphs of a complete multipartite graph. Therefore, if G or G is a complete

multipartite graph then the function f(G) = iQ(G) − iR(G) is zero. However, if G is a

random graph of order n with edge probability p then f(G) is likely to be approximately

12[p3(1 − p)3 − p4(1 − p)2]
(
n
4

)
. So if p is small then f(G) > 0 and if p is near to 1 then

f(G) < 0. Hence f(G) is neither maximized nor minimized on a complete multipartite

graph or on the complement of a complete multipartite graph.

Added in proof

The transformation used in the proof of the main theorem does not increase the clique

size or the chromatic number. Therefore the theorem remains true even if the maximum

is sought over all graphs of given order and bounded clique size and chromatic number.
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