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1.  Introduction

Philosophers, psychologists and economists have known for a long time that 
there are a number of decision problems for which the preferences over the 
available options that seem rational to many people cannot be accommodated 
within orthodox decision theory in the natural way. In response to this observa-
tion, a number of alternatives to the orthodoxy have been proposed (Allais 1953; 
Quiggin 1982; Schmeidler 1989; Buchak 2013). In this paper, I offer an argument 
against those alternatives and in favour of the orthodoxy. This argument is very 
general: it is effective against any deviation from the orthodoxy. As a result, we 
need some account of the preferences that seem rational and yet which this 
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orthodoxy cannot accommodate naturally: we need an error theory for our 
intuition that they are rational, or a way of making the orthodoxy accommodate 
them. I will focus here on those preferences that seem to encode sensitivity 
to risk. And I will focus on the alternative to the orthodoxy proposed by Lara 
Buchak’s risk-weighted expected utility theory, which is intended to accommodate 
these preferences (Buchak 2013). I will show that, in fact, the orthodoxy can be 
made to accommodate the preferences in question; and I will argue that this is 
in fact the correct way to accommodate them. Thus, the paper has two parts: 
the first is a general objection to any non-expected utility theory; the second is a 
specific account of how to accommodate within the orthodoxy the preferences 
that Buchak’s theory permits.

2.  The argument for orthodox expected utility theory

2.1.  Decision problems and the framework of decision theory

Here’s a decision problem. An agent is choosing between two options: on the 
first, which we will call Safe, she is guaranteed to receive £50; on the second, 
which we will call Risky, a fair coin will be flipped and she will receive £100 if the 
coin lands heads and £0 if the coin lands tails. There are three components of 
this decision problem. First: the states of the world, namely, the state in which 
the coin lands heads and the state in which the coin lands tails. Second: the 
outcomes, namely, £0, £50, £100. Third: the acts between which our agent is 
choosing, namely, Safe and Risky. In general, a decision problem consists of 
these three components:

• �  is the set of states (or possible worlds). Thus, in our example, 
 = {Heads, Tails}.

 Degrees of belief or credences will be assigned to a finite algebra  of subsets 
of the set of states . These are propositions represented as sets of states or 
possible worlds.1

• �  is the set of outcomes. 

Thus, in our example,  = {£0, £50, £100}. We will take outcomes to be entire 
descriptions of the world, rather than merely changes in the agent’s wealth. 
Thus, £0 is really Status quo + £0; £50 is really Status quo + £50; and so on. But 
we will continue to denote them just by the change in the status quo that 
they represent. Utilities will be assigned to the elements of .

• �  is the set of acts. 

Thus, in our example,  = {Safe, Risky}. We represent acts as finite-valued 
functions from  to . That is, they take ways the world might be and return 
the outcome of the act if the world were that way. Thus, for our purposes, 
we can represent an act f in the set of acts  using the following notation: 
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f = {E
1
, x

1
;… ;En, xn}, where x

1
,… , xn are the values that the function f might 

take – that is, the possible outcomes of the acts – and, for each i = 1,… , n, the 
proposition Ei says that f will have outcome xi. Thus, if we represent proposi-
tions as sets of possible worlds, as we did above, Ei = {s ∈  :f (s) = xi}. So Ei is 
the set of states of the world in which f has outcome xi. Thus, in our example 
above, Safe = {Heads ∨ Tails, £50} and Risky = {Heads, £100;Tails, £0}. We 
assume that all such propositions Ei are in the algebra . For each outcome 
x in , there is an act in  – which we write x – that has outcome x regard-
less of the state of the world. That is, representing the act x as a function 
from states to outcomes, x(s) = x for all states s in . We call x the constant 
act on x. Let  = {x:x ∈ } ⊆  be the set of constant acts. They will prove 
particularly important in Section 5.2 below.

2.2.  The business of decision theory

With this framework in place, we can state the business of decision theory. It 
is concerned with the relationship between two sorts of attitudes, which I will 
call external attitudes and internal attitudes.2 The external attitudes are typically 
taken to be represented by the agent’s preference ordering ⪰. ⪰ is an ordering 
on the set  of acts. If f and g are acts in , we say that f ⪰ g if the agent weakly 
prefers act f to act g. The internal attitudes, on the other hand, are typically taken 
to be given by the agent’s credences and her utilities. As mentioned above, her 
credences are defined on propositions in a �-algebra  on the set of states . 
They measure how strongly she believes those propositions. And her utilities 
are defined on the outcomes in . They measure how strongly she desires or 
values those outcomes.3 If you are a constructivist about the internal attitudes, 
then you will take only the external attitudes to be real: you will then take the 
business of decision theory to be the representation of the external attitudes by 
treating the agent as if she has internal attitudes and as if she combines those 
attitudes in a particular way to give her external attitudes. If, on the other hand, 
you are a realist about the internal attitudes, then you will take both sorts of 
attitudes to be real: you will then say that a rational agent’s internal and exter-
nal attitudes ought to relate in a particular way; indeed, they ought to relate 
as if she obtains her external attitudes by combining her internal attitudes in a 
particular way. We will have more to say about the business of decision theory 
later (cf. Section 5.2 below).

2.3.  The EU rule of combination

Expected utility theory posits only two types of internal attitudes: these are 
given by the agent’s credences and utilities. Her credences are given by a cre-
dence function c: → [0, 1], which we assume to be a probability function on 
. Her utilities are given by a utility function u: → ℝ. As with most decision 
theories, expected utility theory posits one type of external attitude, namely, 
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the agent’s preference ordering. Expected utility theory then employs the fol-
lowing rule of combination, which states how her internal and external attitudes 
ought to relate:

EU Rule of Combination Suppose f = {E
1
, x

1
;… ;En, xn} is an act in  – that is, if 

Ei is true, the outcome of f is xi. Then define

Then if the agent is rational, then

That is, an agent’s preferences ought to order acts by their subjective expected 
utility.

A number of decision theorists wish to deny the EU Rule of Combination. 
Buchak is amongst them, but there are other so-called non-expected utility 
theorists (Allais 1953; Quiggin 1982; Schmeidler 1989). I disagree with them 
about the rule of combination; however, as we will see in the second half of this 
paper, I agree with them about the rationality of the preferences that they try to 
capture by reformulating the rule of combination. In Section 4, I try to effect a 
reconciliation between these two positions – the correctness of the EU Rule of 
Combination, on the one hand, and the rationality of risk-sensitive preferences, 
on the other. In this part of the paper, I wish to argue that we ought to combine 
our internal attitudes in exactly the way that expected utility theory suggests. 
That is, I want to argue for the EU Rule of Combination.

How can we tell between different rules of combination? It is commonly 
assumed that representation theorems help us to do this, but this is a mistake. A 
representation theorem presupposes a rule of combination. Relative to a particu-
lar rule of combination, it demonstrates that, for any agent whose preferences 
satisfy certain axioms, there are internal attitudes with certain properties (unique 
to some extent) such that these internal attitudes determine the preferences 
in line with that rule of combination. As many authors have emphasized, given 
a different rule of combination, there will often be different internal attitudes 
with different properties that determine the same preferences, but this time 
in line with this different rule of combination (Zynda 2000; Eriksson and Hájek 
2007; Meacham and Weisberg 2011).

While both constructivists and realists must appeal to rules of combination, 
my argument for the EU Rule of Combination applies primarily to the realist. I 
attempt to show that, for an agent with a credence function of a certain sort and 
a utility function, they are irrational if they don’t combine those two functions in a 
particular way and set their preferences in line with that way of combining them. 
It is directed at an agent whose credence function and utility function have a 

EUc,u(f ): =

n∑
i=1

c(Ei)u(xi)

f ⪰ g ⟺ EUc,u(f ) ≥ EUc,u(g)
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psychological reality beyond her being represented as having them. Thus, it does 
not apply to the constructivist, who thinks of the credence function and utility 
function as merely convenient mathematical ways of representing the preference 
ordering.

2.4.  Estimates and the EU rule of combination

Finally, we come to state our argument in favour of the EU Rule of Combination. 
It draws on a mathematical result due to Bruno de Finetti, which we present as 
Theorem 1 below.

(EU1) � A rational agent will weakly prefer one option to another if, and only 
if, her estimate of the utility of the first is at least her estimate of the 
utility of the second.

(EU2) � A rational agent’s estimate of a quantity will be her subjective expec-
tation of it.

(3) � Therefore,
(EUC) � A rational agent’s preference ordering ⪰ will be determined by the 

EU Rule of Combination.

The first premise (EU1) is supposed to be intuitively plausible. Suppose I 
desire only chocolate – obtaining as much of it as possible is my only goal. And 
suppose my estimate of the quantity of chocolate in the wrapper on my left is 
greater than my estimate of the quantity of chocolate in the wrapper on my 
right. And suppose that, nonetheless, I weakly prefer choosing the chocolate in 
the wrapper on my right. Then I would seem irrational. Likewise, if I desire only 
utility – surely an analytic truth if there are any – then I would seem irrational 
if my estimate of the utility of an act g were higher than my estimate of the 
utility another act f and yet I were to weakly prefer f to g. This is the argument 
for premise (EU1).

The second premise (EU2) is based on a mathematical argument together 
with a plausible claim about the goodness of estimates. Estimates, so the plausi-
ble claim goes, are better the closer they are to the true quantity they estimate. 
Indeed, we might take this to be an analytic truth. That is, we might take it to 
be a necessary condition on something being an estimate of a quantity that it 
is valued for its proximity to the actual value of that quantity. Thus, if I estimate 
that the amount of chocolate remaining in my cupboard is 73 g and my friend 
estimates that it is 79 g and in fact it is 80 g, then her estimate is better than 
mine. The mathematical argument is a generalization of a result due to de Finetti, 
which says, very roughly, that if an agent has estimates that are not expectations 
of the quantities that they estimate, there are alternative estimates of those 
quantities that are guaranteed to be closer to the true values of the quantities; 
so estimates that aren’t expectations are irrational.
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Let’s make all of this precise. Suppose X is a quantity. Mathematically, we 
might understand this as a random variable, which is a function that takes a state 
of the world s and returns X(s), which is the value that this quantity takes in this 
state of the world. Thus, if C is the quantity of chocolate in my cupboard in grams, 
and @ is the actual state of the world, where there is 80 g of chocolate in my cup-
board, then C(@) = 80. Now, given what we said above about the goodness of 
estimates, we can measure the badness or disvalue of an estimate e(X) of a quan-
tity X given a state of the world s by the distance between e(X) and X(s). Now, I 
will focus on just one measure of distance here, for the sake of simplicity, but the 
result also holds of a wide range of distance measures that mathematicians call 
the Bregman divergences.4 Having said that, in Section 2.5, I will offer a reason to 
prefer the measure of distance I use here to all other measures. The measure of 
distance between two numbers x and y that I will use here is the square of their 
difference |x − y|2, which is itself a Bregman divergence. For obvious reasons, we 
call this the quadratic distance measure and we write it �(x, y): = |x − y|2. Thus, 
relative to this measure of distance, the badness of an estimate e(X) of a quantity 
X given a state of the world s is �(e(X ), X (s)) = |e(X ) − X (s)|2.

Now, in the argument we wish to give for (EU2), we are interested in evaluat-
ing the goodness or badness not only of a single estimate of a single quantity, 
but also of a set of estimates of a set of quantities. So our next job is to say 
how we measure this. Suppose  is a set of quantities for which our agent 
has estimates. One of these quantities might be the quantity of chocolate in 
my cupboard, for instance; another might be the quantity of chocolate in my 
hand; another still might be the distance between my house and the nearest 
chocolate shop; and so on. And suppose that e is her estimate function – that is, 
e takes each quantity X in  and returns our agent’s estimate e(X) of that quan-
tity. Then we will measure the badness of an estimate function at a state of the 
world by adding together the badness of each of the individual estimates that 
comprise it. Thus, the badness of e at the state of the world s is the sum of each 
�(e(X ), X (s)) for each X in . So the badness of an estimate function e defined 
on the quantities in  at a state of the world s is

With these notions defined, we have nearly defined everything that we need 
for our argument for (EU2). But there is one final observation to make. Consider 
our credences. It seems natural to say that my credence in a true proposition is 
better, epistemically speaking, the closer it is to the maximal credence, which is 
1. And it seems natural to say that my credence in a false proposition is better, 
epistemically speaking, the closer it is to 0. That is, our credence in a proposition 
can be seen as an estimate of a particular quantity, namely, the quantity that 
takes value 1 if the proposition is true and value 0 if the proposition is false 

ℑ(e, s): =
∑
X∈

𝔮(e(X ), X (s)) =
∑
X∈

|e(X ) − X (s)|2
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(Jeffrey 1986; Joyce 1998). Given a proposition A, call this the indicator quantity 
for A: thus, A(s) = 0 if A is false at s; A(s) = 1 if A is true at s.

Now, suppose that our agent has credences in all propositions in a finite 
algebra . Let’s say that her credence function is the function that assigns to each 
of these propositions her credence in it. Then the observation that a credence 
in a proposition is, or at least should be evaluated as if it is, an estimate of the 
indicator quantity for that proposition suggests that the badness of a credence 
function c at a state of the world s should be given by

That is, it is the sum of the distance between each credence, c(A), and the indi-
cator quantity, A, corresponding to the proposition to which the credence is 
assigned.

Finally, we can say that an agent with a credence function c defined on the 
propositions in the finite algebra  and an estimate function e defined on a 
finite set of quantities  should be evaluated at a state of the world s as follows: 
her badness is given by

That completes our account of how badly an agent is doing who has credences 
in propositions in  and certain estimates in quantities in .

Next, we turn to what we might show using this account. Let’s say that our 
agent’s credence function c defined on finite algebra  is probabilistic if

(i) � (Range) 0 ≤ c(A) ≤ 1 for all A in .
(ii) � (Normalization) c(⊤) = 1, where ⊤ is the tautologous proposition; that 

is, it is true at all states of the world.
(iii) � (Additivity) c(A ∨ B) = c(A) + c(B)   if A and B are mutually exclusive 

propositions; that is, A and B are not true together at any state of the 
world.

Now suppose that c is probabilistic. Then we say that the estimate function 
e defined on  is expectational with respect to c if

(iv) � (Expectation) For each X in ,

So an estimate function is expectational with respect to a probabilistic credence 
function if its estimate of each quantity is the weighted sum of the possible 
values of that quantity where the weights are given by the credence assigned 
to the relevant state of the world by the credence function. We say that a pair 

ℑ(c, s): =
∑
A∈

𝔮(c(A),A(s)) =
∑
A∈

|c(A) − A(s)|2

ℑ(c, s) +ℑ(e, s) =
∑
A∈

𝔮(c(A),A(s)) +
∑
X∈

𝔮(e(X ), X (s))

e(X ) =
∑
s∈

c(s)X (s)
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(c, e) is probabilistic and expectational if c is probabilistic and e is expectational 
with respect to c – that is, if they jointly satisfy (i)–(iv).

For instance, suppose there are just two states of the world, s
1
 and s

2
. 

And let C be the quantity of chocolate in my cupboard in grams. Let’s sup-
pose that, in state s

1
, there is a meagre 80 g of chocolate in my cupboard (so 

C(s
1
) = 80), whereas in state s

2
, there is veritable bounty, namely, 1000 g (so 

C(s
2
) = 1000). And suppose that, having resisted the temptation to indulge 

in wishful thinking, I have credence c(s
1
) = 0.9 in state s

1
 and c(s

2
) = 0.1 in 

state s
2
. Then my credences are probabilistic (since they sum to 1), and my 

estimate of C is expectational with respect to my credences just in case it is 
e(C) = c(s

1
)C(s

1
) + c(s

2
)C(s

2
) = (0.9 × 80) + (0.1 × 1000) = 172.

In order to establish (EU2), the second premise of the argument for the EU 
Rule of Combination, we need to show that it is a requirement of rationality 
that an agent have a probabilistic credence function and an estimate function 
that is expectational with respect to it. Our argument is based on the following 
mathematical theorem, which is due to de Finetti (1974, 136).

Theorem 1 (de Finetti)  Suppose c is a credence function on  and e is an estimate 
function on .

(i) � If (c, e) is not probabilistic and expectational, then there is another pair 
(c

�
, e

�
) that is probabilistic and expectational such that

for all states of the world s.

(ii) � If (c, e) is probabilistic and expectational, then there is no other pair 
(c

�
, e

�
) such that

 for all states of the world s.

Thus, if an agent either has a credence function that is not a probability 
function, or if her credence function is a probability function but her estimates 
of quantities are not all given by her expectations of those quantities relative 
to that credence function, then there are alternative credences and estimates 
that, taken together, will be less bad than her credences and estimates taken 
together; that is, the alternative credences and estimates will be closer to the 
quantities that they estimate however those quantities turn out to be. What’s 
more, if her credence function is a probability function, and if her estimates are 
given by her expectations, then there are no alternative credences and estimates 
that are guaranteed to be better than hers; indeed, there are no alternative 
credences and estimates that are guaranteed to do at least as well as hers. I 
provide a proof of this result in the Appendix.

ℑ(c
�
, s) +ℑ(e

�
, s) < ℑ(c, s) +ℑ(e, s)

ℑ(c
�
, s) +ℑ(e

�
, s) ≤ ℑ(c, s) +ℑ(e, s)
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This gives us an argument for having credences that are probabilities and 
estimates that are expectations. If we fail to do this, the theorem says, there are 
alternative credences and estimates we might have had that are guaranteed 
to do better than our credences; and there is nothing that is guaranteed to do 
better than those alternatives; indeed, there is nothing else that is even guar-
anteed to do just as well as them. Compare: I am offered two gambles on a fair 
coin toss. On the first, if the coin lands heads, I receive £5; if it lands tails, I lose 
£6. On the second, if the coin lands heads, I receive £10; if it lands tails, I lose £3. 
Now suppose I choose the first gamble. You would charge me with irrationality. 
After all, the second is guaranteed to be better than the first; whether the coin 
comes up heads or tails, I’ll end up with more money if I’ve taken the second 
gamble. We are using a similar piece of reasoning here to argue that an agent is 
irrational if she has credences that are not probabilities, or if she has credences 
that are probabilities, but her estimates are not expectations with respect to 
them. That is, we are appealing to the so-called Dominance Principle, which 
says that an option is irrational if there is an alternative that is guaranteed to be 
better than it, and if there is nothing that is guaranteed to be better than that 
alternative. This completes our justification of the second premise (EU2) of our 
argument for the EU Rule of Combination.

You might worry here that, in the preceding justification of (EU2), we appeal 
to one principle of rational choice in order to justify another: we are appealing to 
the Dominance Principle in order to establish the EU Rule of Combination. And 
of course we are. But that is permissible in this context. After all, the Dominance 
Principle is an uncontroversial principle of decision theory. It is agreed upon 
by all parties to the current debate. Buchak and all other non-expected utility 
theorists disagree with me and other expected utility theorists about how cre-
dences and utilities should combine to give preferences. But we all agree that 
if one option is guaranteed to be better than another, and there is nothing that 
is guaranteed to be better than the first, then the second is irrational. So the 
argument strategy is legitimate.

Having given our justification for (EU2), this completes our argument for the 
EU Rule of Combination. According to the first premise (EU1), our preference 
ordering over acts should match our estimates of the utility of those acts: that is, 
I should weakly prefer one act to another iff my estimate of the utility of the first 
is at least as great as my estimate of the utility of the second. According to the 
second premise (EU2), our estimate of a given quantity, whether it is the utility 
of an act or the mass of chocolate in my fridge, should be our expectation of 
that quantity; that is, it should be the weighted average of the possible values 
that that quantity might take where the weights are given by our credences in 
the relevant states of the world. Putting these together, we obtain the EU Rule 
of Combination.
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2.5.  Measuring the badness of estimates

Before we leave our argument for the EU Rule of Combination, it is worth noting 
two things about the distance measure � that we used to give the badness of 
an estimate of a given quantity at a given state of the world, and the function 
ℑ that we used to give the badness of a set of estimates in a set of quantities 
at a given world. First, as noted above, Theorem 1 holds for a wide range of 
alternative measures of distance; indeed, for any of the so-called Bregman diver-
gences. However, second, it is also true that Theorem 1 fails for a wide range of 
alternative measures; indeed, it fails for the so-called absolute value measure �
, which takes the distance between real numbers x and y to be the difference 
between them, that is, �(x, y): = |x − y|. Thus, this argument will be compelling 
to the extent that we can justify using the quadratic measure �, or some other 
Bregman divergence, instead of the absolute value measure �. Arguments have 
been given for this assumption in the case where we are measuring only the 
badness of credences (D’Agostino and Sinigaglia 2010; Leitgeb and Pettigrew 
2010; Pettigrew ta 2016). In this context, it looks most promising to extend the 
argument of D’Agostino and Sinigaglia (2010). The arguments of Leitgeb and 
Pettigrew (2010) assume too much, and the argument of Pettigrew (ta) is too 
closely bound to the case of credences.

Above, we assumed that we begin with a measure � of the distance between 
a single estimate e(X) of a single quantity X and the true value X(s) of X at a state 
of the world s; and then we measure the distance between an entire estimate 
function e defined on a set  of quantities, on the one hand, and the true values 
of those quantities at a state of the world s, on the other hand, by summing 
the distances, �(e(X ), X (s)), between each e(X) and X(s) for X in . If we adapt 
the argument given by D’Agostino and Sinigaglia (2010), we do not make this 
assumption: instead, we justify it. That is, we assume that the badness of an 
estimate function e defined on  at a state of the world s is given by some 
function �(e, s), and we lay down conditions on this function such that, if � 
satisfies all of the conditions, then there is a continuous and strictly increasing 
function H:ℝ → ℝ such that

Since we appealed to the Dominance Principle in order to justify the EU Rule 
of Combination, and since the Dominance Principle pays attention only to the 
ordering of options at a world, rather than their cardinal utilities at that world, it 
does not matter whether we use the sum of the squared differences between 
the values or whether we use some strictly increasing transformation of that 
sum. Thus, this characterization of � is sufficient for our purposes.

�(e, s) = H

(∑
X∈

�(e(X ), X (s))

)
= H

(∑
X∈

|e(X ) − X (s)|2
)
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Here are the conditions that D’Agostino and Sinigaglia (2010) place on our 
measure � of the badness of an estimate function.5

Extensionality Let us say that the estimate profile of e at s is the multiset of all 
pairs (e(X), X(s)) for X in  – that is, {{(e(X ), X (s)):X ∈ }}.6 Then, if e has the same 
estimate profile at s as e′ has at s′, then �(e, s) = �(e�, s�).

That is, the badness of your estimate function is a function only of its estimate 
profile. It does not depend on the particular quantities to which you assign 
estimates. If you and I assign estimates to very different quantities, but our 
estimate profiles match, then our estimates are exactly as bad as each other.

Accurate Extension Invariance If e is an estimate function on  and  ′
⊆ , 

then let e|


′ be the estimate function on  ′ that agrees with e on all quantities in 


′ – e|


′ is sometimes called the restriction of e to  ′. Then, if the estimates that e 
assigns to quantities not in  ′ are equal to the true values of those quantities at 
s, then �(e|


� , s) = �(e, s).

That is, adding perfectly accurate estimates to your estimate function does not 
affect its badness.

Difference Supervenience If e assigns an estimate to just one quantity X, then 
�(e, s) = g(|e(X ) − X (s)|) for some continuous and strictly increasing function 
g:ℝ → ℝ.

That is, the badness of a single estimate is a continuous and strictly increas-
ing function of the difference between that estimate and the true value of the 
quantity.

Separability If  ′
⊆  and

(i) � �(e|


� , s) = �(e�|


� , s) and
(ii) � �(e|

−
� , s) < �(e�|

−
� , s),

then �(e, s) < �(e�, s).

That is, if two estimate functions are equally bad on some subset of the quan-
tities to which they assign estimates, then one is worse than the other if it is 
worse on the remaining quantities.

Taken together, these four properties entail that there are continuous and 
strictly increasing functions H:ℝ → ℝ and f :ℝ → ℝ such that:

Indeed, these four conditions are equivalent to the existence of two such func-
tions H and f. Thus, what we need for our conclusion is a further property that 
ensures that f (x) = x2. That is the job of the final condition on �. To state it, we 
need the notion of an order-reversing swap. Suppose e is an estimate function 
defined on a set of quantities  and s is a state of the world. And suppose that the 
estimates that e assigns to quantities X and Y are ordered correctly at s. That is,

�(e, s) = H

(∑
X∈

f (|e(X ) − X (s)|)
)
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(i) � e(X ) > e(Y) and X (s) > Y(s) or
(ii) � e(X ) < e(Y) and X (s) < Y(s).

Then, if we define eXY to be the estimate function that is obtained from e 
by swapping its estimates for X and Y – so eXY (X ) = e(Y) and eXY (Y) = e(X ) 
– then we say that eXY is an order-reversing swap of e, since the estimates 
that eXY assigns to quantities X and Y are ordered incorrectly at s. Our next 
condition says two things: first, it says that an order-reversing swap always 
increases the badness of the estimates; second, it says that if you compare 
two order-reversing swaps on the same estimate function and if (a) the two 
swaps involve swapping estimates that are themselves equally far apart 
and (b) the two swaps involve quantities whose true values are equally 
far apart, then the badness of the swaps is equal. The motivation for this 
condition is the following: The badness of a set of estimates is supposed 
to be determined by the extent to which they match the truth about the 
quantities that they estimate. As well as matching the quantitative facts 
about those quantities – such as their values – it also seems to be a good 
thing to match the qualitative facts about them – such as their ordering. 
Clearly e matches this qualitative fact for X and Y, whereas eXY does not. 
Thus, other things being equal, eXY is worse than e. And other things are 
equal, since all that has changed in the move from e to eXY is that the quan-
tities to which the estimates e(X) and e(Y) are assigned have been switched. 
Moreover, if we consider two possible order-reversing swaps on the same 
estimate function where (a) and (b) hold, then the effect of each swap on 
the badness of the estimate function should be the same, since there is 
nothing to tell between them.

 � The Badness of Order-Reversing Swaps Suppose e is defined on  and 
suppose X , Y , X ′

, Y ′ are quantities in . And suppose e(X), e(Y) are ordered 
as X(s), Y(s) are; and e(X �

), e(Y �
) are ordered as X �

(s), Y �
(s) are. And sup-

pose |e(X ) − e(Y)| = |e(X �
) − e(Y �

)| and |X (s) − Y(s)| = |X �
(s) − Y �

(s)|. Then 
�(e, s) < �(eXY , s) = �(eX �Y � , s).

We now have the following theorem:

Theorem 2 (D’Agostino & Dardanoni)  If � satisfies Extensionality, Accurate 
Extension Invariance, Difference Supervenience, Separability and The Badness of 
Order-Reversing Swaps, then there is a continuous and strictly increasing functions 
H:ℝ → ℝ such that:

This gives us what we need.

�(e, s) = H

(∑
X∈

|e(X ) − X (s)|2
)
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3.  Expected utility and risk-weighted expected utility

In the previous section, we gave our defence of the EU Rule of Combination. In 
this section, we describe Lara Buchak’s proposed alternative. To do this, we’ll 
illustrate the difference between expected utility and risk-weighted expected 
utility using a particular act as an example. We’ll first describe the expected utility 
of that act, and then we’ll show how to define its risk-weighted expected utility. 
Our example is the following act: h = {E

1
, x

1
;… ;E

4
, x

4
}. The agent’s probabilistic 

credences over the events E
1
,… , E

4
 and her utilities for the outcomes x

1
,… , x

4
 

are given as follows:

Figure 1. The expected utility EU
c,u
(h) of h is given by the grey area.Note: It is obtained by 

summing the areas of the four vertical rectangles: working from right to left, their areas 
are c(E

1
)u(x

1
),… , c(E

4
)u(x

4
).

Figure 2.  Again, the expected utility EU
c,u
(h) of h is given by the grey area.Note: It is 

obtained by summing the areas of the three vertical rectangles (the middle two vertical 
rectangles from Figure 1 have been merged): working from right to left, their areas are 
c(F

1
)u

1
,… , c(F

3
)u

3
.
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In Figure 1, we exploit a useful diagrammatic way of representing the 
expected utility of h, which is used by Quiggin (1993), Wakker (2010) and Buchak 
(2013).

Figure 1 suggests two ways in which we might reformulate EUc,u(f ). These will 
be very useful in understanding how expected utility theory relates to Buchak’s 
proposal.

• � First, it is clear that EUc,u(f ) depends only on the utilities of the outcomes 
to which the act f may give rise and the probabilities that f will produce 
outcomes with those utilities. Thus, given an act f = {E

1
, x

1
;… ;En, xn} and 

a utility function u, we might redescribe f as {F
1
, u

1
;… ;Fk , uk} where

• � u
1
,… , uk are the utilities to which f might give rise ordered from least to 

greatest – that is, u
1
< … < uk. For instance, in our example act h: u

1
= 3

, u
2
= 5, u

3
= 6.

• � Fj is the proposition that f will give rise to uj. Thus, Fj = {s ∈  :u(h(s)) = uj}. 
For instance, in our example act h: F

1
≡ E

1
, F

2
≡ E

2
∨ E

3
, F

3
≡ E

4
. We call this 

the ordered utility-based description of f relative to u. Then

Figure 2 illustrates this reformulation of expected utility for our example act h.

• � The second reformulation of EUc,u(f ) builds on this first and is illustrated in 
Figure 3. Suppose f = {F

1
, u

1
;… ;Fk , uk} is the ordered utility-based descrip-

tion of f relative to u. Then

EUc,u(f ) =

k∑
j=1

c(Fj)uj

EUc,u(f ) = u
1
+

k∑
j=2

c(Fj ∨… ∨ Fk)(uj − uj−1)

Figure 3. Once again, the expected utility EU
c,u
(h) of h is given by the grey area.Notes: It is 

obtained by summing the areas of the three horizontal rectangles. Working from bottom 
to top, their areas are c(F

1
∨ F

2
∨ F

3
)u

1
= u

1
, c(F

2
∨ F

3
)(u

2
− u

1
) and c(F

3
)(u

3
− u

2
).
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 Again, the expected utility of an act is given by a weighted sum: but this 
time the quantities to be weighted are the differences between one possible 
utility and the possible utility immediately below it; and the weight assigned 
to that difference is the probability that the act will give rise to at least that 
much utility.

With this in hand, we’re ready to formulate Buchak’s alternative to expected 
utility theory. Buchak is motivated by the apparent rationality of risk-sensitive 
behaviour. Notoriously, some seemingly rational risk-sensitive behaviour can-
not be captured by expected utility theory at all: for instance, Allais described 
seemingly rational preferences that cannot be generated by any rational cre-
dence function and utility function in the way prescribed by expected utility 
theory (Allais 1953). Moreover, there are other seemingly rationally preferences 
that can be generated by a credence function and utility function in line with 
expected utility theory, but which seem to be rational even for agents who do 
not have credences and utilities that would generate them in this way. Thus, 
for instance, consider the two acts described in the introduction to this article: 
Safe = { Heads ∨ Tails, £50} and Risky = { Heads, £100; Tails, £0}. Suppose that 
our agent strictly prefers Safe to Risky: that is, Safe ≻ Risky. Can expected util-
ity theory capture the rationality of this preference? Suppose that, since the 
coin is known to be fair, rationality requires that the agent assigns credences 
to the two states of the world as follows: c( Heads) = 0.5 = c( Tails). Then it 
is still possible to describe a utility function on the outcomes £0, £50, £100 
that generates these preferences in the way expected utility theory requires. 
Let u(£0) = 0 and u(£100 = £50 + £50) < u(£50) + u(£50). That is, suppose the 
agent treats money as a dependent good: how much utility it gives depends on 
how much of it she has already; so, money has diminishing marginal utility for 
this agent. Then, for an agent with this credence function and utility function, 
EUc,u(Safe) > EUc,u(Risky), as required. So expected utility theory can capture 
the rationality of these preferences. However, as Buchak rightly observes, those 
preferences – that is, Safe ≻ Risky – seem rational not only for an agent for whom 
money has diminishing marginal utility; they seem rational even for an agent 
whose utility is linear in money. And this is something that expected utility can-
not capture. Thus, Buchak is interested not only in saving the Allais preferences, 
but also in saving other risk-sensitive behaviour without attributing the risk-sen-
sitive behaviour to the shape of the utility function (Buchak 2013, Chapter 1).

How does Buchak hope to capture these risk-sensitive preferences? Where 
expected utility theory countenances only two types of internal attitude as rele-
vant to preferences, Buchak countenances a third as well: this third component 
is supposed to capture the agent’s attitude to risk, and it is given by a function 
r:[0, 1] → [0, 1], which Buchak assumes to be strictly increasing, continuous, 
and taking the following values, r(0) = 0 and r(1) = 1 (Buchak 2013, Section 
2.2). Buchak’s risk-weighted expected utility theory then employs the following 
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rule of combination, which states how an agent’s internal and external attitudes 
ought to relate, where the agent has credence function c, utility function u and 
risk function r:

REU Rule of Combination (Buchak 2013, 53) Suppose f = {F
1
, u

1
;… ;Fk , uk} is the 

ordered utility-based description of act f relative to utility function u. Then let

Then if the agent is rational, then

In Figure 4, we illustrate the risk-weighted expected utility of our example act 
h when the agent has the risk function r

2
(x): = x2. Notice that the formulation 

of REUr,c,u(f ) is exactly like the formulation of EUc,u(f ) that we gave above except 
that each probability weight is transformed by the agent’s risk function. Thus, if 
r(x) < x (for all 0 < x < 1), then, as Figure 4 illustrates, the lowest utility to which 
the act can give rise – namely, u

1
 – contributes just as much to REUr,c,u(f ) as it 

does to EUc,u(f ) – it contributes u
1
 to both. But further increases in utility – such 

as the increase from getting at least utility u
1
 to getting at least u

2
 – make less 

of a contribution since their probability – c(F
2
∨ F

3
) – is acted on by the risk 

function, and it is this reduced value – r(c(F
2
∨ F

3
)) – that weights the possible 

increases in utility. Thus, such an agent displays risk-averse behaviour. r
2
 is such 

a risk function.
Similarly, if r(x) > x (for all 0 < x < 1), then the lowest utility to which the 

act can give rise contributes just as much to REUr,c,u(f ) as it does to EUc,u(f ), but 
further increases in utility make more of a contribution since their probability 
is acted on by the risk function and it is this increased value that weights the 

REUr,c,u(f ): = u
1
+

k∑
j=2

r(c(Fj ∨… ∨ Fk))(uj − uj−1)

f ⪰ g ⟺ REUr,c,u(f ) ≥ REUr,c,u(g)

Figure 4. The risk-weighted expected utility REU
r
2
,c,u
(h) of h is given by the grey area, where 

r
2
(x): = x

2.
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possible increases in utility. This is illustrated in Figure 5. Such an agent displays 
risk-seeking behaviour. r

0.5
(x): =

√
x is such a risk function.

It’s also easy to see that, if r
1
(x): = x (for 0 ≤ x ≤ 1), then REUr

1
,c,u(f ) = EUc,u(f ). 

Thus, expected utility theory is the special case of risk-weighted expected utility 
theory given by a linear risk function. In such a situation, we say that the agent 
is risk-neutral. This means that Buchak’s theory permits any preferences that 
expected utility theory permits. But it also permits a whole lot more. For instance, 
one can easily recover the Allais preferences or the preference Safe ≻ Risky 
described above by attributing to an agent a certain sort of risk function – in 
both cases, a risk-averse risk function.

This, then, is Buchak’s proposal.

Figure 6. Again, the risk-weighted expected utility REU
r
2
,c,u
(f ) of f is given by the grey area, 

where r
2
(x) = x

2.

Figure 5.  The risk-weighted expected utility REU
r
0.5
,c,u
(h) of h is given by the grey area, 

where r
0.5
(x): =

√
x .
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4.  Redescribing the outcomes

Moving from expected utility theory to risk-weighted expected utility theory 
involves an agent evaluating an act in the way illustrated in Figure 3 to evalu-
ating it in the way illustrated in Figure 4. In order to begin to see how we can 
redescribe the REU rule of combination as an instance of the EU rule of combi-
nation, we reformulate the REU rule in the way illustrated in Figure 6.7 Thus, we 
can reformulate REUr,c,u(f ) as follows:

And we can reformulate this as follows:

since c(Fj ∨… ∨ Fk) − c(Fj+1 ∨… ∨ Fk) = c(Fj).
Now, suppose we let

Then we have:

Reformulating Buchak’s rule of combination in this way suggests two accounts 
of it. On the first, utilities attach ultimately to outcomes xi, and they are weighted 
not by an agent’s credences but rather by a function of those credences that 
encodes the agent’s attitude to risk (given by a risk function). On this account, we 
group c(Fj)sj together to give this weighting. Thus, we assume that this weight-
ing has a particular form: it is obtained from a credence function c and a risk 
function r to give c(Fj)sj; this weighting then attaches to uj to give (c(Fj)sj)uj. This 
is the account that Buchak favours.

On the second account, credences do provide the weightings for utility, as 
in the EU rule of combination, but utilities attach ultimately to outcome-act 
pairs (xi , f ). On this account, we group sjuj together to give this utility; this util-
ity is then weighted by c(Fj) to give c(Fj)(sjuj). That is, we say that an agent’s 

REUr,c,u(f ) =

k−1∑
j=1

(r(c(Fj ∨… ∨ Fk)) − r(c(Fj+1 ∨… ∨ Fk)))uj + r(c(Fk))un

REUr,c,u(f ) =

k−1∑
j=1

c(Fj)
r(c(Fj ∨… ∨ Fk)) − r(c(Fj+1 ∨… ∨ Fk))

c(Fj ∨… ∨ Fk) − c(Fj+1 ∨… ∨ Fk)
uj + c(Fk)

r(c(Fk))

c(Fk)
un

sj =

⎧
⎪⎪⎨⎪⎪⎩

r(c(Fj∨…∨Fk ))−r(c(Fj+1∨…∨Fk ))

c(Fj∨…∨Fk )−c(Fj+1∨…∨Fk )
if j = 1,… , k − 1

r(c(Fj ))

c(Fj )
if j = k

REUr,c,u(f ) =

k∑
j=1

c(Fj)sjuj
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utility function is defined on a new outcome space: it is not defined on a set 
of outcomes , but on a particular subset of  ×, which we will call ∗. ∗ 
is the set of outcome-act pairs (xi , f ) such that xi is a possible outcome of f: 
that is, ∗

= {(x, f ) ∈  ×:∃s ∈ (f (s) = x)}. Now, just as the first account 
assumed that the weightings of the utilities have a certain form – namely, they 
are generated by a risk function and probability function in a certain way – so 
this account assumes something about the form of the new utility function u∗ 
on ∗: we assume that a certain relation holds between the utility that u∗ assigns 
to outcome-act pairs in which the act is the constant act over the outcome and 
the utility u∗ to outcome-act pairs in which this is not the case. We assume that 
the following holds:

If a utility function on ∗ satisfies this property, we say that it encodes attitudes 
to risk relative to risk function r. Thus, on this account an agent evaluates an act 
as follows:

• � She begins with a risk function r and a probability function c.
• � She then assigns utilities to all constant outcome-act pairs (x, x), defining 
u∗ on 

∗

, where 
∗

= {(x, x):x ∈ } ⊆ 
∗.

• � Finally, she extends u∗ to cover all outcome-act pairs in ∗ in the unique 
way required in order to make u∗ a utility function that encodes attitudes to 
risk relative to r. That is, she obtains u∗(x, f ) by weighting u∗(x, x) in a certain 
way that is determined by her probability function and her attitudes to risk.

Let’s see this in action in our example act h; we’ll consider h from the point of 
view of two risk functions, r

2
(x) = x2 and r

0.5
(x) =

√
x. Recall: r

2
 is a risk-averse 

risk function; r
0.5

 is risk seeking. We begin by assigning utility to all constant 
outcome-act pairs (x, x):

Then we do the same trick as above and amalgamate the outcome-act pairs 
with the same utility: thus, again, F

1
 is the event in which the act gives out-

come-act pair (x
1
, h), F

2
 is the event in which it gives (x

2
, h) or (x

3
, h), and F

3
 the 

event in which it gives (x
4
, h). Next, we assign utilities to (x

1
, h), (x

2
, h), (x

3
, h) 

and (x
4
, h) in such a way as to make u∗ encode attitudes to risk relative to the 

risk function r.
Let’s start by considering the utility of (x

1
, h), the lowest outcome of h. 

Suppose our risk function is r
2
; then

(1)u∗(x, f ) = sju
∗
(x, x)

u∗(x
1
, h): =

r
2
(c(F

1
∨ F

2
∨ F

3
)) − r

2
(c(F

2
∨ F

3
))

c(F
1
∨ F

2
∨ F

3
) − c(F

2
∨ F

3
)

u∗(x
1
, x

1
)

=
r
2
(1) − r

2
(0.7)

1 − 0.7
= 1.7u∗(x

1
, x

1
)
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And now suppose our risk function is r
0.5

; then

Thus, the risk-averse agent – that is, the agent with risk function r
2
 – values this 

lowest outcome x
1
 as the result of h more than she values the same outcome as 

the result of a certain gift of x
1
, whereas the risk-seeking agent – with risk func-

tion r
0.5

 – values it less. And this is true in general: if r(x) < x for all x, the utility of 
the lowest outcome as a result of h will be more valuable than the same outcome 
as a result of the constant act on that outcome; if r(x) < x it will be less valuable.

Next, let us consider the utility of (x
4
, h), the highest outcome of h. Suppose 

her risk function is r
2
; then

And now suppose her risk function is r
0.5

; then

Thus, the risk-averse agent – that is, the agent with risk function r
2
 – values this 

highest outcome x
4
 as the result of h less than she values the same outcome 

as the result of a certain gift of x
4
, whereas the risk-seeking agent – with risk 

function r
0.5

 – values it more. And, again, this is true in general: if r(x) < x for all 
x, the utility of the highest outcome as a result of h will be less valuable than 
the same outcome as a result of the constant act on that outcome; if r(x) < x it 
will be more valuable.

This seems right. The risk-averse agent wants the highest utility, but also cares 
about how sure she was to obtain it. Thus, if she obtains x

1
 from h, she knows 

she was guaranteed to obtain at least this much utility from h or from x
1
 (since 

x
1
 is the lowest possible outcome of each act). But she also knows that h gave 

her some chance of getting more utility. So she values (x
1
, h) more than (x

1
, x

1
)

. But if she obtains x
4
 from h, she knows she was pretty lucky to get this much 

utility, while she knows that she would have been guaranteed that much if she 
had obtained x

4
 from x

4
. So she values (x

4
, h) less than (x

4
, x

4
). And similarly, but 

in reverse, for the risk-seeking agent.
Finally, let’s consider the utilities of (x

2
, h) and (x

3
, h), the middle outcomes of 

h. They will have the same value, so we need only consider the utility of (x
2
, h). 

Suppose her risk function is r
2
; then

u∗(x
1
, h): =

r
0.5
(c(F

1
∨ F

2
∨ F

3
)) − r

0.5
(c(F

2
∨ F

3
))

c(F
1
∨ F

2
∨ F

3
) − c(F

2
∨ F

3
)

u∗(x
1
, x

1
)

=
r
0.5
(1) − r

0.5
(0.7)

1 − 0.7
≈ 0.54u∗(x

1
, x

1
)

u∗(x
4
, h): =

r
2
(c(F

3
))

c(F
3
)

u∗(x
4
, x

4
) =

r
2
(0.4)

0.4
u∗(x

4
, x

4
) = 0.4u∗(x

4
, x

4
)

u∗(x
4
, h): =

r
0.5
(c(F

3
))

c(F
3
)

u∗(x
4
, x

4
) =

r
0.5
(0.4)

0.4
u∗(x

4
, x

4
) = 2.5u∗(x

4
, x

4
)

u∗(x
2
, h): =

r
2
(c(F

2
∨ F

3
)) − r

2
(c(F

3
))

c(F
2
∨ F

3
) − c(F

3
)

u∗(x
2
, x

2
)

=
r
2
(0.7) − r

2
(0.4)

0.7 − 0.4
u∗(x

2
, x

2
) = 1.1u∗(x

2
, x

2
)
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Thus, again, the agent with risk function r
2
 assigns higher utility to obtaining x

2
 

as a result of h than to obtaining x
2
 as the result of x

2
. But this is not generally 

true of risk-averse agents. Consider, for instance, a more risk-averse agent, who 
has a risk function r

3
(x): = x3. Then

Again, this seems right. As we said above, the risk-averse agent wants the highest 
utility, but she also cares about how sure she was to obtain it. The less risk-averse 
agent – whose risk function is r

2
 – is sufficiently sure that h would obtain for her 

at least the utility of x
2
and possibly more that she assigns higher value to getting 

x
2
 as a result of h than to getting it as a result of x

2
. For the more risk-averse agent 

– whose risk function is r
3
 – she is not sufficiently sure. And reversed versions of 

these points can be made for risk-seeking agents with risk functions r
0.5

 and r
0.333

, for instance. Thus, we can see why it makes sense to demand of an agent that 
her utility function u∗ on ∗ encodes attitudes to risk relative to a risk function 
in the sense that was made precise above – see Equation 1.

Since what we have just provided is a genuine redescription of Buchak’s 
REU Rule of Combination, we can see that Buchak’s representation theorem is 
agnostic between a version of REU in which utilities attach to elements of , 
and a version of EU in which utilities attach to elements of ∗.

Theorem 3 (Buchak)  If ⪰ satisfies the Buchak axioms, there is a unique probabil-
ity function c, unique risk function, and unique-up-to-affine-transformation utility 
function u on  such that ⪰ is determined by r, c and u in line with the REU rule of 
combination.

And we have the following straightforward corollary:

Theorem 4  If ⪰ satisfies the Buchak axioms, there is a unique probability function 
c and unique-up-to-affine∗-transformation utility function u∗ on ∗ that encodes 
attitudes to risk relative to a risk function such that ⪰ is determined by c and u∗ in line 
with the EU rule of combination (where u∗ is unique-up-to-affine∗-transformation if 
u
∗|


∗ is unique-up-to-affine-transformation).

Thus, by redescribing the set of outcomes to which our agent assigns utilities, 
we can see how her preferences in fact line up with her estimates of the utility 
of her acts, as required by the de Finetti-inspired argument for the EU Rule of 
Combination given in the previous section.

u∗(x
2
, h): =

r
3
(c(F

2
∨ F

3
)) − r

3
(c(F

3
))

c(F
2
∨ F

3
) − c(F

3
)

u∗(x
2
, x

2
)

=
r
3
(0.7) − r

3
(0.4)

0.7 − 0.4
u∗(x

2
, x

2
) = 0.93u∗(x

2
, x

2
)
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5.  What’s wrong with redescription?

Although Buchak does not address precisely this particular version of the rede-
scription strategy, she does consider others nearby. Against those, she raises 
what amount to two objections (Buchak 2013, Chapter 4). (Buchak raises a fur-
ther objection against versions of the redescription strategy that attempt to 
identify certain outcome-act pairs to give a more coarse-grained outcome space; 
but these do not affect my proposal.)

5.1.  The problem of proliferation

One potential problem that arises when one moves from assigning utilities to  
to assigning them to ∗ is that an element in the new outcome space is never 
the outcome of more than one act: (x, f) is a possible outcome of act f but not of 
any act g other than f. Thus, this outcome never appears in the expected utility 
(or indeed risk-weighted expected utility) calculation of more than one act. 
The result is that very few constraints are placed on the utilities that must be 
assigned to these new outcomes and the probabilities that must be assigned 
to the propositions in order to recover a given preference ordering on the acts 
via the EU (or REU) rule of combination. Suppose ⪰ is a preference ordering on 
. Then, for each act f in , pick a real number rf  such that f ⪰ g iff rf ≥ rg. Now 
there are many ways to do this, and they are not all affine transformations of 
one another – indeed, any strictly increasing � :ℝ → ℝ will take one such assign-
ment to another. Now pick any probability function c on . Now, given an act 
f = {E

1
, x

1
;… ;En, xn}, the only constraint on the values u∗(x

1
, f ), …, u∗(xn, f ) is that ∑

i c(Ei)u
∗
(xi , f ) = rf . And this of course permits many different values.8 Buchak 

dubs this phenomenon belief and desire proliferation (Buchak 2013, 140).
Why is this a problem? There are a number of reasons to worry about belief 

and desire proliferation. There is the epistemological worry that, if utilities and 
probabilities are as loosely constrained as this, it is not possible to use an agent’s 
observed behaviour to predict her unobserved behaviour. Divining her prefer-
ences between two acts will teach us nothing about the utilities she assigns to 
the outcomes of any other acts since those outcomes are unique to those acts. 
Also, those who wish to use representation theorems for the purpose of radical 
interpretation will be concerned by the complete failure of the uniqueness of 
the rationalization of preferences that such a decision theory provides.

Neither of these objections seems fatal to me. But in any case, the version of 
the redescription strategy presented here avoids them altogether. The reason 
is that I placed constraints on the sort of utility function u∗ an agent can have 
over ∗: I demanded that u∗ encode attitudes to risk; that is, u∗(x, f ) is defined 
in terms of u∗(x, x) in a particular way (given by Equation 1). And we saw in 
Theorem 4 above that, for any agent whose preferences satisfy the Buchak axi-
oms, there is a unique probability function c and a unique utility function u∗ 
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on ∗ that encodes attitudes to risk relative to a unique risk function such that 
together c and u∗ generate the agent’s preferences in accordance with the EU 
Rule of Combination.

5.2.  Ultimate ends and the locus of utility

Buchak’s second objection initially seems more worrying (Buchak 2013, 137–
138). A theme running through Risk and Rationality is that decision theory is 
the formalization of instrumental or means-end reasoning. One consequence of 
this is that an account of decision theory that analyses an agent as engaged in 
something other than means-end reasoning is thereby excluded.

Buchak objects to the redescription strategy on these grounds. According 
to Buchak, to understand an agent as engaged in means-end reasoning, one 
must carefully distinguish the means and the ends: in Buchak’s framework, the 
means are the acts and the ends are the outcomes. One must then assign utilities 
to the ends only. Of course, in terms of these utilities and the agent’s proba-
bilities and possibly other representations of internal attitude such as the risk 
function, one can then assign value or utility to the means. But the important 
point is that this value or utility that attaches to the means is assigned on the 
basis of the assignment of utility to the ultimate ends. Thus, while there is a 
sense in which we assign a value or utility to means – i.e. acts – in expected 
utility theory, this assignment must depend ultimately on the utility we attach 
to ends – i.e. outcomes.

Thus, a first pass at Buchak’s second complaint against the redescription 
strategy is this: the redescription strategy assigns utilities to something other 
than ends – it assigns utilities to outcome-act pairs, and these are fusions of 
means and ends. Thus, an agent analysed in accordance with the redescription 
strategy is not understood as engaged in means-end reasoning.

However, this seems problematic in two ways. Whether they constitute ulti-
mate ends or not, there are at least two reasons why an agent must assign 
utilities to outcome-act pairs rather than outcomes on their own. That is, there 
are two reasons why at least this part of the redescription strategy – namely, 
the move from  to ∗ – is necessary irrespective of the need to accommodate 
risk in expected utility theory.

Firstly, utilities must attach to the true outcomes of an act. But these true 
outcomes aren’t the sort of thing we’ve been calling an outcome here. When I 
choose Safe over Risky and receive £50, the outcome of that act is not merely 
£50; it is £50  as the result of Safe. Thus, the true outcomes of an act are in fact 
the elements of ∗ – they are what we have been calling the outcome-act pairs.

Of course, at this point, Buchak might accept that utilities attach to out-
come-act pairs, but insist that it is nonetheless a requirement of rationality that 
an agent assign the same utility to two outcome-act pairs with the same act 
component; that is, u∗(x, f ) = u∗(x, g); that is, while utilities attach to fusions 
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of means and ends, they must be a function only of the ends. But the second 
reason for attaching utilities to outcome-act pairs tells against this claim in 
general. The reason is this: As Bernard Williams urges, it is neither irrational nor 
even immoral to assign higher utility to a person’s death as a result of something 
other than my agency than to that same person’s death as a result of my agency 
(Williams and Smart 1973). This, one might hold, is what explains my hesitation 
in a Williams-style example in which I must choose whether or not to shoot a 
particular individual when I know that, if I don’t shoot him, someone else will. 
I assign higher utility to the death of that person at the hands of someone else 
than to the death of that person at my hands. Thus, it is permissible in at least 
some situations to care about the act that gives rise to the outcome and let one’s 
utility in an outcome-act pair be a function also of that act.

Nonetheless, this is not definitive. After all, Buchak could reply that this is 
peculiar to acts that have morally relevant consequences. Acts such as those in 
the Allais paradox do not have morally relevant consequences; but the rede-
scription strategy still requires us to make utilities depend on acts as well as 
outcomes in those cases. Thus, for non-moral acts f and g, Buchak might say, 
it is a requirement of rationality that u∗(x, f ) = u∗(x, g), even if it is not such a 
requirement for moral cases. And this would be enough to scupper the rede-
scription strategy.

However, it is not clear why the moral and non-moral cases should differ in 
this way. Consider again the Williams-style example from above: I must choose 
whether to shoot an individual or not; I know that, if I do not shoot him, some-
one else will. I strictly prefer not shooting him to shooting him. My reasoning 
might be reconstructed as follows: I begin by assigning a certain utility to this 
person’s death as the result of something other than my agency – natural causes, 
for instance, or murder by a third party. Then, to give my utility for his death at 
my hand, I weight this original utility in a certain way, reducing it on the basis 
of the action that gave rise to the death. Thus, the badness of the outcome-act 
pair (X’s death, My agency) is calculated by starting with the utility of another 
outcome-act pair with the same outcome component – namely, (X’s death, Not 
my agency) – and then weighting that utility based on the act component. We 
might call (X’s death, Not my agency) the reference pair attached to the outcome 
X’s death. The idea is that the utility we assign to the reference pair attached to 
an outcome comes closest to what we might think of as the utility that attaches 
solely to the outcome; the reference pair attached to an outcome x is the out-
come-act pair (x, f) for which the act f contributes least to the utility of the pair.

Now this is exactly analogous to what the redescription strategy proposes as 
an analysis of risk-sensitive behaviour. In that case, when you wish to calculate 
the utility of an outcome-act pair (x, f), you begin with the utility you attach to 
(x, x). Then you weight that utility in a certain way that depends on the riskiness 
of the act. This gives the utility of (x, f). Thus, if we take (x, x) to be the reference 
pair attached to the outcome x, then this is analogous to the moral case above. 
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In both cases, we can recover something close to the notion of utility for ultimate 
ends or pure outcomes (i.e. elements of ): the utility of the pure outcome x – to 
the extent that such a utility can be meaningfully said to exist – is u∗(x, x), the 
utility of the reference pair attached to x. That seems right. Strictly speaking, 
there is little sense to asking an agent for the utility they assign to a particular 
person’s death; one must specify whether or not the death is the result of that 
agent’s agency. But we often do give a utility to that sort of outcome; and when 
we do, I submit, we give the utility of the reference pair. Similarly, we often speak 
as if we assign a utility to receiving £50, even though the request makes little 
sense without specifying the act that gives rise to that pure outcome: again, 
when we do so, what we really do is give the utility of £50  for sure, that is, the 
utility of (£50, £50).

Understood in this way, the analysis of a decision given by the redescrip-
tion strategy still portrays the agent as engaged in means-end reasoning. Of 
course, there are no pure ultimate ends to which we assign utilities. But there is 
something that plays that role, namely, reference pairs. An agent’s utility for an 
outcome-act pair (x, f) is calculated in terms of her utility for the relevant refer-
ence pair, namely, (x, x); and the agent’s value for an act f is calculated in terms 
of her utilities for each outcome-act pair (x, f) where x is a possible outcome of 
f. Thus, though the value of an act on this account is not ultimately grounded in 
the utilities of pure, ultimate outcomes of that act, it is grounded in the closest 
thing that makes sense, namely, the utilities of the reference pairs attached to 
the pure, ultimate outcomes of the act.

6.  Conclusion

Buchak proposes a novel decision theory. It is formulated in terms of an agent’s 
probability function on , utility function on  and risk function. It permits a 
great many more preference orderings than orthodox expected utility theory. 
On Buchak’s theory, the utility that is assigned to an act is not the expectation 
of the utility of its outcome; rather it is the risk-weighted expectation. But the 
argument of Section 2 of this paper suggests that the value of an act for an 
agent should be her estimate of the utility of its outcome; and her estimate 
of a quantity should be her expectation of that quantity. And these, together, 
give the EU Rule of Combination. In this paper, we have tried to reconcile the 
preferences that Buchak endorses with the EU Rule of Combination. To do this, 
we redescribed the outcome space so that utilities were attached ultimately 
to outcome-act pairs rather than to outcomes themselves. This allowed us to 
capture precisely the preferences that Buchak permits, whilst letting the utility of 
an act be the expectation of the utility it will produce. The redescription strategy 
raises some questions: Does it prevent us from using decision theory for certain 
epistemological purposes? Does it fail to portray agents as engaged in means-
end reasoning? In Section 5, we tried to answer these questions.
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Notes

1. � A finite set X of subsets of a set S is an algebra if (i) S is in X; (ii) if Z is in X, then 
its complement S − Z is in X; (iii) if Z

1
, Z

2
 are in X, then their union Z

1
∪ Z

2
 is in X.

2. � The names should be considered labels only. I do not take them to imply that 
one sort of attitude can be observed directly, while the other sort is knowable 
only by inference.

3. � As we will see below, one of Buchak’s central contentions is that there is a third 
type of internal attitude with which decision theory deals, namely, attitudes to 
risk. In my alternative to Buchak’s theory, I will incorporate such attitudes into the 
utilities on the outcomes. So, while these internal attitudes to risk will be present 
in my account, they will be a component of the utilities, not separate attitudes.

4. � A technical note on the definition of Bregman divergences; what follows is not 
essential to the rest of the argument. Suppose C is a closed, convex subset of the 
real numbers. And suppose �:C → ℝ is a continuously differentiable and strictly 
convex function. Then the Bregman divergence generated by � is defined as 
follows: �

�
(x, y): = �(x) − �(y) − �

�
(y)(x − y). That is, �

�
(x, y) is the difference 

between the value of � at x and the value at x of the tangent to � taken at y. � is 
the Bregman divergence generated by �(x) = x

2.
5. � See also (D’Agostino and Dardanoni 2009), where the original mathematical result 

is stated and proved.
6. � Recall: like a set, a multiset is unordered, so that {{1, 2}} = {{2, 1}}. Unlike a set, 

it allows repetitions, so that {{1, 1, 2}} ≠ {{1, 2, 2}}.
7. � Note that Buchak (2013, Section 4.4) considers a redescription strategy that is very 

close to the one I describe in this section. However, she notes that it is ill-defined. 
The strategy that I describe here does not suffer from this problem.

8. � In general, for �
1
,… , �

n
, r ∈ ℝ, there are many sequences 0 ≤ �

1
,… , �

n
 with ∑

i
�
i
= 1 such that 

∑
i
�
i
�
i
= r, if there are any.

9. � If C is a finite set of vectors in a vector space V over the real numbers, the convex 
hull of C is written C+ and defined as follows: C+ is the smallest convex set that 
includes C, where a set is convex if it contains every mixture of two vectors 
whenever it contains those vectors; alternatively,
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Appendix 1

Proof of theorem 1

In this appendix, we prove Theorem 1. We begin by giving a geometric characterization 
of the pairs (c, e), where c is a credence function and e is an estimate function, such that 
c is probabilistic and e is expectational relative to c.

Lemma 5  Suppose c is a credence function defined on   and e is an estimate 
function defined on . Then the following two propositions are equivalent:

(i) � c is probabilistic and e is expectational with respect to c.
(ii) � For each state s, there is 0 ≤ �

s
≤ 1 such that 

∑
s∈

�
s
= 1 and

(a) � c(A) =
∑

s∈
�
s
A(s), for each proposition A in ;

(b) � e(X ) =
∑

s∈
�
s
X (s), for each quantity X in .
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Proof 1  First, we prove (ii) ⇒ (i). Suppose (ii). First, we show that c is prob-
abilistic. Recall that there are three conditions on being probabilistic: Range, 
Normalization, Additivity. We take them each in turn.

• � Range: Suppose A is in  . Then, note that: (1) each �
s
 lies between 0 and 1 inclusive; 

(2) all of the �
s
s summed together give 1; (3) A(s) = 0 or 1 for each s in . Thus, it 

is certainly true that 
∑

s∈
�
s
A(s) lies between 0 and 1 inclusive.

• �N ormalization: Since ⊤ is true at all states of the world, ⊤(s) = 1 for all s in , so 
c(⊤) =

∑
s∈

𝜆
s
⊤(s) =

∑
s∈

𝜆
s
= 1.

• � Additivity: If there are no states s at which both A and B are true, then 
c(A ∨ B) =

∑
s∈

�
s
(A ∨ B)(s) =

∑
s∈A∨B

�
s
=
∑

s∈A
�
s
+
∑

s∈B
�
s
=
∑

s∈
�
s
A(s) +

∑
s∈

�
s
B(s) = c(A) + c(B)

.Next, we show that e is expectational with respect to c. Suppose s′ is a state of 
the world. Then note that c(s) =

∑
s∈

�
s
s
�
(s). But of course, since the states of 

the world form a partition, s�(s) = 0 if s′ ≠ s and s�(s) = 1 if s = s
�. Thus, c(s) = �

s

. Thus, e(X ) =
∑

s∈
�
s
X (s) =

∑
s∈

c(s)X (s), as required. This gives Expectation.

Second, we prove (i) ⇒ (ii). Let �
s
= c(s) and the result follows easily 

from Additivity and Expectation. □
The upshot of this result is the following: Suppose  = {A

1
,… ,Am} and  = {X

1
,… , Xn}

. And, if c is a credence function on  and e is an estimate function on , represent the 
pair (c, e) by the following vector in ℝm+n:

And represent a state of the world s by the following vector in ℝm+n:

Then Lemma 5 says that (c, e) is probabilistic and expectational iff c⃗e⃗ lies in 
the convex hull of the vectors s⃗ for s in  – that is, c⃗e⃗ ∈ {s⃗:s ∈ }

+.9
The second lemma that we require to prove Theorem 1 is a geometric fact about the 
following measure of distance between two vectors in a real-valued vector space. If 
� = (x

1
,… , xk) and � = (y

1
,… , yk) are vectors in �n, then let

Thus, clearly,

for any credence function c, estimate function e and state of the world s.

Lemma 6  Suppose D ⊆ ℝ
k. Then

(i) � If � ∉ D
+, then there is � ∈ D

+ such that �(�, �) < �(�, �), for all � ∈ D.
(ii) � If � ∈ D

+, then there is no � ≠ � ∈ ℝ
k such that �(�, �) ≤ �(�, �), for all 

� ∈ D.

I won’t provide a full proof of these geometric facts – proofs can be found in any geometry 
textbook. But here is a brief sketch. (i) is an easy consequence of the Hilbert Projection 

c⃗e⃗: = (c(A
1
),… , c(Am), e(X1),… , e(Xn))

s⃗: = (A
1
(s),… ,Am(s), X1(s),… , Xn(s))

�(�, �) =

k∑
i=1

|xi − yi|2

ℑ(c, s) +ℑ(e, s) = 𝔔(c⃗e⃗, s⃗)
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Theorem, since � is the square of the Euclidean metric. (ii) is a consequence of the fact 
that, if we measure distance between vectors using the Euclidean metric or its square, 
�, then, for any two vectors, the set of vectors that are closer to the first than to the 
second is a convex set.

Putting these two results together and, in Lemma  6, letting D = {s⃗:s ∈ }, 
Theorem 1 follows.□
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