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Steady dipolar vortices continuously driven by electromagnetic forcing in a shallow
layer of an electrolytic fluid are studied experimentally and theoretically. The driving
Lorentz force is generated by the interaction of a dc uniform electric current injected
in the thin layer and the non-uniform magnetic field produced by a small dipolar
permanent magnet (0.33 T). Laminar velocity profiles in the neighbourhood of the
zone affected by the magnetic field were obtained with particle image velocimetry in
planes parallel and normal to the bottom wall. Flow planes at different depths of the
layer were explored for injected currents ranging from 10 to 100 mA. Measurements of
the boundary layer attached to the bottom wall reveal that owing to the variation of
the field in the normal direction, a slightly flattened developing profile with no shear
stresses at the free surface is formed. A quasi-two-dimensional magnetohydrodynamic
numerical model that introduces the non-uniformity of the magnetic field, particularly
its decay in the normal direction, was developed. Vertical diffusion produced by the
bottom friction was modelled through a linear friction term. The model reproduces
the main characteristic behaviour of the electromagnetically forced flow.

Key words: magnetohydrodynamic effects, MHD and electrohydrodynamics, vortex
flows

1. Introduction
Electromagnetic forcing is a common experimental method to produce stirring in

shallow layers of electrically conducting fluids. The idea is to produce a rotational
Lorentz force by the injection of electric currents in a thin fluid layer exposed to a
steady external magnetic field. This method has been widely used with the purpose of
exploring the behaviour of quasi-two-dimensional flows which, incidentally, present
similarities with those found in oceanic and atmospheric flows.

Past investigations on electromagnetically driven flows in shallow layers can be
divided into two groups. In the first group the flow is enforced by injecting a
steady electric current through a liquid metal layer under a strong uniform magnetic
field normal to the layer (Sommeria 1986, 1988a, b; Messadek & Moreau 2002).
Owing to the high electrical conductivity of liquid metals and the strong magnetic
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field intensities, reached through electromagnets or superconducting magnets, the
Hartmann number, which estimates the ratio of magnetic to viscous forces, can be very
high. Under these conditions three-dimensional perturbations in the normal direction
are suppressed by the action of the magnetic field (Sommeria 1986; Messadek &
Moreau 2002). Sommeria & Moreau (1982) showed that flows between parallel
insulating walls under a strong uniform magnetic field can be described in terms of a
two-dimensional core flow with a linear friction (the Hartmann friction) that accounts
for the effects of the boundary layers. This approach has been successfully applied
to electromagnetically driven flows in shallow layers, where the two-dimensional
Navier–Stokes equation includes both a steady forcing and a linear Hartmann friction
term (Sommeria 1986, 1988a), and even inertial effects in Hartmann layers can be
considered (Potherát, Sommeria & Moreau 2000).

The second group of electromagnetically driven shallow flows corresponds to those
generated by the injection of electric currents in a thin layer of an electrolyte
under a non-uniform magnetic field produced by an array of permanent magnets
(Cardoso, Marteau & Tabeling 1994). The low electrical conductivity of electrolytes
compared with that of liquid metals and the small magnetic field intensities produced
by permanent magnets result in low-Hartmann-number flows. The geometrical
confinement imposed by the shallow layer restricts three-dimensional perturbations
in the normal direction. The use of two thin stably stratified fluid layers enhances
the tendency of the flows towards two-dimensionality, since the density difference
of the interface acts to prevent vertical velocities (Marteau, Cardoso & Tabeling
1995; Paret & Tabeling 1997). In shallow flows, the role of bottom friction is of
fundamental importance, since it promotes a vertical diffusion, associated with the
exponential damping of the flow. In purely hydrodynamic flows vertical diffusion
is usually parameterized by adding a linear friction term (the Rayleigh friction) to
the two-dimensional Navier–Stokes equation (Hansen, Marteau & Tabeling 1998;
Clercx & van Heijst 2002; Clercx, van Heijst & Zoeteweij 2003). This approach can
be applied for describing decaying vortex flows initially promoted by electromagnetic
forces. Experimentally, relaxation regimes can be studied following the application of
a short current impulse in the fluid layer (Cardoso et al. 1994; Marteau et al. 1995;
Paret & Tabeling 1997; Paret et al. 1997; Hansen et al. 1998; Clercx et al. 2003). In this
case, a purely hydrodynamic description is sufficient, since once the electric current is
turned off, magnetohydrodynamic (MHD) effects can be disregarded because induced
electric currents are usually negligible. However, for continuously electromagnetically
forced shallow flows, MHD interactions cannot be disregarded, since the applied
Lorentz force is always present. The understanding and modelling of these flows is
important, since fundamental applications rely on a continuous stirring process. That
is the case of mixing of a passive scalar with steady or periodic electromagnetic forcing
(Williams, Marteau & Gollub 1997; Rothstein, Henry & Gollub 1999; Voth, Haller &
Gollub 2002; Voth et al. 2003), the promotion of quasi-two-dimensional turbulence
(Paret & Tabeling 1997; Tabeling 2002) or the generation of fully controllable multi-
scale flows in laboratory (Rossi, Vassilicos and Hardalupas 2006a, b). However, to the
best of our knowledge, a full MHD description of these phenomena has not been
provided.

The objective of the present contribution is twofold. In the first place, the work
is aimed at the experimental analysis of a dipolar vortex created in a thin layer of
an electrolyte by the interaction of a steady, uniform electric current with the field
produced by a single dipolar permanent magnet. This basic flow structure, usually
present in a variety of scales in natural and laboratory flows, is also the building
block of more complex flow patterns (e.g. Rossi et al. 2006a, b). By controlling the
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intensity of the injected current in the shallow layer, we take advantage of the
transparency of the electrolyte to explore the inner flow structure through particle
image velocimetry (PIV) measurements in both planes parallel and normal to the
bottom wall. Secondly, this paper also provides a quasi-two-dimensional model that
contains the main physical ingredients of continuously electromagnetically forced
laminar flows in shallow layers under localized magnetic fields. By taking only the
dominant (normal) component of the non-uniform magnetic field within the shallow
layer, which is fairly well reproduced analytically from the experimental distribution,
the governing equations of motion are averaged in the normal direction. Since
this average considers the decay of the field in the vertical direction, the model
allows the calculation of the velocity field in planes at different depths in the layer.
The comparison of the numerical and experimental velocity profiles shows a good
quantitative agreement. The model appears to be particularly suited for the analysis
of electromagnetically driven flows in shallow electrolytic layers.

2. Experimental procedure and observations
The experimental set-up consists of a rectangular frame of 28 × 38 × 1.6 cm; one of

the long sides and the two short sides are made of Plexiglas. The fourth side is made
of glass. The frame is watertight glued to a thin floated glass plate 0.2 cm thick to form
a cell with large horizontal area and small depth. Copper electrodes with rectangular
cross-sections are placed along the shorter sides of the cell and connected to an
adjustable dc voltage power supply. A permanent cylindrical neodynium–iron–boron
dipole magnet with a diameter d of 1.9 cm and a height of 0.5 cm is placed under the
glass plate with its upper flat face touching the lower side of the plate. The magnet
is vertically magnetized with a maximum strength of 0.33 T at its surface. The cell is
partially filled with a weak electrolytic solution of sodium bicarbonate (NaHCO3) at
8.6 % by weight. The height, width and depth of the electrolyte layer are 0.4, 36 and
28 cm respectively, with a total volume of 400 cm3. The mass density, kinematic
viscosity and electrical conductivity of the electrolyte are ρ = 1.09 × 103 Kg m−3,
ν = 10−6 m2 s−1 and σ = 6.36 Sm−1, respectively. The cell is mounted on a three-
point support and levelled to get a horizontal layer of water solution with uniform
thickness. The dc injected through the pair of electrodes interacts with the non-
uniform magnetic field distribution, generating a rotational Lorentz force that sets
the fluid in motion. In the experiments, electric currents varied within the range
10–100 mA. Owing to the distance from the electrodes to the observation region and
the small magnitude of the electric currents, the electrochemical reactions occurring
at the electrodes are negligible, as are the temperature changes because of Joule
dissipation. Quantitative measurements of the velocity field were obtained with a PIV
system (Dantec FlowMap PIV1100). We made two sets of flow measurements that
required slightly different arrangements of the optical components of the system. In
the first set, we observed the horizontal flow at different depths, while in the second,
we observed the velocity field in a vertical plane perpendicular to the horizontal
bottom wall (see figure 1).

2.1. Flow measurements in horizontal planes

In this observation, a laser sheet parallel to the bottom wall entered the cell through
the vertical glass wall and illuminated an area of 4.6 × 28 cm. The x-coordinate and the
y-coordinate lay on the horizontal plane, while the z-coordinate pointed in the normal
direction. The origin was placed at the bottom wall at the point of maximum magnetic
field strength. Flow images were captured with a Kodak model Megaplus ES1.0/Type
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Figure 1. Sketch of the experimental device, not drawn to scale. (a) Plan view. (b)
cross-sectional AA′ plane, showing the set-up for recording velocities in the horizontal plane.
(c) cross-sectional AA′ plane, showing the set-up for recording velocities in the vertical plane.
The imposed electrical current is denoted by j0 and the main direction of the Lorentz force
by F0. Within the layer, the magnetic field B0 points mainly in the positive z-direction.

16 (30 Hz) camera, with a trigger synchronized with the illumination. The camera sat
on a holder 20 cm above the fluid layer. The camera has a CCD of 1008 × 1016 pixels,
and the actual area of the captured image is approximately 4.4 × 4.4 cm. The spatial
deformation because of the proximity of the camera to the liquid layer was less than
1mm in the x-direction and the y-direction and was compensated before making the
analysis. Care was taken to ensure that the laser sheet and the bottom of the plate
were parallel. To measure the thickness of the illuminating light, the laser sheet light
was intercepted at the position of interest by a cubic 45◦ prism which deflected the
beam in the vertical direction. The light was then captured at 0◦ of incidence by a
camera, and the image was digitalized. Correcting for beam dispersion, a thickness of
0.07 ± 0.01 cm was determined. In the analysis, we used interrogation areas of 64 × 64
pixels with 50 % overlap in x and y and an adaptive correlation. These conditions
gave us a spatial resolution of 0.13 × 0.13 cm. Preliminary experiments were used to
find that maximum velocities were approximately 0.6 cm s−1 and 1.5 cm s−1 for electric
currents of 25 mA and 100 mA, respectively. The time interval between two subsequent
images for the majority of experiments was 50 ms. For the lowest measured velocities
(corresponding to 10 mA), the time between images was 100 ms. Measurements of
the flow in horizontal planes at different depths were obtained through lowering the
stand of the laser by the required distance using fine pitch screws. The uncertainty
in the vertical position of the recording plane was precisely the width of the laser
sheet. Sample PIV measurements at selected points at different depths of the fluid
layer were double-checked using laser Doppler anemometry (LDA) whose resolution
in the vertical direction is approximately 1 mm. The readings with the two techniques
agree to within the error of the LDA. Based on the maximum velocity near the free
surface (z =3.5 mm) and the diameter of the magnet, the Reynolds numbers of the
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Figure 2. Velocity field for (a) I = 25 mA and (b) I = 50 mA. For the velocity scale, see
figures 7 and 8. The circle corresponds to the position of the magnet; z = 3.5 mm, Bmax = 0.14
T (Ha = 0.20).

flow varied from 50, for injected currents of 10 mA, to 290, for 100 mA. In turn, the
Hartmann number Ha =Bmaxh

√
σ/ρν was based on the maximum magnetic field

strength Bmax at a height h from the bottom wall. Hence, Ha varied from 0.32 at the
bottom to 0.19 at the free surface.

Owing to the experimental configuration, a quasi-two-dimensional flow structure
was promoted where horizontal velocity components were much bigger than the
vertical component (see § 2.2). Since the injected current and the dominant magnetic
field component point in the positive x-direction and z-direction, respectively, the
force points mainly in the negative y-direction. The flow develops a transient regime
after which a well-defined steady flow pattern composed of two symmetric counter-
rotating lobes (a vortex dipole) is reached. For small electric currents (I ≈ 10 mA)
convective effects are small, and the flow is mainly governed by diffusion so that
the vortex dipole displays symmetric patterns with respect to both x-axis and y-axis.
Owing to the non-slip condition at the bottom wall, the highest velocities are located
at the free surface of the electrolyte layer in a neighbourhood above the magnet
along the y-axis. In this region the motion is similar to a plane jet with a broad base,
with the fluid moving in the negative y-direction. The velocity field for a plane at a
distance z = 3.5mm from the bottom and an electric current I = 25 mA is shown in
figure 2(a), where the circle indicates the position of the magnet. In the plane analysed,
the magnitude of the maximum velocity is 5.8 × 10−3 m s−1 (Re =110) and is located
at x = 0, y = −4.5 × 10−3 m. Figure 2(b) shows the velocity field when the electrical
current is increased to 50 mA. Consequently, the maximum velocity is also increased
reaching a magnitude of 9.8 × 10−3 m s−1 (Re =186) at x = 0, y = −7.6 × 10−3 m,
further downstream from the point of maximum velocity for I =25 mA. The counter-
rotating vortices are elongated in the direction of the force so that the centres of
the recirculation structures (where the magnitude of the velocity is nearly zero) are
displaced downstream. This is clearly a nonlinear convective effect that breaks the
symmetry of the vortex dipole with respect to the x-axis. The general features of
the velocity field are more clearly observed in figures 3(a)–3(d ), where the velocity
components u and v are plotted as functions of position for I = 25 mA at two different
z-planes. Figures 3(a) and 3(b) correspond to z = 3.5mm, while figures 3(c) and 3(d )
correspond to z = 1.5 mm. Each figure contains both components, figures 3(a) and 3(c)
as a function of the x-coordinate at y = 0 and figures 3(b) and 3(d ) as a function of the
y-coordinate at x =0. Note that in general, the u velocity component is approximately
an order of magnitude smaller than the v-component. The velocity distribution in
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Figure 3. Velocities in the direction perpendicular (�) and parallel (�) to the injected
electric current as a function of position for I = 25 mA: (a) y =0, z = 3.5 mm, Bmax = 0.14 T
(Ha = 0.20); (b) x = 0, z = 3.5 mm, Bmax = 0.14 T (Ha = 0.20); (c) y =0, z =1.5 mm, Bmax = 0.19
T (Ha = 0.27); (d ) x = 0, z = 1.5 mm, Bmax =0.19 T (Ha =0.27). Note the change of scale in
the ordinates.

the direction perpendicular to the injected current (v-component, figures 3a and 3c)
is nearly symmetric in the x-coordinate. The velocity profiles at the two z-planes
are alike, the most salient difference being the attenuation of velocity at the plane
closer to the bottom wall. In turn, the profile of the u-component (parallel to the
injected current) as a function of the x-coordinate changes its shape from z = 3.5 mm
to z = 1.5mm as a result of a stronger bottom friction as well as a more intense
Lorentz force. As a function of the y-coordinate, the v-component shows a marked
asymmetry dictated by the main flow direction. This asymmetry is stronger at the
plane z = 3.5mm, closer to the free surface (see figure 3b), where convective effects
displace the maximum velocity downstream from the point of maximum magnetic
field strength. The influence of the bottom friction is clearly noticed in figure 3(d ),
where, in addition to the attenuation, the maximum v velocity is reached at the point
of maximum magnetic field strength. To estimate the rate of attenuation as a function
of the distance to the bottom wall, we made PIV measurements at planes normal to
this wall.

2.2. Flow measurements in vertical planes

In order to get PIV measurements at planes normal to the bottom wall, we turned
around the light sheet by 90◦ to obtain a vertical light plane which entered the cell
through the glass wall. A 50/50 cubic prism (2 × 2 × 2 cm) was placed inside the
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Figure 4. (a) Magnitude of the velocity component perpendicular to the injected electric
current (v) at the vertical x = 0 plane for I =25mA. (b) Profiles of the v velocity component
as a function of the depth z at the symmetry plane x = 0, for different positions upstream
and downstream of the magnet centre: �, y = 0.53d; ×, y =0.33d; ∗, y = 0.19d; �, y = 0; �,
y = −0.19d; 	, y = −0.38d; +, y = −0.58d . At z = 0, Bmax =0.22 T (Ha = 0.32).

cell at a distance of 15 cm from the illuminated plane. The light reflected by the
particle tracers was refracted 90◦ by the prism and was captured by the camera, as
shown in figure 1(c). The total area of analysis in this arrangement was 4.1 × 28 mm,
and we used interrogation areas of 16 × 64 pixels or equivalently 0.23 × 0.92mm.
This relatively large-aspect-ratio interrogation area was used because the vertical
velocity is extremely small. An adaptive correlation with an overlap of 50 % gave
the best results. With this arrangement we could get a minimum of 18 points in
the vertical direction, which is considered to resolve the boundary layer. In all
reported PIV measurements, the rejected vectors were 2–3 %, which is smaller than
the recommended 5 %. Observations in the plane normal to the bottom wall are
useful to determine the quasi-two-dimensionality of the flow. The general feature of
the flow as observed in the y–z plane is that the z-component of the velocity is
undetectable with our experimental set-up, indicating that the flow is mostly in the
horizontal direction with negligible vertical motion. In fact, no recirculations were
observed in the y–z plane within the explored range of injected currents. Figure 4(a)
displays the magnitude of the velocity as a function of the position in the vertical
x = 0 plane in the region above the magnet for I = 25 mA. The figure shows the
reduction of velocity as the fluid gets closer to the bottom wall, while because of
convective effects, the overall maximum value is attained in the region close to the
free surface, downstream from the point of maximum magnetic field strength. The
flow development as the fluid traverses the non-homogeneous magnetic field region is
shown in figure 4(b), where the negative of the y velocity component v as a function
of the vertical coordinate z is displayed for several locations in the y-direction. All
profiles are increasing functions of the coordinate z and display ∂v/∂z = 0 at the free
surface. The maximum velocity at y =0.53d , the most upstream location observed, is
a factor of three smaller than the corresponding value for y = −0.58d , which shows
the acceleration transmitted to the fluid by the Lorentz force in this region. The global
maximum velocity is observed downstream of the magnet centre at y = −0.38d , while
at y = −0.58d , the flow has slowed down, and the velocity profile almost coincides
with the profile at the position y = −0.19d . Mass is of course conserved, since at
this location the flow is slightly divergent (see figure 2a). Owing to the presence of
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the magnetic field, two distinctive features are displayed in these profiles, namely the
flattening of the profiles, clearly observed at y = 0.33d , y = 0.19d and y = 0, and the
appearance of incipient inflection points close to the bottom wall. Since the Hartmann
number is very small, the flattening cannot be attributed to induced effects but, as
will be shown, to the variation of the applied field in the normal direction.

3. Theoretical model
The theoretical model considers the main features of the experimental situation,

namely a thin layer of a conducting incompressible viscous fluid with a free surface,
contained in a rectangular rigid box under a localized non-uniform magnetic field,
B0 = B0(x, y, z). The field is produced by a dipole magnet located at the insulating
bottom wall with its dipole moment pointing in the normal z-direction, located at
the geometrical centre of the container. A uniform steady electric current density
injected in the positive x-direction interacts with the applied field, giving rise to a
rotational Lorentz force that stirs the fluid. The total current density is given by
the injected current plus the current induced by the motion of the fluid within the
applied magnetic field. In turn, the total magnetic field is composed by the applied
field plus the field generated by induced currents. We assume that the induced field
remains very small in comparison with the applied field or, in other words, that the
magnetic Reynolds number Rm =μσU0L is much less than unity, a condition fully
satisfied in the experiment. Here, σ and μ are the electric conductivity and magnetic
permeability of the fluid, respectively, and U0 and L are a characteristic velocity and
length, respectively, to be defined below. By neglecting O(Rm) terms, the governing
equations of motion can be expressed as

∇ · u = 0, (3.1)

∂u
∂t

+ (u · ∇)u = − 1

ρ
∇p + ν∇2u +

1

ρ
( j 0 × B0 + j i × B0), (3.2)

where the last term on the right-hand side of (3.2) considers the Lorentz force because
of both the injected ( j 0 = j 0 x̂) and induced ( j i) current densities. In the same equation
ρ and ν denote the mass density and kinematic viscosity of the fluid.

From the electromagnetic equations in the quasi-static approximation (Moreau
1990) we can get the so-called induction equation that, neglecting O(Rm) terms, reads

0 =
1

μσ
∇2b + (B0 · ∇)u − (u · ∇)B0, (3.3)

where the induced magnetic field b implicitly satisfies the equations

∇ · b = 0, (3.4a)

∇ × b = μ j i . (3.4b)

Ampere’s law (3.4b) gives an expression to calculate induced electric currents once
b is determined and guarantees that the electric current density is divergence free,
∇ · j i =0. Further, the applied magnetic field B0 must satisfy the magnetostatic
equations (Moreau 1990), which assure its solenoidal and irrotational character.

3.1. Quasi-two-dimensional numerical model

Vortical flows in shallow layers have been successfully modelled in both hydrodynamic
(Zavala Sansón, van Heijst & Backx 2001; Clercx et al. 2003) and MHD flows
(Sommeria 1988a), using a quasi-two-dimensional approach that involves the
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integration (averaging) of governing equations in the vertical direction or along
the magnetic field lines. Here, we follow an averaging approach recently presented by
Cuevas, Smolentsev & Abdou (2006; see also Lavrent’ev et al. 1990; Smolentsev 1997)
in the analysis of the flow past a localized magnetic field, where both Hartmann and
classic viscous boundary layers are considered. However, in the present contribution
an important difference is introduced, since the dependence of the applied magnetic
field on the z-coordinate is considered.

A fundamental ingredient of the numerical solution is the accurate modelling of
the applied magnetic field. In fact, for flows in shallow layers, a good agreement
between numerical and experimental velocity fields depends to a great extent on
a good theoretical reproduction of the dominant normal component according to
the experimental measurements. The transversal components seem to have a weak
influence. Therefore, we assume that the only non-negligible component is the normal
one (straight magnetic field approximation; Alboussière 2004). For the permanent
magnet used in the experiments, the normal dimensionless magnetic field component
was reproduced analytically through the expression

B0
z (X, Y, Z) = B0

z(X, Y )g(Z), (3.5)

which is normalized by the maximum magnetic field strength at a given horizontal
plane, Bmax . Here, B0

z(X, Y ) reproduces the variation of the field in the (X–Y ) plane
using an analytical expression for the field of a magnetized rectangular surface
uniformly polarized in the normal direction (McCaig 1977). We considered the
field created by the superposition of two parallel magnetized square surfaces of
side length L, with opposing polarization axes and separated by a distance c, so
that the external surfaces acted as the north and south poles of the permanent
magnet; L was taken as the characteristic length in the (X–Y ) plane and was used to
normalize the coordinates X and Y . Although experiments were carried out using a
cylindrical magnet, a good fit with experimental values can be obtained using square
magnetized surfaces provided measurements correspond to planes separated from
the surface of the magnet, so that border effects are smoothed out. The strength
of the normal component of the magnetic field was measured at different planes
from the magnet surface corresponding with the flow planes experimentally explored
using PIV. For each plane, the lengths L and c used in the fitting were chosen
so that the distribution of magnetic field matched with the experimentally measured
corresponding distribution. The comparison between experimental measurements and
the fitting based on the expression by McCaig (1977) for the plane z = 3.5mm is
presented in figure 5(a). The fitting is excellent except in the neighbourhood of one of
the edges of the magnet, where a small asymmetry in the field distribution is detected.
Apart from this detail, the field distribution can be considered axially symmetric. In
turn, the function g(Z) in (3.5), which introduces the field variation in the normal
direction, was obtained from the fitting of the experimental data in the form

g(Z) = exp(−γ εZ), (3.6)

where Z is normalized by the depth of the layer h, at a given vertical position, and
γ = 2.05. Here ε = h/L is the aspect ratio that compares the characteristic lengths
in the normal and transversal directions. Figure 5(b) compares the experimental
measurements and the fitting obtained from (3.6).

In addition, we assume that the transport of momentum in the normal direction is
mainly diffusive, so that the dimensionless velocity components in the (X–Y ) plane
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Figure 5. (a) Normalized z-component of the magnetic field at z = 3.5 mm as a function
of X. The continuous line is the fitting based on the analytic expression (see McCaig
1977) for magnetized surfaces of side length L = 15.2mm separated by a distance c = 14 mm.
(b) Normalized z-component of the magnetic field as a function of the vertical coordinate Z.
The region Z � 1 corresponds to the layer thickness. The continuous line is the fitting based
on (3.6) with γ = 2.05. In both figures, black dots correspond to experimental measurements.

can be expressed as

U (X, Y, Z, T ) = Ū (X, Y, T ) f̂ , V (X, Y, Z, T ) = V̄ (X, Y, T ) f̂ . (3.7)

The components U and V are normalized by u0 = ν/L, and time T is normalized
by the viscous time L2/ν. The functions Ū and V̄ denote the averaged velocity
components in the (X–Y ) plane. The function f̂ may, in principle, depend on X,
Y and Z and satisfies the normalization condition

∫ ε

0
f̂ dZ =1. According to the

shallow-flow approximation, ε is assumed to be less than unity. (In the experiment,
the maximum value of ε, obtained at the free surface, is 0.26.) The function f̂ should
reproduce the velocity profile in the normal direction both in the neighbourhood of
the magnet and far from it. The explicit form of f̂ can be obtained from a balance
between viscous and Lorentz forces generated by both injected and induced currents.
Since the applied Lorentz force points in the negative y-direction and is maximum in
the centre of the magnet, we establish the balance at the central (Y–Z) plane (X = 0).
Then, f must satisfy the equation

d2f

dZ2
−

(
HaB0

zg
)2

f = ε2 Re∗ B0
zg. (3.8)

In (3.8) the function f has still to be normalized. In turn, the Reynolds number
Re∗ = U0L/ν is based on the characteristic bulk velocity U0 = j 0BmaxL2/ρν, obtained
from a balance between viscous and applied Lorentz forces. Note, however, that this
balance only considers lateral viscous diffusion and does not take into account the
friction at the bottom wall. Therefore, Re∗ does not coincide with the experimental
Reynolds number based on the maximum velocity at a given flow plane. The terms on
the left-hand side of (3.8) correspond to the viscous and induced Lorentz forces, while
the term on the right-hand side is the applied Lorentz force. Since in the experiments
the Hartmann number is of order 10−1, the induced Lorentz force in (3.8) can be
neglected. Further, f must satisfy non-slip conditions at the bottom wall (f (Z = 0) =
0) and the absence of shear stresses at the free surface (df/dZ(Z = ε) = 0). Once it is
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normalized, f̂ takes the form

f̂ =

[
e−γZ + Zγ ε e−γ ε2 − 1

]
1
γ ε

(1 − e−γ ε2 ) + γ ε3

2
e−γ ε2 − ε

. (3.9)

Owing to normalization, f̂ is independent of B0
z and Re∗. An averaged quasi-two-

dimensional system of equations can now be obtained if (3.5)–(3.7) and (3.9) are
substituted in (3.1) and (3.2) and integrated in the Z-coordinate from 0 to ε, assuming
that the bottom wall and the free surface are electrically insulated. If the electric
current density and the induced magnetic field are normalized, respectively, by j 0

and RmBmax , it can be shown that the induced Lorentz force is of order Ha2 and,
consequently, can be neglected in (3.2). Therefore, the induction equation (3.3) is not
relevant for the description, and the averaged equations of motion in dimensionless
form read

∂U

∂X
+

∂V

∂Y
= 0, (3.10)

∂U

∂T
+

(
U

∂U

∂X
+ V

∂U

∂Y

)
= −∂P

∂X
+ ∇2

⊥U +
U

τ
, (3.11)

∂V

∂T
+

(
U

∂V

∂X
+ V

∂V

∂Y

)
= −∂P

∂Y
+ ∇2

⊥V +
V

τ
− αRe∗B0

z, (3.12)

where the overline in the velocity components has been dropped; the pressure P is
normalized by ρu2

0; and the subindex ⊥ denotes the projection of the ∇2 operator on
the (X–Y ) plane. Velocity components satisfy non-slip conditions at the boundaries
of the container. Note that in the absence of injected current, Re∗ = 0 and no motion
exists. On the right-hand sides of (3.11) and (3.12) appears a linear friction term
accounting for the effects of viscous boundary layer at the bottom wall. This term
involves a (dimensionless) characteristic time scale τ , for the damping of vorticity
owing to dissipation in the viscous layers, whose inverse is given by

τ−1 =
1

ε2

df̂

dZ

]ε

0

=
γ
(
1 − e−γ ε2)

1
γ

(
1 − e−γ ε2

)
+ γ ε4

2
e−γ ε2 − ε2

. (3.13)

Further, owing to the variation of the magnetic field in the normal direction, the
Lorentz force term in (3.12) includes the factor α given by

α =

∫ ε

0

g(Z) dZ =
1

γ ε

(
1 − e−γ ε2)

. (3.14)

The inductionless system of equations (3.10)–(3.14) was used to model the
electromagnetically driven flow at different depths in the shallow layer.

4. Comparison of numerical model with experimental observations
4.1. The friction model

In shallow flows, a good quantitative numerical reproduction of experimental results
relies to a great extent on the correct assessment of bottom friction effects that, owing
to the small value of the Hartmann number, in the present experiments are purely of
viscous origin. In our simulation this is accomplished through the linear friction model
(see (3.9)–(3.13)) that results from the averaging of the governing equations in the
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z 
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Figure 6. The v-component of velocity as a function of z for I = 25 mA at x =0: (a) y = 0.53 d;
(b) y = 0; (c) y = −0.58d . The dots are experimental data, and the continuous lines show the
scaled velocity profiles from (3.9).

normal direction, using the velocity distribution (3.9) in this direction. Reliability of the
averaging procedure depends, in turn, on the proper modelling of the velocity profiles
in the depth of the shallow layer. In figures 6(a)–6(c), the scaled analytical profiles
given by (3.9) are compared with experimental profiles of the velocity component in
the y-direction (v) as functions of the z-coordinate at different y-positions and at
x = 0, corresponding to I =25 mA. The continuous line in figure 6 shows the fit of
the analytical velocity profile (3.9), properly scaled by a constant, obtained with the
maximum aspect ratio, ε =0.26. The comparison shown in figures 6(a)–6(c) indicates
that the shape of the developing experimental profiles as the flow traverses the non-
homogeneous magnetic field region can be adequately reproduced by the velocity
profile (3.9) that considers the decay of the magnetic field strength in the vertical
direction. In fact, the observed flattening of the profile seems to be due to this effect.
It is therefore expected to be a reasonable assessment of the bottom friction based
on this velocity profile. However, an important point has to be noted. A careful
observation of experimental velocity profiles (see also figure 4b) reveals the existence
of incipient inflection points located very close to the bottom wall that cannot be
captured with profile (3.9).

4.2. General features of the flow structure

The system of equations (3.10)–(3.12) with the friction model based on (3.9) and
(3.13) and the magnetic field distribution given from the analytic expression by
McCaig (1977) was solved numerically in a rectangular domain corresponding to
the dimensions of the experimental set-up, using a finite-difference method based
on the procedure described in Griebel, Dornseifer & Neunhoeffer (1998), adapted
to consider MHD flows. A detailed explanation of the numerical procedure can be
found in Cuevas et al. (2006).

In figure 7, the velocity components in the horizontal plane predicted by the
theoretical model (see § 3) are compared with experimental results for the case I =
25 mA at the plane z = 3.5mm (Remax = 110). The symbols correspond to experimental
values, while the continuous and dotted lines denote numerical predictions. Figure 7(a)
shows both velocity components as functions of the x-coordinate at the centreline
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Figure 7. Experimental velocities in the direction perpendicular (�) and parallel (�) to the
injected electric current as functions of position for I =25mA, z =3.5 mm: (a) y = 0, (b) x = 0.
The continuous lines show numerical simulations for I = 25 mA, z = 3.5 mm. The dotted lines
show numerical simulations for I = 25 mA, z = 4.0 mm.

y = 0. The velocity distribution is symmetric for the component v, in the direction
perpendicular to the injected current, and antisymmetric for the component u,
parallel to the injected current. The slight asymmetry of the experimental (positive)
values of v reflects the corresponding asymmetry in the magnetic field distribution of
the magnet shown in figure 5(a). The velocity profiles along the symmetry line (x = 0)
are given in figure 7(b). As noted in § 2.1, owing to convective effects the maximum
value of component v is not reached at y = 0 but downstream. The continuous
lines correspond to numerical results obtained with the experimental conditions,
I = 25 mA, Bmax =0.14 T and z = 3.5 mm (ε = 0.23). The numerical prediction of the
v profile as a function of x and y underestimates the magnitude of the velocity by
less than 15 %; hence, a quasi-two-dimensional description of electromagnetically
forced shallow laminar flows seems to be compatible with experimental results. In
fact, the model reproduces the main physical effects observed experimentally. For
instance, it predicts correctly the position at which the profile changes from negative
to positive values (see figure 7a). Further, we observe in figure 7(b) that the position
of the maximum velocity is correctly predicted, which indicates that convective effects
are suitably captured by the model. The dotted lines in figure 7, which approach
closer to the experimental results, correspond to the calculations performed for the
plane z = 4.0mm (ε = 0.26). Note that the difference in the plane position is within
the uncertainty of the position of the laser sheet, namely ±0.7 mm.

4.3. Flow features as functions of the applied current

The main effects of increasing the applied current is the elongation of the vortices in
the main direction of the localized Lorentz force. This was briefly described in § 2.1
and is illustrated in figure 2(b). In fact, the centres of the recirculation regions as well
as the location of maximum velocity are convected a larger distance in the direction
of the main Lorentz force for larger electric currents. This effect is correctly predicted
by the model. In table 1, the experimental y-positions of the maximum velocity as
functions of the electrical current are shown together with the predictions of the
model at the plane z = 3.5 mm. In all cases, the abscissa of the maximum velocity is
x = 0. The relative error is smaller than 18 % and less than 10 % for most cases.

In figure 8, the experimental results and numerical predictions of the absolute
value of the maximum flow velocity (vmax ) at the plane z =3.5 mm are shown as
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I (mA) ye (m) yn (m) (ye − yn)/y

10 −2.1 × 10−3 −2.3 × 10−3 −0.090
15 −3.5 × 10−3 −3.3 × 10−3 0.059
20 −4.9 × 10−3 −4.1 × 10−3 0.178
25 −4.5 × 10−3 −4.9 × 10−3 −0.085
30 −4.9 × 10−3 −5.6 × 10−3 −0.133
40 −6.2 × 10−3 −6.6 × 10−3 −0.062
50 −7.6 × 10−3 −7.4 × 10−3 0.026
60 −7.6 × 10−3 −7.9 × 10−3 −0.039
70 −9.0 × 10−3 −8.4 × 10−3 0.069
80 −9.0 × 10−3 −8.6 × 10−3 0.045
90 −1.04 × 10−2 −8.9 × 10−3 0.155

100 −1.04 × 10−2 −9.1 × 10−3 0.133

Table 1. The experimental y-positions of the points of maximum velocity as functions of
electric current at z = 3.5 mm. The subscripts e and n indicate the experimental measurements
and numerical calculations, respectively; y = (ye + yn)/2.
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1.2 × 10–2
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8 × 10–3
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2 × 10–3

1.6  × 10–2

Figure 8. Absolute value of the maximum velocity (|vmax |) as a function of the applied current
I at the plane z = 3.5 mm. Each symbol corresponds to an individual experimental observation.
The continuous line corresponds to numerical simulations.

a function of the imposed electric current. Four measured values are reported in
the curve for every electric current strength. The experimental observations fit the
curve |vmax | = −8 × 10−7I 2 + 2 × 10−4I + 5 × 10−4. The numerical results present a
very good quantitative agreement with experimental measurements in the full range
of explored electric currents. These results indicate that the quasi-two-dimensional
model is able to reproduce the steady electromagnetically forced flow in the shallow
layer.

5. Concluding remarks
In the present contribution, we have described PIV observations of laminar vortex

dipoles driven by the interaction of a uniform dc injected current and the field
produced by a small permanent magnet in a shallow layer of an electrolyte. In contrast
with high-Hartmann-number electrolytic flows (Andreev, Heberstroh & Thess 2001),
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the very small values of Ha in the present experiment (O(10−1)) lead to negligible
induced effects and to the predominance of viscous and imposed non-uniform Lorentz
forces. Although several experimental studies have addressed the decay properties of
vortical shallow flows of electrolytes initially generated by electromagnetic forcing,
the detailed exploration and modelling of flows in shallow layers continuously stirred
by localized electromagnetic forces have, to the best of our knowledge, not been
previously considered. The presumption of quasi-two-dimensionality of these flows
was corroborated by exploring flow planes parallel to the bottom wall at different
depths as well as flow planes normal to this wall, so that an approximate three-
dimensional picture of the flow structure was reconstructed. For small injected
currents, a quite symmetric dipolar vortex structure is formed mainly by diffusive
momentum transport. As the current is increased, convective effects are manifested
by the elongation of the vortices in the main direction of the Lorentz force along
with the displacement of the point of maximum velocity downstream. The damping of
velocity owing to bottom friction was measured at flow planes close to the bottom wall
and by looking at planes normal to that wall. In fact, it appears that the experimental
measurement of velocity profiles in the vertical direction in electromagnetically driven
shallow flows have been overlooked in the past. In spite of the weakness of the
applied magnetic field, this information reveals developing velocity profiles with a
shape that depends on the location within the non-uniform magnetic field region and,
in particular, on the field strength in the normal direction. Based on the maximum
velocity near the free surface, the Reynolds numbers of the flow varied from 50, for
injected currents of 10 mA, to 290, for 100 mA. Under the explored conditions, no
recirculations were observed in planes normal to the bottom wall, indicating that
the transport of momentum in the normal direction is mainly diffusive. However,
the velocity profiles at the entrance to the magnetic field region are marked by the
appearance of incipient inflection points that, for stronger injected currents, might
lead to the instability of the boundary layer. The exploration of this effect may deserve
further study.

A quasi-two-dimensional model was introduced, and numerical simulations were
compared with available experimental results. This simple model, which correctly
captures the main physical features of the basic flow and avoids difficulties of a full
three-dimensional approach, includes convective effects and involves the integration
(averaging) of governing equations in the vertical direction. Since the depth of the
electrolyte layer is much smaller than its horizontal extension, the local magnetic
field originated by a permanent dipole magnet can be realistically approximated
by considering only its component in the vertical direction. This assumption, which
greatly simplifies the analysis, seems to be more justified for shallow flows than for
duct flows in non-homogeneous magnetic fields (Alboussière 2004). The vertical
field component is modelled analytically and fitted accurately to reproduce the
experimental field. The results reported in the present study show that a quasi-two-
dimensional flow description is suitable. In general, a good quantitative comparison
is found between numerical results and experimental observations. One of the key
elements that allows an accurate estimation of the bottom viscous friction and the
magnitude of the Lorentz force is the consideration of the variation of the magnetic
field strength in the vertical direction. In fact, the observed flattened profiles in the
zone of more intense magnetic field are due precisely to this effect. The influence
of inflection points on the global behaviour of the flow appears to be small and, as
confirmed by the results presented in § 4, does not invalidate the quasi-two-dimensional
description. The model is a useful tool for the analysis of steady electromagnetically

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

09
99

18
68

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112009991868


260 A. Figueroa, F. Demiaux, S. Cuevas and E. Ramos

forced flows at low Hartmann and intermediate Reynolds ( < 300) numbers in shallow
layers of electrolytes.
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