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Abstract

We consider a two-player zero-sum stochastic differential game with a random plan-
ning horizon and diffusive state variable dynamics. The random planning horizon is
a function of a non-negative continuous random variable, which is assumed to be
independent of the Brownian motion driving the state variable dynamics. We study
this game using a combination of dynamic programming and viscosity solution tech-
niques. Under some mild assumptions, we prove that the value of the game exists and
is the unique viscosity solution of a certain nonlinear partial differential equation of
Hamilton–Jacobi–Bellman–Isaacs type.
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1. Introduction

The central object of the study of differential game theory concerns games taking place over
a whole interval of time and thus with decisions being made continuously – a class of problems
first addressed by Isaacs [21] and later studied in greater detail by Berkovitz and Fleming [5]
and Friedman [18, 19]. The aim of the theory is to describe, from a general perspective, the
interaction between agents, eventually in conflict, occurring in the most diverse situations, such
as armed conflicts, economic competition, and parlor games. One very interesting aspect is that
any actions by the players both influence and are influenced by the evolution of the state of the
system over time, determined by a given differential equation.

The key mathematical techniques used to address this class of problems are closely related
to optimal control theory, namely Pontryagin’s maximum principle, and Bellman’s dynamic
programming principle and the corresponding Hamilton–Jacobi–Bellman–Isaacs (HJBI) equa-
tion. It should be noted, however, that differential games are usually far more complex than
optimal control problems. The reason behind this feature is not only related to the fact that,
unlike optimal control problems, differential games correspond to the case where more than
one controller or player is involved but, more importantly, there is no immediately obvious
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notion of what constitutes a solution for the game. Indeed, over time, multiple proposals were
put forward for what should be considered a solution. Among these one can list, for instance,
minimax, Nash, Stackelberg, open-loop and closed-loop solutions.

Isaacs successfully set up the framework of differential game theory even though he did not
have a mathematically rigorous theory of differential game value. Early definitions of differ-
ential game value made use of time discretizations [18] and were later replaced by the more
convenient Elliott–Kalton notion of differential game value [15]. Evans and Souganidis [16]
characterized the upper and lower Elliott–Kalton value functions as unique viscosity solutions
of the corresponding HJBI partial differential equations (PDEs) by employing the theory of
viscosity solutions introduced by Crandall and Lions [12]. Also resorting to viscosity solution
methods, Souganidis [40] showed that the Elliott–Kalton value functions are in fact the same
as those defined using time discretizations. The notion of differential game value extends nat-
urally to the set-up of stochastic differential games. Fleming and Souganidis [17] proved the
existence of value for two-player zero-sum stochastic differential games under the assumption
that the Isaacs condition holds. Recent developments of the theory have addressed differential
games with more general state variable dynamics [6, 20] and payoff functionals [9, 10, 26], as
well as alternative control sets [4, 41] and game formulations [11, 35].

To the best of our knowledge, differential games with a random time horizon were first
considered by Petrosyan and Murzov [32] within the set-up of zero-sum pursuit games with
terminal payoffs at a random terminal time. A more general formulation for differential games
with a random planning horizon has been developed by Petrosyan and Shevkoplyas in [33, 34].
The theory developed in [32, 33, 34] concerns a set-up in which the random time horizon has a
probability measure with unbounded support and continuous density. Moreover, the state vari-
able dynamics considered therein are deterministic, given by an ordinary differential equation.

In the present paper we study a two-player zero-sum stochastic differential game (SDG)
with a random planning horizon. The planning horizon is assumed to be of the form ξ =
min{τ, T}, where τ is a continuous non-negative random variable whose distribution is com-
mon knowledge to the players, and T > 0 is a deterministic constant. As a consequence, the
probability measure of the random planning horizon ξ has support on a bounded interval.
Further, its distribution function is, in general, discontinuous at T . The game’s state vari-
able dynamics are given by a stochastic differential equation (SDE) of diffusive type, with
the Brownian motion driving the dynamics assumed to be independent of the random variable
τ determining the random planning horizon ξ . The game’s payoff functionals depend heavily
on the planning horizon ξ in the sense that the running payoff is given as an integral over
the random time interval [0, ξ ] and the terminal payoff is evaluated at time ξ . We handle this
issue by transforming the problem under consideration herein into one with a fixed planning
horizon. This is achieved by taking the expected value with respect to the distribution of the
random variable τ , carefully distinguishing the two complementary cases where τ ≤ T and
τ > T . As a result, we obtain a payoff functional which resembles that of a differential game
with non-constant discount rate, but with an additional term reflecting the specificity of the
random time horizon ξ = min{τ, T} under consideration. We should remark that this is some-
what connected to the analysis of Marín-Solano and Shevkoplyas [29], with the key differences
being that [29] concerns differential games with deterministic state variable dynamics and a
random time horizon with an absolutely continuous probability measure with a continuous
density with unbounded support. On the other hand, the main similarity to [29] is that, at an
intermediate step of our analysis, a transformation from a random to a deterministic planning
horizon is performed, yielding a payoff functional resembling that of a discounted differential
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game (with an additional term due to the specific form of ξ ), with non-constant discount rate
related to a certain family of conditional probabilities. Such a transformation to a deterministic
planning horizon admits the following intuitive interpretation: agents plan their actions as if
the game would continue until time T , but with a subjective rate of time preferences.

We remark that the current stochastic differential games (SDGs) literature is mostly focused
in games with either a deterministic finite time horizon or an infinite time horizon. Henceforth,
we believe in the value of extending the current literature to include the case of a random
planning horizon. Moreover, we think that this is not only relevant from a theoretical point
of view, but also that it might eventually contribute to a better understanding of a number of
economic and financial applications exhibiting random planning horizons (see e.g. [7], [8],
[14], [27], [30], [36], [37], and [42]).

We extend the strategy introduced by Fleming and Souganidis in [17] to account for the
introduction of the random time horizon into the stochastic differential game formulation.
More specifically, we employ a combination of dynamic programming and viscosity solu-
tions techniques to prove that the value of the game exists and is the unique viscosity solution
of a certain nonlinear partial differential equation of HJBI type. We find this approach to be
rather amenable, as we are able to rely on some classical and seminal results, extending only
those for which the influence of the random planning horizon, or its distribution, is of rel-
evance. We should remark that the approach developed by Fleming and Souganidis in [17]
relies on an asymmetric formulation of the game under consideration. Indeed, when employ-
ing this approach, two subgames are defined, with one player having an information advantage
in one of the subgames and the remaining player having a similar advantage in the second
subgame. The stronger player uses Elliot–Kalton strategies while the weaker player resorts to
open-loop controls. Other examples where a dynamic programming principle is proved resort-
ing to asymmetric game formulations include, for instance, the papers by Katsoulakis [25]
and Cardaliaguet and Rainer [11]. A very interesting alternative approach, recently introduced
by Sîrbu [38] building on previous related work by Bayraktar and Sîrbu [1, 2, 3], uses the
stochastic Perron’s method to show that the values of stochastic differential games formu-
lated symmetrically over appropriately specified elementary feedback strategies are the unique
continuous viscosity solutions of the corresponding HJBI equation. Moreover, using such tech-
niques, a dynamical programming principle can be shown to hold over stopping rules, i.e.
stopping times where the decision to stop is based solely on observing the state variable, but
not for stopping times on the physical probability space.

This paper is organized as follows. In Section 2, we describe the problem we propose to
address and state our main results. Section 3 is concerned with the characterization of the
value functions of an auxiliary two-player zero-sum discounted SDG with a deterministic time
horizon. We prove our main result in Section 4 and conclude in Section 5.

2. Framework and main results

In this section we formulate the problem under consideration and state our main result.

2.1. Notation and set-up

Let T > 0 be a deterministic finite time horizon and, for every t ∈ [0, T] and s ∈ [t, T], let
�ωt,s be the set of RM-valued continuous functions on [t, s] taking the value 0 at t, that is,

�ωt,s = {ω ∈ C([t, s]; RM) : ω(t) = 0}.
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Let Gωt,u be the σ -algebra generated by paths ω ∈�ωt,s up to some time u ∈ [t, s] with G
ω
t,s =

{Gωt,u : u ∈ [t, s]} being the corresponding filtration. When endowed with the Wiener measure
P
ω
t,s on Gωt,s, �ωt,s becomes a classical Wiener space. Let Bt = {Bt(s) : s ∈ [t, T], Bt(t) = 0} be a

Brownian motion on the filtered probability space (�ωt,T , Gωt,T ,Gωt,T , Pωt,T ).
Let us introduce the following technical assumptions.

(A1) U and V are compact metric spaces.

(A2) The maps f : [0, T] × R
N × U × V → R

N , σ : [0, T] × R
N × U × V → R

N×M ,
� : [0, T] ×R

N →R, and L : [0, T] ×R
N × U × V →R are bounded, uniformly con-

tinuous with respect to all its variables, and Lipschitz-continuous with respect to (t, x) ∈
[0, T] ×R

N uniformly in (u, v) ∈ U × V .

(A3) τ is an (absolutely) continuous random variable (with respect to the Lebesgue mea-
sure on R

+ = (0,+∞)) defined on a probability space (�τ , Gτ , Pτ ) and has a positive,
bounded, and Lipschitz-continuous probability density function defined on R

+.

(A4) For each t ∈ [0, T], the random variable τ is independent of the filtration G
ω
t,T generated

by the Brownian motion Bt(·).
For t̂ ∈ (t, T) and ω ∈�ωt,T , let

ωt,t̂ =ω|[t,t̂] and ωt̂,T =ω−ω|[t̂,T],

and define π : �ωt,T →�ω
t,t̂

×�ω
t̂,T

to be the map given by

π (ω) = (ωt,t̂, ωt̂,T ).

Then, π induces the identification

�ωt,T =�ωt,t̂ ×�ωt̂,T ,

and the inverse of π acts on pairs of paths (ωt,t̂, ωt̂,T ) ∈�ω
t,t̂

×�ω
t̂,T

by concatenation, i.e.

ω= π−1(ωt,t̂, ωt̂,T ) ∈�ωt,T . Finally, note that Pωt,T = P
ω
t,t̂

⊗ P
ω
t̂,T

, where P
ω
t,t̂

and P
ω
t̂,T

are the
Wiener measures on �ω

t,t̂
and �ω

t̂,T
, respectively.

For each t ∈ [0, T], the probability measure P
τ of the random variable τ induces a

conditional probability measure on �τt = (t,∞) determined by

P
τ
t (τ ∈ A) = P

τ (τ ∈ A | τ > t), A ∈ Gτt ,
where Gτt =B(�τt ) denotes the Borel σ -algebra of�τt . Resorting to assumption (A4) regarding
independence between the Brownian motion Bt and the random variable τ , we define�t as the
direct product

�t =�ωt,T ×�τt ,

defining accordingly the probability measure

Pt = P
ω
t,T ⊗ P

τ
t , (1)

the σ -algebras Gt,s, s ∈ [t, T], as the completion of Gωt,s ⊗ Gτt with respect to the measure Pt,
and the filtration Gt,T as Gt,T = {Gt,s : s ∈ [t, T]}.
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2.2. A stochastic differential game with a random horizon

Let us define the random horizon ξ as

ξ = min{τ, T}, (2)

and note that ξ takes values on the interval [0, T] Pt-a.s. (almost surely). The two-player zero-
sum stochastic differential game with random horizon is defined on the filtered probability
space (�t, Gt,T ,Gt,T , Pt) and consists of the controlled stochastic differential equation

dX(s) = f (s, X(s), u(s), v(s)) ds + σ (s, X(s), u(s), v(s)) dBt(s), s ≥ t,

X(t) = x
(3)

and payoff functional

J(t, x; u(·), v(·)) =EPt

[ ∫ ξ

t
L(s, Xu,v

t,x (s), u(s), v(s)) ds +�(ξ, Xu,v
t,x (ξ ))

]
, (4)

where Xu,v
t,x (s), s ∈ [t, T], denotes the solution of the initial value problem (3) associated with

a specific choice of u(·), v(·). We will refer to the functions L and � determining the payoff
functional J as the running payoff and terminal payoff , respectively. Thus, as far as the game
is concerned, the payoff functional (4) represents some payoff that a first player (Player I) is
trying to minimize (and thus a second player (Player II) seeks to maximize) subject to the state
variable dynamics defined by (3) and some constraints of the form u(s) ∈ U and v(s) ∈ V for
every appropriately defined instant of time s ≥ t.

An admissible control process u(·) (resp. v(·)) for Player I (resp. II) on [t, T] is a G
ω
t,T -

progressively measurable process taking values in U (resp. V). The set of all admissible
controls for Player I (resp. II) on [t, T] is denoted by U (t, T) (resp. V(t, T)). We say that
two controls u1(·), u2(·) ∈ U (t, T) are the same on [t, s], for some s ∈ [t, T], and denote it by
u1(·) ≈ u2(·), if Pωt,T{u1(·) = u2(·) a.e. (almost everywhere) in [t, s]} = 1. A similar convention
is used for elements of V(t, T).

An admissible strategy α (resp. β) for Player I (resp. II) on [t, T] is a mapping α : V(t, T) →
U (t, T) (resp. β : U (t, T) → V(t, T)) such that if v(·) ≈ ṽ(·) (resp. u(·) ≈ ũ(·)) on [t, s] for every
s ∈ [t, T], then α[v(·)] ≈ α[ṽ(·)] (resp. β[u(·)] ≈ β[ũ(·)]). The set of all admissible strategies for
Player I (resp. II) on [t, T] is denoted by A(t, T) (resp. B(t, T)).

Let (t, x) ∈ [0, T] ×R
N . The lower value function of the stochastic differential game (SDG)

with random horizon (3)–(4) is given by

V−(t, x) = inf
β∈B(t,T)

sup
u(·)∈U (t,T)

J(t, x; u(·), β[u(·)]), (5)

while the corresponding upper value function is

V+(t, x) = sup
α∈A(t,T)

inf
v(·)∈V(t,T)

J(t, x; α[v(·)], v(·)). (6)

We say that the SDG with random horizon (3)–(4) has a value if V+(t, x) = V−(t, x), and call
it the common value of the SDG game. We also note that this definition is consistent with
the standard notion of common value of the game introduced by Elliot and Kalton [15] for
differential games with a deterministic horizon.
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Choosing the controls at time t, the player who moves first (the maximizing player for the
lower game, and the minimizing player for the upper game) is allowed to use the past of the
Brownian motion Bt(·) driving (3), while the player with the advantage (Player II for the lower
game, Player I for the upper game), is allowed to use both the past of Bt(·) and the other
player’s control.

2.3. Statement of main results

For all 0 ≤ t ≤ s, we let G+(s, t) and G−(s, t) denote the conditional probabilities

G+(s, t) = P
τ
t (τ > s) = P

τ (τ > s | τ > t),

G−(s, t) = P
τ
t (τ ≤ s) = P

τ (τ ≤ s | τ > t).
(7)

Moreover, note that for each fixed t ∈ [0, T], G−(s, t) is the probability distribution function
of a continuous random variable and let g−(s, t) denote the corresponding conditional density
function

g−(s, t) = d

ds
, G−(s, t). (8)

In general, the value functions V− and V+ defined by the variational identities (5) and (6)
are not smooth. Nevertheless, they can still be characterized using the language of partial dif-
ferential equations, relying on the notion of viscosity solutions originally proposed by Crandall
and Lions in [12] for the case of first-order Hamilton–Jacobi equations. See Appendix A for the
definition of viscosity solution used herein. A central step of the proof of our main result is the
introduction of an auxiliary SDG, with a non-constant discount rate related to the conditional
probabilities (7) and a deterministic time horizon. Indeed, the lower and upper value functions
V− and V+ can be characterized in terms of the value functions of said auxiliary game.

Theorem 1. Assume that assumptions (A1)–(A4) hold. The lower and upper value func-
tions V− and V+ are the unique viscosity solutions of the Hamilton–Jacobi–Bellman–Isaacs
equation

Wt − g−(t, t)W +H−(t, x,Wx,Wxx) = 0, W(T, x) =�(T, x) (9)

and
Wt − g−(t, t)W +H+(t, x,Wx,Wxx) = 0, W(T, x) =�(T, x), (10)

where, for A ∈ S
N (the set of symmetric N × N matrices), p, x ∈R

N, and t ∈ [0, T], we have

H−(t, x, p, A) = max
u∈U

min
v∈V

H(t, x, u, v, p, A),

H+(t, x, p, A) = min
v∈V

max
u∈U

H(t, x, u, v, p, A),

and

H(t, x, u, v, p, A) = tr
(1

2
a(t, x, u, v)A

)
+ f (t, x, u, v)p + L(t, x, u, v) + g−(t, t)�(t, x),

with a = σσ ′, σ ′ denoting the transpose of σ .

Note the presence of the additional (non-standard) terms −g−(t, t)W(t, x) and
g−(t, t)�(t, x) related to the conditional probabilities (7)–(8) on the HJBI equations (9) and
(10). Such terms reflect the randomness of the planning horizon and encapsulate the agents’
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behavior planning their actions as if the horizon were fixed at T , but with subjective rate of
time preferences determined by the conditional probabilities (7).

We say that the Isaacs condition holds if, for all (t, x, p, A) ∈ [0, T] ×R
N ×R

N × S
N , the

following relation holds:
H+(t, x, p, A) =H−(t, x, p, A). (11)

The next result is then a consequence of combining Isaacs condition above with the unique-
ness of the viscosity solutions to (9) and (10), guaranteed by Theorem 1. In particular, this
ensures existence of value for the SDG with random horizon (3)–(4) in the sense of Elliot and
Kalton [15].

Corollary 1. If the Isaacs condition (11) holds, then the upper and the lower value functions
of the SDG with a random horizon (3)–(4) coincide.

The rest of the paper is devoted to the proof of Theorem 1. The analysis, in Section 3, of a
related discounted SDG plays a central role in this endeavor.

3. A discounted stochastic differential game with deterministic horizon

We will now momentarily divert our attention towards the following problem: an SDG
with deterministic horizon T > 0 and non-constant discount factor specified by a function
� : D(�) →R, where D(�) = {(s, t) ∈ [0, T]2 : s ≥ t}. Suppose the following conditions hold.

(D1) � is positive, bounded, and continuously differentiable on D(�).

(D2) For every (s, t), (ŝ, s) ∈ D(�), we have that

�(ŝ, t) =�(ŝ, s)�(s, t).

(D3) The derivative

θ (t) = d

ds
�(s, t)|s=t

is positive, bounded, and Lipschitz-continuous on [0, T].

The two-player zero-sum discounted stochastic differential game is defined on the filtered
probability space (�ωt,T , Gωt,T ,Gωt,T , Pωt,T ) and consists of the controlled stochastic differential
equation (3) and the discounted payoff functional

J (t, x; u(·), v(·)) =EP
ω
t,T

[ ∫ T

t
�(s, t)L(s, Xu,v

t,x (s), u(s), v(s)) ds +�(T, t)�(T, Xu,v
t,x (T))

]
,

(12)

where Xu,v
t,x (s), s ∈ [t, T], denotes the solution of the initial value problem (3) associated with a

specific choice of admissible controls (u(·), v(·)) ∈ U (t, T) × V(t, T).
The lower value function of the discounted SDG determined by (3) and (12) is given by

W−(t, x): = inf
β∈B(t,T)

sup
u(·)∈U (t,T)

J (t, x; u(·), β[u(·)]), (13)

while the upper value function of the discounted SDG determined by (3) and (12) is

W+(t, x): = sup
α∈A(t,T)

inf
v(·)∈V(t,T)

J (t, x; α[v(·)], v(·)). (14)
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The goal of this section is to characterize the lower and upper value functions W− and
W+ of the discounted SDG determined by (3) and (12) as, respectively, the unique viscosity
solutions of the Hamilton–Jacobi–Bellman–Isaacs equations

Wt − θ (t)W +H−(t, x,Wx,Wxx) = 0, W(T, x) =�(T, x) (15)

and
Wt − θ (t)W +H+(t, x,Wx,Wxx) = 0, W(T, x) =�(T, x), (16)

where, for A ∈ S
N (the set of symmetric N × N matrices), p, x ∈R

N , and t ∈ [0, T], we have

H−(t, x, p, A) = max
u∈U

min
v∈V

H(t, x, u, v, p, A),

H+(t, x, p, A) = min
v∈V

max
u∈U

H(t, x, u, v, p, A),

and

H(t, x, u, v, p, A) = tr
(1

2
a(t, x, u, v)A

)
+ f (t, x, u, v)p + L(t, x, u, v)

with a = σσ ′, σ ′ denoting the transpose of σ .
We will resort to the concepts of r-strategies and r-lower and r-upper values introduced by

Fleming and Souganidis [17], which combined with an appropriate discretization procedure,
yield the existence and uniqueness of viscosity solutions to the HJBI equations (15) and (16).

3.1. Some preliminary results

Before proceeding, we need to introduce further notation and terminology that will be useful
below. Let (t, x) ∈ [0, T] ×R

N be fixed and, for any given u(·) ∈ U (t, T) and v(·) ∈ V(t, T),
define

γ (s, ω) = (u(s, ω), v(s, ω))

for every s ≥ t and ω ∈�ωt,T . By definition of the control processes u(·) ∈ U (t, T) and
v(·) ∈ V(t, T), it immediately follows that γ (·) is G

ω
t,T -progressively measurable. Moreover,

by standard results from stochastic differential equations theory (see e.g. [24, 28] for further
details), it is known that the SDE (3) admits a unique solution Xu,v

t,x (·) on the filtered probability
space (�ωt,T , Gωt,T ,Gωt,T , Pωt,T ) for any fixed u(·) ∈ U (t, T) and v(·) ∈ V(t, T). Moreover, Xu,v

t,x (·)
satisfies

Xu,v
t,x (s) = Xu,v

t,x (t̂ ) +
∫ s

t̂
f (r, Xu,v

t,x (r), γ (r)) dr +
∫ s

t̂
σ (r, Xu,v

t,x (r), γ (r)) dBt(r), (17)

where t ≤ t̂ ≤ s ≤ T . Further, noting that

Bt(s, π−1(ωt,t̂, ωt̂,T )) − Bt(t̂, π−1(ωt,t̂, ωt̂,T )) =ωt̂,T (s), (18)

we obtain that for P
ω
t,t̂

-a.e. ωt,t̂ ∈�ω
t,t̂

the left-hand side of (18) coincides with the standard

Brownian motion Bt̂(s, ωt̂,T ) on the filtered probability space (�ω
t̂,T
, Gω

t̂,T
,Gω

t̂,T
, Pω

t̂,T
).

Also define

γ̃ (s, ωt,t̂, ωt̂,T ) = γ (s, π−1(ωt,t̂, ωt̂,T )),

X̃(s, ωt,t̂, ωt̂,T ) = Xu,v
t,x (s, π−1(ωt,t̂, ωt̂,T )),
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and note that the relation

X̃(s, ωt,t̂, ·) = Xu,v
t,x (t̂ ) +

∫ s

t̂
f (r, X̃(r, ωt,t̂, ·), γ̃ (r, ωt,t̂, ·)) dr

+
∫ s

t̂
σ (r, X̃(r, ωt,t̂, ·), γ̃ (r, ωt,t̂, ·)) dBt̂(r)

holds P
ω
t,t̂

-a.e. ωt,t̂ ∈�ω
t,t̂

as a consequence of (17) and the comments following it. Moreover,

by uniqueness of solutions of (3), we get that the paths of X̃(s, ωt,t̂, ·), s ∈ [t̂, T], coincide
with those of (3) with initial condition (t̂, Xu,v

t,x (t̂ )) and controls (u(·, ωt,t̂), v(·, ωt,t̂)) for Pω
t,t̂

-

a.e. ωt,t̂ ∈�ω
t,t̂

. From this point onwards we will also use the notation Xu,v
t,x (·) to refer to the

stochastic process X̃(·) on the filtered probability space (�ω
t̂,T
, Gω

t̂,T
,Gω

t̂,T
, Pω

t̂,T
).

The comments above, together with the fact that

EP
ω
t,t̂

⊗P
ω
t̂,T

[φ(ωt,t̂, ωt̂,T ) | Gωt,t̂] =EP
ω
t̂,T

[φ(ωt,t̂, ωt̂,T )] P
ω
t,t̂

-a.s.

for any bounded and measurable function φ : �ωt,T →R, yield the following technical lemma.

Lemma 1. Suppose that (A1)–(A2) hold and let Xu,v
t,x (·) denote the solution of (3) with ini-

tial condition (t, x) ∈ [0, T] ×R
N and controls (u(·), v(·)) ∈ U (t, T) × V(t, T). For any bounded

continuous function φ and any deterministic s ∈ [t̂, T],

EP
ω
t,T

[
φ(Xu,v

t,x (s), γ (s, ω)) | Gωt,t̂
] =E

P
ω
t̂,T

[
φ
(
Xu,v

t̂,Xu,v
t,x (t̂ )

(s), γ̃ (s, ωt,t̂, ωt̂,T )
)]

P
ω
t,t̂

-a.s.

The next lemma ensures boundedness of the value functions W− and W+ introduced in
(13) and (14), as well as their Lipschitz continuity with respect to x and Hölder continuity with
respect to t.

Lemma 2. Suppose that (A1)–(A2) and (D1)–(D2) hold. We have the following.

(i) For every u(·) ∈ U (t, T), v(·) ∈ V(t, T), α ∈A(t, T), and β ∈B(t, T), the discounted
payoff functionals

x →J (t, ·; α[v(·)], v(·)) and x →J (t, ·; u(·), β[u(·)])
are bounded and Lipschitz-continuous in x, uniformly in t, α, v(·) and t, β, u(·),
respectively.

(ii) The discounted SDG value functions W− and W+ in (13) and (14) are bounded and
Lipschitz-continuous in x, uniformly in t.

Proof. Let us start by proving item (i) for the discounted payoff functional

x →J (t, ·; α[v(·)], v(·)), (19)

where t ∈ [0, T], v(·) ∈ V(t, T) and α ∈A(t, T). The proof for x →J (t, ·; u(·), β[u(·)]), with
t ∈ [0, T], u(·) ∈ U (t, T) and β ∈B(t, T), is similar.

Boundedness of (19) follows from boundedness of L and �, guaranteed by assumption
(A2), as well as boundedness of the non-constant discount factor�, guaranteed by assumption
(D1).
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As for Lipschitz continuity of (19), this will follow from

EP
ω
t,T

[|Xu,v
t,x (s) − Xu,v

t,y (s)|] ≤ C|x − y| for all x, y ∈R
N, (20)

where Xu,v
t,x (s) and Xu,v

t,y (s), s ∈ [t, T], are the solutions of (3) starting at t from x and y, respec-
tively, with the same control pair (u, v). To see that (20) holds, set Z(s) = Xu,v

t,x (s) − Xu,v
t,y (s),

s ∈ [t, T]. From Itô’s formula, we obtain

EP
ω
t,T

[|Xu,v
t,x (s) − Xu,v

t,y (s)|2] = |x − y|2 +EP
ω
t,T

[ ∫ s

t

[
2Z(r) · f1(r, Xu,v

t,x (r), Xu,v
t,y (r), u(r), v(r))

+ tr (σ1σ
T
1 )(r, Xu,v

t,x (r), Xu,v
t,y (r), u(r), v(r))

]
dr

]
,

where f1 and σ1 are defined by

f1(t, x, y, u, v) = f (t, x, u, v) − f (t, y, u, v),

σ1(t, x, y, u, v) = σ (t, x, u, v) − σ (t, y, u, v)

for t ∈ [0, T], x, y ∈R
N , u ∈ U, and v ∈ V . Using assumption (A2) and the Fubini–Tonelli

theorem, we obtain that there exists a positive constant C1 such that

EP
ω
t,T

[|Xu,v
t,x (s) − Xu,v

t,y (s)|2] ≤ |x − y|2 + C1

∫ s

t
EP

ω
t,T

[|Xu,v
t,x (r) − Xu,v

t,y (r)|2] dr.

Applying Gronwall’s inequality, we get that there exist positive constants C2 and C3 such that
the following inequalities hold:

EP
ω
t,T

[|Xu,v
t,x (s) − Xu,v

t,y (s)|2] ≤
(

1 +
∫ s

t
eC2r dr

)
|x − y|2 ≤ C3|x − y|2. (21)

Inequality (20) now follows from combining (21) with Hölder’s inequality, and Lipschitz conti-
nuity of (19) with respect to x follows from combining inequality (20) with Lipschitz continuity
of L and �, as guaranteed by assumption (A2).

As for the proof of item (ii), we note that boundedness of W− and W+, as well as Lipschitz
continuity with respect to x, follows as a consequence of the corresponding uniform properties
of the discounted payoff functionals. �

In the next section we will introduce a special class of restrictive strategies and the corre-
sponding value functions, following a method originally developed by Fleming and Souganidis
[17]. These will enable us to prove certain sub- and super-optimal dynamic programming
principles.

3.2. Sub-optimal and super-optimal dynamic programming principles

As noted by Fleming and Souganidis in their seminal paper [17], serious measurability
issues seem to prevent a generalization of the method for the proof of the deterministic dynamic
programming principle to the stochastic set-up. To overcome these difficulties, Fleming
and Souganidis have introduced the concept of restrictive strategies or, more commonly,
r-strategies, that we employ here.

Before proceeding to the definition of r-strategies, we note that by definition of admis-
sible control process, for 0 ≤ t̄ ≤ t ≤ T , u(·) ∈ U (t̄, T), and P

ω
t̄,t a.e. ωt̄,t ∈�ωt̄,t, the map

u(ωt̄,t) : [t, T] ×�ωt,T → U defined via the relation

u(ωt̄,t)(s, ωt,T ) = u(s, ω),

where ω= π−1(ωt̄,t, ωt,T ), is an admissible control for Player I, i.e. u(ωt̄,t) ∈ U (t, T).
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Given the discounted SDG determined by (3) and (12), we say that a r-strategy β for Player
II on [t, T] is an admissible strategy with the following additional property: for every t̄< t< t̂
and u(·) ∈ U (t̄, T) the map (s, ω) → β[u(ωt̄,t)(·)](s, ωt,T ) is (B([t, t̂]) ⊗ Gω

t,t̂
,B(U))-measurable,

where B(X) stands for the Borel σ -algebra of a set X. The set of r-strategies for Player II is
denoted by Br(t, T). We define r-strategies for Player I in a similar fashion and denote the set
of these strategies by Ar(t, T).

The r-lower and r-upper value functions of the discounted SDG determined by (3) and (12)
with initial data (t, x) are given by

W−
r (t, x) = inf

β∈Br(t,T)
sup

u(·)∈U (t,T)
J (t, x; u(·), β[u(·)])

and
W+

r (t, x) = sup
α∈Ar(t,T)

inf
v(·)∈V(t,T)

J (t, x; α[v(·)], v(·)).
The next result is a consequence of Lemma 2 as well as the definitions of admissible

strategies and r-strategies. We skip its proof.

Corollary 2. Suppose that (A1)–(A2) and (D1)–(D2) hold.

(a) The r-value functions W−
r and W+

r of the discounted SDG determined by (3) and (12)
are bounded and Lipschitz-continuous in x, uniformly in t.

(b) For every (t, x) ∈ [0, T] ×R
N ,

W−(t, x) ≤ W−
r (t, x) and W+

r (t, x) ≤ W+(t, x).

Although the r-value functions do not satisfy the full dynamic programming principle, it is
nevertheless possible to obtain sub- and super-optimal dynamic programming principles for
these functions. This is the content of the next result.

Proposition 1. (Sub-optimal and super-optimal dynamic programming principle.) Suppose
that conditions (A1)–(A2) and (D1)–(D2) hold. For any (t, x) ∈ [0, T) ×R

N and every
t̂ ∈ [t, T), we obtain

W−
r (t, x) ≤ inf

β∈Br(t,T)
sup

u(·)∈U (t,T)
EP

ω
t,T

[
�(t̂, t)W−

r (t̂, Xu,v
t,x (t̂ ))

+
∫ t̂

t
�(s, t)L(s, Xu,v

t,x (s), u(s), β[u(·)](s)) ds

]
, (22)

where Xu,v
t,x (·) is the solution of (3) with v(·) = β[u(·)](·) ∈ V(t, T) for u(·) ∈ U (t, T), and

W+
r (t, x) ≥ sup

α∈Ar(t,T)
inf

v(·)∈V(t,T)
EP

ω
t,T

[
�(t̂, t)W+

r (t̂, Xu,v
t,x (t̂ ))

+
∫ t̂

t
�(s, t)L(s, Xu,v

t,x (s), α[v(·)](s), v(s)) ds

]
, (23)

where Xu,v
t,x (·) is the solution of (3) with u(·) = α[v(·)](·) ∈ U (t, T) for v(·) ∈ V(t, T).

Proof. We only prove inequality (22), with the proof of (23) being analogous. For simplicity
of notation, we will drop the superscripts u, v from the solution Xu,v

t,x (·), with the precise controls
used at each instant being clear from the context.
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Let (t, x) ∈ [0, T) ×R
N be fixed, let t̂ ∈ [t, T) be arbitrary, and denote the right-hand side of

(22) by W(t, x). Note that for any ε > 0 there exists βε(·) ∈Br(t, T) such that

W(t, x) ≥EP
ω
t,T

[
�(t̂, t)W−

r (t̂, Xt,x(t̂ )) +
∫ t̂

t
�(s, t)L(s, Xt,x(s), u(s), βε[u(·)](s)) ds

]
− ε (24)

for every u(·) ∈ U (t, T). Moreover, for each y ∈R
N , we have

W−
r (t̂, y) = inf

β∈Br(t̂,T)
sup

u(·)∈U (t̂,T)
J (t̂, y; u(·), β[u(·)]).

Hence, there exists βy ∈Br(t̂, T) such that

W−
r (t̂, y) ≥ sup

u(·)∈U (t̂,T)
J (t̂, y; u(·), βy[u(·)]) − ε. (25)

Let {Di}i∈N be a Borel partition of RN with diameter diam(Di)< δ and pick yi ∈ Di for each
i ∈N. By Lemma 2(i) and Corollary 2(a), the diameter δ > 0 can be chosen to be sufficiently
small that, for any y ∈ Di,

|J (t̂, y; u(·), β[u(·)]) −J (t̂, yi; u(·), β[u(·)])|< ε (26)

for every u(·) ∈ U (t̂, T) and β ∈B(t̂, T), and also

|W−
r (t̂, y) − W−

r (t̂, yi)|< ε.

For each (t̂, ω) ∈ [t, T] ×�ωt,T and u(·) ∈ U (t, T), define

β̃[u(·)](s, ω) =
{
βε[u(·)](s, ω) if s ∈ [t, t̂),∑

i∈N 1Di(Xt,x(t̂ ))βyi[u(ωt,t̂)(·)](s, ωt̄,T ) if s ∈ [t̂, T],

where ω= (ωt,t̂, ωt̄,T ) ∈�ω
t,t̂

×�ω
t̂,T

and u(ωt,t̂)(·) ∈ U (t̂, T) is the admissible control intro-

duced immediately before the definition of the r-value functions. Note that β̃ is an r-strategy
by construction, i.e. β̃ ∈Br(t, T).

Moreover, whenever Xt,x(t̂ ) ∈ Di for some i ∈N and u(·) ∈ U (t, T), relation (25) and
inequality (26) yield

W−
r (t̂, yi) ≥J (t̂, yi; u(ωt,t̂)(·), βyi[u(ωt,t̂)(·)]) − ε

≥J (t̂, Xt,x(t̂ ); u(ωt,t̂)(·), βyi[u(ωt,t̂)(·)]) − 2ε (27)

for all u(·) ∈ U (t, T) and P
ω
t,t̂

-a.e. ωt,t̂ ∈�ω
t,t̂

.
From the definition of the discounted payoff functional in (12), we get

J (t, x; u(·), β̃[u(·)])
=EP

ω
t,T

[ ∫ T

t
�(s, t)L(s, Xt,x(s), u(s), β̃[u(·)](s)) ds +�(T, t)�(T, Xt,x(T))

]

=EP
ω
t,T

[ ∫ t̂

t
�(s, t)L(s, Xt,x(s), u(s), β̃[u(·)](s)) ds

+
∑
i∈N

1Di (Xt,x(t̂ ))

( ∫ T

t̂
�(s, t)L(s, Xt,x(s), u(s), β̃[u(·)](s)) ds

+�(T, t)�(T, Xt,x(T))

)]
. (28)
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Combining assumption (D2) with (28), we get

J (t, x; u(·), β̃[u(·)]) =EP
ω
t,T

[ ∫ t̂

t
�(s, t)L(s, Xt,x(s), u(s), β̃[u(·)](s)) ds

+�(t̂, t)
∑
i∈N

1Di (Xt,x(t̂ ))

( ∫ T

t̂
�(s, t̂)L(s, Xt,x(s), u(s), β̃[u(·)](s)) ds

+�(T, t̂)�(T, Xt,x(T))

)]
.

From the definition of the r-strategy β̃, we get

J (t, x; u(·), β̃[u(·)]) =EP
ω
t,T

[ ∫ t̂

t
�(s, t)L(s, Xt,x(s), u(s), βε[u(·)](s)) ds

+�(t̂, t)
∑
i∈N

1Di(Xt,x(t̂ )) EP
ω
t,T

[ ∫ T

t̂
�(s, t̂)L(s, Xt,x(s), u(s), β̃[u(·)](s)) ds

+�(T, t̂)�(T, Xt,x(T)) | Gt,t̂

]]
.

Combining the previous relation with Lemma 1, we obtain

J (t, x; u(·), β̃[u(·)]) =EP
ω
t,T

[ ∫ t̂

t
�(s, t)L(s, Xt,x(s), u(s), βε[u(·)](s)) ds

+�(t̂, t)
∑
i∈N

1Di (Xt,x(t̂ ))J (t̂, Xt,x(t̂ ); u(ωt,t̂)(·), βyi[u(ωt,t̂)(·)])
]

.

Using inequalities (27) and (26), we get

J (t, x; u(·), β̃[u(·)]) ≤EP
ω
t,T

[ ∫ t̂

t
�(s, t)L(s, Xt,x(s), u(s), βε[u(·)](s)) ds

+�(t̂, t)
∑
i∈N

1Di (Xt,x(t̂ ))W−
r (t̂, yi)

]
+ 2ε

≤EP
ω
t,T

[ ∫ t̂

t
�(s, t)L(s, Xt,x(s), u(s), βε[u(·)](s)) ds

+�(t̂, t)W−
r (t̂, Xt,x(t̂ ))

]
+ 3ε.

Finally, combining the previous inequality with (24), we conclude

J (t, x; u(·), β̃[u(·)]) ≤ W(t, x) + 4ε

for every u(·) ∈ U (t, T). As a consequence, we obtain

W−
r (t, x) ≤ W(t, x) + 4ε.

The proof is completed by letting ε go to zero. �
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Proposition 1 can be used to guarantee Hölder continuity of W−
r and W+

r with respect
to t.

Corollary 3. Suppose that (A1)–(A2) and (D1)–(D2) hold. The r-value functions W−
r and W+

r
of the discounted SDG determined by (3) and (12) are 1

2 -Hölder-continuous in t, uniformly
in x.

Proof. We will focus on establishing Hölder continuity of W−
r with respect to t, with the

corresponding argument for W+
r being similar. To simplify notation, we will drop the super-

scripts u,v from the solution Xu,v
t,x (·), with the precise controls used at each instant being clear

from the context.
Without loss of generality, suppose that t1, t2 ∈ [0, T] are such that t1 < t2 and |t2 − t1|< 1.

Using (22) and rearranging terms, we get

W−
r (t1, x) − W−

r (t2, x)

≤ inf
β∈Br(t1,T)

sup
u(·)∈U (t1,T)

EP
ω
t1,T

[ ∫ t2

t1
�(s, t1)L(s, Xt1,x(s), u(s), β[u(·)](s)) ds

+�(t2, t1)(W−
r (t2, Xt1,x(t2)) − W−

r (t2, x))

+ (�(t2, t1) −�(t1, t1))W−
r (t2, x)

]
.

Combining the inequality above with uniform Lipschitz continuity of W−
r (t, x) in x and of

�(s, t) in s, as well as boundedness of �, L, and W−
r , we obtain that there exists a positive

constant C1 such that

W−
r (t1, x) − W−

r (t2, x) ≤ C1
(|t2 − t1| +EP

ω
t1,T

[|Xt1,x(t2) − x|]). (29)

A first-moment estimate for SDEs [28, Corollary 2.4.6] guarantees the existence of a positive
constant C2 such that

EP
ω
t1,T

[|Xt1,x(t2) − x|] ≤ C2|t2 − t1|1/2. (30)

Putting together inequalities (29) and (30), we conclude that

W−
r (t1, x) − W−

r (t2, x) ≤ K1|t2 − t1|1/2 (31)

for some positive constant K1.
Given u(·) ∈ U (t2, T), define u∗(·) ∈ U (t1, T) as

u∗(s, ω) =
{

u(t2, ωt1,t2 ) if s ∈ [t1, t2],

u(s, ωt1,t2 ) if s ∈ (t2, T],

and given β∗ ∈Br(t1, T), define β ∈Br(t2, T) as

β[u(·)](s, ωt2,T ) = β∗[u∗(·)](s, π−1(ωt1,t2 , ωt2,T )).
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We now observe that for β∗ ∈Br(t1, T) we have

J (t1, x; u∗(·), β∗[u∗(·)])
=EP

ω
t1,T

[ ∫ T

t1
�(s, t1)L(s, Xt1,x(s), u∗(s), β∗[u∗(·)](s)) ds +�(T, t1)�(T, Xt1,x(T))

]

=EP
ω
t1,T

[ ∫ t2

t1
�(s, t1)L(s, Xt1,x(s), u∗(s), β∗[u∗(·)](s)) ds

+�(t2, t1)J (t2, Xt1,x(t2); u(·), β[u(·)])
]

=EP
ω
t1,T

[ ∫ t2

t1
�(s, t1)L(s, Xt1,x(s), u∗(s), β∗[u∗(·)](s)) ds

+�(t2, t1)(J (t2, Xt1,x(t2); u(·), β[u(·)]) −J (t2, x; u(·), β[u(·)]))
+ (�(t2, t1) −�(t1, t1))J (t2, x; u(·), β[u(·)]) +J (t2, x; u(·), β[u(·)])

]
.

Combining this equality with boundedness and Lipschitz continuity of x �→J (t, x; u(·),
v(·)), as guaranteed by Corollary 2, as well as boundedness and Lipschitz continuity of �
and boundedness of L, guaranteed by the assumptions in the statement, we obtain that there
exists a positive constant C such that

J (t1, x; u∗(·), β∗[u∗(·)]) ≥ −C
(|t2 − t1| +EP

ω
t1,T

[|Xt1,x(t2) − x|]) +J (t2, x; u(·), β[u(·)]).

As a consequence, we obtain

sup
u(·)∈U (t1,T)

J (t1, x; u(·), β∗[u(·)])

≥ −C
(|t2 − t1| +EP

ω
t1,T

[|Xt1,x(t2) − x|]) + sup
u(·)∈U (t2,T)

J (t2, x; u(·), β[u(·)])

≥ −C
(|t2 − t1| +EP

ω
t1,T

[|Xt1,x(t2) − x|]) + W−
r (t2, x).

Resorting once more to the first-moment estimate (30), using the previous inequality we are
able to obtain

W−
r (t1, x) − W−

r (t2, x) ≥ −K2|t2 − t1|1/2 (32)

for some positive constant K2. Hölder continuity of W−
r follows from combining the estimates

(31) and (32). �

We now observe that the r-value functions W−
r and W+

r are continuous functions of (t, x), a
consequence of Corollaries 2 and 3. Indeed, the r-value functions W−

r and W+
r are, respectively,

viscosity subsolutions and supersolutions of the HJBI equations (15) and (16). The proof of
this fact is similar to that of [17, Proposition 1.12], with only minor adjustments being required.
We skip the details here for the sake of brevity.

Proposition 2. Suppose that conditions (A1)–(A2) and (D1)–(D3) hold. The r-lower value
function W−

r (resp. r-upper value function W+
r ) of the discounted SDG determined by (3) and

(12) is a viscosity subsolution (resp. supersolution) of (15) (resp. (16)).
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The next section employs an approximation procedure originally due to Fleming and
Souganidis [17, 39, 40]. This procedure is based on a discretization of the time variable and
yields viscosity solutions for (15) and (16).

3.3. Time-discretization procedure

Let π = {0 = t0 < t1 < · · ·< tm = T} be a partition of [0, T], and let

‖π‖ = max
1≤i≤m

(ti − ti−1)

denote the mesh of the partition π .
A π -admissible control u(·) for Player I on [t, T] is an admissible control with the fol-

lowing additional property. If i0 ∈ {0, . . . ,m − 1} is such that t ∈ [ti0, ti0+1), then u(s) = u for
s ∈ [t, ti0+1) with u ∈ U and u(s) = utk for s ∈ [tk, tk+1) for k = i0 + 1, . . . ,m − 1 where utk is
Gωt,tk -measurable. The set of π -admissible controls for Player I on [t, T] will be denoted by
Uπ (t, T). A π -admissible control v(·) for Player II on [t, T] is defined similarly and the set of
all such controls will be denoted by Vπ (t, T).

A π -admissible strategy α for Player I on [t, T] is an element of the set of admissible
strategies A(t, T) with the additional properties that α[V(t, T)] ⊂ Uπ (t, T), if t ∈ [ti0, ti0+1)
then for every v(·) ∈ V(t, T) the resulting control α[v(·)]|[t,ti0+1) does not depend on v(·), and if
v(·) ≈ ṽ(·) on [t, tk], then α[v(·)](tk) = α[ṽ(·)](tk), Pωt,T -a.s. for every k ∈ {i0 + 1, . . . ,m}. The
set of all π -admissible strategies for Player I on [t, T) will be denoted by Aπ (t, T). A π -
admissible strategy β for Player II on [t, T] is defined similarly and the set of all these strategies
will be denoted by Bπ (t, T).

Let C0,1
b (RN) denote the space of bounded, Lipschitz-continuous functions on R

N . For every

t ∈ [0, T) and t̂ ∈ (t, T], define the operator F−
t,t̂

: C0,1
b (RN) → C0,1

b (RN) by

F−
t,t̂
φ(x) = sup

u∈U
inf

v(·)∈V(t,t̂)
EP

ω
t,T

[
�(t̂, t)φ(Xu,v

t,x (t̂ )) +
∫ t̂

t
�(s, t)L(s, Xu,v

t,x (s), u, v(s)) ds

]
, (33)

where V(t, t̂) denotes the set of admissible controls for Player II on [t, t̂) and Xu,v
t,x (·) is the

solution of (3) on [t, t̂) associated with the choice of admissible controls u(·) ≡ u and v(·) ∈
V(t, t̂) having initial condition x at time t.

In a similar fashion, define the operator F+
t,t̂

: C0,1
b (RN) → C0,1

b (RN) as

F+
t,t̂
φ(x) = inf

v∈V
sup

u(·)∈U (t,t̂)
EP

ω
t,T

[
�(t̂, t)φ(Xu,v

t,x (t̂ )) +
∫ t̂

t
�(s, t)L(s, Xu,v

t,x (s), u(s), v) ds

]
,

where U (t, t̂) denotes the set of admissible controls for Player I on [t, t̂) and Xu,v
t,x (·) is the

solution of (3) on [t, t̂) associated with the choice of admissible controls v(·) ≡ v and u(·) ∈
U (t, t̂) having initial condition x at time t.

Let w−
π : [0, T] ×R

N →R be such that w−
π (T, x) =�(T, x) and

w−
π (t, x) = F−

t,ti0+1

m∏
k=i0+2

F−
tk−1,tk�(T, x) (34)

whenever t ∈ [ti0, ti0+1), and similarly, let w+
π : [0, T] ×R

N →R be such that w+
π (T, x) =

�(T, x) and

w+
π (t, x) = F+

t,ti0+1

m∏
k=i0+2

F+
tk−1,tk�(T, x) (35)
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whenever t ∈ [ti0, ti0+1). Under assumptions (A1)–(A2) and (D1)–(D2), w−
π and w+

π are both
well-defined. Moreover, w−

π and w+
π admit a stochastic game characterization, as described in

the next result.

Proposition 3. Suppose that conditions (A1)–(A2) and (D1)–(D2) hold. For every (t, x) ∈
[0, T] ×R

N, we have

w−
π (t, x) = inf

β∈B(t,T)
sup

u(·)∈Uπ (t,T)
J (t, x; u(·), β[u(·)]) (36)

and
w+
π (t, x) = sup

α∈A(t,T)
inf

v(·)∈Vπ (t,T)
J (t, x; α[v(·)], v(·)). (37)

Proof. We prove relation (36) only, with the proof of (37) being similar. The proof of (36)
relies on the following two claims.

(i) For every (t, x) ∈ [0, T] ×R
N and every ε > 0, there exist αε ∈Aπ (t, T) and βε ∈

Bπ (t, T) such that

J (t, x; u(·), βε[u(·)]) − ε ≤ w−
π (t, x) ≤J (t, x; αε[v(·)], v(·)) + ε (38)

for all u(·) ∈ Uπ (t, T) and v(·) ∈ Vπ (t, T).

(ii) For any β ∈B(t, T), the pair of strategies αε ∈Aπ (t, T) and β ∈B(t, T) define controls
uε(·) ∈ Uπ (t, T) and vε(·) ∈ V(t, T) for which

J (t, x; αε[v
ε(·)], vε(·)) =J (t, x; uε(·), β[uε(·)]). (39)

Indeed, once the two claims above are proved, the result follows from noting that the left-
hand side of (38) guarantees that

w−
π (t, x) ≥ inf

β∈B(t,T)
sup

u(·)∈Uπ (t,T)
J (t, x; u(·), β[u(·)]),

while combining the right-hand side of (38) with (39) yields the reverse inequality.
The proof of claim (ii) is similar to that of the corresponding statement in [17] and we

skip it. Let us then prove claim (i). For ϕ ∈ C0,1
b (RN), x ∈R

N , u ∈ U, t ∈ [0, T], and t̂ ∈ (t, T],
define

ψ(x, u, t, t̂, ϕ) = inf
v(·)∈V(t,t̂)

EP
ω
t,T

[
�(t̂, t)ϕ(Xu,v

t,x (t̂ )) +
∫ t̂

t
�(s, t)L(s, Xu,v

t,x (s), u, v(s)) ds

]
,

where Xu,v
t,x (·) is the solution of (3) under the choice of the admissible controls u(s) ≡ u and

v(·) ∈ V(t, t̂) and initial condition x at time t. Using assumptions (A1)–(A2) and (D1)–(D2), we
obtain that ψ(·, ·, t, t̂, ϕ) ∈ C0,1

b (RN × U) and

F−
t,t̂
ϕ(x) = sup

u∈U
ψ(x, u, t, t̂, ϕ),

where Ft,t̂ is the operator defined in (33).
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If t ∈ [ti0, ti0+1) for i0 ∈ {0, 1, . . . ,m − 1}, let

ϕm =�(T, ·),
ϕj = F−

tj,tj+1
ϕj+1, j = i0 + 1, . . . ,m − 1,

ϕi0 = F−
t,ti0+1

ϕi0+1.

Hence, we obtain that
ϕi0 (x) = w−

π (t, x).

Using [31, Lemma 1], we partition R
N and U into Borel sets of diameter less than some

positive constant δ, to be determined below. Denote these partitions by {Ak : k = 1, 2, . . .} and
{B� : �= 1, 2, . . . , L}, respectively, and pick xk ∈ Ak and u� ∈ B� for each k = 1, 2, . . . and
�= 1, 2, . . . , L. For any γ > 0 there exists δ small enough and u∗

kj = u�(k,j) ∈ U, k = 1, 2, . . .
and j = i0 + 1, . . . ,m, such that

ψ(xk, u∗
kj, tj−1, tj, ϕj)> F−

tj−1,tjϕj(xk) − γ .

Further, we choose v�kj(·) ∈ V(tj−1, tj) such that, for u(·) identically equal to u� ∈ U on the
interval [tj−1, tj), we obtain

EP
ω
tj−1,T

[
�(tj, tj−1)ϕ(X�tj−1,xk

(tj)) +
∫ tj

tj−1

�(s, tj−1)L(s, X�tj−1,xk
(s), u�, v�kj(s)) ds

]

<ψ(xk, u�, tj−1, tj, ϕj) + γ,

with ti0 = t whenever j = i0 + 1. The notation X�tj−1,xk
(·) stands for the solution of (3) with initial

condition xk at time tj−1 subject to the admissible controls u(·) ≡ u� and v�kj(·).
We will now exhibit the strategies αε and βε in (38). Fix (t, x) ∈R

N × [0, T). For v(·) ∈
V(t, T), define

αε[v(·)](s) = I[t,ti0+1)(s)
∑

k

u∗
ki0 IAk (x) +

m−1∑
j=i0+1

I[tj,tj+1)(s)
∑

k

u∗
kjIAk (X(tj)),

where X(·) is defined on each of the intervals [t, ti0+1] and [tj, tj+1], j = i0 + 1, . . . ,m − 1, as
the solution of (3) with u(·) = αε[v(·)]. For u(·) ∈ U (t, T), define

βε[u(·)](s) = I[t,t0+1)(s)
∑
k,�

v̂�ki0
(s)IAk (x)IB�(u(s))

+
m−1∑

j=i0+1

∑
k,�

I[tj,tj+1)(s)v̂�kj(s)IAk (X(tj))IB�(u(s)),

where X(·) is now defined on each of the intervals [t, ti0+1] and [tj, tj+1], j = i0 +
1, . . . ,m − 1, as the solution of (3) with v(·) = βε[u(·)], and v̂�kj(·, ω) = v�kj(·, ωtj,T ) using

the identification of �ωt,T with �ωt,tj ×�ωtj,T provided by π (ω) = (ωt,tj , ωtj,T ) discussed in
Section 2.1.
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Let J stand for either J (t, x; αε[v(·)], v(·)) or J (t, x; u(·), βε[u(·)]). For any v(·) ∈ V(t, T)
and u(·) = αε[v(·)] or u(·) ∈ Uπ (t, T) and v(·) = βε[u(·)], we have

w−
π (t, x) −J

= ϕi0 (x) −EP
ω
t,T

[ ∫ T

t
�(s, t)L(s, X(s), u(s), v(s)) ds +�(T, t)ϕm(X(T))

]

=
m∑

j=i0+1

{
EP

ω
t,T

[�(tj−1, t)ϕj−1(X(tj−1))] −EP
ω
t,T

[�(tj, t)ϕj(X(tj))]
}

−EP
ω
t,T

[ ∫ T

t
�(s, t)L(s, X(s), u(s), v(s)) ds

]
. (40)

Using assumption (D2), we obtain that
m∑

j=i0+1

{
EP

ω
t,T

[�(tj−1, t)ϕj−1(X(tj−1))] −EP
ω
t,T

[�(tj, t)ϕj(X(tj))]
}

−EP
ω
t,T

[ ∫ T

t
�(s, t)L(s, X(s), u(s), v(s)) ds

]

=
m∑

j=i0+1

�(tj−1, t)

{
EP

ω
t,T

[ϕj−1(X(tj−1))]

−EP
ω
t,T

[
�(tj, tj−1)ϕj(X(tj)) +

∫ tj

tj−1

�(s, tj−1)L(s, X(s), u(s), v(s)) ds

]}

=EP
ω
t,T

[ m∑
j=i0+1

�(tj−1, t)

{
ϕj−1(X(tj−1)) (41)

−EP
ω
t,T

[
�(tj, tj−1)ϕj(X(tj)) +

∫ tj

tj−1

�(s, tj−1)L(s, X(s), u(s), v(s)) ds
∣∣∣ Gωt,tj−1

]}]

Combining (40) and (41), we get

w−
π (t, x) −J

=EP
ω
t,T

[ m∑
j=i0+1

�(tj−1, t)

{
ϕj−1(X(tj−1))

−EP
ω
t,T

[
�(tj, tj−1)ϕj(X(tj)) +

∫ tj

tj−1

�(s, tj−1)L(s, X(s), u(s), v(s)) ds
∣∣∣ Gωt,tj−1

]}]
.

Inequality (38) follows from the relation above after checking that the following two
statements hold P

ω
t,T -a.s.

(A) For any v(·) ∈ V(t, T) and u(·) = αε[v(·)], we have

ϕj−1(X(tj−1)) ≤EP
ω
t,T

[
�(tj, tj−1)ϕj(X(tj))

+
∫ tj

tj−1

�(s, tj−1)L(s, X(s), u(s), v(s)) ds
∣∣∣ Gωt,tj−1

]
+ ε(tj − tj−1).
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(B) For any u(·) ∈ Uπ (t, T) and v(·) = βε[u(·)], we have

EP
ω
t,T

[
�(tj, tj−1)ϕj(X(tj)) +

∫ tj

tj−1

�(s, tj−1)L(s, X(s), u(s), v(s)) ds
∣∣∣ Gωt,tj−1

]

≤ ϕj−1(X(tj−1)) + ε(tj − tj−1).

The proofs of (A) and (B) can be obtained by performing appropriate adjustments to the
proofs of analogous statements in [17]. We skip them to keep the presentation brief. �

The next lemma follows from assumptions (A1)–(A2) and (D1)–(D2), as well as the
characterizations of w−

π and w+
π given above.

Lemma 3. There exists a positive constant C, depending solely on assumptions (A1)–(A2) and
(D1)–(D2), such that the inequalities

|w±
π (t, x)| ≤ C and |w±

π (t, x) − w±
π (t̂, x̂)| ≤ C(|x − x̂| + |t − t̂|1/2)

hold for all x, x̂ ∈R
N and t, t̂ ∈ [0, T].

Resorting to Lemma 3 above and the Arzela–Ascoli theorem, we obtain that the families
of functions {w−

π } and {w+
π } converge uniformly as ‖π‖ → 0 along subsequences to bounded

uniformly continuous functions. We will see that these uniform limits are viscosity solutions
of (15) and (16). That is the content of the result below.

Proposition 4. Assume that (A1)–(A2) and (D1)–(D3) hold and let w−
π and w+

π be given by
(34) and (35), respectively. Then the limits

w− = lim‖π‖→0
w−
π and w+ = lim‖π‖→0

w+
π

exist locally uniformly and are the unique viscosity solution of (15) and (16), respectively.

Proof. Existence of w− and w+ follows from a comparison theorem (Theorem 5 in the
appendix) and Lemma 3 as long as one guarantees that any subsequential limit of the families
{w−
π } and {w+

π } as ‖π‖ → 0 is a viscosity solution of (15) and (16), respectively. This can be
achieved by employing the same arguments as in [17, Proposition 2.5]. We omit the details
here for the sake of brevity. �

3.4. W− and W+ characterization as viscosity solutions of (15) and (16)

In what follows, we will compile the results obtained in the preceding sections to complete
the characterization of the lower and upper value functions W− and W+ as the unique viscosity
solutions of (15) and (16), respectively. For that purpose, we start by noting that since the limit
functions w− and w+ of Proposition 4 are the unique viscosity solutions of (15) and (16),
respectively, then Proposition 2 and a comparison theorem (Theorem 5 in the appendix) yield
the following result.

Lemma 4. For every (t, x) ∈ [0, T] ×R
N we have that

W−
r (t, x) ≤ w−(t, x) and W+

r (t, x) ≥ w+(t, x).
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We will now show that W−(t, x) ≥ w−(t, x) and W+(t, x) ≤ w+(t, x) for every (t, x) ∈
[0, T] ×R

N . As a consequence, we will obtain that the lower and upper value functions
W− and W+ are the unique viscosity solutions of (15) and (16), respectively.

Theorem 2. Suppose that (A1)–(A2) and (D1)–(D3) hold. The lower and upper value func-
tions W− and W+ of the discounted SDG determined by (3) and (12) are, respectively, the
unique viscosity solutions of the Hamilton–Jacobi–Bellman–Isaacs equations (15) and (16).
Moreover, if the Isaacs condition (11) holds, then the discounted SDG determined by (3) and
(12) has a value.

Proof. We only prove the statement concerning the lower value function, with a similar
proof holding for the corresponding statement concerning the upper value function.

Combining Corollary 2 with Lemma 4 we obtain that W− ≤ W−
r ≤ w− on [0, T] ×R

N . On
the other hand, by Proposition 3 we have that for every partition π of [0, T], the inequality
w−
π ≤ W− holds on [0, T] ×R

N . Proposition 4 then implies that w− ≤ W− on [0, T] ×R
N ,

guaranteeing that w− = W− on [0, T] ×R
N .

Finally, if the Isaacs condition holds, then the HJBI equations (15) and (16) coincide. Hence,
uniqueness of the viscosity solutions – a consequence of Theorem 5 – ensures that W− and W+
are identical. �

Finally, we are able to state a dynamic programming principle for each one of the value
functions W− and W+, defined in (13) and (14).

Theorem 3. (Dynamic programming principle.) Assume that conditions (A1)–(A2) and (D1)–
(D3) hold and let t, t̂ ∈ [0, T] be such that t< t̂. Then, for every x ∈R

N, we have the following.

(i) The lower value function of the discounted SDG (3)–(14) is determined by the recursive
relation

W−(t, x) = inf
β∈B(t,T)

sup
u∈U (t,T)

EP
ω
t,T

[
�(t̂, t)W−(t̂, Xu,v

t,x (t̂ ))

+
∫ t̂

t
�(s, t)L(s, Xu,v

t,x (s), u(s), β[u(·)](s)) ds

]
, (42)

combined with the boundary condition W−(T, x) =�(T, x), where Xu,v
t,x (s), s ∈ [t, T], is

the solution of (3) with v(·) = β[u(·)] ∈ V(t, T) for u(·) ∈ U (t, T).

(ii) The upper value function of the discounted SDG (3)–(13) is determined by the recursive
relation

W+(t, x) = sup
α∈A(t,T)

inf
v∈V(t,T)

EP
ω
t,T

[
�(t̂, t)W+(t̂, Xu,v

t,x (t̂ ))

+
∫ t̂

t
�(s, t)L(s, Xu,v

t,x (s), α[v(·)](s), v(s)) ds

]
,

combined with the boundary condition W+(T, x) =�(T, x), where Xu,v
t,x (s), s ∈ [t, T], is

the solution of (3) with u(·) = α[v(·)] ∈ U (t, T) for v(·) ∈ V(t, T).

Proof. We start by proving that the lower value function of the discounted SDG (3)–(12)
satisfies relation (42). The corresponding proof for the upper value function is similar and we
omit it here.
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Let t̂ ∈ (0, T] be fixed and let W(t, x) denote the right-hand side of (42). It is enough
to consider in (42) controls u(·) and strategies β defined in [t, t̂]. By Theorem 2, we have
that W is the viscosity solution of (15) on [0, t̂] ×R

N with W(t̂, x) = W−(t̂, x). Since W−
is the viscosity solution of the same problem, uniqueness of viscosity solutions yields that
W = W−. �

4. Proof of Theorem 1

This section is devoted to the proof of Theorem 1. We will see that the payoff functional
(4) can be related to the payoff functional of an auxiliary problem, with deterministic time
horizon, but readjusted running and terminal payoffs accounting for the uncertainty induced by
the random horizon via the introduction of a non-constant discount rate. We will then discuss
how to formulate the resulting problem as a zero-sum discounted SDG, studied in detail in
Section 3.

We start by stating and proving a simple lemma concerning an iterative property for the
conditional probabilities defined in (7).

Lemma 5. The identities

G+(s, t) = G+(s, t̂) G+(t̂, t),

g−(s, t) = g−(s, t̂) G+(t̂, t)

hold for every 0 ≤ t ≤ t̂ ≤ s ≤ T .

Proof. Recall the definition of the conditional probability G+(t, s) given in (7):

G+(s, t) = P
τ
t (τ > s) = P

τ (τ > s | τ > t). (43)

Using the definition of conditional probability and the fact that t ≤ t̂ ≤ s, we get

P
τ (τ > s | τ > t) = P

τ ({τ > s} ∩ {τ > t})
Pτ (τ > t)

= P
τ ({τ > s} ∩ {τ > t̂})

Pτ (τ > t̂)

P
τ ({τ > t̂} ∩ {τ > t})

Pτ (τ > t)

= P
τ (τ > s | τ > t̂) Pτ (τ > t̂ | τ > t). (44)

The first relation in the statement follows from combining (43) and (44). The second relation
is a consequence of the first one after noting that g−(s, t) is the density function associated with
the distribution function G−(s, t) = 1 − G+(s, t). �

The next lemma plays a central role in the formulation of an auxiliary discounted SDG with
a deterministic time horizon associated with the SDG with random horizon (3)–(4). In what
follows we will denote the indicator function of a set A by 1A.

Lemma 6. Let u : [t, T] ×�ωt,T → U and v : [t, T] ×�ωt,T → V be G
ω
t,T-adapted processes.

For every (t, x) ∈ [0, T) ×R
N, the payoff functional J(t, x; u(·), v(·)) defined in (4) admits the

representation

J(t, x; u(·), v(·)) =EP
ω
t,T

[ ∫ T

t
G+(s, t)L(s, Xu,v

t,x (s), u(s), v(s)) ds + G+(T, t)�(T, Xu,v
t,x (T))

]
,

(45)
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where L is the conditional running payoff

L(t, x, u, v) = L(s, x, u, v) + g−(t, t)�(t, x), (46)

G+ and g− are as given in (7) and (8), respectively, and Xu,v
t,x (s), s ∈ [t, T], denotes the solution

of the initial value problem (3) associated with (u(·), v(·)).

Proof. Given the definition of the random horizon ξ in (2) and that of the payoff functional
J in (4), we obtain

J(t, x; u(·), v(·))
=EPt

[
1(T,+∞)(τ )

( ∫ T

t
L(s, Xu,v

t,x (s), u(s), v(s)) ds +�(T, Xu,v
t,x (T))

)

+ 1(t,T](τ )

( ∫ τ

t
L(s, Xu,v

t,x (s), u(s), v(s)) ds +�(τ, Xu,v
t,x (τ ))

)]
.

Combining the representation (1) for the probability measure Pt with the linearity of the
expected value with respect to the distribution of τ and the definition of the conditional
probabilities (7), we are able to rewrite the relation above as

J(t, x; u(·), v(·))
=EP

ω
t,T

[
G+(T, t)

( ∫ T

t
L(s, Xu,v

t,x (s), u(s), v(s)) ds +�(T, Xu,v
t,x (T))

)

+
∫ T

t
g−(r, t)

∫ r

t
L(s, Xu,v

t,x (s), u(s), v(s)) ds dr

+
∫ T

t
g−(s, t)�(s, Xu,v

t,x (s)) ds

]
. (47)

Applying the Fubini–Tonelli theorem to the second term on the right-hand side of relation
(47), we get

∫ T

t

∫ r

t
g−(r, t)L(s, Xu,v

t,x (s), u(s), v(s)) ds dr

=
∫ T

t

∫ T

s
g−(r, t)L(s, Xu,v

t,x (s), u(s), v(s)) dr ds

=
∫ T

t
(G+(s, t) − G+(T, t))L(s, Xu,v

t,x (s), u(s), v(s))) ds.

Combining the last equality with (47) and rearranging terms, we get

J(t, x; u(·), v(·))
=EP

ω
t,T

[ ∫ T

t
G+(s, t)L(s, Xu,v

t,x (s), u(s), v(s)) + g−(s, t)�(s, Xu,v
t,x (s)) ds

+ G+(T, t)�(T, Xu,v
t,x (T))

]
.

https://doi.org/10.1017/apr.2019.47 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2019.47


1232 M. FERREIRA ET AL.

The result now follows from Lemma 5 after factoring out the term G+(s, t) from the integrand
in the equality above. �

The representation (45) for the payoff functional (4) reflects the transformation of the SDG
under consideration from a random planning horizon to a deterministic one via the introduction
of a subjective rate of time preferences, that resembles a non-constant discount factor related
to the family of conditional probabilities (7).

Proof of Theorem 1. We employ the representation for the payoff functional (4) provided
in Lemma 6. Start by observing that the payoff functional (45) is of the same form as the dis-
counted payoff functional (12), with non-constant discount factor given by �(s, t) = G+(s, t)
and running payoff of the form (46). Moreover, combining assumption (A3), the definition of
the conditional probabilities (7) and (8), and Lemma 5, we obtain that hypotheses (D1)–(D3)
hold. Therefore, Theorem 2 ensures that the value functions, say W− and W+, associated with
the auxiliary discounted SDG specified by (3) and (45) are, respectively, the unique viscosity
solutions of the HJBI equations (9) and (10), each of which can be obtained from (15) and (16)
by performing the appropriate adjustments listed above to the discount factor �(s, t) and the
running payoff L(t, x, u, v). Finally, by Lemma 6, we conclude that the lower and upper value
functions V− and V+ associated with the SDG with a random horizon (3)–(4) are, respec-
tively, identically equal to the lower and upper value functions W− and W+ associated with
the auxiliary discounted SDG mentioned above. �

5. Conclusions

We have studied a two-player zero-sum stochastic differential game with a random horizon
and diffusive state variable dynamics. We have employed dynamic programming and viscosity
solutions techniques to prove that the value function of this game is the unique viscosity solu-
tion of a certain HJBI equation. Further, under the Isaacs condition, we have obtained that the
value of the game exists.

Appendix A. Viscosity solutions and a comparison theorem

Let � be an open subset of R
n. For any function u : �→R, define u∗ : �̄→

R∪ {−∞,∞} as

u∗(x) = lim
r→0+ sup {u(y) : y ∈ B(x; r) ∩�} for x ∈ �̄,

and u∗ : �̄→R∪ {−∞,∞} as

u∗(x) = lim
r→0+ inf {u(y) : y ∈ B(x; r) ∩�} for x ∈ �̄.

Note that u∗ ≥ u ≥ u∗ on �, u∗ is upper semi-continuous (u.s.c.) on �̄ and u∗ is lower semi-
continuous (l.s.c.) on �̄. Note also that u∗ = (− u)∗ and that if u is u.s.c. at x ∈�, then
u∗(x) = u(x). The functions u∗ and u∗ are called, respectively, the u.s.c. and l.s.c. envelopes
of u.

Given A ∈R
m×n, let A’ and ‖A‖ stand, respectively, for the transpose and the norm of A. Let

A and B be non-empty, and set �=�×A×B. Consider functions � : �→R
m×n, b : �→

R
n, c : �→R, d : �→R, and define A : �→ S

n as

A(x, α, β) =�′(x, α, β)�(x, α, β)
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and F : �×R×R
n × S

n →R as

F(x, r, p, X) = inf
β∈B

sup
α∈A

{−tr (A(x, α, β)X) + 〈b(x, α, β), p〉 + c(x, α, β)r + d(x, α, β)}.

Consider the nonlinear PDE

F(x, u,Du,D2u) = 0 in �. (48)

A function u : �→R is called a viscosity subsolution of (48) if u∗(x)<∞ for x ∈ �̄ and if,
whenever φ ∈ C2(�), y ∈� and (u∗ − φ)(y) = max� (u∗ − φ),

F(y, u∗(y),Dφ(y),D2φ(y)) ≤ 0.

In a similar way, a function u : �→R is called a viscosity supersolution of (48) if u∗(x)>−∞
for x ∈ �̄ and if, whenever φ ∈ C2(�), y ∈� and (u∗ − φ)(y) = min� (u∗ − φ),

F(y, u∗(y),Dφ(y),D2φ(y)) ≥ 0.

A function u : �→R is called a viscosity solution of (48) if it is both a viscosity sub- and
supersolution of (48).

Consider the following assumptions.

(H1) For each bounded subset B of�, the functions A, b, c, and d are bounded on B ×A×B.

(H2) � and b are Lipschitz-continuous with respect to x, that is,

sup
‖�(x, α, β) −�(y, α, β)‖

|x − y| <∞

and

sup
‖b(x, α, β) − b(y, α, β)‖

|x − y| <∞,

where the supremum is taken for all (x, α, β), (y, α, β) ∈� with x �= y.

(H3) The functions f = c, d satisfy

lim
r→0

sup{|f (x, α, β) − f (y, α, β)| : x, y ∈ B (α, β) ∈A×B, |x − y| ≤ r} = 0,

for bounded subsets B of �.

(H4) inf{c(x, α, β) : (x, α, β) ∈�}> 0.

The following comparison result is due to Ishii [22, Theorem 7.3].

Theorem 4. Assume that (H1)–(H4) hold. Let u and v be, respectively, viscosity sub- and
supersolutions of

F(x, u,Du,D2u) = 0 in �.

If � is unbounded, then assume that

lim
x∈�,|x|→∞

u+(x)

log |x| = 0 and lim
x∈�,|x|→∞

u−(x)

log |x| = 0.

Suppose that u∗(x) ≤ v∗(x) for x ∈ ∂�. Then u∗ ≤ v∗ on �.
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Details regarding further extensions of the theorem above, including how to extend to
parabolic equations such as those under consideration herein, may be found in [23] and the
‘User’s guide to viscosity solutions of second order partial differential equations’ [13]. In
particular, the following theorem holds.

Theorem 5. Assume that the functions σ , f, L, and � are bounded and Lipschitz-continuous.
If v and ṽ (resp. u and ũ) are a viscosity subsolution and supersolution of (15) (resp. (16))
with boundary condition � and �̃ and if � ≤ �̃ on R

N × {T}, then v ≤ ṽ (resp. u ≤ ũ) on
R

N × [0, T].
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