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Abstract: In her Behavioral and Brain Sciences target article, Greenfield
(1991) proposed that early in a child’s development Broca’s area may serve
the dual function of coordinating object assembly and organizing the pro-
duction of structured utterances. As development progresses, the upper and
lower regions of Broca’s area become increasingly specialized for motor co-
ordination and speech, respectively. This commentary presents a connec-
tionist simulation of aspects of this proposal. The results of the simulation
confirm the main thrust of Greenfield’s argument and suggest that an im-
portant impetus for the developmental differentiation in Broca’s area may
be the increasing complexity of the computational demands made upon it.

Introduction

In her target article in Behavioral and Brain Sciences, Greenfield
(1991) proposed that there are parallels in the developmental
complexity of speech and object manipulation. In studying the ob-
ject manipulation of children aged 11–36 months, she observed
that the increase in complexity of their object combination abili-
ties mirrored the phonological and syllabic complexity of their
speech production. There are two possible explanations for this
phenomenon: (1) It represents analogous and parallel develop-
ment mediated by separate neurological bases; or (2) the two
processes are founded on a common neurological substrate.
Greenfield (1991) adduced evidence from neurology, neuropsy-
chology, and animal studies to support her view that the two
processes are indeed built upon an initially common neurological
foundation, which then divides into separate specialized areas as
development progresses.

A significant part of Greenfield’s argument centered on the re-
sults of an earlier study by Greenfield et al. (1972) in which chil-
dren were asked to nest a set of cups of varying size. The very

young children could do little more than pair cups. Slightly older
children showed a capacity to nest the cups, but employed what
Greenfield referred to as a “pot” strategy as their dominant ap-
proach. This entailed the child only ever moving one cup at a time
to carry out the task. Still older children tended to favor a “sub-
assembly” strategy in which the children moved pairs or triples of
stacked cups. The difference between these two strategies is il-
lustrated in Figure 1 below. At a given age one can detect a com-
bination of different nesting strategies being employed, but with
one strategy tending to dominate.

The first goal of the work reported here is to devise an abstract
characterization of the speech and object assembly tasks that will
allow the interaction of both activities to be explored within a con-
nectionist framework. The essence of both tasks is the manage-
ment of the linear expression of hierarchically organized concepts.
In one case, it is a hierarchically organized motor program, in the
other, it is a hierarchically organized word and/or sentence struc-
ture. The second goal is to reproduce a range of Greenfield’s find-
ings within this abstract formulation. The final goal is to provide
some new insight into the process of homologous development
and divergence.

Interdependence and differentiation

Greenfield has proposed that both language production and high-
level motor programming are initially subserved by the same cor-
tical region, which subsequently differentiates and specializes.
Two questions raised by Greenfield’s hypothesis will be explored
in this commentary. The first is whether there is an interdepen-
dence between the computational demands of object assembly
and of language production, such that language production re-
quires the computational foundation initially laid down for object
assembly tasks. The second question relates to the nature of the
process of differentiation. One possibility is that the maturation of
Broca’s region follows a genetically determined timetable, and dif-
ferentiates relatively independently of an individual’s experience.
This is the view favored by Greenfield herself, who, while not
denying the necessity of environmental input, puts more empha-
sis on the role of epigenetically driven changes in circuitry within
and around Broca’s area. Another possibility is that differentiation
occurs as a result of the growing processing demands of both lan-
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guage and object assembly activities. Within this scenario, more
emphasis is put on the role of the environment and experience in
shaping cortical connectivity.

The set of simulations described here seeks to explore these two
aspects of Greenfield’s hypothesis. With regard to interdepen-
dence, the simulations examine the relative benefits of construct-
ing a language production mechanism on a system for doing 
object assembly as compared to other tasks. The process of differ-
entiation is studied by examining the impact on the neural net-
work model of increasing the complexity of the task to be learned.

A simulation framework

As observed by Dean and Cruse (1995), the current dominant
metaphor for understanding motor behavior is the concept of a
motor program. This has proved a useful concept, so long as the
notion of “program” is loosely interpreted. That is, we must see
the “program” as capable of operating without input, of being able
to modify itself, and so on. Furthermore, Van Essen et al. (1996)
have argued that motor coordination is too computationally de-
manding to have separate circuits for each motor program avail-
able for all motor “modalities” (e.g., hands, legs, eyes). Conse-
quently, they propose that motor programs are represented
centrally in some abstract form, where they are accessed and “in-
terpreted” by the relevant low-level effectors. Indeed, one could
argue that it is the very abstractness of these representations that
permits them to be used in contexts other than those for which
they were designed, such as language, if we assume Greenfield’s

hypothesis to be correct. There is good evidence from positron
emission tomography (pet) studies that a likely location for this
central repository of abstract motor programs is the ventral region
of the left frontal lobe, commonly called Broca’s area (see Fox et
al. 1988).

What form might these abstract representations take? Well, it
is generally accepted (Houghton 1990) that a hierarchically struc-
tured neural representation is the basis for the generation of com-
plex sequential behavior. The view that such behavior might be
generated from a linearly organized sequence, the elements of
which are chained together by a simple associationistic mecha-
nism has been viewed as untenable for some time (Lashley 1951).

In keeping with these observations, an overall modeling frame-
work for this commentary is presented in Figure 2. At a very gen-
eral level this aims to capture the idea of hierarchically organized
abstract representation of goal state connected to a response sys-
tem for generating an action sequence to achieve the goal. It is
based on Rumelhart and Norman’s (1982) model of skilled typing.
They used the term “schema” to refer to the hierarchical repre-
sentation. In their model, a schema for a particular word com-
prised sub-schemata for each of the word’s letters. These sub-
schemata, in turn, were used to generate the appropriate hand and
finger movements that initiated the key presses. Rumelhart and
Norman’s typing model was modality specific, with motor pro-
grams specifically wired-in for carrying out movement of the
hands and fingers. However, as has been argued above, we need
to be able to represent motor programs at a more general level.
The framework in Figure 2 is intended to be a generalization of
their model. Figure 2 is neutral on how exactly the schemata get
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Pot strategy Step 1

Step 2

Sub-assembl y strategy
Step 1

Step 2

Figure 1 (Reilly). A comparison of the pot and subassembly strategies in the cup nesting task involving three cups. The gray arrows in-
dicate the object manipulated (single cup or assembly), and where it was put. Black arrows indicate the resulting change in state.
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represented. Nonetheless, if we are to simulate faithfully the
neural basis of the Greenfield hypothesis, there are constraints on
the selection of representational candidates that should be taken
into account. It will be desirable to devise a hierarchical repre-
sentation that has at least two main properties: (1) It must repre-
sent with equal facility both motor and linguistic programs; and
(2) it should have some degree of neural plausibility.

Connectionist hierarchical structures

One candidate for representing hierarchical structures within a
connectionist framework is the recursive auto-associative memory
(raam) method developed by Jordan Pollack (1990). Pollack’s
raam is based on a connectionist architecture called an encoder.
The idea behind the encoder is quite simple. A three-layer feed-
forward network is trained to reproduce on its output units the
same pattern of activation that is on its input units. It is trained to
do this for a given set of training patterns, using a supervised learn-
ing algorithm such as backpropagation (Rumelhart et al. 1986).

A key feature of encoder networks is that the number of inter-
vening hidden units is less than the number of input units (the
number of output units is the same as the number of input units).
This means that the network must learn a compact encoding of the
input patterns, but one that is sufficiently precise to permit a rel-
atively faithful reconstruction of the same set of patterns on the
output units. Thus, for every input pattern there is a unique pat-
tern of activation on the network’s hidden units which is that pat-
tern’s compact encoding.1 An 8-4-8 encoder (8 input units, 4 hid-
den units, and 8 output units), for example, must learn to encode
the pattern of activity on its eight input units, while simultaneously
learning to decode it back into its original form on its output units.
In fact, an “encoder” network is a combination of encoder and de-
coder. The set of weights between the input and hidden layers of
units carries out the encoding, while the set of weights from the
hidden layer to the output layer does the decoding. Pollack’s
(1990) innovations were (1) to permit the input units of an encoder
to represent not just one element, but pairs or triples of elements,
and (2) to use the compact encodings themselves as inputs. These
two developments gave him a means of recursively encoding hi-
erarchical structures into fixed-width distributed representations.

Pollack’s technique is illustrated in Figure 3. Using a 2k-k-2k
encoder, the tree in Figure 3 can be encoded into a fixed-width
representation by recursively training the encoder network on the
set of patterns given in Table 1. In this case, the three terminals a,
b, and c are represented by 1-in-4 bit vectors (e.g., a 5 {0,0,0,1},
b 5 {0,0,1,0}, c 5 {0,1,0,0}) and the two nonterminals are four-

element vectors of real numbers (e.g., r1 5 {0.2, 0.9, 0.1, 0.8}, r2
5 {0.7, 0.2, 0.3, 0.1}). At the beginning of training, the rn vectors
are initialized to random values in the range 0.0 to 1.0. As training
proceeds, these get replaced with the relevant patterns of activa-
tion from the network’s hidden units.

The input at each training step consists of two adjacent vectors
(i.e., the daughters of a node). For a given epoch, all of the train-
ing patterns are presented. Obviously, the rn vectors will be
changing as training proceeds. Consequently, these patterns pres-
ent something of a moving target to the learning algorithm. Nev-
ertheless, given a suitable choice of learning parameters, the rep-
resentations will eventually converge and stabilize. At the end of
the training procedure, the pattern r2 can be said to represent the
entire tree structure (a (b c)). The elements of this structure can
be recursively unpacked by taking r2, inserting it into the hidden
units of the encoder network, and using it to generate the patterns
a and r1 on the output units. r1, in turn, can be used to unpack
the remaining terminal elements of the tree. The advantage of the
raam technique is that encoded structures can be of varying com-
plexity, yet still be represented in a fixed-width vector of real num-
bers. Furthermore, raams can be generalized from binary to n-
ary trees. The raam application used in this commentary employs
a ternary encoder, where the 3k inputs are mapped to 3k output
through k hidden units.

raam representations satisfy the two criteria set out above for
a suitable neural representation of hierarchical structure. They are
a general scheme, and thus can cope equally well with both lin-
guistic and motoric representations. They are neurally plausible
on several counts. The representations are distributed, and neural
representations also appear to be distributed. They preserve sim-
ilarity relationships (Pollack 1990): raam encodings of structures
that are similar, are themselves similar. This also appears to be a
pervasive feature of neural representations (Sejnowski 1986). In
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Figure 2 (Reilly). Schematic representation of a model for gen-
erating sequential behavior from hierarchically organized goal
representations. The goal structure corresponds to the raam rep-
resentations used in the model, and the response generator cor-
responds to the srn used to produce action sequences.
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Figure 3 (Reilly). An illustrative example of how to encode a bi-
nary tree using an 8-4-8 raam network. The outputs a9, b9, and
c9, and r19 are used to indicate that these are approximations
within a certain tolerance of a, b, c, and r1. R2 can be decoded
by placing it on the hidden units of the encoder network and re-
cursively decoding the resulting output.

Table 1. (Reilly). A set of training patterns for a simple
raam network to encode the tree (a (b c)). The terminals 
a, b, and c are represented as 1-in-k bit vectors, and the 

rn vectors comprise real numbers

input pattern hidden pattern output pattern

(b c) r1 (b9 c9)
(a r1) r2 (a9r19)
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contrast, a system of representation that simply associated an ar-
bitrary bit pattern, say, with a given motor program would be less
neurally plausible. The fact that raam representations are of
fixed-width also gives them some degree of neural plausibility,
since the neural pathways (i.e., cortico-cortical projections) along
which their neural counterparts are transmitted, are also of fixed
width.

Generating action sequences

Assuming that raam representations are an acceptable means of
encoding hierarchical structures, a way then needs to be found to
generate action and speech sequences from these representations.
The solution proposed here is to use a simple recurrent network
(srn; Elman 1990) which takes a raam representation as input
and generates an appropriate sequence of actions as output (see
Fig. 4). Note that both the input to the srn and its output are
raam representations of tree structures. Thus, the model de-
scribed here is constructed in two phases: (1) the development of
raam representations of action and speech goals; and (2) the gen-
eration of action and speech sequences from raam goal repre-
sentations. The main focus of this study will be on the latter phase.
Among the aspects of generation that will be focused on will be
the relative ease with which certain classes of action sequences can
be learned. A particular test of the approach used here will be
whether in the nested cups task the pot strategy proves easier to
learn than the sub-assembly strategy. A central issue, however, is
whether there is some computational advantage from construct-
ing a language system in an area that has some specialization for
object assembly. As has already been suggested, it may not be en-
tirely accidental that the neurological center for dealing with the
hierarchical structure of language develops where it does.

The cups task

The original experiment by Greenfield et al. (1972) involved ask-
ing children of varying ages to assemble a set of five nested cups.
In the case of the simulation, four rather than five cups were used
in order to reduce the number of structures for which raam rep-
resentations needed to be created. As will become clearer when
the raam training procedure is discussed, training becomes in-
creasingly more difficult with an increase in the number and com-
plexity of structures to be encoded.

A child demonstrates a number of different strategies in as-
sembling the cups: pairing, pot, and sub-assembly. The pot and

sub-assembly strategies, however, will be the focus of simulation
described here, since this is where the most significant difference
is expected. There are of course other strategies a child might use,
but which would not achieve a successful completion of the task
(i.e., a set of fully nested cups). In some cases a child will insert
the smallest cup into the largest, but will then be unable to com-
plete the nesting task. In other cases noted by Greenfield et al.
(1972), the child will rest a large cup on top of a smaller one, even
employing a sub-assembly strategy where the large cup contains
other cups. Again, these actions will not lead to a successful com-
pletion of the task. An underlying assumption of the simulations
described here is that the child has some conceptualization of
what he has to achieve, since the experimenter has already demon-
strated the correct way of doing the task. So providing training on
only these correct strategies is remaining faithful to the original
experiment being simulated.

The cup-task representation comprises two parts: (1) a repre-
sentation of the end-state to be achieved, and (2) a representation
of the actions needed to be carried out to achieve the end (or goal)
state. In both cases, a ternary raam representation is used. Where
a node in the representation does not have three branches, a null
terminal is used. Figure 5 represents the end states of the cups all
being nested together using (a) a pure pot strategy, (b) a pure sub-
assembly, and (c) a mixture of the two. Note that these end-states
capture to some degree the route taken to achieve them, without
detailing the actions required to do so.

In order to achieve the end states illustrated in Figure 5, a se-
ries of actions needs to be carried out. These involve “getting” and
“putting” cups or assemblies of cups. A general representational
structure of the form actor, action, acted upon was used to repre-
sent these actions. Now, it can be argued that this structure is to
some degree arbitrary. However, the intention was to capture the
fundamental notion of actor, action, and acted-upon, since Green-
field et al. (1972) suggested that a child’s increasing flexibility in
assigning cups to these categories was the critical element in their
mastery of the more advanced subassembly strategy.

To achieve the configuration in Figure 5(a), one could have the
following sequences of actions: (null Get cupC), (cupC Put cupD),
(null Get cupB), (cupB Put (cupC In cupD)), (null Get cupA),
(cupA Put (cupB In (cupC In cupD))). Alternatively, to end up
with the configuration in Figure 5(c), the following sequence
would be necessary: (null Get cupA), (cupA Put cupB), (null Get
cupC), (cupC Put cupD), (null Get (cupA In cupB)), ((cupA In
cupB) Put (cupC In cupD)). In this example, the first and second
pair of actions are interchangeable. Note also that in the repre-
sentation scheme as a whole, there is an implicit left-to-right po-
larity. So that (cupA In cupB) means that cupA is in cupB, and
(cupC Put cupD) means that cupC is put into cupD.
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Figure 4 (Reilly). A schematic representation of an srn used to
generate action sequences from raam-based goals. Note that the
output of the srn was also a raam representation. The context
units contain the activation values of the hidden units at the pre-
vious time step and serve as limited capacity memory for the net-
work.

Figure 5 (Reilly). Goal-state representations for (a) a pure pot
strategy; (b) a pure subassembly strategy; and (c) a mixed “bal-
anced” strategy.
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The speech task

The nature of the speech production task paralleled that of object
assembly. A raam encoded speech “goal” was used as input to the
srn, which then used it as the basis for the generation of speech
actions (i.e., phonemes). The assumption underlying the speech
“goal” is that its structure corresponds to some form of underlying
representation that the speaker uses as a basis for speech genera-
tion. In order to capture the psychologically realistic details of the
speech structure, an onset/rhyme underlying representation was
assumed for the structure of the speech goal. The choice of ap-
propriate representation is to some degree moot here. Nonethe-
less, there is good support for the psychological reality of the on-
set/rhyme structure from, for example, the study of speech errors
(Dell 1988; Stemberger 1983). The output speech actions were
also represented as raam encodings.

In utterances involving more than one word, a simple phrase
structure was used as the overarching structure. A sample of
speech was taken from the Higginson corpus (Higginson 1985) of
the childes child language database (MacWhinney 1993;
MacWhinney & Snow 1990). The sample comprised three sets of
10 utterances sampled at 11 months, 20 months, and 35 months
(see the Appendix for a complete list of utterances). The reason
for choosing this particular corpus was because it gave a repre-
sentative spread of language over the age ranges that Greenfield
et al. (1972) had studied for the cups task. For srn training, the
entire pool of 30 utterances was divided into two equal sized
groups.

The output phonetic representation used is an ascii version of
the ipa called unibet input. So, for example, the utterance /dad
Ã/ is represented in unibet form as dadA, and in raam form as
((d (a null null) null) (d (A null null) null) null). The process of
speech production was conceptualized as involving the generation
of an action sequence derived from the raam representation of
the entire utterance. As illustrated in Figure 6, given an utterance
“goal” such as ((d (a null null) null) (d (A null null), this would be
the input to the srn and would give rise to the following sequence
of speech actions: (null Say d), (null Say a), (null Say d), (null Say
A). The structure of each speech action was intended to be simi-
lar in form to those for object assembly, with “Say” in the same lo-
cation in the speech structure as “Get” and “Put” in the action
structure. Again, note that both the input goal and output actions
are in the form of raam representations.

Simulation details

The simulations described here were programmed in C using the
library of functions supplied with the snns simulator from the
University of Stuttgart (Mamier & Wieland 1996). The raam
training involved taking both the object assembly and speech
structures, and training a network to encode and decode these
representations. This involved altogether 102 tree structures,
comprising 35 object assembly ones and 67 language ones. The
object assembly structures consisted of five goals, and 30 actions,
while the 67 language structures consisted of 30 goals, and 37 ac-
tions. A 150-50-150 raam network was trained to encode them.
Altogether, the raam network was trained on a total of 191 train-
ing patterns. There were more training patterns than tree struc-
tures because the basic element of training was the node of the
tree, so there were as many training patterns as nodes.

The 45 terminals, because of their relatively high number, were
encoded using a 6-bit binary representation, rather than the 1-in-
n bit encoding used by Pollack (1990). There was no distinction
made between the language terminals and the object assembly
terminals; they were all arbitrary bit patterns. In principle one
could have used a 1-in-50 bit code for the terminals, but one needs
to use significantly more input units than are required simply to
encode the terminal elements of the tree structures. This is be-
cause the excess units are needed to carry information about the
recursively encoded tree structure. The raam network was
trained for 116,000 epochs. An annealing schedule of learning
rates was used. As training progressed, learning rate was varied
from 0.1 through to 0.005, and momentum was varied from 0.5 to
0.9. In training a raam network, an important issue is the criteria
that one uses to determine when training should cease. In this case
an error tolerance of 0.05 was used for each element of a nonter-
minal vector, 0.2 for the binary encoding part of a terminal vector,
and 0.1 for the empty part of that vector.

The srn comprised 50 input units, 50 hidden units, 50 output
units, and 50 context units. The context units were used to contain
activation values of the hidden units from the previous time step.
The end of each sequence (object assembly or speech) the activa-
tion values of the context units were reset to 0.5. A single learning
rate of 0.01 and momentum of 0.9 was used for all srn training
trials. All srn networks were trained for 1000 epochs per stage,
where a stage is defined as below.

The task of the srn was to take a given raam-encoded goal and
output a sequence of raam-encoded actions designed to achieve
it. These goals could involve object manipulation or language gen-
eration. The training corpus was divided up into three parts. The
first comprised the object assembly part (30 training patterns), the
second involved the month-long 11 language corpus samples, and
the half-month 20 samples (46 training patterns in total), while the
third comprised the other half-month 20 samples, and the initial
month-long 35 samples (79 training patterns). The idea here was
to create three stages in the learning process: an object assembly
stage, a simple language stage, and a complex language stage. It is
important to note that at each training stage, the training tasks
from the preceding stages were also included. So that by the third
training stage, the network was learning to produce action se-
quences along with both simple and complex speech sequences.

Simulation results

RAAM encoding. Of the 102 raam structures, two proved par-
ticularly difficult to train. These were two of the multi-word ut-
terances from the 35 month part of the Higginson corpus (see Ap-
pendix). These utterances were then omitted from the later srn
stage of the study. By these criteria, the raam network learned to
output terminals to 100% accuracy, but was less successful at ac-
curately outputting nonterminal vectors (96%). Nevertheless, at
96% accuracy, the network was able to correctly encode and de-
code 98% of the training forms by using a nearest neighbor crite-
rion. This meant that a possible terminal vector was tested for its
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Figure 6 (Reilly). An illustration of the generation of a sequence
of speech actions from the raam representation of the utterances
[dadA]. An onset-rhyme format is used to represent the structure
of the syllables. Empty slots in the raam structure are indicated
by “0”. For multi-word utterances, the syllable structure is em-
bedded in a simple phrase structure.
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distance to the set of known terminals, and then assumed to be the
one it was closest to in terms of vector distance. So while not
achieving 100% by the tolerance criteria, the network achieved an
acceptable level of performance by the nearest neighbor criteria.

SRN-based generation. The results of the srn experiments can
be broken down into three parts: (1) an exploration of the relative
difficulty of carrying out the pot and sub-assembly strategies; (2)
the advantage for language learning in having prior training on an
object assembly task; and (3) the evidence for a trend in separa-
tion of functions as language learning becomes more complex.

In all of the results reported here, the data presented are aver-
aged over 10 replications involving different random initial weight
settings. In each case the srn successfully learned to generate the
raam representations of the action sequences. This was verified
by using the raam network to decode the srn output.

Pot versus sub-assembly . Greenfield et al. (1972) argued that
one of the features that differentiates the pot strategy from the
sub-assembly strategy is the need in the sub-assembly strategy to
switch one’s perception of the role of an object from that of an ac-
tor in an action, to something acted upon. In the case of the pot
strategy, each cup is manipulated individually, and added to the
growing assembly, without the need for role switching. On the
other hand, in the sub-assembly strategy, an assembly is created
by one action, and then manipulated as the “actor” in the next ac-
tion, thus having its role switched from acted upon to actor.

There is a developmental lag in the emergence of the sub-as-
sembly strategy. We should therefore expect to see this lag re-
flected in some way in the ability of the srn to learn each strategy.
Fig. 7 is a histogram representing an average of 10 replications of
the average mean squared error (mse) for the “Get” action in the
sequence of actions for each strategy. As well as the pure pot and
sub-assembly strategy, there is a number of possible mixed strate-
gies: balanced, left, and right. These are so called because of the
structure of the tree representing the end state (cf. the x-axis of
Fig. 7). The “Get” action is graphed because it is the critical ac-
tion that determines the role of the manipulated object. Results
are given for networks trained to 500 and 1,000 epochs.

A 2 x 5 (Training Phase x Strategy) analysis of variance with re-
peated measures on the Strategy factor, was carried out on the
data in Figure 7. Both Training Phase and Strategy factors were
statistically significant (F(1,18) 5 395.04, p , 0.001; and F(4,15)
5 11.5, p , 0.001, respectively), as was the Training Phase by
Strategy interaction (F(4,15) 5 5.29, p , 0.01). At the 500 epoch
stage, the largest difference between strategies was between the
pot and sub-assembly (one-tailed t 5 5.69, df 5 9, p , 0.001). In
fact the pot strategy was significantly different from all other
strategies except the “mixed right” strategy. However, by 1,000
epochs these differences disappear. This initial difference and its

later disappearance is exactly what we would expect to see if the
abstract model of the strategies captures some of the essential fea-
tures of the empirical data.

Interdependence. One of the central hypotheses that this com-
mentary aims to explore is that there is some computational ben-
efit from constructing a language processing system on a pre-ex-
isting motor control system. To test this idea, four sets of 10 srns
were subjected to different preconditioning regimes. The first was
the condition of primary interest: A set of networks was trained to
generate a sequence of object assembly actions from a raam-en-
coded goal. Then, in addition, it was trained to generate speech
actions from a set of raam-encoded speech goals derived from the
simple language corpus. Finally, and also in addition, it was trained
to do the same for the complex language corpus. Note that at each
stage, the training corpus involved not only the new material as-
sociated with that phase, but also material from preceding phases.

In order to test the hypothesis that there is an advantage to prior
object assembly training, we need a number of control conditions
with which to compare our results. Three such control conditions
were devised. The first involved initializing the network to random
values that had the same distributional properties as the weights
in the 10 networks trained for 1,000 epochs on the object assem-
bly task. These weights were found to have a normal distribution
with a mean close to zero and a standard deviation of approxi-
mately 0.7. Ten networks were initialized to different random
weight settings with these distributional properties.

The second control condition involved training the network on
a task that was similar to the object assembly task in terms of the
number of training patterns, the length of sequences, and so on.
This task involved producing a vector of outputs which was the re-
verse of that used in the object assembly task. Therefore, the first
element in the training vector for this reverse control condition
was the last element in the corresponding object assembly train-
ing vector, and so on. It is important to note that this vector is un-
decodable and quite meaningless in raam terms. It does not, for
example, represent the mirror image of the encoded tree struc-
ture. It is merely a vector with numerical characteristics similar to
a genuine raam vector.

A third form of control involved training a set of 10 networks on
the simple language task first, and then on the combined simple
language and object assembly tasks. The motivation for this was to
discover if there was something specific to the object-assembly
task that provided a foundation for language generation. If this
were the case, then there should be an asymmetry in the benefits
from prior training on object assembly as compared to simple lan-
guage, with object assembly providing the greater benefit.

Figures 8a and 8b show the average performance of the 10 srn
networks as a function of different pre-conditioning2 regimes. In
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Figure 7 (Reilly). Comparison of the error on the “Get” action for different assembly strategies after 500 epochs and 1000 epochs of
training. These data are an average of 10 trials.
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both graphs, the error bars define a 95% confidence interval (the
more compact error bars tend to be obscured by the plot symbols).
Figure 8a is a graph of the pattern of the average mse over 10
replications following the addition of the simple language corpus.
As might be expected, error is initially greatest for the random
control condition. Early in training, object-assembly pre-training
gives an advantage over the various control conditions. A note-
worthy feature of this graph is how the error for pre-training on
the simple language corpus remains relatively high throughout.
Why this might be, will be taken up in the discussion. Further-
more, despite its structural similarity to object assembly training,
the reverse control condition is consistently less effective as a pre-
training regime up to the point of convergence with the random
control.

Figure 8b gives the error patterns for the four forms of pre-
conditioning following the addition of the complex language cor-
pus. The networks are still disadvantaged from the random ini-
tialization, even this far into training (i.e., after 1,000 epochs, if
pretraining occurred). As one might expect, simplelanguage fol-
lowed by object assembly pretraining is indistinguishable from ob-
ject assembly followed by simplelanguage pretraining. Nonethe-
less, any pretraining involving object assembly is better than the
other control conditions.

These results suggest, therefore, that the abstract characteriza-
tion of the language and object-assembly tasks captures some the
features of their real-world counterparts. What is striking about
the results is how beneficial object assembly training is, even when
compared to control tasks that are very similar to it in structure.
Possible reasons for this will be addressed in the Discussion.

Differentiation. The third and final part of this analysis was to
see if something like the functional differentiation that Greenfield
has suggested occurs in Broca’s region can also be found in the
simple recurrent networks. This was done by examining the pat-
tern of hidden unit activations of object assembly networks, first,
after combined object assembly and simple language training, and
next, after the addition of the complex language corpus. If a sep-
aration of function or specialization has occurred, we would ex-
pect to see this reflected in the pattern of hidden unit activations
of these networks at the two stages. What is of particular interest
is whether it is possible to detect an increase in representational
distance between the object assembly tasks and language tasks as
the language task becomes more complex.

If one were dealing with just one network, the obvious approach
would be to carry out a cluster analysis of the hidden unit activa-
tions associated with each pattern set. However, because a set of
networks is being examined, a cluster analysis is not feasible. In-
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stead, the process was analyzed the following way. Two sets of 10
networks were of interest here: (1) those trained on object as-
sembly and then on the simple language corpus (the “simple” set),
and (2) those trained on object assembly and both simple and
complex language corpuses (the “complex” set). Hidden unit vec-
tors (50 elements in length) were collected from the simple set for
the object assembly and simple language training patterns. From
the complex set, hidden unit vectors were collected for the object
assembly, simple language, and complex language training pat-
terns. An average vector was calculated for each of these five sets
of hidden unit vectors. At the end of this process there were 10
groups of five average vectors.

We can conceptualize the hidden unit vectors as specifying a
point in high-dimensional space, and the set of vectors associated
with a particular sequence of patterns, for example, those associ-
ated with the pot assembly strategy, as describing a trajectory
through this high-dimensional space. If we take an average of
these trajectories, we can get some indication of the region in
space which this particular set of trajectories predominantly oc-
cupies. We can then measure the Euclidean distance between this
and other regions of representational space. The hypothesis un-
der discussion here is that there should be an increase in distance
between the object assembly region and language region as the
language task demands increase. The main way to test this hy-
pothesis is to see if the Euclidean distance between oa (object as-
sembly) and sl (simple language) varies as a function of language
training complexity. The pattern of distance measures is illustrated
in Figure 9. The difference between the oa-sl distance and the
oa9-sl9 distance is statistically significant in the predicted direc-
tion (one-tailed, matched pair t 5 7.27, df 5 9, p , .001). The
other distance measures shown in Figure 9 are provided to illus-
trate that the measure as a whole behaves consistently. So, for ex-
ample, the distance between sl9 and cl, as one would expect, is
very small, while the difference between oa9 and cl is the largest
of all, indicating that the distance measures are indeed behaving
consistently.

How does this distance measure relate to Greenfield’s observa-
tion of a physical differentiation of function in Broca’s region? The
relationship is actually a fairly direct one. When Euclidean dis-
tance increases between two hidden unit vectors, one finds that
the active units in vector a, say, tend not to be the ones that are
active in vector b. This is directly analogous to the process of spa-
tial separation of function that Greenfield proposes occurs in
Broca’s area during its development.

Discussion

This commentary has shown that by using an abstract connec-
tionist characterization of language processing and object manip-
ulation one can demonstrate a pattern of development similar to
that posited to occur during the emergence of spoken language.
The simulations described here indicate a computational advan-
tage for networks that have had prior training on a simulated ob-
ject assembly task, when compared with various control condi-
tions. This is taken as support for Patricia Greenfield’s view of a
functional homology underlying both language and object assem-
bly tasks.

A possible criticism is that the style of representation used for
language and action goals, namely, the raam, is not sufficiently bi-
ologically realistic. Such a view, however, indicates a misunder-
standing of the modeling process. The aim of any form of compu-
tational model is to abstract from the target phenomenon those
features deemed theoretically relevant. As pointed out by Green
(1998), it is important to be as explicit as possible in identifying the
theoretically relevant components and processes of one’s model.
In the case of the model described here, one important relevant
feature is the concept of a superposed, distributed representation.
There are many varieties of such representation, the raam being
just one. The main test of the raam’s plausibility is not whether its
precise neurobiological equivalent can be found, but whether it
affords the same kind of operations that its neurobiological coun-
terpart does, whether it succeeds or fails in similar sorts of ways.
Given that the main evidence used in evaluating the model is
based on error patterns during learning, then another relevant fea-
ture of the model is that its representations change during learn-
ing in ways that are similar to their biological counterparts. In
other words, both the static and dynamic properties of the model’s
representations should map onto their real counterparts at some
level of abstraction.

Another possible criticism is that, because of the structural sim-
ilarity between the motor and language raam representations, the
simulation results are in some way built into the model from the
start. This criticism to a large extent misses the point. Greenfield’s
premise is that the neural substrates for language production and
object assembly are initially one and the same. It is therefore rea-
sonable to assume that the basic representational building blocks
of both action plans and utterance plans are similar, if not identi-
cal. However, as the language becomes more complex, there is a
corresponding divergence in the structural complexity of the rep-
resentations. What is of importance from a modeling point of view
in the simulation is not the starting point, but the manner in which
the representational space evolves during training under pressure
from increasingly more demanding language processing require-
ments. Furthermore, as I discuss in more detail below, the way in
which the model’s behavior varies under the different control con-
ditions is perhaps its most informative aspect.

To understand why the object assembly task provided a signif-
icant training advantage, it is useful to look at the third control
condition, where prior training was on simple language and then
followed by object assembly. In this case, the language training
did not benefit the object assembly task. This suggests that the
training advantage provided by initial training on object assembly
may be another case of the “importance of starting small” in the
sense of Elman (1993). The tree structures associated with the
object assembly task are relatively simple, with few deep embed-
dings. The simple language structures are more complex in this
respect. Elman (1993) demonstrated in his grammar-learning
studies that if a complex grammar is to be learned by an srn, the
network must first be trained on a simpler version of the gram-
mar. In the model described here, when initial training was pro-
vided on the language task, the network was being trained on a
complex task first and then a simpler one, the reverse of the ap-
proach that Elman found to be effective. It is unsurprising, there-
fore, that training is retarded on the combined object-assembly
and simple-language training set.
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Figure 9 (Reilly). Schematic representation of distances be-
tween average vectors for different training sets in simple and
complex language contexts. Note that the lines are not to scale. oa
5 average vector for object assembly training patterns in networks
trained on simple language corpus; . oa9 5 object assembly in net-
works trained on simple and complex language corpuses; sl 5
simple language training patterns in networks trained on simple
language corpus; sl9 5 simple language training patterns in net-
works trained on the simple and complex language corpuses; and
cl 5 complex language training patterns in networks trained on
simple and complex language corpuses.
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A key evaluation criterion for any model, computational or oth-
erwise, is whether the chosen abstraction, the functions it per-
forms, and the outcomes it produces, can as a whole be plausibly
mapped onto the target phenomenon. In this respect, I argue that
the model described here has been successful. In the first place,
the model reproduced the relative difficulty that children have in
producing the pot and sub-assembly strategies. Second, there ap-
peared to be a divergence in the exploitation of hidden-unit space
as the demands of the language task increased. Earlier, two possi-
ble divergence scenarios were suggested, one in which Broca’s
area differentiated according to a genetically determined sched-
ule, another in which the differentiation occurred as a side-effect
of increasing task demands. The model presented here suggests
that task demands, of themselves, provide an impetus for the re-
structuring that may occur in the region. This suggests that envi-
ronmental factors may play a greater role in differentiation than
allowed for by Greenfield.

In summary, the evidence from the modeling described here
supports the argument that there are good computational reasons
for building a language production system on an object-assembly
foundation.
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NOTES
1. Obviously, this encoding is tied to the weights of a given network,

and would not be usable in another network.
2. The term pre-conditioning is used here as distinct from pre-training,

since the random condition does not involve training.

APPENDIX: LANGUAGE CORPUS

The language sample is taken from the Higginson (1985) corpus
of the CHILDES database (MacWhinney 1993). The original cor-
pus was sampled randomly. The omitted utterances were not
raam encodable, and were not used in srn training. The simple
and complex corpus comprised 14 utterances each, though in the
case of the simple corpus there was some repetition of utterance
types in the sample drawn.
Simple
Dada, Nana, uh, baba, baby, um, duck, Sue, Cleo.
Complex
read; cuckoo; baby; us; piggy; oh a story; a crayon; yacht; dollar;
no; colour crayons; what’s he have; do a puzzle; look ’t I found;
Omitted
kitties are in the back; might get all ’n gooey.
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Abstract: Ronan Reilly’s connectionist simulation both strength-
ens and advances the theoretical model presented in my 1991 tar-
get article, “Language, Tools, and Brain: The Ontogeny and Phy-
logeny of Hierarchically Organized Sequential Behavior.” Reilly
has tested the whole ontogenetic model with a single simulation
study explicitly planned for this purpose. His methodology has es-
tablished that the various components of the theoretical model
imply and are compatible with one another. It has also indicated
how learning can actualize a pre-established ontogenetic sequence

of combining lingusitic symbols and objects. His simulation sug-
gests that the acquisition of linguistic speech may be facilitated
by experience with object manipulation, but not vice versa. This
hypothesis can and should be empirically tested through re-
search on behavioral development in the two domains. Finally,
Reilly has simulated brain architecture, as well as neural learn-
ing. His simulation therefore shows how the development of
language and object manipulation can result from an interaction
between preprogrammed neural architecture (analogous to net-
work architecture) and experience (analogous to the network’s
training cycles).

Ronan Reilly’s connectionist simulation both strengthens
and advances the theoretical model presented in my 1991
target article, “Language, Tools, and Brain: The Ontogeny
and Phylogeny of Hierarchically Organized Sequential Be-
havior.” Let me begin by congratulating Dr. Reilly on a bril-
liant simulation that is faithful to my model and tests its
component predictions in amazingly clever ways. I am
thrilled that support for this theory has emerged from the
arena of connectionist simulation, something that I never
dreamed possible.

In the 1991 target article, I constructed a theoretical ar-
gument by integrating evidence from various methods,
both neural and behavioral. Each piece of evidence was col-
lected in a different way for a different reason; none was
gathered with the purpose of testing my theoretical model.
Different pieces of data provided evidence for different
pieces of the theory. What Reilly has done is to test the
whole ontogenetic model with a single simulation study ex-
plicitly planned for this purpose. This methodology allows
predictions from theory to data to be tested, something that
was not possible in my target article, where data preceded
theory. Equally, if not more important, this methodology al-
lows one to see if the various components of the theoretical
model imply each other and are compatible with one an-
other. (They do and they are.)

However, Reilly’s results are from a simulation, not from
an empirical study of human development. What does this
mean? Clearly the results do not prove that brain develop-
ment and behavioral development operate just as the sim-
ulation does. Nonetheless, I would like to draw attention to
some unique advantages of this simulation. In discussing
advantages, I am not saying that a simulation replaces an in
vivo study, but rather that it potentially complements such
a study in specific ways.

R1. The role of learning in brain development

In neuroscience, there has been a classical debate between
locationism (the brain is composed of a series of function-
specific areas) and equipotentiality (any part of the brain
can learn to do anything). Locationism is associated with ge-
netic determinism, whereas equipotentiality is associated
with an emphasis on the role of experience (any area of the
brain can learn to do anything). Neural networks, modeled
in connectionist simulations, have generally been associ-
ated with learning and therefore with equipotentiality. In
my 1991 target article, I tried to resolve the classical di-
chotomy between locationism and equipotentiality with a
developmental theory of partially overlapping circuits, each
of which is associated with its own function. Each circuit in-
volves more than one brain area with pathways specifying
connections between them. The same area can participate
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in more than one circuit, so there is not a one-to-one cor-
respondence between location and function. At the same
time, particiular brain areas are pre-adapted to participate
in particular circuits, so equipotentiality is limited as well.

While my model avoided the dichotomy between loca-
tionism and equipotentiality, it did not, as Reilly points out,
resolve the dichotomy between a genetically determined
timetable of brain development and the role of experiential
learning. While my target article acknowledged the neces-
sity of interaction with the environment, it did not specify
the role of this interaction in the development of language
or object manipulation. Reilly’s connectionist simulation, in
contrast, brings the experiential side of epigenesis to the
fore. It is by now well known that potential neural connec-
tions are actualized by experience; Reilly’s simulation shows
in an elegant way how this may come about in the domains
of object manipulation and language development. Reilly
successfully uses learning rates and the learning depen-
dencies of connectionist networks to simulate ontogenetic
sequences of behavioral development. The important point
that this aspect of the simulation makes clear is that onto-
genetic sequences, while far from arbitrary in their order-
ing, are actualized by learning.

R2. Does learning to construct hierarchically
organized object sequences facilitate
language acquisition?

Reilly’s simulation also suggests an interesting new point:
that experience in object manipulation facilitates the learn-
ing of both simple and more complex language forms. If so,
then perhaps the culturally mandated de-emphasis of ob-
ject manipulation experience contributes to a later onset of
speech production (although not later speech comprehen-
sion) for children in subsistence cultures (Greenfield &
Suzuki 1997).

I had thought of the object and language domains as
linked by a common underlying neural substrate. I there-
fore expected a correlation between stages of development
in the two domains. However, Reilly’s simulation suggests
a slightly different relationship between the domains: a
causal relationship from object learning to language learn-
ing, but not vice versa.

Reilly’s interpretation of the facilitation of language ac-
quisition by experience with object manipulation is that the
simpler hierarchical structures acquired in the domain of
objects can be built upon to achieve the more complex
structures of even simple language. However, both in my
theory and in Reilly’s examples, it is not clear that simple
language structures are actually more complex than simple
object structures. Reilly represents simple language struc-
tures with empty slots (see Reilly, Fig. 6), but does not do
so with object structures (Fig. 5). It appears that these
empty slots may artificially boost the complexity of the sim-
ple language structures. Language structures are, however,
more diverse than object structures in his simulation. The
relative lack of diversity might make object sequences eas-
ier to learn, and this fact could perhaps play a role in the
one-way facilitation from object sequences to language se-
quences.

Despite my question about the mechanism Reilly posits,
his connectionist simulation does indicate that learning to
combine objects enhances the learning of language forms.

Only empirical research on behavioral development can
decide whether simple object combinations and simple
linguistic combinations are merely outputs of a common
programming device (Broca’s area), as I had thought, or
whether experience in one domain can enhance develop-
ment in the other domain, as Reilly’s simulation suggests.
Note that the question would never have been raised in that
form, were it not for the simulation.

R3. Simulating the developmental differentiation
of Broca’ s area

Another useful feature of Reilly’s simulation is that it tests
and confirms an important hypothesis of my 1991 target ar-
ticle. I predicted that, with age, Broca’s area would develop
from a functionally unitary to a functionally bipartate area,
as it became part of separate prefrontal circuits, one for
complex language constructions and one for complex object
constructions. Reilly’s simulation was able to test this hy-
pothesis. Hidden unit vectors in a Simple Recurrent Net-
work (SRN, Reilly’s computational analog to Broca’s area)
provided traces of the network’s learning of object and
speech sequences. Reilly found that the distance between
vectors used to represent object assembly and vectors used
to represent simple language became larger after training
on complex language. This increasing distance corresponds
to fewer hidden units in common for generating object as-
sembly and simple language sequences. In other words, af-
ter learning to generate more complex language, the units
used to represent action and language became more differ-
entiated, just as my theory predicted.

R4. The interaction of structure and experience

Finally, it is important to note that this connectionist simula-
tion did not learn from scratch. In order to learn to represent
hierarchically organized sequences of objects or language,
the network much have had a hierarchically organized archi-
tecture (called recursive auto-associative memory or raam)
to begin with. Without this architecture, it could not have
learned to represent hierarchically organized sequences in
the two domains. Connectionist architectures, like brain ar-
eas, are not created equal; they are not equipotential. If we
think of the raam architecture as analogous to anatomical
structure in a particular neural location, then we can see that
Reilly’s connectionist simulation is not simply a simulation
of learning; it is just as much a simulation of brain structure.
In sum, Reilly’s connectionist simulation models how the
development of language and object manipulation results
from an interaction between preprogrammed neural archi-
tecture (analogous to network architecture) and experience
(the network’s training cycles).
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