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Modulation of the velocity gradient tensor by
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The modulation of small-scale velocity and velocity gradient quantities by concurrent
large-scale velocity fluctuations is observed by consideration of the Kullback–Leibler
divergence. This is a measure that quantifies the loss of information in modelling
a statistical distribution of small-scale quantities conditioned on concurrent positive
large-scale fluctuations by that conditioned on negative large-scale fluctuations. It is
observed that the small-scale turbulence is appreciably ‘rougher’ when the concurrent
large-scale fluctuation is positive in the low-speed side of a fully developed turbulent
mixing layer, which gives further evidence to the convective scale modulation
argument of Buxton & Ganapathisubramani (Phys. Fluids, vol. 26, 2014, 125106,
1–19). The definition of the small scales is varied, and regardless of whether the
small-scale fluctuations are dominated by dissipation or have the characteristic
features of inertial range turbulence they are shown to be modulated by the concurrent
large-scale fluctuations. The modulation is observed to persist even when there is a
large gap in wavenumber space between the small and large scales, although local
maxima are observed at intermediate length scales that are significantly larger than
the predefined small scales. Finally, it is observed that the modulation of small-scale
dissipation is greater than that for enstrophy with the modulation of the vortex
stretching term, indicative of the interaction between strain rate and rotation, being
intermediate between the two.

Key words: shear layer turbulence, turbulent flows

1. Introduction

The study of Rao, Narasimha & Narayanan (1971) first illustrated the coupling
between large and small scales in a turbulent flow through investigation of the bursting
phenomenon in a turbulent boundary layer. This has led to an increased interest in the
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coupling between these inner and outer scales in wall bounded flows in more recent
years, with Hutchins & Marusic (2007) proposing a modulation of the small near-wall
structures by the larger outer structures.

The comprehensive study of Bandyopadhyay & Hussain (1984) was the first to
extend this idea of an interaction between the large and small scales in a number
of different shear flows, including both wall bounded and free shear flows. Through
examination of short-time correlations between the low-pass filtered time series
of data from hot-wire experiments and the envelope of the small-scale (high-pass
filtered) component the authors were able to demonstrate a significant degree
of coupling between the scales across all shear flows. The coupling between the
scales was observed to be maximised when the high-frequency and low-frequency
signals were concurrent. Mathis et al. (2013) laid the theoretical framework for the
‘quasisteady’ description of the inner–outer modulation in turbulent boundary layers,
further suggesting that concurrent modulation effects are of great significance in
turbulent flows.

While a large proportion of the work investigating scale interactions in turbulent
flows has concentrated on wall bounded flows, some significant progress has been
made by looking at free shear flows through the prism of large-eddy-simulation
subgrid-scale (SGS) models. For example, Meneveau (1994) took single-point
measurements in grid turbulence to compute joint moments between real (measured)
SGS stresses and large-scale (filtered) velocity fluctuations. This was extended by
O’Neil & Meneveau (1997), who showed that large-scale organised structures within
a turbulent free shear flow impact the statistical distribution of small-scale (SGS)
velocity gradient quantities, such as the dissipation rate. The study of Buxton &
Ganapathisubramani (2014) presented evidence for the concurrent interaction between
large-scale velocity fluctuations in a fully developed turbulent mixing layer and the
‘roughness’ of the fine-scale turbulence. Due to intrinsic experimental uncertainties,
analogues to dissipation, namely ε ∼ ν(uS/λ)

2 and ε ∼ σuS , in which λ is the Taylor
microscale, ε is the rate of dissipation (of turbulent kinetic energy), ν is the kinematic
viscosity, uS the small-scale content of the velocity fluctuations and σuS is the variance
of the small-scale fluctuations, were used to identify the modulation of small-scale
dissipation by large-scale fluctuations. In this paper we thus choose to examine a
direct numerical simulation (DNS) dataset in order to directly observe the modulation
of dissipation by large-scale velocity fluctuations without recourse to dissipation
analogues.

2. Data

The data are identical to those used by Buxton, Laizet & Ganapathisubramani
(2011) in the developed far-field region of a turbulent planar mixing layer that
closely matches the experimental dataset of Buxton & Ganapathisubramani (2014).
The mixing layer is produced by means of a DNS of two flows of different free
stream velocities, U1 and U2 in the ratio U1/U2 = 2, either side of a splitter plate
of thickness h to which a wedge of angle 4◦ is appended to produce a sharp
trailing edge. The computational domain (Lx × Ly × Lz) = (230.4h × 48h × 28.8h) is
discretised onto a Cartesian mesh that is stretched in the cross-stream (y) direction
of (2049 × 513 × 256) mesh nodes. The stretching of the mesh in the cross-stream
direction leads to a minimal mesh size of 1y≈ 0.03h. The time step, 1t= 0.05h/Uc,
in which Uc = (U1 +U2)/2 is the mean convection velocity, is low enough to satisfy
the Courant–Friedrichs–Lewy condition, ensuring temporal stability of the simulation.
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Modulation of the velocity gradient tensor by large-scale velocity fluctuations

The code ‘incompact3d’ is used to solve the incompressible non-dimensionalised
Navier–Stokes equations. Details on the numerical schemes for this code can be found
in Laizet & Lamballais (2009). The boundary conditions are inflow/outflow in the
streamwise direction (velocity boundary conditions of the Dirichlet type), free slip
in the cross-stream direction at y=±Ly/2 and periodic in the spanwise direction at
z=±Lz/2. The pressure mesh is staggered from the velocity mesh to avoid spurious
pressure oscillations. Using the concept of modified wavenumber, the divergence-free
condition is ensured up to the machine accuracy.

A subdomain that consisted of the final 301 (×512 × 256) mesh nodes in the
streamwise, x, direction was isolated at three time steps that were sufficiently well
spaced in time to ensure statistical independence from one another and stored. The
subdomain is in the far field of the mixing layer in which the turbulence is fully
developed with self-similar mean velocity profiles throughout, with all subsequent
data and analyses presented in this paper coming from this subdomain. A threshold
based on enstrophy was devised to discriminate between the turbulent and potential
flow within the subdomain. Only data points for which ω2> 0.025〈ω2〉(t) are included
in the statistics presented in this paper, in which 〈ω2〉(t) is the mean enstrophy for
each stored time step, accounting for some 30 % of the original data. Within this
region of the flow the centreline Reynolds number based on the Taylor microscale
is Reλ ≈ 220, which approximates the experimental mixing layer data of Buxton &
Ganapathisubramani (2014) (Reλ ≈ 260 at the centreline).

3. Filtering

In order to observe the modulation of the small-scale velocity gradient phenomena
by the concurrent large-scale velocity fluctuations it is necessary to filter the data.
Throughout this paper the velocity field is filtered with a sharp spectral cutoff filter,
implemented in three dimensions such that

uS=F−1{ÛS(κ)}, where ÛS(κ)=


0, ∀|κ |< 1

ΛS
,

F {u}, ∀|κ |> 1
ΛS
,

(3.1)

in which F denotes the three-dimensional Fourier transform operator, κ is a
three-dimensional wavenumber vector and ΛS is the filter length that defines the
small scales. It should be noted that the definition of the wavenumber neglects the
factor of 2π for simplicity. Since the original simulation was run on a gird that was
stretched in the y direction the data were interpolated onto a uniform grid in which
1y = 1x (=1z) prior to the implementation of the sharp spectral cutoff filter. The
filter lengths are visualised in figure 1, which shows the dissipation spectrum for
the central part of the mixing layer in which the enstrophy threshold is met. The
dashed lines represent filter lengths of ΛS = λ, 2λ, 3λ and 4λ, where λ is the Taylor
microscale, and thus uS contains content to the right-hand side of these dashed lines.
The large-scale velocity field is similarly defined as

uL =F−1{ÛL(κ)}, where ÛL(κ)=


F {u}, ∀|κ |6 1

Λ L
,

0, ∀|κ |> 1
Λ L
.

(3.2)
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FIGURE 1. One-dimensional dissipation spectrum for the region of the mixing layer
fulfilling the minimum enstrophy threshold. From left to right the dashed lines mark the
cutoff filter lengths of κ1λ= 1/4, κ1λ= 1/3, κ1λ= 1/2 and κ1λ= 1 respectively.

It should be noted that in the subsequent analysis ΛS does not necessarily equal ΛL
and thus modulations across a ‘gap’ in wavenumber space are presented. The small-
scale velocity gradient field, (∂uS/∂x)(x, t), is then numerically computed by fitting
sixth-order Lagrange interpolating polynomials through the small-scale velocity field
in the Ox,Oy and Oz directions and calculating the tangent to these polynomials at x.

With regards to the velocity gradient tensor, the generalised topology of a
turbulent flow can be shown to depend solely on the second and third invariants,
Q and R respectively, of this tensor (Chong, Perry & Cantwell 1990). Further, the
joint probability density function (p.d.f.) between Q and R is known to take a
characteristic ‘tear-drop’ shape for a number of fully developed turbulent flows such
that it is considered a universal aspect of fine-scale turbulence. The discriminant,
∆=Q3 + (27/4)R2 for an incompressible flow, separates purely real (straining) from
complex (swirling) states of the flow (Perry & Chong 1994) and is known to act
as an attractor, leading to the so-called ‘Viellefosse tail’ (Vieillefosse 1982) in the
lower right-hand quadrant. The effect of filtering the velocity fields at various values
of ΛS is thus illustrated in figure 2, which shows the joint p.d.f.s between Q and
R for the small-scale velocity gradient fields filtered at various length scales. The
classical ‘tear-drop’ shape can be seen to develop as the filter length is increased from
ΛS=λ (a) to ΛS=4λ (d). In particular, the filling out of the ‘Vieillefosse tail’ and the
upper left quadrant (defined by ∆> 0; R< 0), which Buxton & Ganapathisubramani
(2010) showed to be where enstrophy amplification (Ω = ωisijωj > 0) is dominant,
is observed as ΛS is increased. Contrastingly, for the smallest filter length, ΛS = λ,
which can be seen to correspond to a wavenumber that is greater than that for
the peak of the dissipation spectrum in figure 1, a classical ‘tear-drop’ shape
is not present. Neither the ‘Vieillefosse tail’ nor the upper left-hand quadrant is
observed to be well developed, and its shape resembles that produced from within the
turbulence production region of the turbulence generating grids of Gomes-Fernandes,
Ganapathisubramani & Vassilicos (2014) and the transitional boundary layer data of
Elsinga et al. (2012) and G. Elsinga (private communication). In both of these flows
there are few length scales present, which is mimicked in the case of ΛS = λ of
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FIGURE 2. Joint p.d.f.s between Q and R for the high-pass filtered (in wavenumber space)
velocity gradient fields in which ΛS = (a) λ, (b) 2λ, (c) 3λ and (d) 4λ. Contour levels
are logarithmically spaced from 10−5.6 to 10−1.

figure 2(a). The ‘tear-drop’ shape of the Q–R joint p.d.f. thus appears to be driven by
the presence of a broad range of scales in the inertial range as opposed to simply the
dissipative scales. Qualitatively, this can be linked to the conditional mean trajectories
of Q and R presented in a turbulent boundary layer from the study of Atkinson et al.
(2012). It is shown that in the viscous and buffer layers, in which the range of scales
is small, there is an attraction to smaller gradients at the origin (Q= R= 0) in time,
whereas in the log and outer layers these trajectories ‘fill out’ the upper left-hand
quadrant and are attracted to the ‘Vieillefosse tail’. This is explained by a smaller
contribution from the viscous diffusion term in the dynamics of the velocity gradient
tensor.

4. Results and discussion

Buxton & Ganapathisubramani (2014) proposed a convective mechanism for the
modulation of the ‘roughness’ of the small-scale turbulence by the large-scale velocity
fluctuations. For a developed turbulent free shear flow the peak ensemble averaged
Reynolds stresses are observed on the centreline and thus a positive cross-stream (v)
fluctuation will on average convect a fluid element of ‘rougher’ turbulence towards
the high-speed side of the mixing layer. Due to the non-negativity of the mean
turbulent kinetic energy (TKE) production term for a nominally two-dimensional free
shear flow, P =−〈uv〉(∂U/∂y), a positive v fluctuation is inversely correlated with a
negative u fluctuation, explaining their finding that ‘rougher’ small-scale turbulence is
found concurrently to negative u fluctuations. Additional evidence for this convective
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FIGURE 3. The p.d.f.s of (a) uS fluctuations, (b) dissipation, (c) enstrophy and (d) the
enstrophy amplification term conditioned on uL > 0 (solid lines) and uL < 0 (dashed lines)
for ΛS =ΛL = 2λ.

modulation hypothesis is presented in figure 3(a), which shows the p.d.f.s of uS

conditioned on the sign of uL for the case in which ΛS =ΛL = 2λ in the low-speed
side of the mixing layer, i.e. y < 0. It can be seen that the p.d.f. conditioned on
uL > 0 has a lower modal peak and broader tails, indicating an increase in small-scale
turbulent activity concurrent to positive uL fluctuations. These are correlated to a
negative (downward) vL fluctuation, which is the opposite finding to Buxton &
Ganapathisubramani (2014) for the high-speed side of the mixing layer, as required
by the proposed convective mechanism. It should be noted that all subsequent
results are derived from the low-speed side of the mixing layer for consistency with
figure 3(a).

Figure 3(b–d) shows the p.d.f.s of small-scale dissipation (εS), enstrophy (ωS
2)

and the enstrophy amplification term (ΩS = ωisijωj), in which sij represents the
fluctuating strain-rate tensor, sij = (∂uS,i/∂xj + ∂uS,j/∂xi)/2, conditioned on the sign
of uL. Whereas Buxton & Ganapathisubramani (2014) were able to show that the
small-scale turbulence is modulated to be ‘rougher’ via a dissipation analogue, it is
clear that the p.d.f.s εS, ωS

2 and ΩS all have more extensive tails when conditioned on
positive uL than negative uL. Interestingly, it can be observed that both the enstrophy
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attenuating (ΩS < 0) and the enstrophy amplifying (ΩS > 0) tails are enhanced by
concurrent positive uL fluctuations.

The difference between the two conditional p.d.f.s in figure 3 can be quantified by
means of the Kullback–Leibler divergence (KLD) (Kullback & Leibler 1951). The
KLD is a non-negative non-symmetric measurement of the difference between two
probability density functions and is defined as

DKL(A ‖ B)=
∫ ∞
−∞

ln
[

a(X)
b(X)

]
a(X) dX, (4.1)

in which a(X) and b(X) are probability density functions of a fluctuating variable X
(DKL(A ‖ B)= 0 only if the distributions A and B are identical). The KLD originates
from information theory and is asymmetric, such that DKL(A ‖ B) 6= DKL(B ‖ A).
The divergence DKL(A ‖ B) can be thought of as the loss of information/power as
a hypothesised distribution A is misspecified as B (Eguchi & Copas 2006). We
may thus quantify the difference between the p.d.f.s of figure 3 conditioned on
the sign of the large-scale velocity fluctuations, and hence the magnitude of the
scale modulation, through the KLD. The advantage of using the KLD to quantify
the difference between the two conditional p.d.f.s is that it is based around the
log likelihood ratio ln[a(X)/b(X)]. As can be seen in figure 3, the high-magnitude
intermittent dissipation/enstrophy events are more than three orders of magnitude
less probable than the modal events, and it is important to ensure that this is
factored into the quantification of the scale modulation, particularly so for higher
Reynolds number turbulent flows in which the intermittency is larger. The notation
DKL(XS, u+L ‖ u−L ) denotes the KLD for the p.d.f. of quantity XS (which may be
uS, εS, ωS

2, ΩS, etc.) conditioned on positive large-scale velocity fluctuations to that
conditioned on negative large-scale velocity fluctuations. Thus, a larger value of
DKL(XS, u+L ‖ u−L ) is indicative of a more significant modulation effect and will, in
general, be a function of both ΛS and ΛL. In practice, of course, an integration from
−∞ to ∞ is not possible, hence the p.d.f.s of figure 3 are truncated, neglecting <1 %
of the data at the extremities of the tails. The two discrete p.d.f.s are then sampled
at the same values of XS, and thus the integral of (4.1) is evaluated numerically over
the truncated range of XS. Eight hundred bins were used to formulate the p.d.f.s,
which was observed to make the computation of DKL(XS, u+L ‖ u−L ) insensitive to the
resolution of the p.d.f.s/statistical convergence, and the truncation was chosen such
that the computation of DKL(XS, u+L ‖ u−L ) was also observed to be insensitive to this
choice. This validation is not presented for brevity.

Figure 4 presents DKL(XS, u+L ‖ u−L ) for XS = uS (a), εS (b), ωS
2 (c) and ΩS (d)

for 1 6 ΛL/λ 6 18. This range is limited to preserve the Nyquist sampling theorem
in the cross-stream, y, direction for the implementation of the sharp spectral cutoff
filter. Thus, it can be seen that there is a difference between the p.d.f.s conditioned
on positive large-scale fluctuations and negative large-scale fluctuations for all four
small-scale quantities presented in figure 4 up to ΛL= 18λ and for all four values of
ΛS tested. This is indicative of a scale modulation that is non-local in wavenumber
space in which even very-large-scale (purely inertial) fluctuations modulate the
concurrent small-scale behaviour. This modulation decays with ΛL, from a peak value
at approximately ΛL≈ 3λ, regardless of ΛS, but is present nonetheless at large values
of ΛL.

Since the constituent p.d.f.s are conditioned on the large-scale velocity fluctuations
figure 4(a) is presented only for the cases of ΛL >ΛS. The modulation effect is seen
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FIGURE 4. The Kullback–Leibler divergence, DKL(XS, u+L ‖ u−L ), for XS = uS (a), εS (b),
ωS

2 (c) and ΩS (d) for 1 6 ΛL/λ 6 18. It should be noted that DKL(ωS
2, u+L ‖ u−L ) and

DKL(ΩS, u+L ‖ u−L ) for ΛS= λ are plotted as a solid line and dashed line respectively in (b)
to indicate their relative magnitudes.

to be greater as ΛS is increased for smaller values of ΛL. This is intuitive, since one
is effectively closing the ‘gap’ in wavenumber space by increasing ΛS for a given
ΛL. However, for ΛS > 2λ it can be observed that the KLD plots effectively merge
at a value of ΛL ≈ 6.5λ before collapsing. This scale modulation by large/very large
scales is thus observed to depend not upon the ‘gap’ in wavenumber space but on
the physical size of the large/very large scales themselves. Thus, there is an apparent
physical significance attributable to the length scale Λ≈ 6.5λ after which ‘local’ (in
wavenumber space) effects become important in the modulation of small velocity
fluctuations by concurrent large ones, which shall be discussed in the paragraph
below.

The KLD for ΛS= λ displays qualitatively different behaviour from the other three,
with a much flatter decay than for the other three over low and intermediate values
of ΛL. Figure 2 shows that when ΛS = λ the exaggerated ‘tear-drop’ shape of the
Q–R joint p.d.f. is not observed, whereas it is (to varying extents) for ΛL > 2λ. These
velocity fluctuations can thus be considered to consist almost entirely of dissipative
scale fluctuations. The merger with the other DKL(uS, u+L ‖ u−L ) curves is now observed
to take place at ΛL≈ 13λ, which is close to a subharmonic value to that for the other
merger point. It is additionally observed that for low values of ΛL there are two
distinct regions, λ.ΛL . 3.5λ and 4λ.ΛL . 6.5λ, over which the KLD is observed
to increase with ΛL before then falling away rapidly. The second of these rapid
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drop-offs coincides with the merger point at ΛL ≈ 6.5λ. It is difficult to apportion
a physical significance to a length scale of 13λ (and harmonic at 6.5λ). While an
insufficient number of time steps of the data were stored to accurately compute
the integral length scale at this point of the flow, a coarse estimate based on an
exponential fit to the longitudinal correlation function suggests that L≈ 13λ is in the
right ‘ball park’. This is in agreement with the data of Buxton & Ganapathisubramani
(2014) when adjusted for the lower Reλ. It thus appears that the scale modulation
effect for velocity fluctuations may be driven by the integral scale streamwise rollers
that are present in a turbulent mixing layer, linking the convective scale interaction
mechanism with the eddy structure of the flow, although this conclusion should be
treated with some caution.

Some other general observations from the figure may be made. First, it can be
seen that the magnitude of the modulation is greater for the small-scale velocity
gradient quantities (b–d) than for the small-scale velocity fluctuations (a) for smaller
values of ΛL. This is, however, observed to converge as ΛL→ 18λ, as the modulation
effect diminishes across the large gap in wavenumber space. It should be noted that
the DKL(XS, u+L ‖ u−L ) curves for various values of ΛS do not collapse for velocity
gradient quantities, unlike those for velocity fluctuations. Additionally, the decay in
DKL(XS, u+L ‖ u−L ) with ΛL is not observed to be smooth but has three small, but
distinct, local peaks at ΛL ≈ 3.5λ, λL ≈ 6.5λ and ΛL ≈ 13λ. These correspond to
the merger points for the DKL(uS, u+L ‖ u−L ) curves of figure 4(a) and are linked to
the streamwise integral length scale. Finally, it can be seen for all cases that there
is a significant increase in the scale modulation effect as ΛS is increased from λ
to 2λ. This corresponds to the cutoff wavenumber moving from below the peak of
the dissipation spectrum to the peak value in figure 1. As ΛS is increased further the
modulation effect varies according to XS, which is discussed further below.

The largest modulation effect is present for XS= εS. Figure 4(b) shows the KLD for
the dissipation, enstrophy and enstrophy amplification term for ΛS = λ on the same
axes for comparison. It can be seen that DKL(εS, u+L ‖ u−L ) is consistently approximately
1.5 times DKL(ωS

2, u+L ‖ u−L ), the solid line of figure 4(b), across the entire range
of ΛL. The scale modulation of rotation is thus significantly less than that of the
strain rate, i.e. the symmetric part of the velocity gradient tensor is more sensitive to
concurrent velocity fluctuations than the skew-symmetric part. This is reinforced by
the observation that DKL(ΩS, u+L ‖ u−L ), the dashed line in figure 4(b), is intermediate
between those for dissipation and enstrophy. von Kármán (1937) first identified ΩS=
ωisijωj as the inviscid source/sink term in the enstrophy equation as the interaction
between rotation and strain rate. It is thus revealed that the scale modulation of this
quantity is intermediate between those for rotation and strain rate.

Additionally, the increase in modulation effect, for ΛL . 10λ at least, as ΛS is
increased from λ to 2λ is greater for dissipation (b) than for enstrophy (c). This
may be linked to the finding of figure 2, that as the definition of ΛS is broadened
the ‘Vieillefosse tail’ is the region that is significantly extended, which is strain-rate
(dissipation) dominated. However, while the modulation effect is observed to increase
further as ΛS is increased from 2λ to 3λ for dissipation (b) this is not the case for
enstrophy (c). At the largest value of ΛS= 4λ the modulation effect is similar to that
for ΛS = 3λ for dissipation but has decayed significantly for enstrophy. In particular,
it can be seen that at lower values of ΛL, DKL(ωS

2, u+L ‖ u−L ) computed from ΛS = 4λ
is lower than both ΛS = 3λ and ΛS = 2λ, while at the highest values of ΛL, the
modulation effect is smaller for ΛS = 4λ than any other values. Exactly the same
trend is followed in (d) for DKL(ΩS, u+L ‖ u−L ). Contrastingly, the scale modulation for
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O. R. H. Buxton

FIGURE 5. Instantaneous visualisation of high-enstrophy (ωS
2) ‘worms’ concurrent to

uL/Uc=0.1 (red) and uL/Uc=−0.1 (blue) isosurfaces for the low-speed side of the mixing
layer. In this case ΛS =ΛL = 3λ.

dissipation increases up to ΛS = 3λ and remains unchanged for ΛS = 4λ. This is in
contrast to the modulation of the velocity fluctuations (figure 4a), in which (at low ΛL)
the modulation effect is observed to increase monotonically as ΛS is increased.

5. Conclusions

The hypothesised convective scale modulation mechanism presented in Buxton &
Ganapathisubramani (2014) is lent further credence in this paper. A concurrent scale
modulation of the small-scale velocity fluctuations, and importantly velocity gradient
quantities, is observed in which positive uL fluctuations contain ‘rougher’ small-scale
turbulence with more intermittent dissipation, enstrophy and enstrophy amplification
in the low-speed side of a mixing layer. This scale modulation is observed to occur
when the small scales, defined by a sharp cutoff wavenumber, consist entirely of
dissipative motions as well as inertial motions. It is visualised in figure 5, which
illustrates the ‘worm-like’ structures of high enstrophy, which are widely reported
in the literature (e.g. Kerr 1985), concurrent to isosurfaces of uL/Uc = ±0.1. The
positive velocity fluctuations (red isosurfaces) are clearly more densely populated
with the high-enstrophy ‘worms’ than the negative fluctuations (blue isosurfaces).

The scale modulation peaks when the cutoff is close to the peak of the dissipation
spectrum in which the characteristic ‘tear-drop’ shaped joint p.d.f. between the second
and third invariants of the velocity gradient tensor begins to take shape, namely the
extended ‘Vieillefosse tail’ and enhanced contribution from the primarily enstrophy
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amplifying sector. The ‘tear-drop’ shape itself is only produced when a significant
range of scales is present, beyond merely the dissipative range. The scale modulation
effect is shown to be non-local in the sense that very-large-scale velocity fluctuations
alter the distribution of concurrent small-scale velocity and velocity gradient quantities
across a large ‘gap’ in wavenumber space. The modulation of small-scale velocity
fluctuations by very large scales collapses below a certain wavenumber definition for
these large scales, whereas this collapse is not observed for velocity gradient quantities.
The sign of the large-scale velocity fluctuations is also observed to modulate the small-
scale velocity gradient quantities, with a peak modulation length scale observed to be
ΛL ≈ 3λ, regardless of how the small scales are defined. Further, the modulation of
strain (dissipation) is observed to be more significant than that of rotation (enstrophy),
with vortex stretching intermediate between the two, as illustrated in figure 4(b). As
the definition of the small scales is broadened, including a greater contribution to the
total dissipation, the modulation effect increases up to a point. This is observed to
lie between 3λ and 4λ for dissipation and somewhat smaller than this for enstrophy
and enstrophy amplification, after which the modulation effect diminishes. This is not
observed for the modulation of small-scale velocity fluctuations, which is observed to
increase monotonically (over the range of ΛS tested) as the definition of the small
scales is broadened. The modulation effect is observed to spike when the large scales
are harmonics of the integral length scale, linking this mechanism to the large-scale
rollers that are present in turbulent shear flows. It can thus be postulated that the
convective mechanism for scale interaction is driven by the large-scale engulfment of
regions of high small-scale activity, close to the peak Reynolds stress location, which
are then transported in the cross-stream direction.
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