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We report wall-resolved large-eddy simulation (LES) of flow over a grooved cylinder
up to the transcritical regime. The stretched-vortex subgrid-scale model is embedded
in a general fourth-order finite-difference code discretization on a curvilinear mesh.
In the present study 32 grooves are equally distributed around the circumference
of the cylinder, each of sinusoidal shape with height ε, invariant in the spanwise
direction. Based on the two parameters, ε/D and the Reynolds number ReD=U∞D/ν
where U∞ is the free-stream velocity, D the diameter of the cylinder and ν the
kinematic viscosity, two main sets of simulations are described. The first set varies
ε/D from 0 to 1/32 while fixing ReD = 3.9 × 103. We study the flow deviation
from the smooth-cylinder case, with emphasis on several important statistics such
as the length of the mean-flow recirculation bubble LB, the pressure coefficient Cp,
the skin-friction coefficient Cf θ and the non-dimensional pressure gradient parameter
β. It is found that, with increasing ε/D at fixed ReD, some properties of the mean
flow behave somewhat similarly to changes in the smooth-cylinder flow when ReD
is increased. This includes shrinking LB and nearly constant minimum pressure
coefficient. In contrast, while the non-dimensional pressure gradient parameter β
remains nearly constant for the front part of the smooth cylinder flow, β shows
an oscillatory variation for the grooved-cylinder case. The second main set of LES
varies ReD from 3.9× 103 to 6× 104 with fixed ε/D= 1/32. It is found that this ReD
range spans the subcritical and supercritical regimes and reaches the beginning of
the transcritical flow regime. Mean-flow properties are diagnosed and compared with
available experimental data including Cp and the drag coefficient CD. The timewise
variation of the lift and drag coefficients are also studied to elucidate the transition
among three regimes. Instantaneous images of the surface, skin-friction vector field
and also of the three-dimensional Q-criterion field are utilized to further understand
the dynamics of the near-surface flow structures and vortex shedding. Comparison of
the grooved-cylinder flow with the equivalent flow over a smooth-wall cylinder shows
structural similarities but significant differences. Both flows exhibit a clear common
signature, which is the formation of mean-flow secondary separation bubbles that
transform to other local flow features upstream of the main separation region (prior
separation bubbles) as ReD is increased through the respective drag crises. Based on
these similarities it is hypothesized that the drag crises known to occur for flow past
a cylinder with different surface topographies is the result of a change in the global
flow state generated by an interaction of primary flow separation with secondary
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flow recirculating motions that manifest as a mean-flow secondary bubble. For the
smooth-wall flow this is accompanied by local boundary-layer flow transition to
turbulence and a strong drag crisis, while for the grooved-cylinder case the flow
remains laminar but unsteady through its drag crisis and into the early transcritical
flow range.

Key words: boundary layer separation, turbulence simulation, turbulent flows

1. Introduction
The flow over a bluff body, especially a canonical geometry such as a circular

cylinder, has attracted much attention within the fluid mechanics community in the
past hundred years. For a smooth-walled cylinder, the behaviour of the mean-flow
separation bubble can be identified with three distinct regimes. With increasing
Reynolds numbers, these are the subcritical, the supercritical and the transcritical
flow regimes. If we define ReD = U∞D/ν for a Newtonian fluid where U∞ is
the free-stream velocity, D is the diameter of the cylinder and ν is the kinematic
viscosity of the fluid, the transition from the subcritical to the supercritical regime
is in the band ReD ∈ (2.6 × 105, 3.5 × 105). A well-known phenomenon observed
in this transition is the drag crisis, where the drag coefficient CD decreases sharply.
A generally accepted explanation of this transition is related to the location of
turbulent transition, which is inside the wake flow for the subcritical regime, moving
upstream of primary separation as ReD increases while residing on a prior mean-flow
separation bubble for the supercritical regime. Here ‘prior’ is taken to define the
bubble’s location, upstream of the mean-flow, primary recirculation bubble. Recently,
Cheng et al. (2017) have observed that the secondary separation bubble, which lies
inside the primary recirculation bubble in the subcritical regime, is the mean-flow
manifestation of strongly unsteady and three-dimensional reattachment cells in this
regime. As ReD increases, the subcritical to supercritical transition is a result of
near-surface transition to turbulence stimulated by the dynamical interaction of these
reattachment cells with the separation shear layer of the primary separation bubble.

Another interesting transition is from the supercritical to transcritical regime.
According to Roshko (1961), this transition range should be characterized by the
disappearance of the prior separation bubble together with the abatement of coherent
vortex shedding at its lower bound, at approximately ReD = 0.9 × 106, followed by
recurrence of vortex shedding at the transition upper bound at around ReD= 3.5× 106.
Nonetheless, a clear picture of its transition remains elusive, perhaps because several
successive phases of instability occur over a relatively narrow range of ReD , making
experimental investigation difficult (Schewe 1983).

In order to clarify the dominant flow physics active within the subcritical,
supercritical and transcritical regimes and their respective transitions, a natural
variation is to consider the non-smooth cylinder where geometric surface perturbations
are prescribed. The experimental study of cylinder flow with a non-smooth surface
has been conducted in parallel to the smooth-cylinder counterpart. Generally, it
is expected that the Reynolds number range characterizing regime transitions for
non-smooth surface cylinder flow should be rather different to the smooth-cylinder
case, since the non-smooth surface may trap small-scale recirculating flow regions
associated with the near-wall flow. This may even result in overlapping of the
two transitions.
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LES of flow over a grooved cylinder 329

Earlier experimental studies of flow over cylinder with three-dimensional roughness
or surface perturbations have clearly shown that increasing a roughness size parameter
leads to decreasing critical Reynolds numbers. Here ‘critical’ means the transition
from the subcritical to the supercritical regime as diagnosed by a sudden decrease in
CD. For example, Fage & Warsap (1929) demonstrated that the transitions among three
regimes can take place at lower Reynolds number for strongly rough-walled cylinders,
even reaching the transcritical regime at ReD = 5 × 104. It is also clearly shown
by Fage & Warsap (1929) that in the transcritical regime, a large roughness scale
corresponds to a high drag coefficient. Achenbach (1971) reported skin-friction and
wall pressure-coefficient distributions for different cylinder surface roughness levels.
From his skin-friction results, near-wall laminar flow, flow with laminar–turbulent
transition in the front part of the cylinder and even almost fully turbulent flow, are
clearly captured. The skin-friction distribution at ReD = 3× 106 at medium roughness
shows fully turbulent behaviour around the cylinder. This flow character has not been
reported in smooth-wall cylinder experiments, since it is expected to take place at
approximately ReD≈ 108, which is largely beyond the present capability of wind/water
tunnel testing.

For a cylinder with a ‘small’ roughness scale where ‘small’ here is taken to mean
critical Reynolds number larger than 105, Szechenyi (1975) found that the product
of the critical Reynolds number and the roughness height provides a common value
of 200 for all small roughness cases. They claimed similarities between flow over
a small roughness cylinder and a smooth cylinder. This is not characteristic of
flow past cylinders with strong surface-geometry perturbations. Güven, Farell &
Patel (1980) performed rough-cylinder flow experiments, reporting detailed surface
pressure-coefficient distributions. Their results agree reasonably with Achenbach
(1971) although different kinds of roughness elements were employed. For cases
in the transcritical regime, their data show large surface roughness resulting in a
smaller pressure ‘rise’, with ‘rise’ defined from the difference value between the
minimal and the plateau values. This effect results in a higher drag coefficient. An
explanation provided by Güven et al. (1980) is that large surface roughness leads to a
thicker boundary layer with larger momentum deficit which separates earlier than for
flows with smaller surface roughness. Another experiment by Achenbach & Heinecke
(1981) focused on the non-steady wake flow for a cylinder with a rough surface.
For relatively large roughness elements, regular vortex shedding is found for all ReD,
which seems to avoid the successive instability phenomena due to turbulent transition
as suggested by Schewe (1983). A notable result for vortex shedding is that shedding
frequencies in the transcritical regime are quite similar for many different surfaces,
with deviations of only 7 % from the mean value for all roughness parameters tested.

It is recognized that the term ‘rough wall’ may have a broad range of geometrical
and fluid-dynamical interpretations. For a turbulent boundary-layer flow over surfaces
that can be quantified by an equivalent sand grain roughness, one conventional concept
of rough-wall flow requires that the roughness height should be sufficiently small
compared to the local wall layer thickness so as to allow the existence of at least a
partial log-law region. Hence the roughness height should be around or less than a
few per cent of the boundary-layer thickness (Jiménez 2004). In contrast, for the flow
geometry considered by Achenbach & Heinecke (1981), the ‘roughness’ consisted of a
regular three-dimensional pyramid (R3DP) perturbation of the cylinder surface with 36
wavelengths around the circumference, and with a perturbation amplitude that cannot
satisfy the traditional idea of roughness. Nonetheless, their experiments indicate that
an R3DP cylinder flow can exhibit qualitatively similar Reynolds-number-dependent
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Source Perturbation type Present description

Yamagishi & Oki (2004) 2-D arc/triangle groove Arc groove, triangle groove
Achenbach & Heinecke (1981) Pyramid Regular 3-D pyramid (R3DP)
Güven et al. (1980) Sand-grain commercial paper Sand perturbation
Achenbach (1971) Emery paper Emery perturbation
Fage & Warsap (1929) Glass paper Glass perturbation

TABLE 1. Summary of experimental data cited in the present study.

flow characteristics to those of a small-scale, surface roughness flow. This could
suggest that, for example, the drag crisis is not a phenomenon associated with the
presence of a canonical turbulent boundary layer.

Another interesting geometry for the study of bluff-body flow regimes at reduced
ReD (compared to the smooth-wall case) is the cylinder with two-dimensional (2-D)
or groove-shaped geometric perturbations. Here the geometry consists of a pattern in
the circumferential direction only, with cylindrical invariance in the spanwise or axial
direction. Yamagishi & Oki (2004) investigated experimentally flow over a grooved
cylinder for ReD ∈ (104 to 105). Use of both triangular and arc-shaped grooves in their
experiments were found to cover all of the subcritical, supercritical and transcritical
flow regimes. A summary of the cylinder surface perturbations for the experiments
discussed above is provided in table 1.

Direct numerical simulation (DNS), which is accurate and resolves both the
Kolmogorov scale and the viscous wall unit, presently appears limited to cylinder
flow up to ReD=O(104), which is far from the interesting transition between regimes
for the smooth-wall cylinder. Wall-resolved large-eddy simulation (LES), in which
large scales are resolved and small scales are modelled via a subgrid-scale (SGS)
model, has been successful for high-fidelity flow simulation up to substantially
higher ReD when compared to DNS. Both Lehmkuhl et al. (2014) and Cheng et al.
(2017) implemented LES of flow over smooth cylinder up to ReD ≈ 8 × 105. These
simulations reach the supercritical regime but do not penetrate the transcritical regime.

For a non-smooth cylinder, it is expected that wall-resolved LES will have more
stringent resolution requirements than the smooth-wall cylinder at the same ReD.
Typically, in LES of flow past a two-dimensional body, such as either the smooth or
grooved cylinder, the mesh size in the spanwise direction usually can be chosen to
be up to 10 or more times the wall-normal mesh size (Choi & Moin 2012). Thus
wall-resolved LES of cylinder with truly three-dimensional geometric perturbation
would require a fine mesh in the spanwise direction while the grooved cylinder
can employ a relatively coarser spanwise mesh thus maximizing the effectiveness
of LES for this type of flow. Hence, presently we focus on the flow over grooved
cylinders and investigate the flow behaviour in the subcritical, supercritical and lower
transcritical regimes. We will emphasize the comparison of grooved-wall cylinder flow
with similar phenomena in flow over the smooth cylinder, with the aim of providing
a more robust understanding of the canonical flow over a cylinder.

In what follows, the LES framework and cases implemented will be outlined in § 2.
In § 3 we consider the results from the first set of LES at ReD= 3.9× 103 and study
the effect of different groove amplitude or height. Then with a fixed groove geometry,
we discuss the effect of varying ReD and explore the different flow regimes in § 4.
Additionally, in § 5 we focus on the instantaneous flow field, and analyse the flow
properties and structures revealed within the groove cavities themselves and structures
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seen during unsteady vortex shedding. Following some discussion of the drag crisis
and regime transition in § 6, concluding remarks and a new hypothesis concerning the
base dynamical mechanism of the drag crisis for general cylinder flows are provided
in § 7.

2. Numerical method, physical model and cases set-up
2.1. Numerical method and physical model

The fractional-step method by Zang, Street & Koseff (1994) is applied to solve the
three-dimensional, incompressible, LES versions of the Navier–Stokes equations
on a curvilinear mesh, combined with the third-order Runge–Kutta method by
Spalart, Moser & Rogers (1991) for time stepping. Periodic boundary conditions
in the spanwise or y direction are used. For spatial discretization, fourth-order
finite-difference schemes, which are essentially dispersive rather than dissipative, are
utilized for all three directions.

Although the LES described presently were performed using curvilinear coordinates
(ξ , y, η) that body-fit the grooved-cylinder, two-dimensional geometry, results will
be discussed using both cylindrical coordinates (θ, y, r) with −π < θ 6 π, velocity
components (uθ , uy, ur) and Cartesian coordinates (x, y, z) with corresponding velocity
components (ux, uy, uz). In generating meshes, first, O-type grids were initialized in the
computational domain, with uniform grid point distribution along the circumferential
direction and with stretching used in the radial direction. Then, in the near-wall region,
the grid is further refined in order to ensure orthogonality of the near-wall mesh.

In simulation, the free-stream flow is in the positive x direction. At the wall the no-
slip condition is implemented at the order of accuracy of the overall numerical method.
For the outer boundary, Dirichlet boundary conditions are applied on the windward
part with ux = U∞ and uy = 0, uz = 0. On the leeward outer boundary, convective
boundary conditions are used. Periodic boundary conditions are used in the spanwise
direction. To damp down numerical oscillation induced by the outer flow at the curved
boundary, a viscous sponge layer is applied for 0.8Lr 6 r 6 Lr with Lr the external
domain in the r direction, similar to the viscous sponge techniques used in numerical
simulation of flow over bluff objects by Karniadakis & Triantafyllou (1992) and Mittal
& Balachandar (1996). In the present study, Lr = 50 is employed for all cases. In
the spanwise direction, a domain size Ly = 3D is used for all cases. Generally 3D is
considered sufficient for smooth-surface cylinders with ReD > 3.9 × 103 (Beaudan &
Moin 1994). It should also be sufficient for the present study where the presence of
geometrical surface perturbations in the circumferential direction which will tend to
break up large-scale structures.

2.2. Physical model
In closing the LES framework, the stretched-vortex (SV) subgrid-scale (SGS) model
(Misra & Pullin 1997; Chung & Pullin 2009) is adopted. The basic version of the
present code has been implemented in many cases with careful verification, which
include DNS of airfoil flow (Zhang et al. 2015) and LES of smooth-walled cylinder
flow (Cheng et al. 2017).

The SV model utilizes a structure-based representation of small-scale, unresolved
fluid motion modelled by virtual SGS vortices that are stretched by the strain rate field
provided by the local resolved-scale flow. Specifically in each computational cell the
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subgrid motion is dominated by a SGS vortex with direction vector ev. The subgrid
stress can thus be described as (Misra & Pullin 1997)

Tij = (δij − evi evj )K, (2.1)

with K the subgrid kinetic energy. This kinetic energy, which is defined as an integral
of the SGS energy spectrum, can be computed as (see Voelkl, Pullin & Chan (2000)
for details)

K =
∫
∞

kc

E(k) dk=
〈F2〉

2〈Q(κc, d)〉
Γ

[
−1/3,

2νk2
c

3|ã|

]
. (2.2)

Here 〈〉 denotes an averaging strategy, presently computed as the arithmetic mean of
26 neighbouring points (Chung & Pullin 2009). The quantity F2 is the second-order
velocity structure function of the resolved-scale velocity field, kc=π/∆c is the cutoff
wavenumber with ∆c the nominal filtering length defined in terms of the local mesh
scale, d= r/∆c with r the distance from a neighbour point to the vortex axis (Voelkl
et al. 2000) and Γ [··] denotes the incomplete gamma function. Additionally, the
integral Q(κc, d) is a model parameter calculated using an asymptotic approximation
(Chung & Pullin 2009) and ã = evi evj S̃ij is the stretch along the subgrid vortex with
S̃ij the resolved-scale, rate-of-strain tensor. The evi is the local SGS vortex orientation,
presently modelled as aligned with the principal extensional eigenvector of S̃ij.

The main physical model parameters are determined dynamically and locally.
Neither line nor plane averaging in homogeneous directions is required and explicit
filtering is not used. The model contains an explicit recognition of the true fluid
viscosity and is designed to smoothly cutoff in the limit of refining the grid to DNS
resolution at a given Reynolds number. Detailed accounts of the SV SGS model and
its implementation for incompressible flow are given by Chung & Pullin (2009) and
Cheng, Pullin & Samtaney (2015), Cheng et al. (2017).

2.3. Main LES performed
A sketch of the grooved cylinder is shown in figure 1. It is generated by imposing
sinusoidal-shaped grooves on a smooth cylinder so that its radius R(θ) is given by

R=
D
2
+
ε

2
sin
(

2π
mod (i− 1,Nθ/k)+Ns

Nθ/k

)
(2.3)

and its Cartesian coordinates are

x= R cos
(

2π
i− 1
Nθ

)
, z= R sin

(
2π

i− 1
Nθ

)
. (2.4a,b)

Here i is the mesh index i= 1 . . . Nθ , where Nθ is the total number of mesh points
in the circumferential direction θ . In (2.3) there are three free parameters, the peak to
trough height of each groove ε, the total number of grooves along the circumferential
direction k, and the phase shift parameter to control the groove peak placement with
respect to the nominal forward stagnation point Ns. Some testing of the effect of Ns
was performed (not shown) by using three different values; Ns=−Nθ/(4k) which sets
the (nominal) front stagnation point at the valley of a groove, Ns=Nθ/(4k) where the
front stagnation point is the peak of a groove, and Ns = 0. Presently, Ns = 0 is used
for all cases.
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xy

z(a) (b)

(c)

FIGURE 1. Sketch of the simulation geometry. (a) Three-dimensional grooved cylinder
with inflow U∞. (b) Part of the grooved surface of the cylinder with k the wavenumber
and ε the magnitude. (c) Sketch of the body-fitted curvilinear mesh.

Case ReD k ε/D Lr/D Ly/D Nθ Nr Ny

C0 3.9× 103 32 0 50 3 512 512 128
C1 3.9× 103 32 1/640 50 3 512 512 128
C2 3.9× 103 32 1/320 50 3 1024 512 128
C3 3.9× 103 32 1/160 50 3 1024 512 128
C4 3.9× 103 32 1/80 50 3 1024 512 256
C5 3.9× 103 32 1/32 50 3 2048 512 256
C6 3.9× 103 32 1/16 50 3 2048 512 256

TABLE 2. LES performed for ReD=3.9×104 with increasing ε/D. Lr is the computational
domain scale in the r direction; Ly is the scale in the spanwise direction; Nθ is the mesh
size in the θ direction; Nr is the mesh size in the r direction; Ny is the mesh size in the
spanwise direction.

Selection of k is made by referring to available experimental configurations. In
experiments by Yamagishi & Oki (2004), 32 grooves are distributed around the
cylinder. This distribution of grooves, both triangular and arc shapes, shows a drag
decrease for ReD between 104 and 4 × 104. At higher ReD, the drag coefficient
rebounds and reaches a plateau around ReD = 5 − 6 × 104 which indicates that the
flow is in a transcritical regime. In Achenbach & Heinecke (1981), 36 groups of
R3DP perturbations were used, showing a drag decrease at approximately 3 × 104.
Following these experiments, we choose k= 32 for all cases.

Achenbach & Heinecke (1981) employed ε/D≈0.032 for R3DP perturbations while
Yamagishi & Oki (2004) adopted ε/D ≈ 0.011 for both arc and triangle spanwise
grooves. Presently, we use several different ε/D, from 1/640 to 1/32. First, LES with
different ε/D at a fixed ReD are described to investigate how the grooved-cylinder
flow gradually deviates from the canonical smooth-wall cylinder flow. Then, we fix a
relatively large groove height in order to study the flow behaviour with varying ReD.

A summary of main cases implemented is given in three tables. In table 2, six
cases with fixed ReD= 3.9× 103 and k= 32 are shown, with different ε/D: 0, 1/640,
1/320, 1/160, 1/80 and 1/32 respectively. Cases in table 3 have varying ReD with
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Case ReD k ε/D Lr/D Ly/D Nθ Nr Ny

C5 3.9× 103 32 1/32 50 3 2048 512 256
D5 1.0× 104 32 1/32 50 3 2048 512 256
E5 2.0× 104 32 1/32 50 3 2048 512 256
E5-2 2.0× 104 32 1/32 50 3 1024 512 128
F5 4.0× 104 32 1/32 50 3 2048 512 256
G5 5.0× 104 32 1/32 50 3 2048 512 256
H5 6.0× 104 32 1/32 50 3 2048 512 256

TABLE 3. LES performed for k= 32, ε/D= 1/32 with varying ReD. Case E5-2 is
specially for mesh verification, results shown in appendix A.

Case ReD k ε/D Lr/D Ly/D Nθ Nr Ny

C4 3.9× 103 32 1/80 50 3 1024 512 256
D4 1.0× 104 32 1/80 50 3 1024 512 256
E4 2.0× 104 32 1/80 50 3 1024 512 256
F4 5.0× 104 32 1/80 50 3 1024 512 256

TABLE 4. LES performed for k= 32, ε/D= 1/80 with varying ReD.

Case ReD k ε/D Lr/D Ly/D Nθ Nr Ny

B0 3.9× 103 64 1/32 50 3 2048 512 128
B1 8× 103 64 1/32 50 3 2048 512 128
B2 1× 104 64 1/32 50 3 2048 512 128
B3 1.5× 104 64 1/32 50 3 2048 512 256
B4 2× 104 64 1/32 50 3 2048 512 256
B5 3× 104 64 1/32 50 3 2048 512 256

TABLE 5. LES performed for k= 64, ε/D= 1/32 and varying ReD.

fixed k = 32 and ε/D = 1/32. We use ReD up to 6 × 104, which as shown later, is
believed to reach the lower transcritical regime. These are the two main LES sets
discussed in detail. Table 4 shows an additional set with ε= 1/80 for which we show
some mean-flow properties. In the tables, we list the computational domain size in
the r direction Lr, the computational size in the spanwise direction Ly and the mesh
sizes in the θ , r and spanwise y directions respectively for all cases. Sketches of
the computational domain in the (x, y) plane are shown in figure 2. In figure 2(a,b),
we show reduced mesh images for case ‘C5’ but, for clarity, with every eighth
point in the θ direction and every second point in the r direction displayed. The
stretching along the r direction can be clearly seen. The grid stretching strategies
for different cases is similar that used by Cheng et al. (2017). A brief discussion of
near-wall resolution requirements for wall-resolved LES, and how these are satisfied,
is given in appendix A. Mesh independence for different circumferential and spanwise
mesh resolutions, is also demonstrated in appendix A by comparing the wall-parallel
velocity at several locations for LES at ReD = 2× 104 for two different meshes.
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FIGURE 2. Sketch of computation domain: (a) full domain; (b) close-up around the
grooved cylinder.

3. Mean-flow results at ReD = 3.9× 103

We begin with ReD= 3.9× 103, which is a well-documented case in the subcritical
regime. We compare flow over grooved cylinders with increasing groove height to
smooth-cylinder flow with increasing ReD. In comparison, we note that the flow over
a smooth cylinder in the subcritical regime has several documented tendencies with
increasing ReD. An important parameter is the length of the mean-flow recirculation
bubble, which is believed to be monotonically decreasing with ReD in the subcritical
regime (Breuer 2000). Another tendency refers to the azimuthal distribution of the
pressure coefficient Cp, which exhibits a near-constant minimum value followed by
a plateau for ReD > 104; see Weidman (1968). Thus, the integration of Cp, which is
the dominant component of drag coefficient CD, is also nearly constant with ReD for
this ReD range. Additionally, we will also discuss the behaviour of the skin-friction
coefficient produced by the groove undulations.

3.1. Length of the mean-flow recirculation bubble LB

In the flow over a cylinder, the two symmetric primary separations comprise a
mean-flow recirculation bubble just downstream of the cylinder. The length of this
recirculation bubble, LB, is an important statistic for near-wake flow. An experimental
estimate of LB for the smooth-cylinder flow at ReD = 3.9 × 103 can be interpolated
from experiments by Cardell (1993). This gives LB/D = 1.33 ± 0.2. The present
LES of smooth-cylinder flow shows similar results with LB/D = 1.31, which also
agrees well with LES results by Kravchenko & Moin (2000). For the flow over
a grooved cylinder, the bubble generally shrinks with increasing ε/D, as shown in
figure 3 which depicts a comparison of the smooth cylinder flow case and the strongly
grooved cylinder case with ε/D= 1/32. It is found that the length of the separation
bubble in figure 3(b) is approximately LB/D = 0.8. For completeness we plot LB/D
for all C cases in figure 4. A monotonic decreasing tendency with increasing ε/D can
be observed. For large amplitude grooves LB/D appears to approach an asymptotic
constant value.
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FIGURE 3. Streamlines of mean velocity in Cartesian coordinates: (a) ε/D = 0, smooth
case; (b) ε/D= 1/32.
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FIGURE 4. (Colour online) The length of the recirculation bubble for ReD = 3900 and
varying ε/D.

3.2. Pressure coefficient Cp

The pressure coefficient Cp is the most important parameter from an engineering
viewpoint as it contributes to the dominant part of the total drag. Except where
otherwise specified, we subsequently plot mean-flow surface profiles against θ , which
monotonically increases along the cylinder surface from front to rear. In flow over
the smooth cylinder, starting from the front stagnation point, Cp monotonically
decreases up to approximately θ = 70◦, reaches a minimum value then rebounds
back. In flow over the grooved cylinder, owing to the kinks on the surface, Cp shows
a local complex structure on each groove, as shown in figure 5. Also shown in
figure 5 is a sketch of the surface profile projected along the θ direction. We can
perceive the filtered (over the waves) global variation of Cp, which is similar to the
smooth-cylinder flow, decreasing from the front stagnation point in the unit of each
groove, reaching a minimum and then rebounding back. The small-scale structure on
the groove scale also shows variation depending on the groove’s azimuthal location.
On the front side of the cylinder, the structure becomes increasingly intense along
the θ direction. Once primary mean-flow separation takes place, Cp shows a much
flattened plateau, even for the most strongly grooved case with ε/D = 1/16. It is
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FIGURE 5. (Colour online) Pressure coefficient Cp for ReD= 3900 and varying ε/D: ——,
smooth case. (a) — · · —, ε/D = 1/640; – – – –, ε/D = 1/320; — · —, ε/D = 1/160.
(b) — · · —, ε/D= 1/80; – – – –, ε/D= 1/32; — · —, ε/D= 1/16.
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FIGURE 6. (Colour online) Skin-friction coefficient Cf θ for ReD = 3900 and varying ε/D:
——, smooth case. (a) — · · —, ε/D= 1/640; – – – –, ε/D= 1/320; — · —, ε/D= 1/160.
(b) — · · —, ε/D= 1/80; – – – –, ε/D= 1/32; — · —, ε/D= 1/16.

interesting that the two high ε/D cases give similar minimum and plateau values.
This feature is also seen in the flow over a smooth cylinder where high ReD cases
within the subcritical regime give similar plateau values; see the experimental data of
Weidman (1968) and the LES results of Cheng et al. (2017).

3.3. Skin-friction coefficient Cf θ

The mean-flow skin-friction coefficient Cf θ ≡ τf θ/(0.5 ρ U2
∞
) in the grooved-cylinder

cases deviates substantially from that in the smooth-wall case. We presently define
Cf θ (and τf θ ) as that component of the mean skin-friction-vector coefficient on the
cylinder surface that lies in the direction perpendicular to the spanwise coordinate.
That is, the component along the grooved wall in a cut at constant y. In figure 6,
Cf θ(θ) for the six grooved cases are compared with the smooth-wall case. It can be
seen that, with increasing ε/D, Cf θ tends to show rapid variation on each groove. For
cases up to ε/D= 1/320, this fluctuation is generally around the baseline of Cf θ from
the smooth case, not reaching the zero line. Cases with ε/D= 1/80 and 1/32 show
strong fluctuations in the θ direction that become negative and then positive indicating
locally reversed flow inside local, mean-flow separation bubbles within grooves on
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FIGURE 7. (Colour online) Skin-friction drag coefficient Cdf for ReD = 3900 with
varying ε/D.

the front part of the cylinder. The drag coefficient due to skin friction, Cdf , can be
obtained from the integral of skin-friction coefficient along the streamwise direction.
Figure 7 shows that Cdf decreases with increasing ε/D.

3.4. Mean-flow field

The skin-friction coefficient Cf θ reflects the complexity of the separation behaviour. To
understand how the flow develops with increasing ε/D at ReD= 3.9× 103, it is useful
to plot the streamlines of the mean flow around the separation region.

In figure 8, we plot six cases with ε/D= 0, 1/640, 1/160, 1/80 and 1/32. In the
figures, we use letters to indicate the flow state inside each groove: ‘N’ for attached
flow, ‘C’ for a trapped (mean-flow) separation bubble with clockwise direction, ‘A’ for
a trapped separation bubble with anti-clockwise direction, ‘P’ denoting the position
of the primary mean-flow recirculation bubble, and ‘S’ representing the larger-scale
secondary separation bubble.

Figure 8(a) is for ε/D = 0 which corresponds to the smooth-cylinder case. A
secondary separation bubble on the leeward surface of the cylinder downstream of
primary separation can clearly be seen. For ε/D = 1/640 as shown in figure 8(b),
there is no separated flow on the front part of the cylinder. Downstream of the primary
separation point, a secondary separation bubble exists, while further downstream, a
tiny anti-clockwise bubble emerges. For ε/D = 1/160 (figure 8c), a tiny clockwise
bubble can be observed just upstream of primary separation.

When ε/D is increased to 1/80 in figure 8(d), all grooves inside the view on the
windward surface exhibit groove-scale separated flow. For deep grooves with ε/D=
1/32, there is an anti-clockwise bubble at approximately x= 0.1, which is the primary
separation bubble in the above two cases. This is clearly evidence of the tendency
for the secondary separation bubble to move upstream as ε/D is increased. For the
deepest grooves in the present study with ε = 1/16, figure 8( f ) shows similar types
of bubbles as for ε= 1/32, which include clockwise bubbles on the windward surface,
followed by the initiation of primary separation, an anti-clockwise bubble and a global
secondary separation bubble successively.
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FIGURE 8. For caption see next page.

3.5. Non-dimensional pressure gradient parameter β

The non-dimensional pressure gradient parameter β is defined as

β ≡
δ∗

u2
τ

dp
dθ
, (3.1)
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FIGURE 8. (cntd). Local streamlines of mean velocity around the separation region with
ReD = 3.9 × 103: (a) ε/D = 0; (b) ε/D = 1/640; (c) ε/D = 1/160; (d) ε/D = 1/80;
(e) ε/D= 1/32; ( f ) ε/D= 1/16.

where δ∗ is the displacement boundary-layer thickness, uτ the local wall friction
velocity and dp/dθ the pressure gradient. This is an important parameter characterizing
boundary-layer flow in the presence of a pressure gradient. For the smooth-walled
cylinder flow, the distribution of β(θ) over the attached flow portion of the cylinder
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FIGURE 9. (Colour online) Non-dimensional pressure gradient parameter β: @, ReD =

3.9× 103 for smooth cylinder;E, ReD = 8.5× 105 for smooth cylinder; — · —, estimate
using the Thwaites (1949) method for smooth-wall case with outer potential flow; A,
ReD = 3.9× 103, k= 32 and ε/D= 1/640 for grooved cylinder.

surface can be estimated using the Thwaites (1949) method. This is done in
appendix B, where it is shown that β is nearly constant on the front part of the
smooth cylinder, up to θ ≈ 60◦. LES results from Cheng et al. (2017) for the
smooth-wall case are compared with this estimate in figure 9, where a subcritical
flow with ReD = 3.9 × 103 and a supercritical flow with ReD = 8.5 × 105 are
shown. In figure 9, we also plot the present LES of the flow with the smallest
groove ε/D = 1/640. In computing u2

τ and dp/dθ , calculations using the LES
results were performed along the actual grooved surface. Since for ε/D = 1/640
the flow on the windward part of the cylinder is fully attached, computing of δ∗
was implemented along the radial direction. The plot shows oscillatory β owing to
the presence of the groove geometry together with substantial deviations from the
smooth-cylinder flow.

4. Mean-flow results at high ReD

The LES at ReD= 3.9× 103 clearly indicates that with increasing ε/D the secondary
separation bubble moves upstream. Qualitatively this is similar to the same tendency,
when increasing ReD, within the subcritical regime for smooth-cylinder flow. We now
fix ε/D= 1/32 and investigate the flow behaviour at different ReD.

4.1. The pressure coefficient Cp

In figure 10, we show the Cp distribution for ReD = 3.9× 103, 2× 104 and 5× 104.
Compared to ReD=3.9×103, the minimal pressure coefficient at higher ReD decreases
while the plateau value increases. This effect is stronger for ReD = 5 × 104 than for
ReD = 2 × 104, and can be interpreted as evidence that the flow has reached the
supercritical regime.

To support our interpretation of the Cp variation, we refer to experiments
comparable to the present LES. First we consider a series of experiments on flow
past a cylinder with three-dimensional surface geometry perturbations by Achenbach
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FIGURE 10. (Colour online) Pressure coefficient Cp for ε/D= 1/32: ——, ReD = 3.9×
103; – – – –, ReD = 2× 104; — · —, ReD = 5× 104.
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FIGURE 11. (Colour online) Comparison of experimental Cp in the supercritical regime:
(a) distribution of Cp for four cases; (b) location of four cases in a CD plot. @ (——),
ReD = 4.1 × 105, smooth-cylinder flow ε/D = 0 (Güven et al. 1980); A (– – – –),
ReD = 2.4 × 105, ε/D = 0.7 × 10−3 (Achenbach 1971); E, (— · —) ReD = 1.27 × 105,
ε/D = 1.6 × 10−3 (Güven et al. 1980); C (— · · —), ReD = 105, ε/D = 2.9 × 10−3

(Achenbach 1971).

(1971), Güven et al. (1980) and the R3DP experiments of Achenbach & Heinecke
(1981). In these experiments, different magnitudes of perturbation are studied. To
understand the supercritical behaviour in these flows, we collect four Cp plots,
as shown in figure 11(a). In figure 11(b), CD corresponding to the respective Cp
distributions are located on a CD-ReD plot showing four curves from the respective
experiments. This shows one point near the beginning of the supercritical regime for
the smooth-cylinder case and three points just above their minimal CD for different
wavy shapes. To identify the different perturbations, here we use ε/D, which is the
ratio of the height of the perturbations to the diameter of the cylinder. The three lines
represent ε/D= 0.7× 10−3, 1.6× 10−3 and 2.9× 10−3 respectively.

In figure 11, the four corresponding Cp distributions are plotted. For the smooth-
cylinder case, the minimal value can approach Cp = −3, while for the experiments
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FIGURE 12. (Colour online) Comparison of Cp between LES data and rough-wall
experiment: ——, LES at ReD=5×104, k=32 and ε/D=1/32. For legend, see figure 11.
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FIGURE 13. (Colour online) Comparison of Cp between LES data and grooved-wall
experiment: ——, LES at ReD = 5 × 104, k = 32 and ε/D = 1/32. Experimental data at
ReD = 105 by Yamagishi & Oki (2004):E, arc groove;A, triangle groove.

with three-dimensional geometry perturbations, the minimal value increases sub-
stantially. The two higher ε/D cases show similar Cp distributions. These same two
Cp distributions are also shown in figure 12 in comparison with results from the
present LES at ReD = 5× 104. While the LES are for two-dimensional grooves with
ε/D = 1/32, the general behaviour of the Cp distributions is similar, including the
minimal value of Cp, the increasing tendency from the minimal value to the plateau
value and also the plateau value.

We can also compare the present LES with experimental results by Yamagishi
& Oki (2004) for flow over a cylinder with two-dimensional grooves, with two
different shapes: triangle- or arc-shaped grooves. Experimental data at ReD = 105 are
compared with present LES calculations at ReD = 5 × 104 in figure 13. This shows
good agreement for the front part of the cylinder and for the plateau region. For

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

76
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.767


344 W. Cheng, D. I. Pullin and R. Samtaney

104103 106105

104103 106105

 0.5

 0

1.0

1.5

 0.5

 0

1.0

1.5(a)

(b)

FIGURE 14. (Colour online) Comparison of drag coefficient CD between LES and
experiment: p, LES with ε/D = 1/32, s, LES with ε/D = 1/80. (a) Experiments
of grooved cylinder by Yamagishi & Oki (2004): E, arc groove; A, triangle groove.
(b) Experiments of non-smooth cylinder with 3-D geometric perturbation: A, ε/D =
0.03 from experiment with R3DP by Achenbach & Heinecke (1981); E, ε/D = 0.02
from experiment with embedded glass perturbations by Fage & Warsap (1929); – – – –,
smooth-wall experiments by Schewe (1983) (for comparison).

the range 50 < θ < 90◦, both experiments and LES show small structures in each
groove and their peaks match each other. We note that there are differences between
experiment and LES in 90 < θ < 120◦. This agrees with our physical interpretation
that the present LES at ReD = 5 × 104 reaches the start of the transcritical regime
while experimental results at ReD = 105 lie well within the transcritical regime.

4.2. The drag coefficient CD

The drag coefficient CD, which is a combination of integrated pressure and viscous
contributions, is shown in figure 14 where LES results are compared with two sets
of experimental data. Figure 14(a) shows the two-dimensional groove experiments by
Yamagishi & Oki (2004). The present LES with k = 32 and ε/D = 1/32, generally
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follows the experimental data for arc and triangle grooves even though for the latter,
ε/D≈ 0.011. Also plotted is a third set of LES (table 4) with k= 32 and ε/D= 1/80,
which, at ReD= 5× 104 lies within the drag crisis, but does not reach the supercritical
regime. Figure 14(b) compares CD for the LES with experimental results for three-
dimensional cylinder perturbations, including R3DP by Achenbach & Heinecke (1981)
and glass perturbations by Fage & Warsap (1929). Here LES and experiments have
similar values of ε/D. They show quite similar CD − ReD behaviour despite the fact
that the LES employs two-dimensional spanwise grooves.

4.3. Mean-flow field
From the CD−ReD plot, it is clear that for ε/D= 1/32, our LES of the flow at ReD=

1× 104 is still within the subcritical regime, while the flow with ReD = 2× 104 is in
transition to the supercritical regime, and that ReD= 5× 104 reaches the beginning of
the transcritical regime. To understand the role of grooves in the transition, we plot
the streamlines of the mean-flow field, with focus on the separated region, as shown
in figure 15.

In figure 15(a), we show the streamlines for ReD = 3.9× 103, which, as described
earlier, shows a primary separation at around x= 0 and a secondary separation bubble
which reattaches at about x = 0.2. Upstream of the secondary separation bubble, a
small anti-clockwise bubble exists. When ReD is increased to 8000, as shown in
figure 15(b), no obvious change is observed except the growth of the anti-clockwise
bubble. With further increase to ReD = 104, another anti-clockwise bubble emerges
under the separation point of the primary separation bubble, which is labelled as
P/A in figure 15(c). The development of anti-clockwise bubbles are signs that the
secondary separation bubble, and in particular its mean-flow reattachment line, are
moving upstream along the cylinder surface, as ReD is increased.

A further small increase of ReD gives a notably different topology. In figure 15(d),
we can see that the anti-clockwise bubble, which previously existed just upstream of
the secondary separation bubble, is absorbed. The change results in a leapfrogging
movement upstream of the reattachment point of the secondary separation bubble,
which is now at around x= 0.1. This tendency is quite similar to observations from
LES of smooth-walled cylinder flows (Cheng et al. 2017), where the secondary
separation bubble also moves upstream in the subcritical regime, as ReD is increased.

When transition to supercritical flow occurs, the flow topology changes significantly.
With further increase in ReD, as shown in figure 15(e) for ReD = 2 × 104, the first
anti-clockwise trapped bubble still moves forward but now combines with a clockwise
trapped bubble (C/A) prior to the primary separation line which labelled as P/A. At
this transition ReD no secondary separation bubble exists. At the same time, all
bubbles in the leeward flow are locally trapped with mean-flow anti-clockwise
motion (A).

This feature of the flow field at subcritical to supercritical transition is essentially
similar to the same phenomena in the smooth-cylinder transition flow. For the latter
case Cheng et al. (2017) concluded that the change in the mean-flow secondary
separation bubble, from anti-clockwise and located within the large-scale separated
flow, to a prior, clockwise, separation bubble, is an important mechanism that
stimulates the drag crisis. In the present grooved-cylinder flow, owing to strong
trapping effects in each groove, the secondary separation bubble gradually shrinks
and separates into several anti-clockwise trapped bubbles. This phenomenon cannot
occur in the smooth-cylinder flow.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

76
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.767


346 W. Cheng, D. I. Pullin and R. Samtaney

0 0.1 0.2 0.3 0.4 0.5–0.1–0.2–0.3

0 0.1 0.2 0.3 0.4 0.5–0.1–0.2–0.3

0 0.1 0.2 0.3 0.4 0.5–0.1–0.2–0.3

0.5

0.6

0.2

0.3

0.4

0.5

0.6

0.2

0.3

0.4

0.5

0.6

0.2

0.3

0.4

(a)

(b)

(c)

C

C
C P

A

S

S

S

S

C

C

C
C

A
S

S

S

S

C
C P

A

S

S

S

S

FIGURE 15. For caption see next page.

With further increase in ReD to ReD = 5× 104, as shown in figure 15(c), the C/A
structure disappears, and inside all upwind grooves are trapped clockwise bubbles,
save possibly for a tiny bubble in the second groove from the left in the figure. For
the leeward flow, the P/A configuration also disappears and all trapped bubbles flow
in an anti-clockwise direction. This perhaps can be interpreted as a signature of the
flow having reached the transcritical regime. The analogous criterion for transcritical
flow in the smooth-cylinder case is the disappearance of the prior separation bubble
(Roshko 1961).
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FIGURE 15. (cntd). (Colour online) Local streamlines of mean velocity around the
separation region: (a) ReD = 3.9× 103; (b) ReD = 8× 103; (c) ReD = 1× 104; (d) ReD =

1.05× 104; (e) ReD = 2× 104; ( f ) ReD = 5× 104.

5. Unsteady and instantaneous flow features

In previous sections, mean results of the LES have been discussed together with
comparison with available experimental data. Other important flow properties can be
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FIGURE 16. (Colour online) History of the lift coefficient CL for different ReD: ——,
3.9× 103; – – – –, 2× 104; — · —, 5× 104.

revealed from the tracking of unsteady flow features, for example, the Strouhal number
St≡ f D/U∞, where f is the shedding frequency. We now consider unsteady and three-
dimensional flow dynamics via investigation of instantaneous variables, such as the
one-dimensional drag and lift coefficients, two-dimensional vector skin-friction lines
and three-dimensional isoline plots of near-wall flow structures.

5.1. The instantaneous lift and drag coefficients CL(t) and CD(t)
The history of the lift coefficient CL(t) can be revealing in understanding the
phenomenon of vortex shedding. Schewe (1983) discusses the spectral analysis of
CL(t) from experimental data, providing evidence for a dominant shedding frequency
around St = 0.2 in the subcritical regime, St = 0.47 in the supercritical regime,
transition to a sub-region of transcritical regime where no dominant frequency can
be found and a wide spectral content is observed, and then finally to the full
transcritical regime where a dominant frequency of about St = 0.27 emerges. The
no-dominant-frequency region was quite ambiguous before the classical experiments
by Roshko (1961). For a non-smooth cylinder, the R3DP experiments of Achenbach
& Heinecke (1981) show no evidence of the existence of a no-dominant-frequency
sub-region of the transcritical regime.

Three CL(t) time series from the present LES are shown in figure 16, including
ReD= 3.9× 103, ReD= 2× 104 and ReD= 5× 104. While f and the magnitude of the
CL(t) oscillations vary with ReD, the general trend of the CL(t) variation is similar for
all cases. The Strouhal number St versus ReD is shown in figure 17 in comparison
with the rough-cylinder experiments of Achenbach & Heinecke (1981). All results
generally show a smooth transition from the subcritical regime where St≈ 0.2 to the
final transcritical regime where St≈ 0.25.

Some insight into the behaviour of CL(t) in different regimes can be inferred by
observation of the drag coefficient CD(t). In the experiments by Schewe (1983), for
near-critical-state flow, a secondary frequency can be observed in CD(t) which interacts
with the primary shedding frequency. For the present LES of the grooved-cylinder
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FIGURE 17. (Colour online) Strouhal number St: comparison of LES (u, ε/D = 1/32;
p, ε/D = 1/80) with experiment of non-smooth cylinder with R3DP by Achenbach &
Heinecke (1981) (A, ε/D= 0.03; C, ε/D= 0.006).
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FIGURE 18. (Colour online) History of the drag coefficient CD: (a) ReD = 3.9× 103;
(b) ReD = 5× 104.

flow, a secondary frequency can also be identified at high ReD, as shown in figure 18.
It can be seen that CD(t) at high ReD exhibits a high frequency oscillation which is
quite distinct from the low frequency that dominates the vortex shedding. This high
frequency is generally found to be at approximately 16 times St, which indicates
that it is mainly produced by the geometrical perturbation of the grooved cylinder.
In contrast, for the smooth cylinder flow the presence of wall turbulence possibly
generates higher frequency oscillations.

5.2. Surface skin-friction lines
The mean flow exists as a two-dimensional projection onto a spanwise normal plane.
In order to consider three-dimensional flow effects, we first plot the instantaneous
limiting streamlines at the cylinder wall that correspond to the surface skin-friction
vector field, or skin-friction lines. These are generally unsteady in that the surface
vector field changes as a function of time through shedding cycles. Presently we show
typical instantaneous images at an arbitrary time instant. Since the grooved cylinder
has a mildly complex surface shape, the present plots will simply project the real
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FIGURE 19. Instantaneous skin-friction lines of the subcritical regime: (a) ReD=3.9×103;
(b) ReD = 1.75× 104.

skin-friction vectors onto the unperturbed cylinder surface, with (θ, y) as projected
surface coordinates.

In figure 19, two portraits of instantaneous surface skin-friction lines in the
subcritical regime are shown. The top of each skin-friction line plot indicates
both peaks and valleys of grooves and also the corresponding mean-flow groove
characteristic as previously denoted by C, A, P and S. In figure 19(a) at ReD =

3.9 × 103, the skin-friction lines upstream of the primary separation region are
generally straight lines, which indicates that there is no near-surface spanwise motion.
In figure 19(b) for ReD = 1.75 × 104, a two-dimensional surface structure is clearly
observed which occupies a scale π/16 in size in the spanwise direction. This is almost
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FIGURE 20. ReD = 2× 104: (a) skin-friction lines; (b) vortex lines.

the same as the half-wavelength of the groove in the circumferential direction. It is
notable that for both ReD, skin-friction lines downstream of the primary separation
show substantial spanwise motion indicating a fully three-dimensional flow above.

In figure 20(a), a skin-friction portrait for ReD = 2 × 104 is shown. This clearly
shows two-dimensional surface structure, and thus three-dimensional off-wall motion,
even on the very front part of the grooved cylinder. In grooves upstream of the
primary separation, although the mean flow exhibits a clockwise trapped bubble, the
instantaneous skin-friction lines show irregular two-dimensional near-wall flow that
destroys the symmetry in the spanwise direction for the two-dimensional mean-flow
structures. In figure 20(b), the surface vortex direction field at the same ReD is
shown. The surface vortex lines are everywhere orthogonal to the skin-friction lines.
In both images in figure 20, the skin-friction and the surface vortex lines exhibit a
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FIGURE 21. Instantaneous skin-friction lines at ReD = 5× 104.

nearly spanwise-periodic, cell-like structure for the first two grooves shown. Further
downstream this breaks down into an irregular spanwise field. Still further downstream
in the primary separation bubble region, vortex lines are almost streamwise straight
lines. We show skin-friction lines at ReD = 5 × 104 in figure 21. In this case, the
breakdown of the two-dimensional surface structure takes place even upstream.

5.3. Plots of Q-criterion
In order to visualize instantaneous flow structure away from the wall, we consider the
second invariant of the velocity gradient tensor, which is typically defined as Q (see
Chakraborty, Balachandar & Adrian 2005)

Q= 1
2 (‖Ω‖

2
− ‖S‖2), (5.1)

where S = 1/2 (∇u + (∇u)T), Ω = 1/2 (∇u − (∇u)T) are the rate-of-strain and the
rotation tensors respectively. In figure 22 we show instantaneous iso-surfaces of Q= 1
coloured by ux. The four panels use similar ReD values as for the skin-friction plots
of figures 20–26. For the two lower ReD at 3.9× 103 and 1.75× 104, a relatively large
near-cylinder domain is shown to illustrate how the flow develops from the boundary-
layer flow into the wake. At 3.9× 103 in figure 22(a), the front part of the cylinder
shows no variance in the spanwise direction. Only streamwise perturbations, which are
induced by the grooves, can be seen. For flow at 1.74 × 104, structure development
in the spanwise direction is found to move upstream from the wake and approach the
front of the cylinder. In this case, the breakdown of the spanwise uniformity generates
some regular structures, which then further interact with the streamwise perturbations
and roll finally into the near-wake flow.

In figure 22(c) at ReD = 2 × 104, spanwise perturbations are formed at smaller θ
than the smaller ReD flows. With further increase of ReD to 5× 104, we can observe
in figure 22(d) that spanwise regular structures are not apparent and the flow quickly
breaks into irregular small scales. As ReD increases in figure 22, the reduction in the
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FIGURE 22. Instantaneous flow on the front part of the cylinder. Q= 1 and coloured by
ux. (a) ReD = 3.9× 103; (b) ReD = 1.75× 104; (c) ReD = 2× 104; (d) ReD = 5× 104.

scale of the visible eddies is clear. This is believed to be a genuine ReD effect and
not an artefact of either grid resolution or the visualization scheme. It is interesting to
observe that, in the breakdown process of spanwise structures for ReD= 2× 104, some
Λ-shaped vortices emerge, which are similar to the vortices observed in the flat-plate
turbulent transition by Sayadi, Hamman & Moin (2013).

While the present work is not a study of the wake dynamics, we nonetheless
demonstrate that the present LES does indeed produce a healthy wake structure for
the present flow. Full side views using the Q-parameter of streamwise extent up to
13D are shown in figure 23 for several different ReD. It is clear that the present LES
and associated mesh structure provides a physically convincing wake flow. A detailed
study of the wake flow is beyond the scope of the present work, which is focused
on surface and near-surface properties of the flow, and so is not discussed further.

6. Discussion
6.1. Mean-flow separation angle

From the previous discussion, a natural question arises concerning the transitions
between the subcritical, supercritical and transcritical regimes. In the smooth-cylinder
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FIGURE 23. Instantaneous wake flow. Q= 1 and coloured by ux. (a) ReD = 3.9× 103;
(b) ReD = 1× 104; (c) ReD = 2× 104; (d) ReD = 5× 104.

flow, we can consider the structure and location of the secondary/prior separation
bubble as a signature of transition between regimes. In the subcritical regime, a
secondary separation bubble exists inside the primary mean-flow recirculation bubble.
During transition to the supercritical regime, the mean-flow secondary separation
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FIGURE 24. (Colour online) Separation angle of the primary separation θps:@, experiment
by Son & Hanratty (1969); 1, experiment by Achenbach (1968); u, present LES,
ε/D= 1/32 and k= 32.

bubble disappears followed, as ReD increases, by the creation of a prior separation
bubble initially just upstream of the primary separation line. At higher ReD, as the
flow transitions to a transcritical state, the prior separation bubble itself vanishes
and only primary mean-flow separation exists within the whole flow field (Cheng
et al. 2017). For subcritical flow, turbulent transition lies inside the wake flow and
moves onto the highly sheared subregion that lies between the primary mean-flow
separation line and the reattaching secondary bubble. For supercritical flows, the local
Reynolds number is sufficiently large that transition to turbulence takes place on
the upper surface of the (now) prior separation bubble while for transcritical flow,
turbulent transition takes place directly within the boundary layer on the surface
of the cylinder. For the subcritical regime with ReD > 104, CD is nearly constant
at approximately CD = 1.25. After a sudden drop, the drag coefficient decreases to
approximately CD = 0.3 and remains at this value for a large range of ReD. This is
recognized as the supercritical regime. In the transcritical regime, CD grows again
and reaches a nearly constant value CD ≈ 0.7 (Roshko 1961).

The total drag around cylinder is the sum of the pressure drag (or form drag)
and skin-friction drag. The form drag is mainly controlled by the position of the
mean-flow primary separation angle θps. In general, larger values of θps indicate a
smaller leeward region of base pressure and therefore smaller total drag. Within
the supercritical regime in the smooth-cylinder flow, laminar–turbulent transition
takes place on a prior separation bubble. The reattached turbulent flow results in an
energized turbulent boundary layer that can resist an adverse pressure gradient more
effectively than a laminar boundary layer. This in turn delays mean-flow separation
with the result that the primary mean-flow separation point can be up to θps = 140◦,
corresponding to a low drag coefficient CD ≈ 0.3. Experimental measurements of θps
versus ReD (Son & Hanratty 1969) for the smooth-wall cylinder flow are shown in
figure 24 where the rapid increase through the drag crisis is clearly evident.

Also shown in figure 24 are values of (θps,ReD) for our LES of the grooved-cylinder
flow with fixed ε/D = 1/32. These show a much smaller change through the drag
crisis and into the beginning of the transcritical regime in comparison with the
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FIGURE 25. (Colour online) Angle between the primary separation point and the
reattachment point of the secondary separation bubble 1θs: p, LES for smooth
cylinder (Cheng et al. 2017); u, present LES, ε/D = 1/32 and k = 32; N, present LES
ε/D= 1/32 and k= 64.

smooth-wall flow. Although the present LES penetrates only the lower ReD range
of the transcritical regime for the grooved-cylinder flow, figure 3 of Achenbach &
Heinecke (1981) indicates that for several rough-surface cylinder flows CD, and hence
also θps, remains sensibly constant far into the transcritical regime. This suggests that,
for the non-smooth surface case, especially for large grooves or three-dimensional
periodic surface shapes, laminar–turbulent flow transition is not the underlying
mechanism that stimulates the drag crisis at much lower ReD than for the smooth-wall
flow. Instead, while for the present grooved-cylinder flow, prior separation bubbles
still exist into the supercritical regime, these can be trapped in cavities formed by the
specific groove geometry of the cylinder surface. Unlike the smooth-wall cylinder flow,
these bubbles do not appear to be associated with turbulent boundary-layer transition.
The drag crisis is then essentially a laminar flow phenomenon. Like the smooth-wall
case, the drag crisis is still stimulated by an equivalent secondary separation bubble
moving to smaller θ as ReD is increased, interacting with the primary near-wall
separation flow and then passing upstream of θps and undergoing a change into a
prior separation bubble. But turbulent boundary-layer transition plays no dynamical
role. The drag crisis, with a small increase in θps is simply a dynamical response of
the overall flow to the shrinking and upstream migration behaviour of the secondary
separation bubble while the near-wall flow remains laminar.

Hence, for a specific geometry, the primary mean-flow separation line does not
reach large θps in the supercritical regime. The result is that, following the drag crisis
in both the supercritical and transcritical flow regimes, CD reaches minimum and
constant values respectively that are rather larger than for the smooth-walled cylinder
flow. For example, in the present LES with k= 32 and ε/D= 1/32, the minimal drag
coefficient is about 0.7, which is similar to the strongest roughness case in experiment
by Achenbach & Heinecke (1981) and substantially larger than CD|min ≈ 0.3 for the
smooth-cylinder flow.
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FIGURE 26. (Colour online) Plots of r+. (a) Cases with ReD = 3900 and varying ε/D:
——, 1/320; – – – –, 1/160; — · —, 1/80; — · · —, 1/32. (b) Cases with ε = 1/32 and
varying ReD: ——, 3900; – – – –, 104; — · —, 2× 104; — · · —, 5× 104.
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FIGURE 27. (Colour online) Comparison of velocity Uθ for case k= 32, ε/D= 1/32
and ReD = 2× 104:p, fine mesh;s, coarse mesh.

6.2. Angle between primary separation bubble and secondary separation bubble
Transition from the subcritical to the supercritical flow regimes, which is typically
named the drag crisis, is clearly related to separation flow behaviour around the
cylinder. A useful diagnostic, implemented both experimentally (Son & Hanratty
1969) and numerically (Cheng et al. 2017) for smooth-cylinder flow, is the angle
between the separation point of the primary separation bubble and the reattachment
point of the secondary separation bubble, here defined as 1θs. LES data for 1θs are
shown in figure 25 where the symbolp denotes LES results for the smooth-cylinder
case (Cheng et al. 2017). It can be seen that in smooth-wall cylinder flow, 1θs
decreases monotonically from 30◦ at ReD = 5000 to around 10◦ at ReD = 105. It is
notable that the slope of 1θs with increasing ReD decreases at ReD = 105. In fact we
do not expect that 1θs can reach 1θs = 0 at the onset of the drag crisis as the flow
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transitions into the supercritical regime. A plausible explanation is that, when 1θs

decreases to about 10◦, a strong shear layer forms defined/bounded by the primary
separation zone and the reattaching secondary separation flow. The instantaneous
realizations of this local flow structure are strongly three-dimensional as shown in
the instantaneous skin-friction plots of Cheng et al. (2017). Such shear layers are
expected to be strongly Kelvin–Helmholtz unstable at ReD near the drag crisis (for
both smooth- and rough-walled flows) and it can be expected that this may well
inhibit the formation of a coherent mean-flow secondary separation bubble as the
overall flow moves into the drag crisis. This suggests that 1θs = O(10◦) can be
considered as an approximate asymptotic value for 1θs in the subcritical regime for
smooth-cylinder flow.

In figure 25, data with the symbol u are from the present LES with k = 32 and
ε/D= 1/32. Since the separation bubble can only be bounded by the physical wall,
1θs(ReD) in the grooved-cylinder flow cannot show a continuously changing variation.
Instead, 1θs remains constant at around 1θs = 23◦, and then jumps to around 1θs =

12◦ when approaching the transition to supercritical flow. This jump corresponds to
the flow field change in figure 15, from figure 15(c) to figure 15(d). For the geometry
with k= 32, each groove spans approximately 11◦, which is comparable to the sudden
decrease in 1θs for the grooved-cylinder flow as the drag crisis is approached. This
suggests a mean-flow secondary separation reattachment line that tends to occur on
groove crests.

To provide further data, we implemented a further set of LES, with k= 64, ε/D=
1/32 and varying ReD from 3900 to 3×104. 1θs for these LES are shown in figure 25,
labelled with the symbols. The parameters of these LES are summarized in table 5.
In these cases, each groove covers about 5.6◦. The behaviour of 1θs(ReD) is similar to
both the smooth- and groove-walled cylinder flows with k= 32. Starting from ReD =

3.9× 103, 1θs ≈ 26◦, 1θs then jumps to approximately 22◦ at approximately ReD =

104. Further increasing ReD to 3× 104 shows a further jump to 17◦. For these LES,
although transition to the supercritical regime has not been reached at the maximum
ReD, 1θs clearly shows a decreasing tendency similar to the movement of the mean-
flow secondary separation bubble for our other LES.

7. Concluding remarks

Wall-resolved LES has been used to study flow over a spanwise grooved cylinder.
Results from two main sets of LES have been described, the first on different
amplitude grooves at fixed ReD = 3.9 × 103, and the second set with fixed groove
geometry but with varying ReD from 3.9 × 103 to 6 × 104 to cover different flow
regimes.

For flows with fixed ReD = 3.9 × 103, we focused on flow deviations from the
smooth-cylinder case at the same ReD. It is generally found that increasing the
groove magnitude ε/D will result in flow changes which in some respects are similar
to those observed in increasing ReD for smooth-cylinder flows. These include the
shrinking of the recirculation bubble and the maintenance of a near-constant minimal
pressure coefficient. Some flow characteristics for the grooved cylinder are found to
be rather different from the smooth-cylinder case, especially the azimuthal variation of
the azimuthal skin-friction coefficient. For grooves with larger ε/D, there are locally
trapped separation bubbles formed as cavity flows within each groove. Also of
interest is the surface distribution of the non-dimensional pressure gradient parameter
β, which is a function of boundary-layer thickness, wall shear stress and pressure
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gradient. This parameter is found to be nearly constant on the windward part of the
cylinder for the smooth-cylinder case but shows strong oscillatory azimuthal variation
for the grooved-cylinder flow.

For geometries with large amplitude grooves, we extend LES up to ReD ∼ 6× 104,
which reaches the beginning of the transcritical regime. For subcritical regime flows
with ReD up to 104, a secondary separation bubble is clearly observed. As ReD is
increased this bubble moves upstream and reduces in size. For supercritical flows,
a complex near-wall flow pattern comprising the coexistence of clockwise and anti-
clockwise flowing mean-flow cavity-like bubbles are observed in grooves upstream
of the primary separation bubble. This anti-clockwise bubble can be identified as the
grooved-cylinder flow equivalent of a prior separation bubble for flow over smooth
cylinder.

The comparison of near-wall flow behaviour at the drag crisis for the smooth-wall
LES of Cheng et al. (2017) and the present LES of flow past a grooved-wall cylinder
at ε/D is perhaps informative. The smooth-wall case is clearly an example of a drag
crisis for a flow that can be thought of as wall-bounded in the sense that it contains
a developing boundary layer that exhibits laminar–turbulent transition at or near the
onset of the drag crisis. In contrast the grooved-wall cylinder flow is not a canonical
wall-bounded flow because there exists no recognizable, coherent boundary layer.
Rather, the near-wall local flow resembles relatively low Reynolds number flow over
obstacles/cavities – the grooves – producing mean-flow trapped separation bubbles
and a complex three-dimensional instantaneous skin-friction field.

Yet the two flows share one striking common feature which is the presence of a
mean-flow, secondary separation bubble that diminishes and subsequently vanishes,
transforming into upstream local flow features, as the flows pass through their
respective drag crises. This suggests that the primary mechanism for production of the
drag crisis, at least for cylinder flows, is not in fact associated with laminar–turbulent
boundary-layer transition. We hypothesize that the generic drag crisis mechanism
in fact originates via the interaction of recirculating back flow motions, visible in
the mean as a reattaching, mean-flow secondary separation bubble, with the local
near-wall primary separation flow. The details perhaps involve proximity to the
cylinder wall of incipient shear layer, Kelvin–Helmholtz-like instability triggering a
global change in flow state that produces a sudden streamwise shift of the mean-flow
separation line, a subsequent change in base pressure and a corresponding reduction in
drag. In this scenario, for the smooth-wall case, boundary-layer transition is probably
stimulated by and substantially enhances the global flow change, but is not its primary
cause.

For the grooved-cylinder flow, at least for moderate sized grooves, this suggests
that the drag crisis is then an almost entirely laminar phenomenon. The existence of
a quantifiable mechanism for this interpretation of the drag crisis remains an open
question (which we do not claim to answer), as does the question of whether this
interpretation is valid for general cylinder flows with surface perturbations different
from those studied presently, and that may include, for example the strongest R3DP
case documented in Achenbach & Heinecke (1981), and also traditional small-scale,
surface roughness internal to the local boundary layer. These questions await further
exploration.
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Appendix A. Mesh verification
Wall-resolved large-eddy simulation should fully resolve the near-wall flow. It

is generally considered that minimally, 5–7 mesh points normal to the wall are
required for resolving the viscous sublayer. A typical parameter in wall-resolved
LES is the ratio of the near-wall, wall-normal mesh size 1r to the viscous length
scale l+ = uτ/ν. For the present cell-centred mesh arrangement with r+ = 1r/l+,
the requirement is generally that r+ < 1 ideally (Choi & Moin 2012). In LES by
Cheng et al. (2017), cases and regions with r+ < 1 show results for Cf θ using direct
wall-normal differentiation of the wall-parallel velocity to be in good agreement with
experiment, while those with r+ > 1 show a relatively large difference from both
experimental measurements and other methods of determining Cf θ . In figure 26, we
show r+ for cases in the two sets of LES reported presently. Since the present LES
still has ReD ∼ 5× 104 or lower, r+ < 1 can be seen to be reasonably satisfied.

For verification, we implemented two meshes for the case with ReD = 2× 104, k=
32 and ε/D = 1/32. The mesh in the wall-normal direction is fixed while different
mesh sizes for the circumferential and spanwise directions are used. The mesh Nθ ×

Ny × Nr is 2048 × 128 × 512 for the fine grid and 1024 × 64 × 512 for the coarse
grid. To show convergence, in figure 27 we plot the wall-parallel velocities at three
different locations, which are at the trough of three grooves, one windward at around
x=−0.15, one around the peak of the cylinder and one leeward at about x= 0.2. It is
generally found that the velocity profiles agree well for results using the two meshes.
The verification case is at ReD= 2× 104. This provides evidence that the present mesh
is sufficiently fine for the present study.

Appendix B. Thwaites’ method for smooth cylinder
In analysing laminar boundary-layer flow, Thwaites (1949) found a uni-parametric

correlation formula
2T − 2(H + 2)λ= 0.45− 6.0λ, (B 1)

with

H =
δ∗

θ̂
T =

τwθ̂

νUe
λ=U′e

θ̂ 2

ν
. (B 2a−c)

Here θ̂ is the momentum boundary-layer thickness. Ue is the external velocity in the
wall-parallel direction and the superscript prime ‘ ′ ’ denotes its derivative along the
θ direction. With this collapse formula, the momentum integration equation can be
reduced to

θ̂ 2(θ)

ν
=
θ̂ 2

0

ν

(
U0

e

Ue(θ)

)6

+
0.45
Ue

∫ θ

0

(
Ue(φ)

Ue(θ)

)5

dφ. (B 3)

The integration of the above equation can be done analytically when an outer velocity
profile Ue is known. For flow over a smooth circular cylinder, according to LES by
Cheng et al. (2017), Ue≈1.5 sin(1.25θ) for subcritical cases and Ue≈2 sin θ (potential
flow) for supercritical cases. Using this Ue, (B 3) can be solved to give

λ= 0.075
(
1− 7

2 sin2(θ/2)+ 18
5 sin4(θ/2)− 6

5 sin6(θ/2)
)
(1− sin2(θ/2))−3, (B 4)

for supercritical cases (Sherman 1990). With λ known, β can be derived as

β =
Hλ
T

1
U′eUe

∂p
∂θ
. (B 5)
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Plotting (B 4) (not shown) indicates that λ ≈ 0.075 for a large range of θ . Then β
can be calculated as β ≈−0.502 for a similar θ range. The above estimate excludes
θ = 0. Here the local solution for stagnation point (Hiemenz) flow should be used to
estimate θ (not shown here). For further details concerning Thwaites’ method for the
smooth cylinder, see Sherman (1990).
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