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SUMMARY
This paper first presents a method of motion planning and implementation for the self-recovery
of an overturned six-legged robot. Previous studies aimed at the static and dynamic stabilization
of robots for preventing them from overturning. However, no one can guarantee that an overturn
accident will not occur during various applications of robots. Therefore, the problems involving
overturning should be considered and solved during robot design and control. The design
inspirations of multi-legged robots come from nature, especially insects and mammals. In addition,
the self-recovery approach of an insect could also be imitated by robots. In this paper, such a
self-recovery mechanism is reported. The inertial forces of the dangling legs are used to bias
some legs to touch the ground, and the ground reaction forces exerted on the feet of landing
legs are achieved to support and push the body to enable recovery without additional help. By
employing the mechanism, a self-recovery approach named SSR (Sidewise-Self-Recovery) is
presented and applied to multi-legged robots. Experiments of NOROS are performed to validate
the effectiveness of the self-recovery motions. The results show that the SSR is a suitable method
for multi-legged robots and that the hemisphere shell of robots can help them to perform self-recovery.

KEYWORDS: Overturn; Self-recovery; Motion planning; Sidewise-Self-Recovery; Multi-legged
robot.

1. Introduction
The topic of multi-legged robots has been a popular research topic in recent years.1–5 Multi-legged
robots have the advantages of the ability to perform amazing terrain adaptations and high-walking
stability. Many remarkable achievements by robotics researchers have been made in the structure
design, gait analysis, and stability control of multi-legged robots. Currently, multi-legged robots are
walking out of laboratories and are ready to assist humans in completing hazardous tasks.

Many robotics researchers are focusing on the stability of legged robots, with many impressive
works recently reported. The first static stability criterion for a walking robot was proposed by McGhee
and Frank,6,7 the position of the CoM projection in the support polygon (formed by the standing feet)
was used to describe the static stability quantitatively. The Static Stability Margin (SSM) became a
criterion of the stable performance of walking robots. Next, Longitudinal Stability Margin (LSM),8

Crab Longitudinal Stability Margin (CLSM)9 and Energy Stability Margin (ESM)10 were developed
by robotics researchers to evaluate the stable performance of static walking. For dynamic locomotion,
the Centre of Pressure Method (COP)11 was the first dynamic stability criterion. The shortest distance
from the COP to the edges of the support polygon was the definition of the Dynamic Stability Margin
(DSM). In addition, Tumble Stability was proposed by Yoneda and Hirose12 to evaluate the stability
of robots performing manipulations and locomotion.

The stability criteria above are all used to ensure stable locomotion preventing a robot from
overturning, but few researchers have considered the solutions to enable legged robots to perform
self-recovery after being overturned. However, a variety of solutions have been reported about the
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self-recovery (self-righting) behaviours of some specific robots, such as wheeled and tracked robots.
JL-I,13 a tracked mobile robot, could afford capabilities for 90◦ /180◦ self-recovery by changing the
relative configures of three identical modules. As the first step to provide a generic self-righting
solution for any generic robots, a framework14,15 was proposed to seek an efficient path plan for
self-righting and applied to a physical robot with the proprioceptive sensors using 1, 2, and 3 degrees
of freedom on unknown sloped planar surfaces, it was an intuitive approach by employing the position
of CoM and potential energy to analyse the problem. However, the framework was built under quasi-
static assumptions and it will be very complicate for multi-legged robots with at least 18 joints.
Three tipover algorithms16 for mobile robot have been validated in the real world by a robot platform
based on the iRobot PackBot. RHex5 relies on its flexible leg morphology and excellent dynamic
performance to achieve the self-recovery ability, and a controller have been designed and tested
to achieve the self-recovery behaviours.17 It can be seen that the adjustable conformation or/and
predominant maneuverability of robots mainly determine the ability to perform self-recovery.

Exceptional behaviours of multi-legged robots in an unstructured environment or in the field could
occur unexpectedly. Most of such exceptional behaviours, such as broken legs, power loss, falling
into a pit, and so on, have been given much attention.18 Some specific corresponding emergency
treatments have been studied and effectively utilized to address the exceptional situations of robots.
However, few researchers considered the situation of the overturned robot. In general, robots are
ideally designed and controlled to keep from overturning. However, the occurrence of overturning
cannot be completely prevented, just as an insect or mammal can slip when walking or running,
even when being cautious. If a robot could not recover from the overturned situation, the task to be
performed by the robot must be terminated. The possible situations causing a robot to be overturned
are summarized and listed here: (a) the robot is placed into an overturned status accidentally; (b) the
robot is overturned by strong external disturbances, such as strong wind or impact; (c) the slipping of
a foot that leads to an instability that results in overturning; (d) the stability margin of the robot is too
small in the unstructured environment; and (e) the broken terrain causes the robot to overturn, and so
on.

To address the issue of overturned robots, we focus on providing strategies and solutions to enable
robots to recover by themselves. The concept of the self-recovery of a robot after being overturned is
first proposed. A self-recovering motion named SSR is presented and applied to multi-legged robots.
Here, “Sidewise” indicates that the self-recovery direction is from one side of the body to the other
side of the body. The mechanism of the self-recovery motion is based on the motion of insects via
observations. Eventually, our goal is to provide the robots the ability to self-recover and to continue
functioning when encountering the above-described exceptional situations. According to the structure
of a six-wheel-legged robot, the detailed motion planning and implementation of the self-recovery of
an overturned robot is proposed in the paper. This theoretical method could be applied to the planning
of the self-recovery motion of most multi-leg robots, such as quadruped, hexapod, and octopod robots.

The rest of the paper is organized as follows. The self-recovery of an overturned insect is described
in Section 2. Section 3 is a brief introduction to a six-wheel-legged robot named NOROS, in which
the structure and geometric parameters of the robot are presented. The motion planning and motion
implementation of self-recovery are described in Section 4 and Section 5, respectively. In Section 6,
the experimental results are described, and a discussion of the results is provided in Section 7.

2. Self-Recovery of an Overturned Insect
Most inspiration regarding robot design and locomotion has been provided by nature. Multi-legged
robots achieve superior stability by adopting the leg mechanical structure, gaits, and motions of
insects. Animals face more complicated living terrains than robots, which almost always remain in
the structured environment. The situation of being overturned arises frequently when animals live
on an uneven terrain and encounter many unknown external forces. The self-recovery motions of
specific animals such as beetle and turtle species have been studied. Twenty modes of stereotyped
righting motions were found and a basic mode was concluded in beetles.19 The relationship between
self-recovery attempts and shell geometry in turtle species also attracted researchers’ attention, and
a suitable shell could facilitate the self-recovery.20,21 Thus, animals are self-recovery experts and
have methods required to address the situation of being overturned, some of the methods may be
implemented by multi-legged robots.
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Fig. 1. An overturned insect (Eucryp torrhynchus brandti) performing self-recovery motions.22

Three crucial points for the self-recovery of insects are described here, based on careful
observations of insects recovering from being overturned. (1) The back of the body contacts the
ground after being overturned because the body has a larger proportion than the legs. (2) The insect
swings some legs to cause the body oblique to the ground, with the goal that some other legs could
touch the ground, otherwise, with all legs in the air, there are no opportunities to obtain external
power to enable the insect to recover by itself. (3) All the legs are divided into two groups: the ground
group and the aerial group. The ground group could touch the ground and support and push the body
upright, while the aerial group is in the air and swings to generate inertial forces to promote the body
for recovering, as shown in Fig. 1.

Therefore, the self-recovery mechanism characterized by the above-described three points is
denoted as SSR, which is short for SSR. The SSR mechanism is the basic rule involved in all types of
self-recovery of insects. Humans are much more agile than other animals because the proportion of
the body and legs/hands of a human is more harmonious, which enables a human to easily complete
the self-recovery movements. SSR is also a means for a human to self-recover by using the hands
and feet to swing or to support and push the body.

The similarities regarding the body structure and the motions enable multi-legged robots to employ
the SSR mechanism.

3. Brief Introduction to the Six-Wheel-Legged Robot
The robot involved in this paper, known as NOROS, is a six-wheel-legged robot that is capable
of switching between legged motion and wheeled motion.23 NOROS combines the good terrain
adaptation of legs with the high efficiency of wheels for overcoming both the low walking efficiency
of legs and the terrain limitation of wheels.24–26 The compact structure of the robot is shown in
Fig. 2(a).

The NOROS body is cylinder shaped, and a transparent plastic hemisphere shell is assembled on
top of the robot body for isolating the devices from the outside harsh environment and protecting
them from damage. Six wheel-legs are uniformly distributed around the robot body. Each wheel-leg
has three joints: hip joint, knee joint and ankle joint. A driving wheel in the shank is designed for
wheeled motion, as shown in Fig. 2(b). Gait generation, leg and wheel motion transformation, and
intelligent control of serial NOROSs were studied, and some significant results were obtained.

The specific structural parameters of NOROS are presented in Table I. To transform conveniently
and easily between wheeled motion and legged motion, the shank part is designed as a polygonal
line with two segments: the proximal shank and the distal shank. The driving wheel is placed in the
junction of the proximal shank and the distal shank. The details of the parameters of the shank are
also presented in Table I.
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Table I. Structural parameters of NOROS.

Body radius/R Hemisphere shell radius/Rs Hip/�1 Thigh/�2 Shank /�5

125.8 mm 89.4 mm 40.2 mm 120 mm 215.1 mm

Proximal shank/�3 Distal shank/�4 Shank angle/γ Wheel radius/Rw

96.2 mm 132.3 mm 140 degree 34 mm

Table II. The ranges of three joints.

Hip joint Knee joint Ankle joint

[−90, 90] [−45, 135] [−120, 60]
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Fig. 2. The six-wheel-legged robot prototype NOROS.

The servo motors of TowerPro MG995 are used to drive the joints. According to the joint structure
and limitations of servo motors, the ranges of the three joints are determined, as presented in
Table II.

4. Motion Planning of Self-Recovery of the Robot
Multi-legged robots are constructed by referring to both the template of insects and engineering design
principles. The similarity between insects and multi-legged robots is that their legs are distributed
around the body, which results in functional similarities. Therefore, the self-recovery mechanism is
also a feasible way for multi-legged robots to perform self-recovery. In addition, multi-legged robots
are designed with the self-recovering ability by nature. Here, the NOROS robot is taken as an example
to illustrate the motion planning of multi-legged robots.

According to the self-recovery mechanism and the SSR method, the self-recovery motions of
NOROS are planned with four stages, as shown in Fig. 3.

Stage 1: The hemispherical shell touching the ground
The posture of the robot is not always the same every time the robot is overturned. The first step

is to control the leg joints to adjust the robot to the desired posture (Fig. 3(a)), which is called the
“starting posture”. The specific strategy for NOROS is to unbend each of its six legs and distribute
the legs in a circularly symmetric manner around the robot body (Fig. 4). The ideal starting posture of
NOROS involves the hemisphere shell touching the ground by a contact point and the six legs being
in the air.

Each leg of NOROS is marked clockwise by Li (i = 1, 2, 3, 4, 5, and 6), as shown in Fig. 4. A
virtual model of NOROS is built and simulated in MATLAB 2010b (Fig. 4(a)), which corresponds

https://doi.org/10.1017/S0263574715001009 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574715001009


Motion planning and implementation for the self-recovery 1111

βmax

βmax

Stage 1 Stage 2 Stage 3 Stage 4

βmin

(a) (b) (c) (d) (e)

Fig. 3. Motion plan of the SSR method depicted with a series of typical body postures. These body postures
are showed with 2D and 3D diagrams. Each 2D diagram in the top row is corresponding to the 3D diagram
which is in the bottom row and directly below the 2D diagram. The 2D diagrams are the front view of the plane
where the dotted lines lie in the 3D diagrams. Four stages are planned to perform the self-recovery motions of
an overturned robot.

Fig. 4. Starting posture of the self-recovery process.

with the posture of Fig. 3(a). The prototype of NOROS shown in Fig. 4(b) corresponds with Fig. 3(b).
Here, the recovering direction is along -x axis.

Stage 2: Rolling along the hemispherical shell
Two legs Lis (i = 1 and 2) are planned to lie in a straight line on the ground to establish the

recovering axis in Stage 3 and Stage 4. The other legs Lis (i = 3, 4, 5, 6) support and push the
body upright, their motions in this stage are to reach the ground and push the body to roll along the
hemisphere shell.

Lis (i = 1, 2) orient themselves parallel to the y axis by rotating the hip joints, while Lis (i = 3,
4, 5, 6) orient themselves parallel to the x axis. Therefore, the position of the CoM of NOROS is
moved to the +x direction with four legs in the +x axis region and two legs in the −x axis region,
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the posture of NOROS is similar to Fig. 3(b). The results of these motion sequences lead to Lis (i =
3, 4, 5, 6) touching the ground and Lis (i = 1, 2) in the air.

By planning a trajectory along the x axis for the feet of the legs Lis (i = 3, 4, 5, 6), the robot
retracts these legs to support and push the body to roll along the shell until the legs Lis (i = 1, 2)
reach the ground.

Stage 3: Self-recovery motion with Lis (i = 1, 2) as a rotation shaft
In this stage, the body cannot roll any further due to the encountering of a fixed rotation shaft

(Fig. 3(c)), which is the intersecting line of L1 and L2 with the ground. In this case, the robot can’t
continue retracting Lis (i = 4, 5) to support and push the body because the two legs are not long
enough to remain in contact with the ground, while Lis (i = 3,6) can continue to retract.

The legs Lis (i = 4, 5) lose the ability to provide propulsion motion with their feet leaving the
ground, however, they can move their masses towards the recovering direction as much as possible
by rotating the knee joints and the ankle joints. The bias of the CoM of the robot towards the recovery
direction relieves the burdens of Lis (i = 3,6). The actual recovering propulsion in this stage reduces
from four legs to two legs.

A specific trajectory of Lis (i = 3,6) instead of a straight line parallel to the x axis on the ground
should be planned for the feet. The trajectory should satisfy two constraints: (1) on the ground; (2) in
the reachable space of the leg.

The purpose of this stage is to push and recover the robot to the posture shown in Fig. 3(d), where
the robot body is upright.

Stage 4: Self-recovery motion under the gravity
When passing through the posture Fig. 3(d), the robot body will fall naturally to the ground

(Fig. 3(e)) under the influence of both the inertial force and the force of gravity. Lis (i = 4, 5) are
scheduled as the first parts to reach the ground, instead of the robot body, to protect the instruments
in the robot body against damage during the fall.

Up to Stage 4, the motion plan of the self-recovery process is completed. During the self-recovery
motion, the hemispherical shell of the robot is in contact with the ground in Stage 1 and Stage 2.
An instantaneous rotational axis is established for the rolling motion between the robot body and the
ground. The position and direction of the instantaneous axis is continuously varying. The position is
determined by the contact point, while the direction is along the −y direction.

Cg indicates the contact point, as shown in Fig. 5. The coordinates of Cg have the following form:

⎧⎨
⎩

xCg = −Rsβ

yCg = 0
zCg = 0

(1)

where zCg = 0 indicates that Cg is always touching the ground. yCg = 0 indicates that Cg is along
the x axis. The direction of the instantaneous axis is along the -y direction when the configuration of
the robot body and legs remain symmetric about xz plane.

Here, we assume the poses and the motions of Lis (i = 2, 3, 4) are symmetric with Lis (i = 1,6,5)
about the xz plane. However, the actual situations are more complex because the legs of a robot
cannot move consistently in the unstructured environment. Nevertheless, the situation presented here
is basic and representative. The approach that the robot uses to implement the instantaneous axis
must follow the rule closely as possible for better control of the self-recovery process.

{
�6 = Rscos(β)
�7 = Rssin(β) (2)

where βmin ≤ β ≤ βmax, βmin = −arcsin( Rs

�1+�2+�5
), βmax = arcsin(Rs

R
). The situations of βmin and βmax

are shown in Fig. 3(b) and 3(c), respectively. The other parameters are listed in Table I.

5. Implementation of the Self-Recovery Process of the Robot
Stage 1: The hemispherical shell touching the ground
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Table III. The details of the motions implemented in Stage 2.

Symmetric Legs Motions (the simplest way)

L1 and L2 The leg joints remain stationary
L3 and L6 The feet of the two legs move forward respectively along two straight lines which are

both parallel to the x axis and on the ground
L4 and L5 The feet of the two legs move forward respectively along another two straight lines

which are both parallel to the x axis and on the ground
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Fig. 5. The diagrams of the instantaneous axis in Stage 1 and Stage 2. The 2D diagram in the top demonstrates
the instantaneous axis and the contact point Cg in the xz plane. In this view, the instantaneous axis reduces
into a “cross” symbol. The 3D visualization in the bottom shows a perspective of the whole robot body and the
ground.

The objective of this stage is to obtain the “starting posture”. The specific implementation method
is to unbend six legs and distribute them symmetrically around the robot body. The knee joint and the
ankle joint are maintained at zero position to unbend a leg. The hip joint is also kept at zero position
to make the thigh and shank lie in the radial direction of robot body. After the other five legs perform
the same actions, the robot will be in the “starting posture”. The duration of Stage 1 is [0, t1].

Stage 2: Rolling along the hemispherical shell
In this stage, the most important characteristic is that the robot performs the self-recovery motion

along the hemispherical shell, which is similar to a ball rolling on the ground. The ground reaction
forces exerted at the feet of Lis(i = 3, 4, 5, 6) support and push the rolling body.

Here, for consistent motions, the legs move symmetrically about the xz plane. The details of the
motions implemented are presented in Table III.

The symmetric motions of the legs confirm that the contact point between the hemispherical shell
and the ground lies in the xz plane and in the x axis exactly. As presented in Table III, the leg joints
Lis (i = 1, 2) remain stationary, and no additional motions are required in Stage 2. However, the other
four legs, Lis (i = 3, 4, 5, 6), should keep their feet in contact with the ground and moving forward
respectively along four straight lines which are all parallel to the x axis. The implementation of these
motions should be analysed. For such an analysis, L3 is selected as an example, noting that Lis (i =
4, 5, 6) are similar to L3.

Here, a four DOFs equivalent manipulator is utilized to build the model of L3 and the body. The
movement between the hemispherical shell and the ground is equivalent to a rotation motion whose
rotation axis, the instantaneous rotation axis, is moving forward.

The sketch diagram of L3 is shown in Fig. 6, and the DH parameters27 of the equivalent manipulator
are described in Table IV.
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Table IV. The DH parameters of an equivalent manipulator of L3 in Stage 2.

Joints θj dj αj aj

1 θ1 −R π /2 �7

2 θ2 −�6 π /2 �1

3 θ3 0 0 �2

4 θ4 0 0 �5
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Fig. 6. The sketch diagram of L3 in Stage 2. (a) shows the overturned NOROS robot in Stage 2 and the equivalent
manipulator of L3. The foot trajectory of L3 and the hemisphere shell trajectory in Stage 2 are shown in (b).
Following the foot trajectory, the robot can self-recover from the posture in the top of (b) corresponding to
the 3D diagram in (c) to the posture in the bottom of (b) corresponding to the 3D diagram in (d). The two 3D
diagrams in (c) and (d) are drawn in MATLAB 2010b.

The foot trajectory is given as follows:

p(t) = [
x(t) R 0

]T
, t ∈ [t1, t2] (3)

where x(t) is a linear function of time.
The position of the contact point Cg is a function of the roll angle β:

pCg(t) = [−Rsβ(t) 0 0
]T

, t ∈ [t1, t2] (4)

where β(t1) = βmin, β(t2) = βmax.
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Table V. The DH parameters of an equivalent manipulator of L3 in Stage 3.

Joints θj dj αj aj

1 θ1 0 π /2 �7

2 θ2 0 π /2 �1

3 θ3 0 0 �2

4 θ4 0 0 �5

Table VI. The ranges of the joints of the equivalent manipulator in Stage 3.

Joint 1 [degree] Joint 2 [degree] Joint 3 [degree] Joint 4 [degree]

[θ10,90] [−180,0] [−45, 135] [−120, 60]

By determining the base position and the end position, the inverse kinematics of the equivalent
manipulator could be solved in Stage 2. In addition, the motion of θ1 is passive and must follow the
rules: θ1(t) = β(t).

Therefore, the movement of the joints (θ2, θ3, θ4) of L3 could be achieved by solving the inverse
kinematics27 of the equivalent manipulator.

Stage 3: Self-recovery motion with Lis (i = 1, 2) as a rotation shaft
In this stage, the most important characteristic is the robot body rotates with a settled shaft produced

by Lis(i = 1, 2) in contact with the ground. The treatment is similar to that of Stage 2 by adding
the body rotation to the legs and establishing equivalents to four DoFs manipulators. The leg L3 is
assigned as the analysis object.

The implementation of the motion of L3 is shown in Fig. 7. Under the limitations of the leg joints,
the foot of L3 cannot continue moving along a straight line. A new foot trajectory must be attained to
complete the motion. Here, the DH parameters of the equivalent manipulator are described in Table
V. The ranges of joints are presented in Table VI. All joints in Stage 3 should acquire values within
the ranges:

θi.min ≤ θi ≤ θi,max, i = 2, 3, 4 (5)

For the settled shaft, the values of �6 and �7 can be obtained by:

{
�6 = 0
�7= Rsin(60◦) (6)

The robot body continuously rotates and recovers with the settled shaft. As a result, the angle of joint
1 of the equivalent manipulator should vary continuously to maintain stable. Note that the process of
orienting the robot body to be upright is equivalent to joint 1 varying from θ10 to 90 degree. θ10 is an
angle between the ground and the cross section of the robot body when the Lis (i = 1, 2) touches the
ground. We generally take βmax as the value of θ10.

When joint 1 reaches 90 degree, the robot body is completely upright. Thus, θ1 is constrained by:

θ1(t) = θ10 + (90 − θ10)

t3 − t2
(t − t2), t ∈ [t2, t3] (7)

Here, a foot trajectory is given:

⎧⎨
⎩

px(t) = xCg + Rtrajcos(γ (t))
py(t) = yCg + Rtrajsin(γ (t)), t ∈ [t2, t3]
pz(t) = 0

(8)

https://doi.org/10.1017/S0263574715001009 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574715001009


1116 Motion planning and implementation for the self-recovery

Foot
trajectory

R

Rs

Cg

7

z

x

y

12

5

x0

z0

z1

x1

z2

x2z3
x3

z4

x4

z0

z1

z2

z3 Cg

Rs

R

The ground 

Cp

Cp

γ  (t)

z
x

y

L1

L3

LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL1

LLLLLL3333333333333333333333

L6

L1

L1

L2

L3

L3

L4

L5

L6

(a)

(b)

(c)

−

−

−

−

−
−

−

−
−

−

−

−

−

−

Fig. 7. The sketch diagrams of L3 in Stage 3. The arc foot trajectory of L3 in Stage 3 are shown in (a). Following
the foot trajectory, the robot can self-recover from the posture in the top of (a) corresponding to the 3D diagram
in (b) to the posture in the bottom of (a) corresponding to the 3D diagram in (c). The two 3D diagrams in (b)
and (c) are drawn in MATLAB 2010b. In this stage, only two legs (L3 and L6) can be employed to perform the
self-recovery motions.

where Rtraj is the radius of the foot trajectory, and

γ (t) = 45◦

t3 − t2
(t − t2), t ∈ [t2, t3] (9)

By determining θ1(t) and the foot trajectory p(t) and using the DH parameters, the analytic solution
of the inverse kinematics of the equivalent can be attained. Thus, we can determine the values of (θ2,
θ3, θ4) to control the legs to push and recover the robot body.

Stage 4: Self-recovery motion under gravity
In Stage 3, the legs Lis (i = 3, 4, 5, 6) contact the ground with their feet to exert the ground reaction

forces required to support and push the robot body upright. The force of gravity on the robot body
contributes negative work to accomplish the self-recovery motion described in the previous three
stages. In contrast, it is the forces of the gravity of the robot body and Lis (i = 4, 5) that compel the
robot to fall to the ground in this stage. The six legs only keep the respective joints stationary, i.e.,

https://doi.org/10.1017/S0263574715001009 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574715001009


Motion planning and implementation for the self-recovery 1117

0 50 100 150 200 250 300

−150

−100

−50

0

50

100

150

 

 

Hip Joint

Knee Joint

Ankle Joint

0 50 100 150 200 250 300

−150

−100

−50

0

50

100

150

 

 

Hip Joint

Knee Joint

Ankle Joint

0 50 100 150 200 250 300

−150

−100

−50

0

50

100

150

 

 

Hip Joint

Knee Joint

Ankle Joint

0 50 100 150 200 250 300

−150

−100

−50

0

50

100

150

 

 

Hip Joint

Knee Joint

Ankle Joint

0 50 100 150 200 250 300

−150

−100

−50

0

50

100

150

 

 

Hip Joint

Knee Joint

Ankle Joint

0 50 100 150 200 250 300

−150

−100

−50

0

50

100

150

 

 

Hip Joint

Knee Joint

Ankle Joint

L1 L2

L3

L5

L4

L6

t1 t2 t4 t1 t2 t4

Angle/° 

Angle/° 

Angle/° 

Knee joint and ankle joint

Knee joint and ankle joint

t3 t3

Fig. 8. Variations of the hip, knee, ankle joints of Lis (i = 1, 2, 3, 4, 5, and 6).

Lis (i = 1, 2) remain in contact with the ground and form the rotational shaft of the body falling, and
Lis (i = 3, 4, 5, 6) retain their postures in the air and fall naturally under the force of gravity.

The falling process will result in the legs Lis (i = 4, 5) first reaching the ground instead of the robot
body to avoid damage of the body due to impact with the ground. This is a vital step in the last stage
of recovery. Finally, the robot body will reach the ground gently with the extending motion and the
support of Lis (i = 4, 5). At this point, the robot has completed the self-recovery motion successfully.

6. The Experiments of the NOROS Self-Recovery Process
NOROS is used to verify the motion planning and implementation of the SSR method for self-
recovery. The drive servo-motors of NOROS are controlled by position, which makes each robot
leg move easily via issuing of the angle values to the respective joints. Obviously, the self-recovery
motion is a quasi-static motion of the NOROS robot.
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Fig. 9. Self-recovery experiment for NOROS. The number in the bottom of each picture characterizes the stage
of the self-recovery motions.

According to the planning and implementation of the self-recovery motion of the robot, the foot
trajectories of the six legs are respectively established in each stage. The inverse kinematics of the
legs or the equivalent manipulator are used to calculate all of the values of the joints. By setting the
joint angles, the feet of the six legs will move along the desired trajectories. The variations of each
joint of each leg are shown in Fig. 8. The time range of Stage 1 is [0, t1], that of Stage 2 is [t1, t2],
and that of Stage 3 is [t2, t3].

Some key postures of NOROS during the self-recovery process are captured from the experiment,
as shown in Fig. 9. The number in each picture bottom is the stage identification of the self-recovery
process of NOROS. The last picture shows that NOROS has successfully performed the self-recovery
process after being in an overturned situation, which confirms that the SSR method is feasible for
NOROS.

Conclusion and Discussion
Multi-legged robots are walking out from laboratories and now are ready to perform hazardous tasks,
which enables humans to avoid performing these tasks. An unexpected overturned situation may
occur at any time when robots performing tasks. The robot should enable to perform self-recovery
and continue to complete the task. Therefore, a self-recovery solution for multi-legged robots, named
the SSR method, was presented in this paper. The self-recovery of an overturned insect was first
introduced and three crucial points for the self-recovery were concluded. The insects utilize and
control their legs to perform self-recovery without additional help. The dangling legs move to bias
the body and the landing legs support and push the body to enable recovery. Detailing the motion
of each leg provides a way to implement the SSR method. The similarities between multi-legged
robots and insects indicates that the SSR method can be applied on multi-robots for performing self-
recovery. We planned and implemented the self-recovery motion of a multi-legged robot. The motion
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(a)

(b)

(c)( )

Fig. 10. (a) The terrain is characterized by stairs. (b) The terrain is characterized by a slope surface. (c) The
terrain is characterized by a curved surface. Obviously, compared with the flat terrain (as shown in Fig. 3), the
Stage 1 and Stage 2 are not required on the listed terrains ((a), (b) and (c)), which will save energy for the robot
accomplishing the first two stages of self-recovery motions. The red areas (transparency 63%) are the convex
portions which the feet and the body could employ to easily obtain the adequate ground reaction forces and
reduce the joint torque for the self-recovery motions.

was divided into four stages and in each stage the movement of each leg of the robot was given. In
addition, the robot named NOROS was introduced and used to perform self-recovery for validating
the feasibility of the SSR method. The results of the self-recovery experiments demonstrated that the
NOROS can successfully complete the self-recovery motion according to the planned motions, the
SSR is a suitable method for robots that have six or more legs.

However, the effectiveness of the SSR method has only been tested in the flat terrain, and only
the kinematics of motion was used to obtain the analytic solutions of the joints. The four stages for
self-recovery motion are quasi-static, and the dynamics effects of the swing legs have been neglected.
Actually, some rough terrains could help the robot for self-recovery. When the robot is overturned
on a rough terrain, such as stairs, a slope or a convex curve surface (as shown in Fig. 10), the convex
portions of the rough terrain can support the feet of legs for more easily obtaining the adequate
ground reaction forces than flat terrain. In fact, the most challenge condition to prevent the robot
from recovering is that the robot body is blocked at the bottom of the steep pit, this is a very rare
circumstance. In future work, posture sensors (IMU) mounted on the centre of the body and force
sensors mounted on the ends of the feet will be employed to measure the posture of the body and
to detect whether the feet have contacted with the terrain respectively. Thus, the motion planning
method for the robot self-recovering in flat terrain will be extended to the rough terrain case with
consideration of dynamics analysis for high performance and adaptability.
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