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Abstract

In this work, a new compact, low profile, frequency, and end-fire pattern reconfigurable
antenna is presented. The proposed antenna consists of four parasitic elements and an
electric-inductive-capacitive (ELC) resonator enclosed with a closed ring resonator (CRR).
The reconfigurability in the proposed antenna is achieved with the help of five PIN diodes
(D1–D5) embedded on the top surface of the substrate. The diode (D1) is implanted between
ELC and CRR resonators for frequency reconfigurability. The other four diodes (D2–D5) are
implanted between the ground plane and four parasitic elements to control the electrical
length of the ground plane to achieve pattern diversity. The ground plane and parasitic ele-
ments steer the primary omni-directional beam to bi-directional and uni-directional end-
fire radiation at multiple frequencies. The proposed antenna exhibits multiband operation
and end-fire pattern diversity depending upon the different states of PIN diodes. The overall
size of the proposed antenna is 0.20λ0 × 0.17λ0 × 0.009λ0, where λ0 is calculated at the lowest
resonance frequency. The impedance bandwidth of the antenna ranges from 1.45 to 26.22%,
while peak gain varies from 0.86 to 3.86 dBi depending upon the state of operation. The mea-
sured results are in agreement with the simulated results, which confirm the frequency
and pattern diversity performance of the antenna. The proposed antenna can be used in
back-to-back repeater systems.

Introduction

The contemporary portable wireless communication devices need multi-functional antennas,
which are adaptable to the changing system requirements. The reconfigurable antennas have
received substantial consideration in recent years, due to their capability of changing fre-
quency, polarization, or radiation pattern of the electromagnetic waves. The reconfigurability
achieved can be single or it may be in the combination of two or more. As single antenna func-
tions for multiple frequency bands, the frequency reconfigurability saves space and reduces the
overall size of the device. The pattern reconfigurable antenna immensely augments the cellular
system performance by steering the beam in the desired direction and improving the
signal-to-noise ratio in the noisy environment. The reconfigurability can be realized through
optical, electrical, or mechanical means, or by using special materials such as liquid crystals.
However, the mechanical reconfigurable antenna systems have a complex and bulky configur-
ation. Therefore, researchers are more interested in electrically reconfigurable antennas, as they
have less complexity and are easy to fabricate. In the last decade, various reconfigurable
antenna mechanisms have been reported by a number of researchers [1–19]. The frequency
agile antennas using metamaterial elements were studied and developed in [2, 3]. The antenna
reported in [4] used epsilon negative transmission line for frequency reconfigurable character-
istics, considering GSM and WLAN applications. In [5], radio frequency micro-electro-
mechanical-system (RF MEMS) switches were integrated with a square spiral antenna for
achieving pattern reconfigurability. The annular slot antenna in [6] utilized a dual-feed tech-
nique for pattern reconfigurability. The frequency and pattern agile antenna developed by
embedding ground slot and two slits on the patch in [7, 8]. The antennas with end-fire pattern
reconfigurability using parasitic elements were investigated in [9, 10]. A mechanical and
frequency reconfigurable antenna with two microstrip patches connected with one feed line
was reported in [11]. The antenna based on reconfigurable matching network and the annular
slot was realized in [12], for the pattern and frequency reconfigurability. The complementary
split-ring resonator loaded pattern reconfigurable antennas with diverse radiation patterns
were characterized and reported in [13, 14]. A dual-band dual-pattern patch antenna
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comprised of varactor diodes and four stubs with independent
band tuning was reported [15]. A dual-feed ultra-wideband
(UWB) planar antenna with pattern and polarization diversity
was presented [16]. Further, the polarization-agile antennas
with L-shaped [17] and staircase ground slots [18] were studied
and developed. Recently, a dual-band coplanar waveguide
(CPW)-fed antenna inspired by 90° rotated electric-inductive-
capacitive (ELC) resonator was proposed [19]. However, most
of the reported reconfigurable antenna designs have complex
geometry, relatively large size, limited operating bands, and less
design flexibility.

This work presents a simple, compact, low-cost, parasitic ELC
resonator-based reconfigurable antenna exhibiting frequency and
pattern diversity. The proposed antenna is suitable for steering
omni-directional radiation pattern into bi-directional and uni-
directional end-fire radiation patterns for multiple frequencies.
DC bias circuit is installed on parasitic elements to control the
state of PIN diodes. The DC bias circuit is simple and does not
involve vias, RF inductor coils, or DC blocking capacitors for its

designing. Since the diodes are implemented on the ground
plane, the DC bias lines are not required for connecting PIN
diodes to the parasitic elements [17, 18]. Compared to the above-
mentioned antennas [1–22], the designed antennas do not need
multiple feeding ports and complex geometry to achieve reconfi-
gurability. Also, the proposed antenna does not require an extra
matching network compared to the antennas in [5] and [12].
The paper is organized into four sections. The design process,
specifications, and parametric study of the proposed reconfigur-
able antenna are presented in section “Antenna design”. The
experimental and simulated results are discussed in section
“Results and discussion” and section “Conclusion” presents a
brief conclusion.

Antenna design

Figure 1 shows the geometry of the proposed reconfigurable
antenna. The proposed CPW-fed antenna is comprised of a para-
sitic ELC resonator and closed ring resonator (CRR), both

Fig. 1. Geometry of the proposed reconfigurable
antenna: (a) top view, (b) side view.

Table 1. Dimensions of the proposed reconfigurable antenna

Parameter Value (in mm) Parameter Value (in mm) Parameter Value (in mm)

Wsub 29 Gcut 1 Lg1 8

Lsub 34 Wf 1.5 Lg2 10

Hsub 1.6 Lg 10.5 Gf 0.25

L 19 Wg 13.5 W =WCRR 0.95

G 1 Lp 4 Wg1 2
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connected through a PIN diode. Four metal strips of different
lengths are introduced on the two sides of the resonators; the
two metal strips (which act as a parasitic element) on each side
are connected by using PIN diodes (SMP1345-040LF Skyworks)
as shown in Fig. 1(a). The overall size of the proposed antenna
is 34 mm × 29 mm × 1.6 mm. A low-cost FR-4 substrate with a
relative permittivity of 4.4, loss tangent 0.02, and thickness (h)
1.6 mm is used for fabricating the prototype antenna. The opti-
mized dimensions of the proposed antenna are given in Table 1.

The design process of the proposed reconfigurable antenna is
explained in two sub-sections as follows:

Design flow

The antenna designing steps are presented in Fig. 2. Figure 3(a)
signifies the simulated return loss characteristics of the antenna
evolution steps. The antenna designing starts from a simple
square loop resonator (Antenna 1) as shown in Fig. 2(a). The
square loop antenna resonates for a single band. In the next
step, the proposed Antenna 1 is loaded with a parasitic ELC res-
onator (Antenna 2) as illustrated in Fig. 2(b). Subsequently,
Antenna 3 is proposed by introducing rectangular parasitic strips

as shown in Fig. 2(c). The Antenna 2 shows dual-band resonance
while Antenna 3 resonates for three bands. Here, the motivation
was to design a pattern reconfigurable multiband antenna.

Parametric analysis of the proposed antenna

The proposed antenna designing begins with a CRR loaded
Antenna 1 (with a side length of 19 mm), resonating at
2.87 GHz. Antenna 2 is obtained by introducing a parasitic ELC
resonator of side length 15.1 mm inside the CRR, with a self-
resonance frequency of around 5 GHz. The ground plane of the
antenna is optimized for dual-band operation. Antenna 2 reso-
nates at two bands with center frequencies 2.8 and 4.9 GHz.
The upper band at 4.9 GHz is due to the ELC resonator. Owing
to the mutual coupling effect between the two resonators in
Antenna 2, a small shift in the resonating frequencies is observed,
as depicted in Fig. 3(b). Antenna 3 is realized by loading four rect-
angular parasitic elements at the two ends of Antenna 2. Antenna
3 resonates for three frequency bands centered around 2.35, 2.8,
and 4.8 GHz. The middle resonating band (2.8 GHz) of the
square CRR is affected by the variations in CRR width (WCRR).
The CRR width is optimized for triple-band operation and its

Fig. 2. Design flow of the proposed antenna: (a)
Antenna 1, (b) Antenna 2, (c) Antenna 3, (d) Antenna 4.
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effects are demonstrated in Fig. 3(b). The upper resonating
frequency (4.8 GHz) of Antenna 3 is affected by variations in
the ELC resonator gap width (Gcut) between the stubs. The Gcut

is optimized for triple-band operation as shown in Fig. 3(c).
The lower resonating frequency (2.35 GHz) of Antenna 3 is
affected by variations in parasitic element width (Wg1). The
value of Wg1 is optimized for triple-band operation which is
shown in Fig. 3(d). Further, the PIN diodes are embedded in
Antenna 3 to obtain the final design. The layout of the proposed
triple-band reconfigurable Antenna 4 is shown in Fig. 2(d). The
ground plane is further optimized for impedance matching at
three frequency bands centered around 2.28, 2.8, and 4.7 GHz.

Results and discussion

The antenna return loss is measured using Agilent PNA-L
N5230A network analyzer and radiation patterns are measured
inside an anechoic chamber. Five SMP1345-040LF PIN diodes
from Skyworks are utilized for reconfiguring the proposed
antenna. The diode offers a resistance of 1.5 Ω in series with an
inductance of 0.45 nH in ON condition. While in OFF state it
offers 0.45 nH inductance in series with a shunt capacitance of

Fig. 3. (a) Simulated S11 of antenna designing steps, (b) S11 variation of Antenna 3 with CRR width (WCRR), (c) S11 variation of Antenna 3 with ELC gap width (Gcut),
(d) S11 variation of Antenna 3 with parasitic width (Wg1).

Fig. 4. Photograph of the fabricated reconfigurable antenna.
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0.2 pF and a resistance of 500 KΩ. A DC blocking capacitor of
20 pF and RF choke inductor of 22 nH are used to isolate DC
bias and RF feed lines. The DC biasing lines are fabricated with
smaller dimensions so they may have little impact on antenna
radiation and impedance characteristics. In the proposed design,
to minimize the effect of bias line on antenna performance, the
bias lines are made orthogonal to the radiator. The fabricated
DC bias lines have a width of 0.3 mm and a length of 2 mm.
Figure 4 shows the photograph of a fabricated ELC resonator-
based reconfigurable antenna.

The operation mechanism of the proposed antenna is dis-
cussed here. The frequency diversity is achieved by exciting
the CRR and ELC resonators separately and collectively, and

by mutual coupling between the parasitic elements and two
resonators. The PIN diodes implanted between the ground
plane and four parasitic elements control the electrical length
of the ground plane to accomplish pattern diversity. The
ground plane and parasitic elements along with PIN diodes
function as a reflector director or vice-versa, depending upon
the state of implanted PIN diodes. The ground plane and para-
sitic elements jointly steer the primary omni-directional beam
to bi-directional and uni-directional end-fire radiated beam
at multiple frequency bands, depending upon the state of
PIN diodes.

The surface current distribution is studied to interpret the end-
fire beam reconfigurability. The simulated surface current

Fig. 5. Simulated surface current distribution and 3D radiation pattern in end-fire mode: (a) surface current when diode D2 is ON, (b) surface current when diode D3
is ON, (c) 3D radiation pattern when diode D2 is ON (+x), (d) 3D radiation pattern when diode D3 is ON (−x).
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distributions and 3D radiation patterns at 4.76 GHz, when the
antenna is in state-5 and state-6, are illustrated in Fig. 5. It is
noticed that when the diode D2 is ON, the parasitic element at
the right end of the antenna is attached to the ground plane
and work as a reflector, directing the main beam toward (+x) dir-
ection. Next, when the diode D3 is ON, the parasitic element at
the left end is attached to the ground plane and works as a
reflector, directing the main beam toward (−x) direction. This
is due to the non-symmetrical distribution of surface current
around the y-axis, on the resonator and on the ground plane.
Here, the parasitic element and ground plane jointly work as a
reflector. This results in an end-fire beam in the XZ- (H)-plane.

When the parasitic elements are not connected to the ground
plane, then they are not resonating [9]. It is also clear from
Fig. 6 that current distribution is symmetrical around the y-axis.
The maximum current is concentrated along the outer surface
of CRR and at the top edge of the ground plane, while very
small current lies along the periphery of ELC. This type of surface
current distribution results in an omni-directional beam in the
XZ- (H)-plane.

Each side of the parasitic element is configured with two PIN
diodes. Initially, when all the diodes are in OFF state, the antenna
operates in state-1, both ELC and CRR have no physical connec-
tion and parasitic elements are not connected to the ground

Fig. 6. Simulated surface current distribution and 3D radiation pattern in omni-directional mode: (a) surface current, (b) 3D radiation pattern.

Table 2. State table for the proposed reconfigurable antenna

State

PIN diode

Resonating frequency (GHz) −10 dB Bandwidth (%) Reconfigurability achievedD1 D2 D3 D4 D5

1 OFF OFF OFF OFF OFF 2.28, 2.8, 4.7 2.41, 9.31, 1.65 Frequency

2 ON OFF OFF OFF OFF 2.26, 2.84 1.85, 6.65

3 OFF OFF OFF OFF ON 2.18, 2.8, 4.64 2.22, 9.91, 2.05 Frequency and pattern

4 OFF OFF OFF ON OFF 2.16, 2.9, 4.78 2.75, 8.37, 3.5

5 OFF OFF ON OFF OFF 2.2, 2.92, 4.0, 4.76 5.9, 9.77, 6.25, 3.96 Frequency and pattern

6 OFF ON OFF OFF OFF 2.18, 2.94, 4.04, 4.76 4.1, 9.07, 6.39, 4.06

7 OFF ON ON OFF OFF 2.3, 3.86 3.47, 26.22 Frequency

8 ON ON ON ON ON 3.1 9.93

9 ON OFF OFF OFF ON 2.2, 2.8, 4.84 2.7, 5.51, 1.95 Frequency and pattern

10 ON OFF OFF ON OFF 2.2, 2.8, 4.82 1.8, 5.35, 1.65

11 ON OFF ON OFF OFF 2.16, 2.36, 2.86, 4.82 3.5, 3.89, 5.53, 2.6 Frequency and pattern

12 ON ON OFF OFF OFF 2.12, 2.68, 4.74 2.57, 4.68, 1.97

13 ON ON OFF ON ON 1.82, 2.22, 2.82, 3.12 3.97, 1.83, 3.22, 1.75 Frequency and pattern

14 ON ON ON OFF ON 1.74, 3.14, 3.86, 4.6 2.37, 1.85, 4.98, 1.45
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plane. In this state, the antenna resonates for three bands (2.28,
2.8, and 4.7 GHz) and the radiation pattern is like a dipole
antenna. Next, when only diode D1 is ON, the antenna operates
in state-2 showing dual-band operation (2.26 and 2.84 GHz).
Since the parasitic elements are not connected to the ground
plane, the radiation pattern is the same as in state-1. Further,
when diode D5 is ON and rest of the diodes are in OFF state,
the antenna operates in state-3; in this case, the left-side parasitic
elements work as a reflector for 4.64 GHz, while the right-side
parasitic elements work as a director, this results in radiation in
the (+x) direction and the pattern shows +90° shift at
4.64 GHz, while at 2.18 and 2.8 GHz, the pattern is omni-direc-
tional. Similarly, when the diode D4 is ON and rest of the diodes
are in OFF state, the antenna operates in state-4; in this case, the

right-side parasitic elements work as a reflector for 4.78 GHz,
which results in shift in the (−x) direction, the pattern shows
−90° shift at 4.78 GHz, while at 2.9 GHz, the pattern is
omni-directional.

Furthermore, in state-5, when the diode D3 is ON and other
diodes are in OFF state, the left-side parasitic element is con-
nected to the ground plane and works as a reflector for three
bands (2.2, 4, and 4.76 GHz). The main beam steers from omni-
directional to end-fire (+90°). When the diode D2 is ON and
other diodes are in OFF state, the antenna operates in state-6
and the right-side parasitic element is linked to the ground
plane. At this point, the right-side ground plane and parasitic
element jointly perform as the reflector. The main beam steers
from omni-directional to end-fire (−90°) for three frequency

Table 3. Simulated results for different states of the proposed reconfigurable antenna

State
Resonating frequency

(GHz)
Peak gain at resonating

frequency (dBi) Radiation

1 2.28, 2.8, 4.7 1.28, 2.27, 2.0 Omni-directional, omni-directional, omni-directional

2 2.26, 2.84 1.01, 2.16

3 2.18, 2.8, 4.64 1.13, 2.2, 3.6 Omni-directional, omni-directional, bi-directional end-fire (+90, −90)

4 2.16, 2.9, 4.78 1.47, 1.65, 3.72

5 2.2, 2.92, 4.0, 4.76 1.74, 2.3, 2.32, 3.6 Bi-directional end-fire (+90, −90), omni-directional, bi-directional end-fire
(+90, −90), bi-directional end-fire (+90, −90)

6 2.18, 2.94, 4.04, 4.76 1.72, 2.3, 2.32, 3.86

7 2.3, 3.86 1.04, 3.07 Omni-directional, omni-directional, omni-directional

8 3.1 1.72

9 2.2, 2.8, 4.84 0.86, 1.9, 2.5 Omni-directional, omni-directional, bi-directional end-fire (+90, −90)

10 2.2, 2.8, 4.82 1.17, 1.97, 2.6

11 2.16, 2.36, 2.86, 4.82 1.5, 1.25, 1.93, 3.28 Uni-directional end-fire (+90), uni-directional end-fire (+90), omni-directional,
uni-directional end-fire (+90)

12 2.12, 2.68, 4.74 0.79, 1.67, 1.52 Uni-directional end-fire (−90), omni-directional, uni-directional end-fire (−90)

13 1.82, 2.22, 2.82, 3.12 0.99, 1.05, 1.07, 1.22 Uni-directional end-fire (−90), uni-directional end-fire (−90), omni-directional,
uni-directional end-fire (−90)

14 1.74, 3.14, 3.86, 4.6 0.83, 1.4, 2.1, 2.61 Uni-directional end-fire (+90), omni-directional, uni-directional end-fire (+90),
omni-directional

Table 4. Comparison between the proposed antenna and other reported reconfigurable antennas

Ref. Resonating frequency (GHz) Overall antenna size Peak gain (dBi) Switching element Reconfigurability achieved

This work Multiple 0.20λ0 × 0.17λ0 3.86 5-PIN diode Frequency and pattern

[4] 1.8, 2.4 0.24λ0 × 0.24λ0 1.05 2-PIN diode Frequency

[7] 1.82, 1.93, 2.1 0.79λ0 × 1.84λ0 9.3 14-PIN diode Frequency and pattern

[8] 4.5, 4.8, 5.2, 5.8 0.75λ0 × 0.75λ0 3.8 4-PIN diode Frequency and pattern

[9] 3–6 0.42λ0 × 0.38λ0 2.1 4-PIN diode Pattern

[10] 1.5 0.65λ0 × 0.65λ0 7 4-PIN diode Pattern

[11] 2.43, 3.3 0.47λ0 × 0.81λ0 5.5 5-PIN diode Frequency and pattern

[13] 2.45 0.82λ0 × 0.78λ0 6.92 8-PIN diode Pattern

[14] 1.85, 2.45 – 2.96 8-PIN diode Frequency and pattern

[15] 2.62–2.91, 3.42–3.81 0.87λ0 × 0.87λ0 – 4-Varactor diode Frequency and pattern

[22] 6.646, 6.685, 6.708, 6.761 1.25λ0 × 1.25λ0 5.93 3-RF MEMS Frequency and pattern

International Journal of Microwave and Wireless Technologies 169

https://doi.org/10.1017/S1759078719001077 Published online by Cambridge University Press

https://doi.org/10.1017/S1759078719001077


bands (2.18, 4.04, and 4.76 GHz). When the diodes D2 and D3
are in ON condition, the antenna operates in state-7, and in
this case, the parasitic elements on both sides get linked to the
ground plane, which results in the split of the antenna fundamen-
tal frequency, 2.8 to 2.3 and 3.86 GHz with the omni-directional
radiation pattern. Furthermore, when all the diodes are in ON
state, the antenna operates in state-8, and in this case, all the para-
sitic elements are connected to the ground plane, with the funda-
mental frequency of 3.1 GHz and the omni-directional pattern.

When the diodes D1 and D5 are ON and other diodes are in
OFF state, in this case, both the ELC and CRR are connected
together and the antenna operates in state-9. In this state, the
two left-side parasitic elements jointly work as a reflector resulting
in an end-fire pattern (+90°) for 4.84 GHz, while at 2.2 and
2.8 GHz, the radiation patterns are omni-directional. When
diodes D1 and D4 are ON, the antenna operates in state-10. In
this state, the two right-side parasitic elements jointly work as a
reflector for 4.82 GHz resulting in an end-fire pattern (−90°),
while for 2.2 and 2.8 GHz, the main beam is omni-directional.
Moreover, when the diodes D1 and D3 are ON, connecting
ELC and CRR, the antenna operates in state-11. In this case,

the left-side parasitic element connects to the ground plane,
which operates as a reflector for three bands (2.16, 2.36, and
4.82 GHz), resulting in an end-fire beam (+90°). When the diodes
D1 and D2 are ON, the antenna operates in state-12. In this case,
the right-side parasitic element connects to the ground plane and
works as a reflector for two bands (2.12 and 4.74 GHz), which
provides end-fire beam (−90°).

When the diodes D1, D2, D4, and D5 are ON, the antenna
operates in state-13. In this case, the two right-side parasitic ele-
ments connect to the ground plane and act as a reflector, which
results in end fire (−90°) pattern for three bands (1.82, 2.22,
and 3.12 GHz). When the diodes D1, D2, D3, and D5 are ON,
the antenna operates in state-14, and the two left-side parasitic
elements connect to the ground plane acting as a reflector,
which results in end fire (−90°) pattern for two bands (1.74
and 3.86 GHz). Tables 2 and 3 show the detailed state-wise ana-
lysis of different diode combinations. Figure 7 shows the compari-
son between simulated and measured return loss characteristics
for different states of PIN diode combinations (as mentioned in
Table 2). Figure 8 depicts normalized simulated and measured
radiation patterns in both E- (YZ) and H- (XZ)-planes for

Fig. 7. Simulated and measured S11 of the proposed antenna: (a) simulated S11 for state-(1–7), (b) simulated S11 for state-(7–14), (c) measured S11 for state-(1–7), (d)
measured S11 for state-(7–14).
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Fig. 8. Simulated and measured radiation patterns of the proposed antenna for state-1 to state-14 in E- (YZ) and H- (XZ)-planes.
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Fig. 8. Continued.
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Fig. 8. Continued.
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different diode combinations (as mentioned in Table 2). A com-
parative summary of the designed antenna with reported recon-
figurable antenna designs is presented in Table 4.

Conclusion

In the present work, a compact, frequency, and pattern reconfig-
urable antenna is developed and tested. The proposed CPW-fed
antenna is comprised of CRR and ELC resonators, four parasitic
elements, and five switches. The proposed antenna shows fre-
quency diversity by exciting resonances of CRR and ELC separ-
ately and collectively, through mutual coupling between the
parasitic elements and resonators. The pattern diversity is realized
by controlling the electrical lengths of the parasitic elements and
ground plane. Depending upon the states of PIN diodes, the
ground plane and parasitic elements together work as a reflector
director or vice-versa and steer the primary omni-directional
beam to bi-directional and uni-directional end-fire beams, at mul-
tiple frequency bands. The prototype of the proposed structure is
fabricated and the experimental results show a close resemblance
to the simulated results. The proposed antenna is simple to
design, and has moderate gain and capability to alter its working
frequency and radiation patterns. The antenna could be useful for
back-to-back repeater systems.
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