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We propose a cluster-based control strategy for feedback control of post-stall separated
flows over an airfoil. The present approach partitions the flow trajectories (force
measurements) into clusters, which correspond to characteristic coarse-grained phases
in a low-dimensional feature space. A feedback control law (using blowing/suction
actuation) is then sought for each cluster state through iterative evaluation and
downhill simplex search to minimize power consumption in aerodynamic flight. The
optimized control laws re-route the flow trajectories to the aerodynamically favourable
regions in the feature space in a model-free manner. Utilizing a limited number of
sensor measurements for both clustering and optimization, these feedback laws
were determined in only O(10) iterations. The objective of the present work is not
necessarily to suppress flow separation but to minimize the desired cost function to
achieve enhanced aerodynamic performance. The present approach is applied to the
control of two- and three-dimensional separated flows over a NACA 0012 airfoil in
large-eddy simulations at an angle of attack of 9◦, Reynolds number Re= 23 000 and
free-stream Mach number M∞=0.3. The optimized control laws avoid the intermittent
occurrence of long-period shedding associated with high-drag clusters, thus lowering
the mean drag. The present work aims to address some of the challenges associated
with feedback control design for turbulent separated flows at moderate Reynolds
number.
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1. Introduction

There is tremendous interest in designing optimal feedback controllers for complex
turbulent separated flows to achieve various engineering and technological benefits.
Such a feedback control design that autonomously adjusts depending on the state
of the flow has advantages in terms of minimizing energy input and robustness to
changes in flow conditions (Colonius & Williams 2011). Traditionally, excitation
of flow instabilities based on open-loop periodic forcing (Greenblatt & Wygnanski
2000) and feedback control design based on a linear systems approach (Kim &
Bewley 2007) have guided flow control designs. The linear systems framework often
relies on linearization of the governing Navier–Stokes equation based on which
model-predictive control using adjoint-based optimization techniques or optimal
control laws using Riccati-based feedback are designed (Bewley 2001; Bänsch et al.
2015; Carini, Pralits & Luchini 2015). However, such control laws derived from linear
theory are not able to explore and exploit the nonlinear mechanisms in fluid flows.
Also, for real-time fluid flow control, the computational burden is prohibitively large
in terms of resources, processing time and data storage, even for simple geometries.

To alleviate the computational concerns, control strategies are built on low-order
dynamical models obtained via model reduction (Protas 2004; Pinier et al. 2007;
Barbagallo, Sipp & Schmid 2009; Noack, Morzynski & Tadmor 2011) or with the
use of system identification techniques (Huang & Kim 2008; Bagheri, Brandt &
Henningson 2009; Semeraro et al. 2011; Illingworth, Morgans & Rowley 2012;
Brunton, Proctor & Kutz 2016). Suppressing the large-scale coherent structures
in reduced-order models has been shown to mitigate wake unsteadiness, yielding
drag reduction in bluff body wake flows (Noack, Tadmor & Morzynski 2004; Mao,
Blackburn & Sherwin 2015). Although these methods offer tremendous promise, there
are considerable challenges in modelling the interaction of these coherent structures
and frequency cross-talk for higher Reynolds numbers, especially in the context of
control (Luchtenburg et al. 2009). Also, to extract accurate reduced-order models that
incorporate nonlinear mechanisms and design control strategies based on them require
a high degree of human experience and expertise.

Alternatively, data-driven flow control holds great potential due to advanced
algorithms in machine learning, and modern computational hardware (Brunton &
Noack 2015). Using model-free alternatives such as genetic programming, separation
control over backward-facing step flow (Gautier et al. 2015) and sharp edge-ramp
(Debien et al. 2016) and feedback control of turbulent shear flows (Duriez, Brunton
& Noack 2016) have been achieved in an automated fashion. However, these machine
learning control techniques are computationally expensive requiring O(1000) runs
to extract meaningful control laws. Extremum-seeking control has shown the ability
to adapt to changing flow conditions (Ariyur & Krstic 2003; Beaudoin et al. 2006)
but offers limited flexibility in design of general control laws, optimizing one or
few parameters. For control law representations using artificial neural networks,
the number of parameters tends to be very large and their optimization requires
significant pre-conditioning (Rabault et al. 2019). In the present work, we propose a
cluster-based strategy for learning feedback control laws directly from coarse-grained
fluid flow data to control post-stall separated flow over a canonical airfoil. These
control laws have the ability to adapt to nonlinear response from the flow and
are deduced in a model-free and automated fashion, allowing for multi-parameter
optimization typically with O(10) runs. In general, optimization procedures for flow
control requires a large number of iterations, but here it scales with the number of
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discrete clusters, alleviating computational expense for designing feedback control
laws for both simulation and experiments.

The aerodynamic force trajectories are indicators of stall conditions in separated
flows. Thus, a small number of force measurements are sufficient to define a feature
space without the knowledge of the high-dimensional full flow state. A locally
linear mapping of these feature space trajectories can be used to obtain full-state
reconstruction of the flow (Loiseau, Noack & Brunton 2018). Partitioning the feature
space into groups sharing similar attributes, called clusters, the system dynamics can
be represented as a linear, probabilistic Markov chain (Kaiser et al. 2014). Each
cluster corresponds to a characteristic coarse-grained phase of the flow. The transition
dynamics between clusters in the feature space translate to the transition between the
flow states associated with the clusters. Such a coarse-graining of the feature space
into clusters can be applied to incorporate nonlinear control mechanisms. Assigning a
control law to each discrete cluster and actively monitoring and sensing the variables
of interest enable the feedback control of flows.

In the present work, we consider the use of cluster analysis in a low-dimensional
feature space to iteratively optimize global feedback control laws in a computationally
tractable manner. The present objectives are three-fold; (i) partition the baseline flow
trajectories (force measurements) into discrete clusters using unsupervised clustering
analysis, (ii) optimize the feedback control law in a model-free manner using the
discretized clusters, and finally (iii) analyse the optimization procedure and the
optimal control laws. In contrast to utilizing the cluster-based reduced-order models
(CROM) for control (Kaiser et al. 2017b, 2018) or manipulating the energy transfer
between coherent structures, the current control strategy is primarily based on the
notion of diverting the force trajectories to favourable regions in the feature space
in an automated and model-free fashion. The baseline linear transition dynamics
and the dynamics to achieve desirable flow behaviour with control are only examined
a posteriori with the help of networked Markov chains. Previous efforts have primarily
focused on deducing optimal or sub-optimal control laws in physical state-space
coordinates. Our approach provides a discrete representation of the control law in
terms of low-dimensional feature space coordinates, which improves its applicability
to both computational and experimental settings.

We provide an overview of our approach in figure 1. In § 2.1, we discuss the details
of the problem set-up for baseline simulations and the actuator set-up for performing
active flow control. To design feedback control laws for separated flows, selection of
feature-space trajectories and their discretization into clusters are discussed in §§ 2.2
and 2.3, respectively. Each coarse-grained phase of the flow (e.g. each cluster in
feature space) is provided with an associated wall-normal blowing/suction jet velocity
input for actuation. The path of the controlled trajectories determines the feedback
to the flow, enabling the controller to adapt in time. The details of optimization
of cluster-based feedback control laws are outlined in § 2.4. The optimization
procedure quickly searches for the optimal actuation in each cluster to minimize
power consumption for aerodynamic flight in post-stall flows, thereby improving
flight endurance. We note that here efforts are not directed towards developing
control strategies for full reattachment of the flow but rather towards routing of flow
trajectories to minimize power consumption. We demonstrate the effectiveness of
the current approach for two-dimensional (2-D) separated flow over an airfoil in § 3.
An extension of the control framework with addition of actuation constraints is then
demonstrated for three-dimensional (3-D) separated flow over an airfoil in § 4. At
last, concluding remarks are offered in § 5.
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FIGURE 1. (Colour online) Overview of the presented cluster-based control framework.

2. Cluster-based control framework
2.1. Problem set-up

We first discuss the problem set-up for baseline simulations of the separated flows
and the actuator set-up for performing control simulations. We consider large eddy
simulations (LES) of 2-D and 3-D separated flows over a NACA 0012 airfoil at an
angle of attack α = 9◦, with Reynolds number Re = U∞Lc/ν = 23 000 and Mach
number M∞ = U∞/a∞ = 0.3. Here, U∞ is the free stream velocity, Lc is the chord
length, ν is the kinematic viscosity and a∞ is the free stream speed of sound. The
details of the computational set-up, flow visualizations as well as numerical validation,
as shown in figures 2(a), 2(b) and 2(c), respectively, are discussed in appendix A.

To perform flow control, a blowing/suction actuator is centred at xa/Lc = 0.03
(upstream of the time-averaged separation point) in the streamwise direction on the
suction side of the airfoil, as shown by red surface in figure 2(a) (right). The actuator
set-up is further elaborated in figure 3. Let ξ be the surface tangential direction
from the actuator centre. The actuator width is 2ξa = 0.02Lc. A wall-normal velocity
component (ujet) with a parabolic spatial profile (φξ ) is prescribed as an actuator
velocity boundary condition to impose blowing/suction. For 3-D flow control, two
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FIGURE 2. (Colour online) (a) The x–y plane of the computational domain (left) and
the near field of a NACA 0012 airfoil at α = 9◦ (right) with the streamlines for 3-D
spanwise-periodic baseline flow. The actuator location is indicated in red. The blue dashed
line shows the contour line for ūx/U∞ = 0. (b) Instantaneous flow field (highlighted by
Q-criterion) coloured by streamwise velocity and turbulent kinetic energy (TKE). (c) Time-
averaged coefficient of pressure distributions on suction and pressure surfaces of the airfoil
for 3-D baseline flow.

actuator slots are placed in the spanwise direction, each centred at za/Lc=−0.05 and
0.05, respectively, with a width of 0.025Lc, similar to the work by Munday & Taira
(2018). A hyperbolic tangent function (φz) is used for the spanwise jet velocity profile
to smoothen out the velocity discontinuity at the edge of the slots. The wall-normal
velocity is prescribed as

ujet(t)= b(s(t)) φξ (ξ)φz(z), (2.1)

where b is the forcing amplitude which is dependent on the flow state variable s. For
the selection of the flow state variable s and the forcing amplitude b, we describe the
procedure below.

2.2. Feature space selection
A comprehensive understanding of the flow behaviour requires the knowledge of the
full state (e.g. velocity field). However, the use of such high-dimensional full-state
information is prohibitively expensive and in most cases, experimentally unobtainable,
especially for feedback control design. A clever choice of a limited number of
observables, called feature space variables, are needed to assess the flow behaviour.
One possible choice of feature space variables are temporal dynamics associated with
the proper orthogonal decomposition (POD) modes. However, such a choice may be
sensitive to the number of physically relevant modes used to characterize the feature
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FIGURE 3. (Colour online) The blowing/suction actuator set-up for 3-D flow control with
velocity profiles in the surface tangential (φξ ) and spanwise (φz) directions.

space. Also, these modes are incapable of describing dynamics in regimes of flow
where no snapshots are collected, which pose challenges to feedback control design.

A natural consequence of flow separation is an increase in drag force. The shift in
the mean flow is generally captured by the drag coefficient (Noack et al. 2003; Taira
& Nakao 2018). Also, stall conditions result in a sudden loss of lift. For low-Reynolds-
number bluff-body flows, the lift coefficient CL and its time derivative ĊL characterize
the limit cycle of unsteady oscillations. We use this reduced number of observables
to define a three-dimensional feature set denoted by s= s(t)= (CL(t), ĊL(t),CD(t)) as
shown in figure 4(a).

2.3. Cluster-based discretization
We use cluster analysis (Rokach & Maimon 2005) to discretize or coarse-grain
the feature space of baseline trajectories with common characteristics into clusters.
The clustering groups the flow states with similar aerodynamic characteristics,
e.g. high-drag states and low-drag states of the flow. One of the most popular
centroid-based clustering technique is the k-means algorithm (Lloyd 1982) which is
an unsupervised classification algorithm where observations are partitioned into K
representative clusters {Ck}

K
k=1. Each set of observations belonging to a cluster Ck is

represented by its corresponding cluster centroid ck, which is computed as the mean
over all observations belonging to this cluster. These cluster centroids reduce the
number of degrees of freedom in the feature space.

For a set of cluster-based centroids {ck}
K
k=1, the within-cluster variance (Jw) and the

inter-cluster variance (Ji), as defined in the work by Goutte et al. (1999), are given
by

Jw =
1
N

K∑
k=1

∑
sb∈Ck

‖sb
− ck‖

2 and Ji =
1
N

K∑
k=1

Nk‖ck − c̄‖2. (2.2a,b)

Here, the superscript b denotes the baseline flow, N is the total number of
measurements in the baseline trajectory and Nk is the number of measurements
present in cluster Ck. The cluster centroid and centroid of the entire trajectory are
given by ck ≡ (1/Nk)

∑
sb∈Ck

sb and c̄= (1/N)
∑K

k=1 Nkck, respectively.
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FIGURE 4. (Colour online) A schematic of the clustering procedure; (a) Time-series of
baseline trajectory sb(t) = (CL(t), ĊL(t), CD(t)) collected from baseline LES. (b) Cluster-
based discretization of the feature space and (c) corresponding cluster centroids using k-
means clustering algorithm. Inset in (b) shows the ratio of inter-cluster variance to total
variance used to determine the number of clusters K = 10.

Given an ensemble of observations in terms of a baseline flow trajectory sb(t), the
optimal set of cluster-based centroids {ck}

K
k=1 is obtained by solving an optimization

problem that minimizes the within-cluster variance

(c1, . . . , cK)= arg min
C

Jw. (2.3)

This yields a set of K clusters, C={C1, . . . , CK}, each with a centroidal representative
state ck. The cluster-based discretization of the feature space and the corresponding
centroids for K = 10 clusters are shown in figures 4(b) and 4(c), respectively. In the
work of Kaiser et al. (2014), this has led to a CROM by modelling the transitions as
a Markov process (Norris 1998).

A trade-off between complexity of the cluster-based representation and data
compression determines an optimal choice of the number of clusters K (Chiang
& Mirkin 2010). We determine the appropriate number of clusters K using an elbow
method or the F-test (Lomax & Hahs-Vaughn 2013). The F-test uses the ratio of
inter-cluster variance Ji to the total variance J= Ji+ Jw, which is typically maximized.
We show the typical variation of Ji/J with increasing number of clusters in the inset
of figure 4(b). We choose Ji/J >0.9 for the present analysis as the gain in inter-cluster
variance is relatively slow thereafter. Based on this choice, each dataset of trajectories
for the 2-D and 3-D baseline flows are partitioned into K = 10 clusters. Thus, the
purpose of the F-test is to resolve at least 90 % of the flow fluctuations after the
cluster-coarse graining. Other metrics like gap statistics (Tibshirani, Walther & Hastie
2001), based on a similar notion, could also be used to decide on an appropriate
choice of the number of clusters. With this clustered feature space discretization, we
discuss our flow control design below.

2.4. Optimized feedback control design
Now that the feature space is defined and cluster analysis is performed, we are ready
to define the feedback control law b(t). We parameterize each cluster centroid with an
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FIGURE 5. (Colour online) The schematic of the optimization procedure for cluster-based
feedback control. (a) Control inputs assigned to cluster centroids. (b) Feedback control
configuration and (c) simplex search to find optimized control law minimizing cost
function J . (d) Visualization of all the control cases on a two-dimensional proximity map
(γ1, γ2) using multi-dimensional scaling.

actuation value, i.e. each cluster Ck with its associated centroid ck is assigned a chosen
constant control amplitude bk as shown in figure 5(a). This provides a blowing/suction
jet velocity for each cluster. These cluster control amplitudes are then interpolated over
the feature space using a normalized radial basis kernel (Wand & Jones 1994). The
forcing amplitude b as required in equation (2.1) is defined as

b(bk, s(t))= β

K∑
k=1

bke−‖s(t)−ck‖
2/Ji

K∑
k=1

e−‖s(t)−ck‖
2/Ji

, (2.4)

where β is the feedback gain which is set to unity, unless otherwise noted. The flow
control is implemented as a proportional feedback controller depending on the current
state in the feature space s(t) as shown in figure 5(b).

The only remaining consideration is the choice of the control amplitudes {bk}
K
k=1.

These cluster control amplitudes are iteratively optimized to minimize a cost function
consisting of both state and control variables. For optimized control, we need to
minimize the sum of the aerodynamic power loss (Pdrag) and the actuation power
input (Pact) leading to an objective function J = Pdrag+ Pact. The aerodynamic power
is the power required by the system to overcome drag. Let W and V be the weight

and speed of the flying vehicle, respectively. We can define V =
√

W/ 1
2ρCLA. The

aerodynamic power can then be evaluated as

Pdrag =
FxV

1
2ρU3

∞
A
=

1
2ρCDV3A

1
2ρU3

∞
A
=

CD

U3
∞

(
W

1
2ρCLA

)3/2

= η
CD

C3/2
L

, (2.5)

where η= (W/ 1
2ρU2

∞
A)3/2. At cruise (steady) condition, lift is equal to the weight of

the flying vehicle W. Maximum endurance of flight can be obtained by minimizing
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aerodynamic power. This minimum energy expenditure occurs when CD/C
3/2
L is at

its minimum (Anderson 1999). To extract the aerodynamically favourable gain with
control, we set the aerodynamic power to the baseline drag power for the unforced
case by considering η = C

3/2
L , where CL is the mean baseline lift. It must be noted

that the emphasis of this work is in minimizing the drag power and any benefit from
lift force is weighed according to the scaling derived in equation (2.5) to maximize
flight endurance.

The unsteady actuation power is related to the momentum injected to the fluid as

Pact =
2

TU3
∞

A

∫ T

0

∫ w/2

−w/2

∫ ξa

−ξa

|ujet|
3 dξ dz dt, (2.6)

where T is the finite time horizon of application of control. The time-averaged
momentum coefficient corresponding to this actuation power is

Cµ =
2

TU2
∞

A

∫ T

0

∫ w/2

−w/2

∫ ξa

−ξa

|ujet|
2 dξ dz dt. (2.7)

To determine the optimized cluster control amplitudes, we utilize the simplex
search algorithm (Nelder & Mead 1965), which is a gradient-free multidimensional
unconstrained optimization technique. This iteratively optimizes the cluster-based
control amplitudes {bi

k}
K
k=1 which are the inputs to the feedback controller shown

in figure 5(b). The superscript i indicates the iteration number of control case. The
procedure for optimization is outlined below.

(i) To start the iterative optimization, we incorporate a Latin-hypercube sampling
of the parametric space of Nb × K control amplitudes for the initial simplex.
This leads to a near-random sample of parameter values from a multidimensional
distribution (McKay, Beckman & Conover 2000). As our goal is to determine K
optimized cluster control amplitudes, we define an initial simplex of Nb =K + 1
vertices. In the work, as K = 10, the initial simplex includes 110 parameters.

(ii) Each vertex of the simplex is evaluated with a controlled LES over a finite-time
horizon T , each with a unique set of K cluster control amplitudes to define b(t)
in equation (2.4). This time horizon is chosen as multiples of the characteristic
time period, derived from the shedding frequency St= fLc sin(α)/U∞ of the flow.

(iii) Once the initial Nb control cases are simulated and the objective function J
for each case is evaluated, the simplex search algorithm performs reflection,
expansion, contraction and shrinkage on the cluster control amplitudes to
minimize the objective function J . These operations quickly span the search
space of cluster amplitudes to find the optimized control law.

(iv) The optimization procedure is terminated when the standard deviation of the
currently evaluated simplex is less than a set tolerance of ε = 0.004.

Ultimately, a choice of cluster control amplitudes {bopt
k }

K
k=1 results in a minimal

J , maximizing flight endurance. We call this case the optimized control case based
on the set tolerance. We note here that all the cluster control amplitudes {bopt

k }
K
k=1

are simultaneously optimized and a separate optimization for the control law in each
cluster is not needed. Although strict convergence bounds are difficult to obtain for the
simplex search procedure, the set tolerance is typically achieved within O(K) control
simulations, as will be seen in §§ 3 and 4. A schematic of simplex optimization is
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shown in figure 5(c). The similarity between the iteratively evaluated control laws
can be summarized by extracting proximity maps. The proximity maps visualize
the control landscapes over an identified subspace, (γ1, γ2), as shown figure 5(d).
The relative position of the control law in the subspace give an indication of their
similarity. The multidimensional scaling (MDS) technique used to extract such maps
are further discussed in appendix B.

Unlike other control strategies which require either the linearized Navier–Stokes
equations or reduced-order models, the present framework deduces optimized control
laws in a model-free and data-based manner. The clustering analysis and optimization
just require the information of force measurements as inputs to the algorithms. Thus,
the approach is easily extendable to experiments. We demonstrate the optimization of
cluster control amplitudes for the 2-D separated flow in the following section. We then
extend the approach to find cluster-based control laws for 3-D separated flows, for
which the associated computational cost and complexity of flow control is manageable
but increases significantly.

3. Control of 2-D separated flow over an airfoil
In this section, we demonstrate the cluster-based feedback control optimization for a

2-D flow over an airfoil to maximize performance. In particular, we first present the
clustering results, based on data from the baseline flow in § 3.1, that are employed
to partition the feature space and provides the foundation for optimizing the control
laws. We then demonstrate how the coarse-grained control law is optimized in § 3.2.
The iterative optimization procedure is further analysed using proximity maps. The
resulting change in dynamics with control is examined using the Markov transition
models.

3.1. Baseline feature space clustering
In post-stalled configurations, a strong adverse pressure gradient due to separation
causes a large increase in the associated pressure drag, thereby increasing the pressure
losses and enlarging the size of the wake. Using a cluster-based analysis, we identify
characteristic phases of the flow associated with these losses. For the analysis, time-
series data of baseline trajectories sb(t) are partitioned into K = 10 clusters using the
k-means algorithm as shown in figure 6(a). A constant time step 1t is chosen so as
to resolve the baseline vortex shedding frequency, St= fLc sin(α)/U∞= 0.081 with at
least 500 snapshots. The collected data spans a total convective time of tU∞/Lc= 110.

By analysing the Markov chain transitions between clusters, the dynamics between
characteristic phases of the flow can be deduced. The transition dynamics in post-
stalled flows can be described by an associated probabilistic cluster transition matrix
P. The elements of this matrix describe the probability of transition from cluster ck
to cj in one forward time step 1t and are given as Pjk = Njk/Nk with

∑
j Pjk = 1.

Here, Njk is the number of transitions from cluster ck to cj. The diagonal elements
of this matrix represent the likelihood for the trajectory to reside within the same
cluster and the off-diagonal entries represent the inter-cluster transitions. We further
define the cluster probability as the likelihood the flow remains in any of the clusters,
i.e. τk = |Nk|/N, which is also related to the relative residence time for each cluster.
The cluster probabilities and the cluster transitions are shown in figures 6(b) and 6(c),
respectively. The cluster probability is the highest for cluster 3 followed by clusters 4
and 7. The cluster probabilities are low for states 9 and 10. Also, the flow states in
clusters 1 and 9 always transition to clusters 2 and 10, respectively.
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FIGURE 6. (Colour online) (a) Feature space clustering of the 2-D baseline flow.
(b) Cluster residence probabilities τk. (c) Cluster transition probability matrix, with the red
boxes indicating cluster subsets. (d) Normalized drag corresponding to cluster centroids.

To further simplify these transitions, we can identify the groups of clusters called
cluster subsets, in which transitions occur more frequently within them than between
them. To identify the partition of these decomposable sub-Markov chains (Kontovasilis
& Mitrou 1995), we use the directed modularity maximization algorithm (Leicht &
Newman 2008). The algorithm detects modular subsets where the transitions between
clusters within a subset are dense compared to the transition between clusters from
different subsets. Here, the algorithm identifies three subsets: subset I:{1, 2, 3, 4, 5},
subset II:{6, 7, 8}, and subset III:{9, 10}. These subsets are identified by the red boxes
in figure 6(b). High probability inter-subset transitions are observed between clusters
3→ 6, 7→ 5 and 10→ 5. These transitions also mark the major paths of transition
between subsets. Most of the remaining transitions are within subsets. We further
analyse the drag contribution of each cluster, which is obtained from the cluster
centroids. We normalize the drag coefficient associated with each cluster centroid
with the mean drag CD as shown in figure 6(d). The dashed lines separate the
subsets. Interestingly, subset I corresponds to low-drag states of the flow CD/CD . 1,
subset II corresponds to intermediate drag states 1 . CD/CD . 1.325 and subset III
corresponds to the high-drag states CD/CD & 1.325. The flow intermittently bursts to
the high-drag clusters 9 and 10, associated with low cluster probability. The shedding
time associated with these bursts are extremely long. Thus, different levels of drag
are all dynamically separated, which can significantly simplify the control design.
These insights suggest steering the flow to the subset associated with the lowest drag
and then keeping the state in the low-drag subset.

An alternative view point of the Markov chain is a random walk on a directed
graph with nodes being clusters and edges being the transition dynamics between them
(Newman 2010). The edge weights correspond to the number of transitions between
the respective clusters Njk normalized by the maximum number of cluster transitions
observed in the entire trajectory, max(Njk). We neglect any edges with weights less
than a threshold of 0.1 for visual clarity. The directed graph representation of the
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FIGURE 7. (Colour online) Graph of Markov chain highlighting transitions between
clusters for 2-D separated flow over a NACA0012 airfoil. The 2-D cluster-averaged
pressure flow fields (p/p∞) and instantaneous vorticity contours (ωLc/U∞) corresponding
to each cluster are shown. The dashed circles indicate the cluster subsets. The edge
weights are indicated by the thickness of the lines.

cluster transitions is shown in figure 7. Here, we can clearly identify the paths of
cluster transitions and visualize the phase evolution of the flow. One characteristic
feature that stands out from this graph visualization is the role of cluster 8. The flow
can reach cluster 8 only from cluster 6. This means that only through this cluster
8, the flow can transition to the high-drag state of cluster 9 or 10. For this reason,
we call cluster 8 the switching cluster. The significance of the cluster transition
pathway 6→ 8→ 9 is an important consideration for flow control. The elimination
or avoidance of this cluster transition pathway is key in enhancing aerodynamic
performance, particularly for drag reduction.

We can average the flow snapshots within each cluster to obtain cluster representative
flow fields. The cluster-averaged pressure and the instantaneous vorticity fields
are shown in figure 7. The cluster flow fields in subset I provide an enhanced
understanding of the flow physics at the low-drag states of the flow. The different
phases of the flow are clearly visible in the cluster transitions 3→ 4→ 5→ 1→ 2
upon observing the associated vortex dynamics. We see the initiation of shear-layer
roll up in cluster 3 and the presence of leading-edge vortices in cluster 4. These
vortices start shedding mid-chord in cluster 5. In cluster 1, we observe the
trailing-edge vortex sheet roll-up followed by the von Kármán vortex shedding
in the wake in cluster 2.

The cluster transition from 3 to 6 results from a build-up of low pressure core
and elongation of the vortex sheet on the airfoil surface. Following the graph
representation, the flow at cluster 6 could transition either to cluster 7 or 8. Cluster
7 is characterized by the shear layer roll-up and intermittent shedding in the wake.
The rolled-up vortices shed near the mid-chord of the airfoil resulting in a flow
transition 7→ 5. The transition to cluster 8 results when the rolled-up vortices grow
in size elongating the pressure core. As opposed to cluster 5, here the vortices do not
detach from the airfoil surface but are arranged compactly over the surface. The flow
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FIGURE 8. (Colour online) (a) Cluster-averaged pressure distribution over the suction and
pressure surfaces of the airfoil and (b) cluster-averaged streamwise velocity profiles for
the 2-D baseline flow. Dashed lines indicate the contours of ūx/U∞ = 0.

from cluster 8 transitions to cluster 9, accompanied by an even lower-pressure core
spanning the entire airfoil with a large roll-up near the trailing edge of the airfoil.
This results in a fully separated flow and leads to high-drag. Following this state,
the trailing-edge vortex sheet rolls up and the vortices detach from the airfoil at the
trailing edge leading to a subsequent transition to cluster 10 and then to 5. In cluster
10, the flow briefly reattaches and then separates near the trailing edge. Moreover,
cluster 7 is characterized by high-frequency shedding in the wake as opposed to the
low-frequency shedding in cluster 10.

The significance of the clusters can also be examined by looking at the cluster-
averaged pressure distribution over the airfoil. We show the pressure distribution
over the airfoil surface and streamwise velocity profile for one representative cluster
in each cluster subset in figures 8(a) and 8(b), respectively. On the suction side
of the airfoil, we can see a favourable pressure gradient near the mid-chord for
cluster 1 (low-drag cluster) with a shorter flat pressure region indicating the shorter
region of separation. This is also shown by the dashed lines corresponding to zero
time-averaged streamwise velocity contour, ūx/U∞ = 0. Clusters 8 and 9 have larger
regions of separation and are associated with an adverse pressure gradient near the
trailing edge.

3.2. Optimized feedback control
Based on the coarse-graining of the feature space into clusters discussed in the
previous section we design a cluster-based feedback control law. The actuation
input b(t) in equation (2.4) is determined with the choice of control amplitudes
{bk}

K
k=1, feedback of the observable s(t) in the feature space and their relative

distance to the cluster centroids {ck}
K
k=1. Thus, actuation inputs associated with

clusters in close proximity to the current measurement are weighed more strongly
than those associated with clusters farther away. The control amplitudes {bk}

K
k=1 are
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FIGURE 9. (Colour online) Control of 2-D separated flow. (a) Objective function
minimization to determine the optimized control law and (b) power consumption. The
red square symbol denotes the optimized case. (c) Control objective landscape, Pdrag =

Pdrag(γ1, γ2), Pact = Pact(γ1, γ2), and J = J (γ1, γ2) balancing Pdrag and Pact, all three
determined using multidimensional scaling. The transparent blue dots indicate initial
simplex control cases. The arrows indicate directions of minimization.

then iteratively optimized using a simplex search to achieve the desired objective
as discussed in § 2.4. We design an initial simplex using Latin-hypercube sampling
with zero-mean offset control amplitudes

∑
k bk = 0. Time-averages in controlled flow

are estimated over 12 periods of the baseline shedding frequency. The optimization
of the cost function J is summarized in figure 9(a). Following the initial simplex
consisting of K+1 control cases (indicated by blue dots), cost functional is minimized
iteratively. The square symbol denotes the optimized control case. The optimization
over aerodynamic power Pdrag and actuation power Pact is shown in figure 9(b).

To visualize the control landscape, MDS is performed, as discussed in appendix B.
Here, we extract a 2-D proximity map over the (γ1, γ2) space. Each point in this
proximity map stands for a control case or control law, respectively. Pairwise distances
given by equation (B 1) measure the similarity/dissimilarity between the control cases.
The similarity between control laws in this map increases as the distance between
them gets smaller. We fit surfaces of the form Pdrag = Pdrag(γ1, γ2), Pact = Pact(γ1, γ2)
and J =J (γ1, γ2) to all the evaluated control laws in figure 9(c). The proximity maps
provide information on the complexity of the objective functions, e.g. a single versus
multiple minima, and indicate optimization directions for minimizing the aerodynamic
and actuation power. Minimizing aerodynamic power involves maximizing γ1 and
minimizing γ2, while minimizing actuation power involves minimizing γ1. Balancing
both power considerations, the control landscape shrinks at the optimal location for
the cost function J .

We now investigate the optimized control case to gain insights on the control
strategy uncovered by cluster-based control optimization. The baseline and optimally
controlled trajectories in the lift-drag coefficient plane are shown in figure 10(a).
A 41 % drag reduction is achieved with the optimized control law. In addition, the
unsteadiness in the flow is reduced. In the inset of figure 10(a), the time evolution
of the drag coefficient with and without control is shown. In the optimally controlled
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FIGURE 10. (Colour online) Comparison of baseline and optimized 2-D flow control case;
(a) Trajectories, (b) spectral analysis of drag data, and (c) time-averaged streamlines and
TKE fluctuations. Baseline trajectories are shown in transparent in (a). The trajectories are
coloured according to their member clusters. The contour lines in (c) (bottom) indicate the
instantaneous vorticity fields and the colour bar indicate the TKE fluctuation levels.

flow, the trajectories are pushed away from the high-drag states towards the low-drag
states of the flow. We compare the drag spectra with single-sided amplitude |ĈD|

in baseline and control cases in figure 10(b). The dominant peak for the optimal
control is obtained corresponding to a forcing frequency of St+ = 0.243, identified
by the cluster-based optimization procedure. This frequency is the second harmonic
of the dominant baseline shedding frequency. As the vortex shedding takes place
at a faster time-scale, the intermittent occurrences of flow states associated with
high-drag clusters are avoided. The time-averaged streamlines and TKE for both the
baseline and controlled flows are shown in figure 10(c). The contour lines in TKE
correspond to the instantaneous spanwise vorticity. The streamlines indicate that the
separation bubble is eliminated with control compared to the baseline resulting in a
fully attached flow. Moreover, with control, the turbulent kinetic energy fluctuation
dramatically decreases. Furthermore, the roll-up of the vortices is delayed.

The cluster control amplitudes bk associated with the optimized control case are
shown in figure 11(a). Negative and positive amplitudes indicate suction and blowing,
respectively. The cluster control amplitudes are negative for clusters 1–5 and positive
for 6–10. This indicates that suction is performed in subset I (clusters 1–5) where
CD/CD < 1. In the remaining clusters (subset II and III), blowing is performed. In the
optimized control case, suction is performed in subset I to keep the trajectories in the
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FIGURE 11. (Colour online) Control of 2-D separated flow. (a) Cluster jet velocity,
(b) cluster residence probability for baseline (shown in transparent round symbols) and
controlled flows (shown in solid square symbols), (c) Cluster transitions with control,
(d) controlled Markov transition network with instantaneous vorticity contours (ωLc/U∞).

low-drag state. As discussed in § 3.1, the transition to high-drag cluster 9 occurs via
the path 6→ 8→ 9. Blowing is performed for these clusters to kick the trajectories
away from these high-drag states. The flow states in cluster 9 always transition to
cluster 10. The high blowing ratio in cluster 10 causes the flow to transition to cluster
5, where highest level of suction is applied to keep the flow in the low-drag states. At
steady state, the mean cluster-based control amplitude is |b̄|/U∞=0.78 which amounts
to a momentum coefficient Cµ = 0.016.

We evaluate the cluster probability for the optimally controlled flow and compare
it with the baseline flow as shown in figure 11(b). The controlled flow spends a
significant amount of time in the lowest states of clusters 1 and 2. The cluster
probability associated with subset II clusters 6, 7 and 8 reduces considerably. The
cluster transitions in the controlled flow and the controlled Markov transition network
are shown in figures 11(c) and 11(d), respectively. The iterative optimization procedure
coupled with cluster-based control laws achieve a re-routing of the trajectories to
reduce drag power associated with the flow. This minimizes the transition to clusters
in subset II (intermediate-drag states) which prevents cluster transitions to clusters
in subset III (high-drag states). The controlled flow exhibits a limit-cycle behaviour,
which is resolved by the low-drag clusters in subset I. As the flow transitions only in
subset I clusters, the dominant frequency in controlled flow increases as mentioned
before.

In summary, the cluster-based control strategy iteratively identifies optimal forcing
amplitudes at the cluster states that result in minimizing power consumption for
flight. For the optimized feedback control law for 2-D separated flow, suction is
performed for the low-drag clusters CD/CD < 1, while blowing is performed for
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the remaining clusters. With control, the flow transition to the switching cluster is
avoided resulting in higher cluster probabilities associated with the low-drag clusters.
From the physics standpoint, the optimized control case yields in fully attached flow
leading to a drag reduction of 41 % compared to the baseline flow.

4. Control of 3-D separated flow over an airfoil
In the previous section, the cluster-based methodology was demonstrated for 2-D

flow control. In this section, we extend the control framework for 3-D separated flows
over an airfoil in a model-free manner. Despite the 3-D LES computations being very
expensive and flow physics being rich and complex, the present approach utilizes a
low-dimensional feature space to cluster the dynamics enabling a computationally
tractable flow control strategy. Using this cluster-based strategy, we deduce an
optimized global feedback control law for unsteady blowing to minimize power
consumption of aerodynamic flight.

4.1. Baseline feature space clustering
The 3-D baseline separated flow over an airfoil contains flow features with
von Kármán vortex shedding in the wake and Kelvin–Helmholtz instabilities
in the shear layer. The dominant frequency associated with von Kármán vortex
shedding is St = 0.0884 and the dominant shear-layer frequency associated with the
Kelvin–Helmholtz instability is almost an order of magnitude higher at St = 0.6952.
For the cluster-based analysis of the 3-D baseline flow, a time series trajectory of the
observables sb(t) is collected at a constant time step of 1t= 0.0036. The feature space
segmentation into K= 10 clusters is shown in figure 12(a). For the 3-D baseline flow,
the spanwise vortices formed from shear-layer roll-up break into smaller structures
over the airfoil, leading to lower fluctuation levels in aerodynamic forces compared to
the 2-D baseline flow. The variance in the cluster probabilities is reduced compared
to the 2-D clusters, as shown in figure 12(b). As cluster 6 is positioned closest to
the centroid of the full data set, c̄, its cluster probability is the highest. The transition
probabilities of the cluster transition matrix are shown in figure 12(c). The flow states
in clusters 1 and 9 always transition to clusters 2 and 10, respectively, resulting in a
high probability of transition.

Performing directed modularity maximization, three subsets can be identified: subset
I,{1, 2, 3, 4}; subset II,{5, 6, 7, 8}; and subset III:{9, 10}. These subsets are highlighted
in the red boxes in figure 12(c). High probability inter-subset transitions originate
from cluster 3 in subset I, 7 in subset II and 10 in subset III. The grouping of
the clusters into subsets can also be correlated with the drag coordinate, shown in
figure 12(d). Here, subset I corresponds to low-drag states of the flow CD(ck)/CD .
0.98, subset II correspond to intermediate-drag states 0.98 . CD(ck)/CD . 1.1, and
subset III corresponds to the high-drag states CD(ck)/CD & 1.1. We also show the
time series of drag coefficient, coloured by their cluster associations. We can clearly
observe intermittent bursts resulting in high-drag states, which are the target of our
feedback control strategy.

Further clarity in the transitions can be obtained by examining the Markov transition
network shown in figure 13. For each cluster, we show the mid-span pressure field
associated with the cluster centroids and a representative instantaneous flow-field
visualization with Q-criterion isosurfaces coloured by the pressure distribution. Each
cluster stands for a characteristic phase of the vortex-shedding process. The clusters
in the low-drag subset are characterized by the departure of shedding vortices from
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FIGURE 12. (Colour online) (a) Feature space clustering of 3-D baseline flow data.
(b) Cluster probabilities. (c) Transitions probabilities. (d) Time series of drag coefficient
coloured by cluster association and average (normalized) drag coefficient across clusters.
The red boxes and the dashed circles indicate the cluster subsets.

the suction surface, leaving the airfoil free from the influence of the low-pressure
core built up within the vortex. On the other end, the clusters in intermediate- and
high-drag subsets are characterized by the formation of the large vortices over the
airfoil. In the process of their formation, these vortices remain over the suction
surface and build-up the low pressure core, increasing the instantaneous drag and lift.
For the high-drag clusters {9, 10}, in particular, we find that the vortex formation
time is longer than that for the intermediate-drag subset. The vortices are further
strengthened through accumulating vorticity generated from the leading edge over the
extended time of formation, achieving even lower pressure in their core and higher
drag compares to those in the intermediate-drag subset. As these high-drag clusters
have relatively low probability compared to others (see figure 12b), their occurrences
can also be viewed as intermittent events that feature with longer shedding period.

Our strategy of cluster-based control is to reroute the cluster pathway from passing
through the intermittent events of long-formation/high-drag clusters {9, 10}. The
transition to clusters {9, 10} are only possible via cluster 7, which we refer to as
the switching cluster in this 3-D flow. We also see that high volume of transition
to cluster 7 takes place from cluster 3, according to figures 12(c) and 13. Clearly,
rerouting the cluster pathway from 3→ 7→ 9→ 10 is an important consideration for
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FIGURE 13. (Colour online) Graph of Markov chain illustrating transitions between
clusters for the 3-D baseline flow. The 3-D cluster-averaged mid-span pressure flow fields
(p/p∞) and instantaneous pressure contours (highlighted by Q-criterion) corresponding to
each cluster are shown. The dashed circles indicate the cluster subsets.

drag reduction control. In the next section, we apply these insights from cluster-based
observation of flow physics to design the flow control strategy.

4.2. Optimized feedback control
We perform feedback control using the discrete clusters in 3-D baseline flow. The
objective is to deduce blowing amplitudes in characteristic phases of the flow in
order to maximize the aerodynamic performance. This is achieved by iteratively
optimizing the control amplitudes bk in each cluster in an automated fashion to
minimize the cost function J , comprised of the aerodynamic and actuation power. In
the review by Greenblatt & Wygnanski (2000), it was shown that the excitation of
Kelvin–Helmholtz instabilities in the shear layer is essential for suppression of flow
separation. Knowledge of these instabilities can be applied to design flow control
strategies. Here, a cluster-based control law is optimized without assuming any prior
knowledge of instabilities. The value associated with η in equation (2.5) influences
the relative importance of actuation power (input cost) and aerodynamic power (state
cost) in the objective function evaluation. Increasing η lowers the relative importance
of actuation power and may yield an optimized control law associated with higher
Cµ. The feedback gain β in equation (2.4) associated with these optimized control
amplitudes is subsequently increased to explore the flow control implications at
higher Cµ.

To speed up the 3-D computations, we employ a parallel simplex method following
Lee & Wiswall (2007). The method is similar to the original simplex method, except
that multiple control simulations can be performed in parallel to accelerate the
optimization process. In the 2-D control effort, the cluster-based control optimization
was unconstrained allowing for both blowing and suction jet velocities in the clusters.
However, in the 3-D control effort, a constraint is added to restrict the control
amplitudes in the simplex search (Luersen, Le Riche & Guyon 2004) such that pure
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FIGURE 14. (Colour online) Control of 3-D separated flow. (a) Objective function
J minimization to determine the optimized control case, and (b) individual power
consumptions (Pdrag, Pact). The square symbol denotes the optimized case. (c) Integrated
TKE over the entire computational domain Ω . The transparent blue dots indicate initial
simplex control cases and the red square symbol denotes the optimized case.

blowing is performed with 0 6 bk/U∞ 6 3.3. The lower constraint ensures that only
pure blowing is performed and the upper constraint limits the highest blowing ratio
that can be achieved. The addition of this constraint is motivated primarily to examine
if the cluster-based strategy can take advantage of flow instabilities for the control of
separated flows.

Time averages in the controlled flow are estimated over eight periods of dominant
wake shedding frequency. The minimization of the cost function J associated with
the control simulations is outlined in figure 14(a). Following the initial simplex cases
(shown in blue), the optimization procedure iteratively minimizes the total power
consumption. The cost function associated with aerodynamic and actuation power is
shown in figure 14(b). Following the optimization procedure, the optimized control
case A associated with minimum power consumption is deduced. We also highlight
another control case B, whose cost function evaluation is similar to case A. Control
case A is associated with lower actuation power (Pact) and correspondingly lower
Cµ = 0.0068, while control case B is associated with higher Cµ = 0.016. However,
the aerodynamic power (Pdrag) is lower for B compared to A. In order to evaluate
the effect of minimization of cost functional to the overall flow physics, we integrate
the TKE in the computational domain Ω for all the control cases, which is shown
in figure 14(c). A minimum integrated TKE for the optimized control case A is
obtained. Due to a lower actuation power input and lower velocity fluctuations in the
streamwise wake associated with drag reduction, the TKE fluctuations are minimized
with the optimized control law.

The control landscape over the minimization variables is analysed with MDS
as shown in figure 15. Compared to the 2-D control effort, the proximity map is
more complex for 3-D flow control. Although the actuation power Pact increases
for γ1 > 0, the aerodynamic power Pdrag does not decrease correspondingly. The
control landscape converges at the optimal location for the cost function J balancing
both power considerations. Control cases A and B occupy different positions in the
proximity map shown in figure 15. The cluster-based procedure is able to extract not
only the global minima but also the local minima, highlighted from different regions
of the proximity map. For further optimization of the control laws with lower Cµ, a
simplex consisting of K + 1 cases near the current optimized case A can be chosen.
For further optimization of the control laws with higher Cµ and better aerodynamic
performance, a simplex consisting of K + 1 cases near case B can be chosen. The
gradient-free searching algorithms for optimizing cluster control amplitudes explore
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FIGURE 15. (Colour online) 3-D flow control landscape, (a) Pdrag=Pdrag(γ1, γ2), (b) Pact=

Pact(γ1, γ2) and (c) J = J (γ1, γ2), using multidimensional scaling. The transparent blue
dots indicate initial simplex control cases and the red square symbol denotes the optimized
case.

different regions of the control landscape effectively. Thus, the proximity map can
serve as a guide for tracking the performance of the flow control cases.

Using the same cluster control amplitudes {bopt
k }

K
k=1 associated with the optimized

case A, let us increase the feedback gain β = 1.6 in equation (2.4) to evaluate the
effect of increasing actuation input on control performance. This yields an increased
Cµ= 0.016. This cluster-based control case with higher feedback gain will be referred
to as case C in the following discussion. We also perform flow control with steady
blowing at Cµ= 0.016 to compare with the cluster-based control cases A and C. The
drag coefficient obtained in the three control cases is compared with the baseline as
shown in figure 16(a). The black, red, blue and green dashed lines indicate the mean
drag associated with the baseline, case A, case C and steady blowing, respectively.
We obtain a 13 % drag reduction for case A and 20 % drag reduction for case C.
We do not get any significant drag reduction with steady blowing. This is consistent
with the work by Munday & Taira (2018), where it was shown that the time-averaged
separated flow was not significantly modified with steady blowing at Cµ = 0.01 and
comparable drag reduction was achieved only at much higher Cµ = 0.021. Thus, the
optimized cluster-based control laws, even with a lower Cµ performs much better than
steady blowing. It must be emphasized that the objective of the control strategy is
to minimize power consumption. With that objective, we are able to achieve drag
reduction in 3-D separated flows.

A spectral analysis of the drag coefficient is performed to highlight the associated
amplitude and frequency range of forcing, as shown in figure 16(b). Here, |ĈD|

is the single-sided amplitude. For the optimized control case A, the forcing is
applied in the range of wake frequencies with the peak at St+ = 0.0844, close to
the dominant shedding frequency. We notice that the single-sided amplitude near
the wake frequencies for this case is much higher compared to the steady blowing
case. The drag reduction obtained in case A is comparable with open-loop periodic
forcing at the wake frequency examined in the work by Amitay & Glezer (2002).
Using a feedback control strategy yields a faster transient response for optimized
control case A than the open-loop counterpart. For control case C, along with the
wake frequencies, the dominant shear-layer frequency St+ = 0.695 is triggered with
the cluster-based feedback control. The increase in feedback gain associated with the
optimized control amplitudes results in enhanced aerodynamic characteristics, observed
from the resulting drag reduction in figure 16(a). The fact that the cluster-based
control strategy is able to adaptively force the flow at characteristic frequencies,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

46
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.469


366 A. G. Nair, C.-A. Yeh, E. Kaiser, B. R. Noack, S. L. Brunton and K. Taira

2 4 6 8 10 12 14 16 18 20

0.14

0.12

0.10

0.08

0.06
0.2 0.4 0.6 0.8 1.0

5
4
3
2
1
0

(÷ 10-3)

Stt

CD

|Ĉ
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FIGURE 16. (Colour online) Comparison of baseline, the optimized 3-D flow control case
A (Cµ= 0.0068), the control case C with higher feedback gain (β = 1.6,Cµ= 0.016) and
steady blowing (Cµ = 0.016). (a) Drag coefficient, (b) spectral analysis of drag data. The
dashed lines in (a) indicate the mean drag values. The dashed line in (b) corresponds
to the dominant shedding frequency and the dotted line corresponds to the shear layer
frequency.

corresponding to fundamental instabilities of the baseline flow purely from the
feedback of select observables, demonstrates the power of this data-based approach.

The cluster based control amplitudes bk corresponding to the optimized control
case A is shown in figure 17(a). Only positive amplitudes are present which indicate
that only blowing is introduced by all clusters as constrained in the optimization
procedure. For this optimal case, we observe that high amplitudes of blowing are
adopted for clusters 7, 8 and 9, which is produced when the state trajectory moves
towards the high-drag clusters. As a consequence, the vortices that build-up the
low-pressure core, are pushed away from the suction surface before they are further
strengthened over the prolonged formation time at clusters 9 and 10. The present
cluster-based control therefore limits the formation time of leading-edge vortices,
ensuring the vortex shedding takes place over the time scale of the natural period
while avoiding the intermittent occurrence of long-period shedding. Consequently, the
cluster pathway is rerouted from the high-drag subset to clusters 5 and 6, eventually
redirecting the flow to low-drag cluster states, as confirmed in the Markov transition
network in figures 17(c) and 17(d). As a result, the controlled flow spends extended
times in the low-drag states of clusters 1, 2 and 4, as shown in figure 17(b), achieving
drag reduction.

We also show the streamlines and instantaneous flow fields associated with the
baseline, control cases A, C and steady blowing case in figure 18(a). The blue
dashed lines indicate the contour lines corresponding to time- and spanwise-averaged
streamwise velocity, ūx/U∞ = 0. This characterizes the extent of the separation
region in the flow. For both control cases, the size of the separation bubble is
reduced compared to the baseline flow. For case A, the flow reattaches near the
mid-chord of the airfoil. However, in this case, the flow separates near the trailing
edge. Streamwise velocity deficit upstream translates to this trailing edge separation.
In the control case C, the size of the separated region is considerably reduced. The
vortical structures in the flow field are highlighted by a level set of the Q-criterion,
which is coloured by the streamwise velocity component. The vortical perturbations
triggered by unsteady forcing at shear-layer frequencies result in a break-up of
spanwise vortices. Suppression of separation due to an accelerated laminar-turbulent
transition over the separation bubble is obtained, which results from the break-up of
spanwise vortices. The coherence in the wake originating from von Kármán vortical

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

46
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.469


Cluster-based feedback control of turbulent post-stall separated flows 367

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

3

2

1

0

0.4

0.3

0.2

0.1

0

1
2
3
4
5
6
7
8
9

10

1.0

0.5

0

ck ck ck

cj†k

b k
/U

∞
Pjk(a) (b) (c)

1

2
3

4

5

6

7

8

9

10

Low-drag High-drag

(d)

FIGURE 17. (Colour online) Comparison of optimized 3-D flow control case A with
baseline; (a) Cluster jet velocities (bk/U∞), (b) cluster probability τk for baseline (shown
in transparent round symbols) and controlled flows (shown in square symbols). (c) Cluster
transitions for controlled case A, (d) Markov chain associated with optimally controlled
flow.

structures is correspondingly lost leading to entrainment of free-stream momentum and
mixing, which is consistent with the findings in Greenblatt & Wygnanski (2000) and
Yeh & Taira (2019). The effectiveness of the cluster-based strategy can be highlighted
by observing the time-averaged streamlines and instantaneous flow fields associated
with the steady blowing case. Control case C reduces the separated region much more
than the steady blowing case as it takes advantage of fundamental instabilities in the
flow. It must be noted, however, that no a priori knowledge of such instabilities are
provided for the flow control design.

In both control cases A and C, we observe a low-frequency modulation in the drag
coefficient. This modulation causes an increased unsteadiness in the drag force. These
have been observed before in pulse-modulated actuated studies reported in Amitay &
Glezer (2006). Such modulation results from a sub-optimal pressure recovery closer to
the trailing edge. Previous studies with model-based feedback control have shown that
suppressing this low-frequency modulation can yield additional performance benefits
(Nair, Brunton & Taira 2018). There is an opportunity for a model-free extension to
suppress the low-frequency modulation using the current feedback control strategy
using additional clusters (G-Michael, Gunzburger & Peterson 2018). We also want to
emphasize that complete flow reattachment is not the objective of the present work.
The cluster-based control strategy is primarily designed to minimize aerodynamic
power consumption. The optimized control laws yielded drag reduction and the
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FIGURE 18. (Colour online) Comparison of baseline, optimized control case A (Cµ =

0.0068), control case C with higher feedback gain (β = 1.6, Cµ = 0.016) and steady
blowing at Cµ = 0.016; (a) time-averaged streamlines and instantaneous flow field
(highlighted by Q-criterion) coloured by streamwise velocity. The blue dashed lines
indicate the contour line of zero time- and spanwise-averaged streamwise velocity.
(b) Time-averaged and root-mean-square fluctuation of coefficient of pressure distributions
on suction side of the airfoil.

reduction in the size of the separation bubble as additional benefits of the flow
control strategy.

The time average and root-mean-square fluctuations of the pressure coefficient
distributions over the suction surface of the airfoil are shown in figure 18(b). For
control case C, the average suction pressure is the highest at x/Lc = 0.1. For
both control cases, the flat pressure region disappears indicating an accelerated
laminar-turbulent transition. In contrast, for steady blowing, we see a flat pressure
region indicating a slower laminar-turbulent transition. The accelerated roll-up and
transition can be observed by peaks in the root-mean-square fluctuations of the
pressure coefficient over the suction surface around x/Lc = 0.15.

With 3-D flow control, we minimize the power consumption using the present
cluster-based control strategy. As demonstrated, the optimized cluster-based control
amplitudes lead to a transformed transition network, essentially re-routing trajectories
to desirable state-space regions. The model-free, iterative optimization of the global
control law over the coarse-grained feature space leads to optimized cluster transitions
and cluster probabilities that minimize the aerodynamic power consumption. The
approach can easily be extended to achieve other desired performance objectives.
Moreover, only the information of the feature space trajectories is required for both
control and optimization of the feedback control laws.
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5. Concluding remarks

We propose a feedback control strategy applying data-based clustering and
optimization. The approach is demonstrated for 2-D and 3-D separated flows over a
NACA 0012 airfoil at an angle of attack α = 9◦, Reynolds number Re= 23 000 and
Mach number M∞= 0.3. The main objective of this study is to develop a model-free
flow characterization technique and perform optimization of a global feedback control
law, particularly to minimize the power consumption for aerodynamic flight.

The basic steps of the approach consist of feature space selection, clustering
analysis and optimization of control laws. The feature space is defined by the
aerodynamic forces, sb(t)= (CL(t), ĊL(t),CD(t)), collected from the baseline (unforced)
LES. Centroid-based clustering analysis is performed to partition the feature space
trajectories into few discrete clusters using the k-means algorithm. The clusters
segregate the characteristic phase regimes of the flow. The Markov transition dynamics
between clusters characterize the coarse-grained, probabilistic dynamics of post-stalled
flows. The different phases of vortex shedding can be analysed by the characteristic
flow fields associated with each cluster. Using a directed modularity maximization
algorithm, groups of clusters (subsets) are extracted. These subsets divide the baseline
trajectory into low, intermediate and high-drag states. For the Markov chain network
associated with the 2-D and 3-D baseline flows, switching clusters are identified.
These clusters are associated with key transitions from low- to high-drag states.
A modification of fundamental cluster transitions in a model-free manner is sought,
which can be interpreted as a re-routing of trajectories associated with the baseline
configuration to maximize desired performance objectives.

Control amplitudes (blowing or suction jet velocity) are assigned to each cluster
centroid for control. These cluster control amplitudes are interpolated over the
entire low-dimensional feature space. A measurement of the current position on
the trajectory relative to the cluster centroids is used to deduce a global control law.
The control parameters in each cluster are then iteratively optimized to minimize
power consumption. At each iteration step, the control law with the updated actuation
parameters is evaluated in the simulation and the associated value of the cost function
penalizing aerodynamic power and actuation power is determined. The optimization
procedure yields a set of control laws iteratively minimizing the cost functional. This
optimization would be prohibitively expensive if performed on the full state-space;
in contrast, our approach scales with the number of clusters. For 3-D flow control,
additional constraints were added to the optimization procedure to determine the
unsteady feedback control laws for pure blowing.

In the 2-D flow control effort, a drag reduction of 41 % is achieved with the
optimized feedback control law along with complete flow reattachment. The optimized
cluster-based control law involves suction at the low-drag clusters and blowing at
the intermediate and high-drag clusters. The optimized control law in 3-D flow
control achieves a 13 % drag reduction. This control law primarily operates in the
range of wake frequencies associated with vortex shedding behaviour. Drag reduction
was accompanied by a decrease in the turbulent kinetic energy in the flow. Upon
increasing the feedback gain associated with the optimized cluster amplitudes, vortical
perturbations at forcing frequencies corresponding to the shear-layer instabilities are
triggered in addition to the dominant wake frequencies. Although the actuation power
increases with this feedback gain, an enhanced break-up of the spanwise vortical
structures is obtained, yielding a 20 % drag reduction. Both cluster-based control
cases perform significantly better than control with steady blowing.
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The cluster-based control approach reduces the formation time associated with the
leading-edge vortices. It also avoids the intermittent bursts to high-drag clusters which
are associated with long-periodic shedding due to blowing at the high-drag cluster
states and switching clusters. For both 2-D and 3-D optimized control cases, the
cluster probabilities, i.e. the probability of the flow to reside in a particular cluster,
of the low-drag states are increased with control and the probabilities associated with
the high-drag states are decreased. A posteriori analysis of the transition dynamics
reveals that the baseline Markov transition network is optimally modified with control
to allow transitions that result in control of flow separation and drag reduction. The
optimization of the cluster-based control laws is typically achieved in a limited
number of runs, which scales with the number of discrete clusters. Using proximity
maps, similarity between the iterative control laws can be examined and both local
and global minima can be identified.

In summary, the feedback control design using data-driven clustering provides
a general, model-free and automated formulation for flow control. The proposed
cluster-based control is geared towards computational fluid dynamics as it allows for
the self-learning of a general smooth control law for a nonlinear actuation dynamics
in only few dozen simulations. The computational load is small as compared to
optimal Navier–Stokes-based control based on an assumed linearized dynamics. The
learning time may also be contrasted with machine learning control (MLC) based on
genetic programming requiring thousands of runs. Intriguingly, MLC simulations and
experiments (Noack 2019) indicate that most feedback mechanisms and associated
control are simple and react on well-defined events or on oscillatory coherent
structures. These findings encourage cluster-based control also for experiments. The
feature space, an evident design parameter, can be constructed from the sensor signals
and would be identical in case of direct sensor feedback. In case of realizations of
(N)ARMAX-based control strategies, time-delay coordinates may need to be included
(Hervé et al. 2012). Also, the number of centroids may need to be larger in case of
more complex actuation mechanisms, such as the suppression of multiple Rossiter
modes in cavity flow. There is a huge untapped potential for cluster-based control,
even for broadband turbulence, in designing the feature space and optimizing the
initial conditions among others. The cluster-based approach combines the modern-day
computing capabilities with data-driven techniques and can elevate future flow control
efforts.
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Appendix A

To computationally examine the separated flows, LES are performed using a
compressible flow solver CharLES (Brès et al. 2017). The solver uses a second-order
accurate finite-volume scheme and a third-order Runge–Kutta method for time
integration. The streamwise, normal and spanwise coordinate directions are denoted
by x, y and z, respectively. The computational domain is chosen to be x/Lc ∈

[−19, 26], y/Lc ∈ [−20, 20], z/Lc ∈ [−0.1, 0.1], following the work by Yeh, Munday
& Taira (2017). To perform LES, Vremen’s subgrid-scale model (Vreman 2004)
is utilized. Henceforth, ux, uy, and uz stand for streamwise, normal and spanwise
velocity, respectively. We apply Dirichlet boundary conditions of [ρ, ux, uy, uz, p] =
[ρ∞,U∞,0,0,p∞] at the inflow. Here, ρ∞ is the free stream density and p∞ is the free
stream pressure. A far-field boundary with a sponge zone is specified near the outlet
over x/Lc ∈ [16, 26] to avoid numerical reflections (Freund 1997). A no-slip adiabatic
boundary condition is prescribed over the airfoil. Spanwise periodicity is enforced in
the 3-D simulations. A structured mesh consisting of 32 million volume elements is
utilized for the 3-D LES. The 2-D LES consider the same mesh discretization in the
x− y plane with 0.32 million volume elements.

The computational domain (x− y plane) and mesh are shown in figure 2(a) (left).
The streamlines for the time-averaged 3-D baseline separated flow is shown in
figure 2(a) (right). The chordwise direction is denoted by x̃. We notice the presence
of a recirculation bubble in this separated flow. To characterize the extent of the
separation region, a contour line of time- and spanwise-averaged streamwise velocity,
ūx/U∞ = 0, is shown by the blue dashed line, which extends over the length of the
airfoil. Here, q̄ indicates time-average (mean) of flow variable q. The instantaneous
flow field and TKE for 3-D baseline flow are shown in figure 2(b). The TKE is
defined as (u′x

2
+ u′y

2
+ u′z

2)/U2
∞

, where u′ ≡ u− ū. The vortical structures in the flow
field are highlighted by a level set of the Q-criterion (Hunt, Wray & Moin 1998),
coloured by the streamwise velocity (ux). The laminar separation at the leading
edge forms a shear layer that rolls up and evolves into spanwise vortical structures.
Turbulent kinetic energy increases in this region of spanwise vortex formation reaching
a maximum value at x/Lc ≈ 0.55.

The drag coefficient CD, lift coefficient CL, and pressure coefficient Cp are defined
as

CD =
Fx

1
2ρ∞U2

∞
A
, CL =

Fy
1
2ρ∞U2

∞
A
, Cp =

p− p∞
1
2ρ∞U2

∞

, (A 1a−c)

where Fx and Fy are the drag and lift forces on the airfoil, A= Lcw is the projected
area, w is the width of the airfoil, and p is the pressure at the airfoil surface. For
validation of the numerical set-up, we compare the time-averaged coefficient of
pressure distribution (Cp) for the 3-D baseline separated flow with Kojima et al.
(2013) in figure 2(c), where agreement can be seen. In particular, a strong negative
pressure peak on the suction side near the leading edge is visible followed by a
plateau in pressure distribution. This pressure plateau indicates the presence of the
separation bubble (Benton & Visbal 2018). For the 2-D baseline simulation, the mean
drag CD = 0.127 and the mean lift CL = 0.818. For the 3-D baseline simulation,
CD = 0.114 and CL = 0.557. The separation locations for 2-D and 3-D flows are
xs/Lc = 0.032 and 0.037, respectively.
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Appendix B
As we have K cluster control amplitudes to optimize, visualization of the

control landscape over all the clusters can be very insightful but also challenging.
The MDS visualizes the organization of high-dimensional objects by finding a
low-dimensional subspace, which optimally preserves the distances between objects
in the high-dimensional space (Young & Householder 1938). Here, we employ
MDS to visualize the similarity between control laws by finding a low-dimensional
embedding maintaining pairwise distances between them (Kaiser et al. 2017b; Kaiser,
Li & Noack 2017a). In addition to measuring the similarity (or dissimilarity) between
the evaluated control laws, the visualization helps in tracking of the search directions
tending towards the optimum of our objective. The pairwise distances in MDS are
defined as

Dij =

√√√√1
2

T∑
t=1

[b(bi
k, si(t))− b(b j

k, si(t))]2 +
1
2

T∑
t=1

[b(bi
k, sj(t))− b(b j

k, sj(t))]2, (B 1)

where b is defined by equation (2.4). The superscripts i and j indicate the iteration number
corresponding to the control cases in the optimization procedure. Multidimensional
scaling then aims to find a set of points {γ i

}
Nc
i=1, where Nc is the total number of

evaluated control laws, in a low-dimensional subspace such that ‖γ i
− γ j
‖ ≈ Dij is

approximated in a least-squares sense. Here, we find the two-dimensional subspace,
γ i
= {γ1, γ2}, for visualization purposes.
To extract the two-dimensional coordinate subspace, we construct B = − 1

2 CD2C
using a centring matrix C = I − (1/M)11′, where M is the number of control cases.
Here, I is the identity matrix and 1 is column array of all ones of size M. We then
determine (γ1, γ2) = VΛ1/2, where Λ and V contain the first two eigenvalues and
eigenvectors of B. In general, we can find a m-dimensional subspace retaining the first
m eigenvalues and eigenvectors. This proximity map evaluates the relative performance
of each control case with iterative optimization based on the variations in γ1 and
γ2 variables, which capture the two directions in the identified subspace. Moreover,
these proximity maps can accelerate the optimization process by estimating the
performance of untested control laws as proposed by Kaiser et al. (2017a). Beyond
the analysis of the optimization procedure, these proximity maps can help accelerate
the control law optimization by estimating the expected performance of control laws
without evaluating them, which can then be discarded if a control law with a similar
performance has already been evaluated.
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