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Algebraic disturbance growth in spatially developing boundary-layer flows is
investigated using an optimization approach. The methodology builds on the
framework of the parabolized stability equations and avoids some of the limitations
associated with adjoint-based schemes. In the Blasius boundary layer, non-parallel
effects are shown to significantly enhance the energy gain due to algebraic growth
mechanisms. In contrast to parallel flow, the most energetic perturbations have
finite frequency and are generated by the simultaneous activity of the Orr and
lift-up mechanisms. The highest amplification occurs in a limited region of the
parameter space that is characterized by a linear relation between the wavenumber
and frequency of the disturbances. The frequency of the most highly amplified
perturbations decreases with Reynolds number. Adverse streamwise pressure gradient
further enhances the amplification of disturbances while preserving the linear trend
between the wavenumber and frequency of the most energetic perturbations.
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1. Introduction

In shear flows exposed to sources of excitation such as external perturbations,
the exponential amplification of disturbances is often outpaced by algebraic, or
non-modal, amplification mechanisms. The prevalent outcome of algebraic growth
in zero-pressure-gradient (ZPG) boundary layers are streamwise elongated streaks
which are highly energetic perturbations in the streamwise velocity component that
can lead to fast breakdown to turbulence via the growth of high-frequency secondary
instabilities. This work examines the conditions which lead to algebraic disturbance
growth in non-parallel boundary layers using an optimization approach within the
framework of the parabolized stability equations.

Algebraic energy growth is independent of the exponential stability of the flow and
as such eludes a characterization based on the eigenvalues of the linear operator. In
formal terms, algebraic growth mechanisms can be ascribed to the non-orthogonal
nature of the eigenfunctions of the linearized governing equations. Even when all
modes are exponentially stable, their varying decay rates can enable a temporary gain
in the kinetic energy of disturbances (Trefethen et al. 1993). This transient nature
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of algebraic mechanisms implies that there exists an upper bound for the resulting
amplification of perturbation energy, and explains why laminar–turbulent transition due
to the algebraic growth of primary perturbations requires conditions that provide an
initial seeding of sufficient energy (Reddy & Henningson 1993).

In Blasius boundary layers, non-modal amplification of perturbations can occur
via the lift-up and Orr mechanisms. The former describes the displacement of the
mean momentum of the boundary layer through small disturbances in the normal
velocity (Landahl 1975, 1980). One of the first parametric studies of the lift-up
mechanism was conducted by Butler & Farrell (1992) who solved an optimization
problem in terms of the perturbation kinetic energy. They showed that under the
assumption of wall-parallel flow, the magnitude of the perturbation energy gain
is highest for perturbations with zero streamwise wavenumber. The later work by
Andersson, Berggren & Henningson (1999) demonstrated that the energy growth of
the streaks scales linearly with the distance to the leading edge. In the ZPG boundary
layer, the optimal initial condition which yields the most energetic streaks is a pair
of counter-rotating, streamwise oriented vortices (see also Luchini 2000).

The mechanism identified by and named after Orr (1907) describes a second
pathway for non-modal perturbation growth. The Orr mechanism amplifies disturbances
whose streamlines are tilted against the mean shear and which intensify as they are
reoriented by the base flow (Farrell 1987). Global stability analyses by Åkervik
et al. (2008), which resolved both the normal and streamwise dimensions within
the computational domain, showed that the Orr mechanism can optimally initiate
Tollmien–Schlichting waves in Blasius boundary layers. Using a similar approach,
Monokrousos et al. (2010) studied global optimal disturbances in the Blasius
boundary layer. Their results appeared to indicate that the most highly amplified
elongated perturbations in non-parallel flow are generated by a combination of the
Orr and lift-up mechanisms. In the context of wall-bounded turbulence, Jimenéz
(2013) credited the Orr mechanism with the augmentation of normal disturbances
arising from the breakdown of streaks. According to the proposed model, these
disturbances close a cyclical process by amplifying algebraically and inducing the
formation of new streaks.

In general, earlier investigations of non-modal growth often relied on a parallel-flow
assumption within a temporal framework. The approach enables the immediate
construction of the fundamental solution operator, which relates the solutions at two
different time instances, after solving the stability problem. The conditions which lead
to the most highly amplified perturbations are then efficiently found by singular value
decomposition (SVD). In non-parallel flows, the construction of a spatial fundamental
solution operator can become computationally more demanding, which has led to
operator-free approaches that aim to find its primary singular values by successively
integrating the forward and adjoint stability equations. The concept has been applied
in global analyses (e.g. Monokrousos et al. 2010) as well as in time-dependent
flows (e.g. Hack & Zaki 2015). For a comprehensive review of the methodology
used in the analysis of non-modal amplification mechanisms, the reader is referred to
Schmid (2007).

The present work aims to quantify the interaction between the two classes of
algebraic growth mechanisms as well as the role of non-parallel effects in the Blasius
boundary layer. In § 2, a method for computing spatial optimal disturbances within
the parabolized stability equations (PSE) framework is presented. Linear results for
optimal disturbances in ZPG boundary layers are provided in § 3. The effects of
favourable and adverse streamwise pressure gradients are discussed in § 4, followed
by concluding remarks in § 5.
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114 M. J. P. Hack and P. Moin

2. Computation of spatial optimal disturbances
The optimization scheme developed in this work is based on the computation of

the spatial evolution of small disturbances using the parabolized stability equations
(Bertolotti, Herbert & Spalart 1992; Herbert 1997). The PSE are derived from the
incompressible linearized Navier–Stokes equations,

∂u
∂t
=−U · ∇u− u · ∇U−

1
ρ
∇p+

1
Re
1u, (2.1)

∇ · u= 0, (2.2)

which describe the evolution of small perturbations, q= (uT, p)T= (u, v,w, p)T to the
base flow U= (U, V,W)T. The ansatz

q(x, y, z, t)= q̂(x, y) exp
(

i
∫ x

0
α(ξ) dξ + iβz− iωt

)
(2.3)

is invoked, where q̂ is the complex disturbance shape function, α is a complex
streamwise wavenumber, β is a real spanwise wavenumber and ω is a real temporal
frequency. The ambiguity arising from the dependence of both q̂ and α on x is
resolved by requiring that ∫

∞

0
q̂H ∂ q̂
∂x

dy= 0, (2.4)

where superscript H denotes the conjugate transpose. The shape function q̂(x, y)
hence only weakly depends on the streamwise coordinate. Retaining terms up to
order O(Re−1), the governing equations take the form,

D
∂ q̂
∂x
=−A q̂− B

∂ q̂
∂y
− C

∂2q̂
∂y2

. (2.5)

The definitions of the matrices A, B, C and D for a general, three-dimensional base
state U(x, y)= (U, V,W)T are

A=



r+
∂U
∂x

∂U
∂y

0 iα

0 r+
∂V
∂y

0 0

∂W
∂x

∂W
∂y

r iβ

iα 0 iβ 0


, B=

V 0 0 0
0 V 0 1
0 0 V 0
0 1 0 0

 , (2.6a,b)

C =



−
1

Re
0 0 0

0 −
1

Re
0 0

0 0 −
1

Re
0

0 0 0 0


, D =

U 0 0 0
0 U 0 0
0 0 U 0
1 0 0 0

 , (2.6c,d)

with r =−iω+ iαU + iβW + (α2
+ β2)/Re. In this formulation, the spatial marching

scheme of the PSE has been regularized by disregarding the term ∂ p̂/∂x while
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maintaining the rapid change of the pressure associated with the harmonic oscillation
and the exponential growth of instabilities (see Haj-Hariri 1994; Li & Malik
1996). The PSE (2.5) are discretized in the wall-normal dimension using a spectral
method based on 80 Chebyshev polynomials. The marching of the equations in x
is facilitated through an implicit second-order scheme with the exception of the
first point, where a first-order scheme is employed. Taken as a whole, the marching
procedure asymptotically attains second-order accuracy in the limit of fine grid
spacing. Parameter studies showed that a streamwise resolution of 64 points was
sufficient for the convergence of the results. Velocities are scaled by the free-stream
value at the initial position of the streamwise marching, x0, and lengths are normalized
by the boundary-layer thickness at that location, δ0 = δ(x0).

A measure of the perturbation kinetic energy at a specific streamwise position is
given by the energy norm

‖h‖2
E ≡

∫
∞

0
u∗u+ v∗v +w∗w dy, (2.7)

where superscript ∗ denotes the complex conjugate. The objective of finding the initial
solution h0 which yields the highest gain in perturbation energy between the initial
position x0 and a final position x1 is equivalent to maximizing the functional

G(x0, x1)≡max
h0

‖h1‖E

‖h0‖E
=max

h0

‖L h0‖E

‖h0‖E
. (2.8)

Here, L is the spatial fundamental solution operator which advances an arbitrary
perturbation field from the initial to the final position.

Reddy, Schmid & Henningson (1993) studied the temporal optimal disturbances for
a parallel base state. They described the initial perturbation in terms of a weighted
superposition of eigenfunctions of the temporal Orr–Sommerfeld operator. Since the
problem was linear, the time evolution of the superposition was governed by the
growth rates of the individual modes. A similar approach is pursued here, although
in the context of a spatially developing flow. The local eigenfunctions of the spatial
Orr–Sommerfeld and Squire system are evaluated at the position xe < x0 and are
adopted as an initial guess for a basis to represent the disturbance field. The initial
streamwise wavenumber for the marching is as well taken from the eigenvalue
problem. The actual basis is obtained by individually marching the modes from xe to
x0 using the PSE.

The absence of non-parallel effects in the Orr–Sommerfeld/Squire problem leads
to a small transient when using the modes as an initial condition for the PSE
marching (see e.g. Herbert 1994). This effect is visualized in figure 1(a) which
shows the real part of the streamwise wavenumber of a single mode as a function
of the streamwise coordinate. A comparison of the original eigenfunction at xe and
the marched PSE solution at x0 is provided in figure 1(b) and shows that the two
solutions are virtually identical.

The computational effort of the optimization procedure is reduced by exploiting the
rapid convergence of G under an expansion of the optimal disturbance, h0, in terms
of eigenfunctions of the spatial Orr–Sommerfeld problem. The underlying rationale
is that the most stable modes decay so quickly that they are in essence irrelevant
to the transient amplification of disturbances (see e.g. Reddy & Henningson 1993).
Considering only the k least stable eigenfunctions, the optimal initial condition can
be written as,

h0 =Q0κ . (2.9)
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FIGURE 1. (a) Real part of the streamwise disturbance wavenumber of an eigenfunction
with β = 1.8, ω = 0.01, computed by PSE marching starting from a spatial
Orr–Sommerfeld eigenfunction at xe. (b) Absolute of the streamwise component of the
eigenfunction computed via the solution of the eigenvalue problem at xe (solid) and via
PSE marching from xe to x0 (dashed).

Here, the columns of Q0 ∈C4n×k are the k eigenfunctions, q̂(x0, y) exp(i
∫ x0

xe
α(ξ) dξ),

n is the number of grid points in the wall-normal dimension and κ ∈ Ck×1 are the
weights of the individual modes. Similarly, the solution at the final position is

h1 =Q1κ, (2.10)

with the columns of Q1 representing the solutions obtained from evolving the
k eigenfunctions in Q0 from x0 to x1. Since the geometric multiplicity of the
eigenfunctions of the Orr–Sommerfeld/Squire system is one, the operator Q0 has
full column rank, rk Q0= k ∀ k ∈ [1, 4n], and QH

0 Q0 is invertible. The Moore–Penrose
pseudo-inverse of Q0 is hence explicitly defined as

Q+0 ≡ (Q
H
0 Q0)

−1QH
0 . (2.11)

The full column rank of Q0 further implies that Q+0 is a left inverse, so that Q+0 Q0≡ I ,
and specifically,

h1 =Q1Q+0 h0. (2.12)

The matrix L̃k ≡ Q1Q+0 thus defines an exact pseudo-fundamental solution operator
which advances arbitrary superpositions of the first k eigenfunctions from x0 to x1.
The solution to the optimization problem in terms of the k modes is therefore

Gk(x0, x1)=max
h0

‖L̃kh0‖E

‖h0‖E
=max

h0

‖FL̃kh0‖2

‖Fh0‖2
= ‖FL̃kF

−1
‖2, (2.13)

where the energy–weight matrix F is defined such that‖Fh‖2 ≡ ‖h‖E. The 2-norm in
the rightmost expression of (2.13) is equivalent to the spectral norm of FL̃kF−1 and
is efficiently computed via singular value decomposition.

The influence of the length of the eigenfunction expansion, k, on the energy gain
is visualized in figure 2. Beyond k & 40, the energy amplification ratio converges
increasingly to an asymptotic value of G ≈ 530. Assuming a total of 40 modes in
the optimization procedure, the computational cost is thus comparable to 20 iterations
in an adjoint-based scheme.
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FIGURE 2. Energy amplification ratio G versus number of modes k for parameters
ω= 10−6, β = 1.8, Re0 = 2440.

The above optimization scheme based on the individual spatial evolution of
the constituent eigenfunctions of the optimal disturbance is suitable for two- and
three-dimensional base states. It avoids some of the restrictions of adjoint-based
PSE approaches which evolve the total optimal disturbance by imposing a single
streamwise wavenumber (e.g. Tempelmann, Hanifi & Henningson 2010). Specifically
when the optimal is described by a superposition of modes with varying streamwise
wavenumber, such as eigenfunctions from both the discrete and continuous spectra,
their simultaneous marching in the adjoint-based approach does not guarantee the
accurate capturing of their individual evolution and by extension of the optimal
disturbance as a whole (see also Towne 2016).

Furthermore, the present algorithm does not require a priori knowledge of the
streamwise wavenumber of the optimal disturbance. Instead, its streamwise form
emerges naturally from the evolution of the constituent modes. The method further
allows the efficient evaluation of any G(x0, x′1) with x0 < x′1 < x1. Storing the
intermediate spatial history of the PSE solution between x0 and x1 enables the
immediate construction of L̃k(x0, x′1), and the optimization problem is reduced to
a re-evaluation of the SVD. This property is advantageous when the interest is in
computing the globally most highly energetic perturbations for a given Reynolds
number, maximized over all possible final positions.

3. Non-parallel optimal disturbances
In the following, results on the spatial growth of disturbances in non-parallel

Blasius boundary layers, computed with the above described optimization framework,
are presented. The first set-up considers the most highly amplified perturbations due
to non-modal mechanisms for a constant initial position x0 = 108, corresponding to a
Reynolds number Re = 2440. The gain in the kinetic energy of the perturbations is
maximized over all final positions,

Gmax ≡max
x1

G(x0, x1). (3.1)

Since the focus is on purely algebraic perturbation growth, the region of small β
where an interaction of non-modal growth with the exponential Tollmien–Schlichting
waves can occur (see Åkervik et al. 2008) is excluded from the analysis.

The maximum energy gain as a function of the disturbance frequency and the
spanwise wavenumber is presented in figure 3(a). A band of high disturbance
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FIGURE 3. Maximum energy amplification ratio G (logarithmic scaling) at Re0= 2440 as
a function of the perturbation frequency ω and the perturbation wavenumber β. (a) Non-
parallel flow. (b) Parallel flow.
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FIGURE 4. Streamwise coordinate x1 of the highest perturbation kinetic energy at Re0 =

2440 as a function of the perturbation frequency ω and the perturbation wavenumber β.
(a) Non-parallel flow. (b) Parallel flow.

amplification is observed which approximately stretches from β = 1.0, ω = 0.013 to
β = 3.5 and ω= 0.040. The global maximum of G≈ 1.5× 104 occurs at parameters
β = 1.8 and ω= 0.023. For reference, figure 3(b) shows the perturbation energy gain
computed with the spatial PSE scheme, however under the assumption of a parallel
base flow, i.e. by setting U(x, y) ≡ U(x0, y) and V(x, y) ≡ 0. The parallel results
indicate a significantly lower global maximum of G = 1031, in line with the value
of Gt = 980 predicted by the scaling law derived from the temporal parallel-flow
analysis of Butler & Farrell (1992). In agreement with the existing literature, the
most highly amplified perturbations in the parallel flow have zero frequency and a
spanwise wavenumber of β ≈ 1.8 based on the boundary-layer thickness at x0. In
the non-parallel case, the energy gain at these parameter is G= 1046, indicating that
the expansion of the boundary layer has a rather limited effect on perturbations with
extremely low frequency.

Contours of the streamwise location of highest perturbation kinetic energy, x1, are
provided in figure 4. The results show that the most highly energetic perturbations
are observed between x = 200 and x = 250, i.e. approximately 100–150 boundary-
layer thicknesses downstream of the initial position, x0 = 108. The parallel-flow case
presented in figure 4(b) provides a similar outcome, substantiating that non-parallel
effects only marginally change the length scales of non-modal perturbation growth.
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FIGURE 5. Optimal disturbance as a function of the phase ϕ = βz−ωt. Contours of the
streamwise component with vectors of the spanwise and normal components. (a) Initial
position, x0 = 108. (b) Position of highest kinetic energy, x1 = 250.

The involvement of the Orr mechanism in the evolution of the most highly amplified
disturbances becomes clear from visualizations of the solution as a function of the
phase, ϕ = βz− ωt, at the initial and final positions of the optimization scheme, see
figure 5. At a location of constant spanwise coordinate z, the abscissa describes the
variation of the disturbance field with time. Analogously, at a specific time instance
t, the axis indicates the change of the perturbation field in the spanwise dimension.
The initial field at x0 is presented in figure 5(a). While the streamwise component
has negligible amplitude, the spanwise and normal components form vortices which
are tilted against the direction of the mean shear. At the final position (figure 5b),
the vortices have been reoriented by the base flow. Simultaneously, the vortices have
caused an amplification of the streamwise perturbation component according to the
classical lift-up mechanism. The present results thus substantiate and quantify findings
in global optimal growth analyses, for instance by Monokrousos et al. (2010), where
a reorientation of perturbations that were initially tilted against the shear was reported.
Their results also indicated that the most highly amplified disturbances in non-parallel
flows are spatially compact and have finite length.

The total perturbation kinetic energy, E(x) ≡ ‖q(x)‖E, as a function of the
streamwise coordinate at parameters β = 1.8, ω = 0.02 is evaluated in figure 6(a)
for the parallel and non-parallel cases. The results show an additional energy gain
of the total energy in the non-parallel flow, followed by a more rapid viscous decay
than observed in the parallel case. Results for the energy in the normal and transverse
components presented in figure 6(b) demonstrate that non-parallel effects introduce
an appreciable amplification of Ew. This additional amplification of the energy in the
spanwise component can be ascribed to an Orr mechanism in the cross-plane, see
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FIGURE 6. Perturbation kinetic energy as a function of streamwise coordinate at β = 1.8,
ω=0.02. Non-parallel flow (black) and parallel flow (grey). (a) Total kinetic energy, E. (b)
Energy in the normal component, Ev , (solid) and in the spanwise component, Ew (dashed).
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FIGURE 7. Maximum energy amplification ratio G (logarithmic scaling) at Re0= 2440 as
a function of the perturbation frequency ω and the Reynolds number Re. (a) Non-parallel
flow. (b) Parallel flow.

figure 5, which is augmented by the non-uniform V(y) absent in parallel flow. On
the other hand, the normal component remains at the same or a lower level in the
non-parallel case, indicating that the additional energy gain is not due to an enhanced
lift-up mechanism via stronger normal displacement of the mean momentum. We
note that in both cases, the kinetic energy in the normal and spanwise perturbations
remains several orders of magnitude smaller than in the streamwise perturbation
component which at the peak of E(x) makes up more than 99.9 % of the total kinetic
energy in both the non-parallel and parallel cases.

The initial position and thus the Reynolds number of the analysis have been kept
constant so far. In the remainder of this section, we aim to establish the influence
of Re on algebraic growth in non-parallel boundary layers. Since algebraic growth is
only limited by viscosity, the general trend of stronger growth with higher Reynolds
number can also be expected to prevail in non-parallel flow. Contours of the energy
amplification factor as a function of ω and Re, presented in figure 7(a), support this
surmise. The global maximum of G within the considered parameter range is observed
at the largest investigated Reynolds number, Re = 2.2 × 105, at a finite frequency
ω≈ 4× 10−4. In line with the literature on temporal optimal disturbances (e.g. Butler
& Farrell 1992), the optimal frequency in the parallel case presented in figure 7(b) is
zero for all Reynolds numbers.
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FIGURE 8. (a) Frequency ωmax of most highly amplified perturbations as a function of
the Reynolds number. (b) Ratio Rmax of the energy amplification factors of non-parallel
and parallel flow as a function of the Reynolds number.

The frequency at which non-modal growth is most effective can be intuitively
related to the interaction of the Orr and lift-up mechanisms. The tilting of flow
structures by the mean shear in the Orr mechanism requires a finite perturbation
length scale and is inactive in the case of zero-frequency perturbations which however
maximize the efficiency of the lift-up process. In figure 8(a), the frequency of the
most highly amplified perturbations is plotted versus Re. Larger Reynolds numbers
are observed to favour lower perturbation frequencies and thus increase the relevance
of lift-up at the expense of the Orr mechanism. With logarithmic scaling for both
axes, the relation can be approximated by a straight line, indicating a power law
ωmax ∼ Re−ζ with ζ ≈ 0.8. An extrapolation of this trend predicts the most highly
amplified perturbations to have zero frequency as Re → ∞, consistent with the
vanishing of non-parallel effects in the inviscid limit.

Finally, the magnitude of the energy amplification is compared between the parallel
and non-parallel cases by evaluating the amplification ratio

Rmax(x0)≡max
ω

maxx1 Gnon-parallel(x0, x1;ω)

maxx1 Gparallel(x0, x1;ω)
, (3.2)

which relates the values obtained for G, maximized over all end points and frequencies
at a given x0 and thus Re. The result, presented in figure 8, shows a distinct maximum
for Rmax near Re≈104 where non-parallel effects extremally enhance algebraic growth
through the interaction of Orr and lift-up mechanisms. The result suggests that in
the relatively viscous regime at small Re where the gain due to algebraic growth is
small, non-parallel effects are relatively ineffective at enhancing the amplification of
disturbances. The decay at large Re is consistent with the aforementioned absence of
non-parallel effects in the limit of large Reynolds numbers.

4. Streamwise pressure gradient
Several earlier studies have examined the effect of a streamwise pressure gradient

on the non-modal growth of perturbations in boundary layers. Temporal optimal
growth analyses in parallel flow by Corbett & Bottaro (2000) showed that adverse
pressure gradient (APG) can lead to stronger algebraic amplification. Consistent with
parallel analyses of the Blasius boundary layer, their results predicted that the most
highly amplified perturbations have zero streamwise wavenumber, independent of
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FIGURE 9. Maximum energy amplification ratio G (logarithmic scaling) at Re0=2440 as a
function of the perturbation frequency ω and the perturbation wavenumber β. (a) Adverse
pressure gradient. (b) Favourable pressure gradient.

the Reynolds number. For short suboptimal time intervals, the most highly amplified
disturbances were however characterized by finite streamwise wavenumbers. Linear
parallel analyses and nonlinear direct simulations by Zaki & Durbin (2006) led to
commensurate results of stronger streaks in the presence of adverse pressure gradient.
Stability analyses of streaky boundary layers by Hack & Zaki (2014) showed that
adverse pressure gradient can also enhance the secondary instability of streaks,
explaining the early breakdown to turbulence observed in APG boundary layers.
More recently, Hack & Zaki (2016) demonstrated that the local momentum thickness
can act as a similarity parameter across pressure gradients for several attributes of
boundary-layer streaks including their amplitude and cross-sectional area.

In the following, we extend the analysis of non-parallel optimal perturbations
to boundary layers with streamwise pressure gradient. Both an adverse- and a
favourable-pressure-gradient (FPG) case with respective Hartree parameters H=−0.10
and H = 0.10 are considered. The streamwise and normal base flow is modelled via
the Falkner–Skan equations (see e.g. Schlichting & Gersten 2006) with the free-stream
velocity following a power law,

U(x, y→∞)=Cxm, (4.1)

where the constant C was chosen such that U(x0, y→∞)= 1. The exponents are m=
−0.0476 in the APG case and m=0.0526 in the FPG case. It is worth mentioning that
the variation of the free-stream convective speed in x, i.e. in the dimension in which
the disturbances evolve, is in contrast to temporal analyses, which capture the effect
of the pressure gradient only through the (invariable) shape of the base-flow profile.
In the following, we scale the amplitudes of the disturbances with U(x0, y→∞). The
alternative normalization by the local free-stream speed predicts weaker amplification
in the FPG case and higher amplification in the APG case.

The most highly amplified perturbations at Reynolds number Re0 = 2440,
corresponding to initial positions x0 = 88.1 (APG) and x0 = 137.4 (FPG), are
considered. Analogous to the ZPG flow, the energy gain is again maximized over all
possible final positions x1. Results for G in both flow configurations as a function
of the spanwise disturbance wavenumber and the disturbance frequency are presented
in figure 9. Adverse gradient enhances the algebraic amplification of disturbances
with a global maximum of G≈ 4.3× 104, approximately three times the value found
for the ZPG boundary layer. Similar to the Blasius case, the most highly amplified
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FIGURE 10. Spanwise wavenumber of the most highly amplified perturbations as a
function of the perturbation frequency ω at Re= 2440. ZPG (black), APG (dashed) and
FPG (dash-dotted).

disturbances in both configurations are again found in a limited region of non-zero
frequency that is aligned at an angle in the frequency/wavenumber plane. The most
energetic perturbations in the APG case are generated at parameters β = 1.8 and
ω = 0.01625. The amplification takes place over the distance 1x = x1 − x0 = 41.8
which is considerably shorter than the distance 1x = 141.8 of the most highly
amplified disturbances in the ZPG case at the same Reynolds number. In line with
the existing literature on parallel-flow, comparison with the ZPG case also shows that
perturbations with zero frequency are weaker in the FPG case and stronger in the
APG boundary layer.

The relation between the scales of the perturbations preferentially generated by
algebraic growth is quantified in figure 10. The ordinate indicates the spanwise
wavenumber of the most highly amplified disturbances, βmax, as a function of their
frequency. All three considered flow configurations show linear trends in the region
of highest amplification 0.015 . ω . 0.04. In particular, the slope of the curves is
similar in all cases, although shifted to lower frequencies in the adverse pressure
gradient.

Visualizations of the most highly amplified disturbances in the APG boundary
layer as a function of the phase are presented in figure 11. Similar to the Blasius
case, the most energetic perturbations are generated by a combination of the Orr and
lift-up mechanisms. At the initial position, the disturbances are tilted to the left at
approximately the same angle in the ϕ–y plane as in the ZPG boundary layer. While
the amplification takes place over a shorter distance, the reorientation and thus the
angle at x1 is again comparable to the Blasius case.

5. Conclusions
A method for computing optimal disturbances in spatially developing boundary

layers was presented. The scheme is consistent with the assumptions of the
parabolized stability equations and circumvents some of the restrictive premises
underlying adjoint-based PSE methods. A notable advantage over global analyses is
the substantially lower computational cost which allows the effective evaluation of a
large parameter space.

Application of the scheme to the parallel ZPG boundary layer yields results
that are commensurate with temporal analyses, both in terms of the magnitude of
disturbance growth and the associated parameters. In non-parallel flow, additional
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FIGURE 11. Optimal disturbance in APG boundary layer as a function of the phase ϕ =
βz−ωt. Contours of the streamwise component with vectors of the spanwise and normal
components. (a) Initial position, x0 = 88.1. (b) Position of highest kinetic energy, x1 =

129.7.

growth is observed that is attributed to the combined action of the Orr and lift-up
mechanisms. The present results thus substantiate and quantify observations made
in global analyses of non-modal disturbance growth which suggested that the most
highly amplified perturbations incorporate elements from both mechanisms.

The most energetic disturbances are generated by streamwise vortices that are tilted
against the mean shear. The non-parallel effects of boundary-layer expansion and
non-zero normal base-flow velocity enhance the efficiency of the Orr mechanism
which amplifies perturbations of finite frequency and streamwise extent. At constant
Reynolds number, algebraic growth is most effective within a relatively narrow band
in the parameter space that is characterized by a linear relation of the disturbance
frequency and wavenumber. The additional growth introduced by non-parallel effects
is most relevant within a range of moderately high Reynolds numbers and the
optimal frequency of the most highly amplified perturbations decreases with Reynolds
number. Consistent with the absence of non-parallel effects in the inviscid limit, an
extrapolation of the trend predicts that zero-frequency perturbations are most highly
amplified in the limit of large Reynolds numbers.

At zero disturbance frequency, the Orr mechanism is rendered inactive as the
extended streamwise length scales of the perturbations impede their effective
tilting by the mean shear. In this setting, the amplification of perturbations can
be entirely ascribed to the lift-up mechanism. The comparable energy gain observed
for disturbances with near zero frequency in parallel and non-parallel flow thus
suggests that lift-up is only weakly affected by non-parallel effects. By extension,
the appreciable sensitivity of algebraic growth to the disturbance frequency may be
predominantly attributed to the Orr mechanism.
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In formal terms, the added growth in the presence of the non-parallel base flow
can be interpreted as the outcome of an increased relevance of non-normal effects.
Non-orthogonality enters the initial value problem in parallel flow through the shapes
of the individual eigenfunctions and their respective growth rates which however
remain constant during the evolution of the disturbances. In the non-parallel base
flow, both the shape of the eigenfunctions and their growth rates and wavenumbers
vary individually as the disturbances evolve downstream which introduces additional
pathways for non-orthogonal effects.

Finally, the influence of a streamwise pressure gradient on the algebraic amplification
of disturbances in non-parallel flow was investigated. Moderate favourable pressure
gradient led to a modest weakening of algebraic growth compared to the ZPG
boundary layer. Owing to the acceleration of the free stream, the resulting perturbations
have nonetheless lower relative amplitudes than in Blasius flow. Adverse pressure
gradient was shown to appreciably enhance the amplification of disturbances. In
all configurations, the disturbance frequency and wavenumber of the most highly
amplified disturbances are linked through a linear relation.

Acknowledgements

The authors are grateful to Dr A. Towne for valuable discussions and helpful
comments on an earlier version of this manuscript. Support from the Office
of Naval Research, the Air Force Office of Scientific Research and Deutsche
Forschungsgemeinschaft is acknowledged.

REFERENCES

ÅKERVIK, E., EHRENSTEIN, U., GALLAIRE, F. & HENNINGSON, D. S. 2008 Global two-dimensional
stability measures of the flat plate boundary-layer flow. Eur. J. Mech. (B/Fluids) 27, 501–513.

ANDERSSON, P., BERGGREN, M. & HENNINGSON, D. S. 1999 Optimal disturbances and bypass
transition in boundary layers. Phys. Fluids 11 (1), 134–150.

BERTOLOTTI, F. P., HERBERT, T. & SPALART, P. R. 1992 Linear and nonlinear stability of the
Blasius boundary layer. J. Fluid Mech. 242, 441–474.

BUTLER, K. M. & FARRELL, B. F. 1992 Three-dimensional optimal perturbations in viscous shear
flow. Phys. Fluids A 4 (8), 1637–1650.

CORBETT, P. & BOTTARO, A. 2000 Optimal perturbations for boundary layers subject to stream-wise
pressure gradient. Phys. Fluids 12 (1), 120–130.

FARRELL, B. F. 1987 Developing disturbances in shear. J. Atmos. Sci. 44 (16), 2191–2199.
HACK, M. J. P. & ZAKI, T. A. 2014 Streak instabilities in boundary layers beneath free-stream

turbulence. J. Fluid Mech. 741, 280–315.
HACK, M. J. P. & ZAKI, T. A. 2015 Modal and nonmodal stability of boundary layers forced by

spanwise wall oscillations. J. Fluid Mech. 778, 389–427.
HACK, M. J. P. & ZAKI, T. A. 2016 Data-enabled prediction of streak breakdown in pressure-gradient

boundary layers. J. Fluid Mech. 801, 43–64.
HAJ-HARIRI, H. 1994 Characteristics analysis of the parabolized stability equations. Stud. Appl.

Maths 92, 41–53.
HERBERT, T. 1994 Parabolized stability equations. In Special Course in Transition Modelling.

AGARD Rep. 793, pp. 4(1)–4(34).; https://www.sto.nato.int/publications/AGARD/
AGARD-R-793/AGARDR793.pdf.

HERBERT, T. 1997 Parabolized stability equations. Annu. Rev. Fluid Mech. 29, 245–283.
JIMENÉZ, J. 2013 How linear is wall-bounded turbulence? Phys. Fluids 25, 110814.
LANDAHL, M. T. 1975 Wave breakdown and turbulence. SIAM J. Appl. Maths 28 (4), 735–756.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

55
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://www.sto.nato.int/publications/AGARD/AGARD-R-793/AGARDR793.pdf
https://www.sto.nato.int/publications/AGARD/AGARD-R-793/AGARDR793.pdf
https://doi.org/10.1017/jfm.2017.557


126 M. J. P. Hack and P. Moin

LANDAHL, M. T. 1980 A note on an algebraic instability of inviscid parallel shear flows. J. Fluid
Mech. 98, 243–251.

LI, F. & MALIK, M. R. 1996 On the nature of the PSE approximation. Theor. Comput. Fluid Dyn.
8, 253–273.

LUCHINI, P. 2000 Reynolds-number-independent instability of the boundary layer over a flat surface:
optimal perturbations. J. Fluid Mech. 404, 289–309.

MONOKROUSOS, A., ÅKERVIK, E., BRANDT, L. & HENNINGSON, D. S. 2010 Global
three-dimensional optimal disturbances in the Blasius boundary-layer flow using time-steppers.
J. Fluid Mech. 650, 181–214.

ORR, W. M. F. 1907 The stability or instability of the steady motions of a perfect liquid and of
a viscous liquid. Part I: a perfect liquid. Part II: a viscous liquid. Proc. R. Irish Acad. 27,
9–138.

REDDY, S. & HENNINGSON, D. 1993 Energy growth in viscous channel flows. J. Fluid Mech. 252,
209–238.

REDDY, S. C., SCHMID, P. J. & HENNINGSON, D. S. 1993 Pseudospectra of the Orr–Sommerfeld
operator. SIAM J. Appl. Maths 53 (1), 15–47.

SCHLICHTING, H. & GERSTEN, K. 2006 Boundary Layer Theory, 10th edn. Springer.
SCHMID, P. J. 2007 Nonmodal stability theory. Annu. Rev. Fluid Mech. 39, 129–162.
TEMPELMANN, D., HANIFI, A. & HENNINGSON, D. S. 2010 Spatial optimal growth in three-

dimensional boundary layers. J. Fluid Mech. 646, 5–37.
TOWNE, A. 2016 Advancements in jet turbulence and noise modeling: accurate one-way solutions and

empirical evaluation of the nonlinear forcing of wavepackets. PhD thesis, California Institute
of Technology.

TREFETHEN, L. N., TREFETHEN, A. N., REDDY, S. C. & DRISCOLL, T. A. 1993 Hydrodynamic
stability without eigenvalues. Science 261 (5121), 578–584.

ZAKI, T. A. & DURBIN, P. A. 2006 Continuous mode transition and the effects of pressure gradients.
J. Fluid Mech. 563, 357–358.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

55
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.557

	Algebraic disturbance growth by interaction of Orr and lift-up mechanisms
	Introduction
	Computation of spatial optimal disturbances
	Non-parallel optimal disturbances
	Streamwise pressure gradient
	Conclusions
	Acknowledgements
	References


