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Since callers encountering busy signals often want to redliatiern communica-
tion networks have been designed to provide automatic redidRedialing ser-
vices commonly have two parameteasmaximum numben of retries and a total
durationr over which retries are to be madgypically, retries are made at evenly
spaced time intervals of lengtt/n until either the call succeeds armretries have
failed. This rule has an obvious intuitive appgimldeed among the main results of
this paper are proofs thatn-spacing is optimal in certain basic models of called-
number behavioHowever it is easy to find situations wherg/n-spacing isnot
optimal as the paper verifies

All of our models assume Poisson arrivdist different assumptions are stud-
ied for the call durationgor a given measthese are allowed to have the relatively
high-variance exponential distribution or the zero-variance distribution concentrated
at a pointWe approximate the probability of success for the Erlang loss model with
c> 1trunksandwe calculate exact probabilities of success foc th& Erlang model
and the model with one trunk and constant call duratiéios the latter modelwe
presenttwo intriguing conjecturgme about the optimal choice ofvhenn=1 and
one about the optimality of the/n-spacing policyln spite of their apparent sim-
plicity, these conjectures seem difficult to resolmally, we study policies that con-
tinue redialing until they succegblalancing a short mean wait against a small mean
number of retries to success

1. INTRODUCTION

Automatic redialing is a relatively recent telephone senges for example Con-
sumer Reportg2], where several products with automatic redialing are mentioned
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Redialing services commonly have two parameteraaximum numben of retries
and a lengthr of the time interval during which retries are madéhen an initial call
fails, that is meets a busy signaledialing services typically make retries at evenly
spaced intervals of lengthyn until either the call succeeds arretries have also
failed. This paper proves thaalthoughr/n-spacing is not always optimait is
indeed optimal in certain basic models of called-number behgwibe described in
the following paragraph&Ve also study policies that continue redialing until they
succeegdbalancing a short mean wait against a small mean number of retries to
success

Section 2 defines redialing policies and the mathematical models of telephone
traffic analyzed in the remainder of the pap&lf models assume Poisson arrivals
but the periods during which lines are busy are allowed to be constant or to have an
exponential distributionConstant busy periods of lengihprovide an interesting
contrast to the highly variable exponential busy periddsonstant call duration
models services giving recorded announcements such as weather ,rgports
scoresmovie schedulestc

The first two models that we analyze assume a singl¢tinak and constant or
exponential call durationghe third continues with exponential call duratipbsit
assumes the Erlang loss model with> 1 trunks (The casec = 1 of the Erlang
model is brought out separately because it leads to much simpler rgShkErlang
loss model describes situations where calls are placed through an exchange with
¢ > 1 trunks and failure to complete a call occurs only when all trunks are in use

Our models apply exactly to a single redialer competing with ordinary custom-
ers who simply leave if their initial dialing attempt fail&However the models
should be reasonable when only a small fraction of the customers are redialers
Problems with many competing redialers are much more diffibldte also that we
do not model directly dialing attempts that succeed in ringing the called party but
fail because there is no answer

Section 3 contains our main results on the optimality ofthrespacing policy
Probabilities of success given in Section 4 for #fa-spacing policy have simple
expressions only for a single trunk and either exponential holding times or constant
holding times withr = T. Section 4 also supplies approximations for the probability
of success in the Erlang loss model and calculates probabilities of success for the
model with constant busy periods wher 1, and for the model witlm arbitrary = =
nT, and theT-spacing policy The last two results lead to interesting conjectures
about the optimal choice of = T whenn = 1 and about the optimality of the
T-spacing policy whem = nT. These conjectures look simple but apparently do not
have a simple proof

Section 5 shows that a policy with uneven spacing is appropriate when the
arrival rate is very smalbhs may be the case for alocal call to a number without much
traffic. For the Erlang loss modekle study a random policy that significantly sim-
plifies the success-probability calculatioh fixed number of retrials may be un-
acceptable to some dialers because failure may occur ortrédls. This motivates
Section 6where we study policies that continue redialing automatically until even-
tual success
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2. MODELS AND POLICIES

We assume that calls arrive in a Poisson stream at meaa.i@tls have indepen-
dent holding times with a common distribution and mé&aihe form of the distri-
bution will depend on the applicatioA convenient dimensionless parameter will be
the traffic intensity

p =al

In the simplest applicatigrdialing attempts fail because called numbers are
themselves busBusy periods then represent typical phone catisheexponential
mode] we assume a single trunk and take the holding time distribution to be expo-
nential with mear.

We also consider theonstant modelith a single trunk and holding times of
constant duratioff, to contrast the high-variance exponential periods with periods
of zero varianceWith constant busy periodghe call that blocked the initial try at
time 0 is sure to end before tinTe which suggests that a good strategy might de-
liberately make all retries before time trying to succeed before any competing
calls This strategy is analyzed in the next section

In other applicationsbusy periods are apt to be periods when a switching sys-
tem has all trunks bus$uppose callers dial through a switch wittrunks and that
dialing failures occur only when all trunks are bug¥ith Poisson arrivals agajiand
with exponential holding timeshe switch is modeled as Erlang’s loss sysiéi
ordan9]). TheErlang models a Markov chain of birth—death type witht 1 states
representing the numbergl(..., or c of busy trunksA dialing attempt fails only if
the state i. Statek has transition rateB(k - k+1) =aandP(k—> k—1) = k/T
(except that transitions — ¢ +1 and 0— —1 do not occuy. The stationary state
probabilities

_ P
Pk 2 il

O=i=c

(1)

increase withk if p > ¢, and peak ak = p if p < c. We are most interested in cases
with p nearc or larger so that calls have a high probability of being blockld
though the exponential model is a particular case of the Erlang modetwith it
is instructive to study the exponential model separately because of its simplicity
In generalan initial calling attempt that fails occurs at a random tigeuring
a busy periodA redialing policy specifie waiting timesX; < --- < X,=7.The
jthretry is then made attintg+ X;,j =1,...,n,ifretries 1....,j — 1 all fail. Abasic
problem studied in this paper:i&€ivenn andr, find an optimal policythat is one
that maximizes the probability(n, ) that one of the retries succeeds
A policy with retries spaced a constant timepart that is with X, = kx for
k=1...,n, will be called thex-spacing policyOf course x = 7/n is required but
the co-spacing policy has some interest when large spaciraye acceptabld-or
any busy-period distribution with meah, widely spaced retries fail indepen-
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dently with probabilityp/(1 + p); then theoco-spacing policy succeeds with
probability

_q_ (Y
P(n) =1 <1+p>‘ )

3. OPTIMALITY OF 7/n-SPACING

Convexity arguments feature in the proof of the following thearééra main result
of this section

THEOREM 1: Ther/n-spacing policy is optimal in the exponential and the Erlang
loss modelslt is also optimal in the constant model4f= T.

Proor: Define

G(x) := P{line is busy at time&|line was busy at time}0

Consider any policy witbX; = x; andX, = X,_; + X, k=1,...,n. Suppose a dialing
attempt at time O fails and 1€(x,,..., X,,) denote the conditional probability that
retries at time, ..., X, all fail.

The exponential and Erlang models will be covered firsthese modelsvhen-
ever aredial failsthe state of the model is known to belhe conditional probability
of failing again by redialing after waiting time, is thenG(x). It follows that

Q(Xg,...,X%n) = G(X1) - G(Xn). (3

Exponential model. Recall that busy periods have exponentially distributed
durations with meai and that calls arrive at rate The line is busy at tima& + dx
if either(i) itis busy atxand there is no hang-up|i®, x + dx] or (ii) itis idle atxand
there is a new arrival ifix, x + dx]. This observation leads routinely to the differ-
ential equation
dG

1
& = —_I—_[(p+1)G+1].

The solution withG(0) =1 is
p + e*(1+P)X/T
G =7, (4)
p
Because lo@(x) is convex
log Q(Xy,...,X,) = 2, logG(x,) =nlogG < > xk/n>.
k=1

For a given value oK, = X1-«=n Xk = 7, the policy succeeds with probability
P(n,7) = 1— Q(Xg,...,X,) =1 —G"(7/n). (5)

The optimal policy then takes, = 7/n and achieves its upper bound(#), which
completes the proof for the exponential madel
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Erlang loss model. In this mode] an arbitrary policy fails with a probability
Q(Xy,...,X,) of the same form as i(8), where nowG(x) is the probabilitystarting
from statec, of being in statec again after timex. Derivations ofG(x) appear in
Riordan9, p. 85] and Bene§l, p. 208] (whereG(x) is called the recovery function
To calculateG(x), one must find the zeros of

B S+j pc_j
R _og-sc< j )(c—j)!’ (©)

a polynomial in sThe zeross of R(s) are all real and negativén terms of thes,
G(x) is computed from

B pC/C! B c eij/T B 1
G(X)—O; K 1121 s 1;[J<1 —s—s) (7)

The functionG(x) is convex because the exponentially decaying term(§)of
have positive coefficienis fact proved by Haantj¢d] and Ledermann and Reuter
[7]. But, we need log5(x) to be convex in order to prove the optimality result for
7/n-spacing anghenceto prove that the success probability is

P(n,7) = 1—G"(7/n). (8)
To prove convexity of logs(x), and hence (8), write (7) as

G(x) = 3 Ce

with coefficientsC; and exponent factors both known to be non-negativBiffer-
entiate logG(x) twice and get(GG” — (G’)?2)/G?2. Convexity of logG(x) will
follow if GG” — (G')? = 0, that is if

> (r2=rr)CCe itix=0.
i

In this sum the ¢ + 1 terms withi = j all vanish The remaining terms can be
combined in pairs having the same exponential fadtbus the terms with(i, ) =
(a,b) and(i,j) = (b,a) combine into

(raz + rb2 - 2rarb)CaCbe_(a+b)X = (ra - rb)zcacbe_(a+b)x =0.

ThenGG” — (G")?2 =0, log G(x) is indeed convex8) follows, and we have com-
pleted the proof for the Erlang loss model

Constant model. In this mode] a policy with = T can fail in onlyn + 1
mutually exclusive waysOne waywith probability 1— 7/T, is that the original call
lasts longer than tim&,, = 7. The kth of the remainingh ways to fail requires the
original call to end between time&_; andX,, say at timeX,_; +1t, 0 <t < x,, and
for a new call to arrive between time&_; + t and X,. Here we assume that the
original call arrived during steady stat® the hang-up tim#,_, + t is uniformly
distributed with probability density/T. Givent, the kth failure occurs with condi-
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tional probability 1— e 2V, Anintegral over 0= t < x, removes the conditioning
ont and gives

ax +e -1
90 = —— —— (©)

for the probability of &th failure Then failure occurs with probability
Q(Xg,-evsXn) = q(Xg) + -+ +q(Xy) +1—7/T, (10)
whereX;_.—n X = X, = 7. Sinceq”(x) > 0, a convexity argument shows that the

choicex, = 7/nis optimal This completes the proof of the theorem u

4. PROBABILITIES OF SUCCESS

Probabilities of success for thgn-spacing policy have simple expressions only for
the exponential model and for the model with constant busy periods wkeh. In
the exponential cas¢he success probability,iby (4) and(5),

p+ e (L+p)7/(NT)\n
—> (11)

P(n,7)=1—< 1+,

Note thatP(n,7) in (11) is an increasing function af. As P(n,7) approache®(n)
in Eq. (2) for larger, theco-spacing policy would be optimal if long waits between
redials were allowedComparing2) and(11), one sees that little is gained by taking

/n>[T/(1+ p)]in p.

By Eqgs (9) and(10), the optimal policy in the constant model with= T has
success probability

P(r,n) = 1-Q(7,...,7)

T <r> ar —n(l—e @M
al ~ )= :
p

T

- (12)
Note thatP(7, n) is again an increasing function ef = T is a best choice if any
in0<7=Tis allowed

For the Erlang loss modele illustrate in Figue 1 a family of curves o6 (x)
vs. x/T for c = 20 trunks ang = 2, 16, 30. As x becomes largehese curves flatten
out to approach asymptotes that represent the stationary probaibfy(1), the
familiar Erlang loss functionAs can be seerthe curves verify the convexity of
G(x).

In the remainder of this sectipwe first approximate the probability of success
for the Erlang loss modéiVe then calculate probabilities of success for the constant
model whem =1, and whemis arbitraryr = nTandT-spacing is used he last two
results lead to interesting conjectures
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x/T

Ficure 1. The probabilityG(x) for the Erlang model witlt = 20. The curves are
labeled with values op.

4.1. Erlang Loss Model

Applications with largec are made difficult by the problem of finding tleeoots of
R(s) in (6). The authors’ version of MAPLE was limited toc < 27. However
Applegate has shown that Miller’'s meth@bnte and DeBodi3]) applied toR(s)
gives the roots witlt as high as 100

For very rough calculationshe simple bound

p + Ce_(P+C)X/T
c=2"" (13)
p+cC

can be useful as a conservative approximatith G._,(x) defined to be the con-
ditional probability of state — 1 at timex given that the state at time 0 westhe
inequalityG,_1(x) + G(x) = 1, applied to the transition equation at stafe
dG(x)
dx

- _$ G(x) + aG._1(x),

can supply an easy proof ¢13). As long asx is so small that the number of busy
trunks is still highly likely to bec — 1 orc, (13) gives a reasonably accurate approx-
imation toG(x). Eventually howeverthe bound becomes asymptoticad(p + ¢)
instead of to the true loss probabilips from (1). Similar approximationswith k
exponential termscould be obtained by working with the transition equations for
statesc,c — 1,...,c — k + 1. For further approximationsee Kostef6].

By exploiting the special properties of the rootsRgf), it might be possible to
extend the calculations & (x) well beyondc = 100. For very largec, the asymptotic
techniques of Mitra and Wei¢8] and Kness[5] can also be recommended
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One of the asymptotic approximations introduceddhis as follows Except
whenx is large the most likely paths of the Erlang loss model from statie statec
in timexinvolve only a few transitionsrhen the intermediate statkare all neac.
At these stateghe transition rat®(k — k — 1) = k/T may be approximated by/T.
With that approximatiopand with states relabeled by the numperc — kofidle serv-
ers the Erlang loss model is transformed intoMyiM/1 queue with a buffer of size
¢ — 1. Arrivals (of idle servergto the queue represent departures in the Erlang loss
model and departure®nds of idlenegdrom the queue represent customer arrivals
inthe Erlang loss modeThe transition rates for the queue &g —j +1) =c/Tand
P(j—]j—1) =a, exceptthat@> —1andc— c+1have probability 0G(x) becomes
the probability that the queue is empty at tiragiven that it was empty at time With
clarge enough so that the queue’s buffer is unlikely to be nearly full duringxtjme
further reasonable approximation replaces the finite buffer by one of infinite capac-
ity. The probability that a/M/1 queue in state O returns to state 0 in a tiiea
standard resul®, p. 45, Eqg. 8]. In our notation( Riordan’s use gp andais differen?,
itis

G(x) = e<°+P>X/T[|O(2@x/T) +p/cl(2vpx/T)

+(1-c/p) gz(p/c)w(zvr»x/ﬂ : (14)

wherel,(z) is the Bessel function of imaginary argumént )%J.(iz). The approx-
imateG(x) in (14) is often quite accurat&hus with p = ¢ = 20, (14) is accurate to

1% for 0= x/T = 0.08, that is for G(x) = 0.43. As the approximations used to
derive (14) all increased the probabilities of transitions toward states with more
servers idle(14) is probably a lower bound 08(x).

4.2. Constant Busy Periods, n=1

In the exponential modgihe probability of success increased with X, until, for
large r, the probability in(2) was obtainedThat is no longer true with constant-
length busy periodsas is made clear below just from the case 1.

Let o be the residual lifetime of the call at time ®&is uniformly distributed on
(0,T). Before timer, when the single retry is madthe called line can have some
numberk (0 = k < 7/T) of other callsThe retry succeed$or a givenk, if and only
if thesek calls arrived and were served before tim@&ecause the service time bf
calls iskT, for a given value ob =r, 0 <r < min{T,7 — kT}, thesek calls must
arrive during the intervat — r — KT, an event having the Poisson probability dis-
tribution with meara(r — r — kT). The probability that the retry succeeds is then
2o=k=|~/7|Px; Where

fmin{T,rkT} [a(T —r - kT)]k
P = — e
]

—a(r—r—KkT) dr,
KT
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u

FiGurE 2. ProbabilityP of success versus= 7/T for one retry ang = 2.

Integrations by parts yield
pP = H(amax{r — (k+ 1)T,0}) — H(a(r — KT)), (15)
where
Ho(t) = e 1+ t+tZ20 + ... +tk]. (16)

The termsP, depend orr in a way that changes its analytic formzat (k + 1)T.
With k = 0, for example

l—e™ T=T
pPO - e,a(,.,-r) — g =T . (17)

Moreover the number of termBy in the success probability dependsois a
result the success probability dependsmon a complicated wayFig. 2). At 7 =T,
the termPy, which is always presenhas a maximum exceeding(1 + p) by as
much as 30%depending o). Then with n= 1, the choicer = T always improves
on (2). Curves like Figure 2 for other values pflead to the following conjecture

Conjecture 1:In the model with constant busy periods and 1, a best choice of
ist=T.
4.3. Constant Busy Periods, T-Spacing

TheT-spacing policywith X, = kT, is allowed ifr can be as large ad. Calculations
below show that this policy is better than eitAgn-spacing oro-spacingit may be
optimal forr = nT, but that is not provedAs calls all last for timeT, the T-spacing
policy fails only whenfork=1,...,n, the retry aiX, is blocked by a call that arrived
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in ((k—2)T,kT). The conditions that mak&spacing fail will be given in terms of
the residual lifetime of the call at time 0 and the idle timg between the end of the
(k—1)st call and the start of thah call after time OWhen the policy failsthe retry
attimekTwas blocked by a call that started attie=p +y; + -+ +y+ (k=T
and ended at tim¥, + T, whereY, < X, = kT < Y, + T. All nretries fail if

oty tYt o+ <T (18)

fork=1,...,n.Asp and they; are all positiveall ninequalitieg18) hold if (18) just
holds atk = n.

In Eq. (18), o is uniformly distributed or{0, T) andy; is exponential with mean
1/a. For a givenp = r andk = n, theys,..., y, satisfy(18) with probability

The policy’s failure probability is obtained by averaging ovefhe probability of
success becomes

P = -3 P
p T p

with H;(t), as in(16). Terms of the sum can be combined to give the simpler result

(p)*
it

n n—1
P(n7)=——e” > (n—i) (19)
p i=o
Table 1 compares the probabilities of success for. Ef® and (19) against
Eq. (2); the first two policies use even-spacing parametetsT/n, 7 = Tandx =T,
7 =nT. For fixedn, Table 1 shows thaf-spacing is better than eith&n-spacing or
oo-spacing especially whem andp are large The results suggest the following

Conjecture 2:1n the model with constant busy periods ane nT, the T-spacing
policy is optimal

It is also interesting to see that Table 1 shows neiierT/n nor x = oo to be
always better than the other

5. UNEVEN-SPACING POLICIES WITH A FIXED NUMBER OF RETRIES

This section shows that a policy using uneven spacing is appropriateavbeery
small as may be the case for a local call to a number without much tr&tepe-
tition with other dialers is then not an important probldfrithe dialer is willing to
wait a timer, a single retry at that time will come close to maximizing the proba-
bility of successHowever other trials before time might place the call with a
shorter wait

We also study a random policy that significantly simplifies calculation of prob-
ability of success for the Erlang loss model
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TaBLE 1. Probabilities of Success for Thregespacing Policies

n p x=T/n x=T X= o0
1 01 0.951626 0951626 0909091
1 0.3 0.863939 0863939 0769231
1 1 0632121 0632121 (03}

1 3 0316738 0316738 025

1 10 Q0999955 00999955 00909091
2 01 0.975412 0998414 0991736
2 0.3 0.928613 098706 0946746
2 1 0786939 0896362 075

2 3 0517913 0583688 M375

2 10 Q198652 0199946 0173554
4 01 0.987604 0999999 0999932
4 0.3 0.96342 0999945 0997164
4 1 0884797 0995651 09375

4 3 0703511 0893548 0683594
4 10 Q367166 0398635 0316987
7 01 0.992891 1 1

7 0.3 0.978874 1 (099965
7 1 0931855 0999989 0999023
7 3 0813309 0994269 0866516
7 10 0532244 0675987 0486842

10 01 0.995017 1 1

10 03 0.985149 1 1

10 1 0951626 1 099023

10 3 Q863939 0999872 0943686

10 10 0632121 087489 0614457

5.1. No New Arrivals

Suppose = 0 and the dialer uses a policy ofetries the last at timex;, = . Any
such strategy succeeds with probability I5(7). Asa = 0, only a call in progress
at time 0 can cause blockinfhen G(x) becomes the probability that the call in
progress has a residual lifetinxeor more With that interpretationwhat follows
applies even to the constant modeg. (3) is not used in this subsection

In cases when the called number becomes free beforesjrtiee dialer now
wants to succeed in the shortest mean tifile conditional probability of success at
trial k, given a hang-up before time is

G(Xk-1) — G(Xo)

G(Xu|7) = 1-G(r) )

(20)
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and the policy must minimize the conditional mean

kZl XkG(Xk| 7).

Minimizing conditions are obtained by setting derivatives with respext emual to
zera The result is a recurrence

[Xir1 = XelG' (X)) = G(X) = G(Xy-1), k=1,...,n—1 (21)

For the exponential model arec= 0, G(x) = e T andx, = X, — Xi_;. Then
(21) becomes

Xk+1

ool (22)

For givenr andn, the policy with smallest mean is found frof®2). Starting with
any trial value forx,, (22) determiness, ..., X,,. The initial x, must be adjusted to
makex,, = 7. In a typical examplga dialer making = 4 retries in timer = 3T should
dial at times (456T, 1.033T, 1.815T, and 3T to succeed in mean time2D4T. Al-
though the best policy requires most of the retries to be made, éadges not
improve much omr/n-spacing unless/T is large In the example with/T = 3 and
n = 4, uniform spacing gives success in mean tinB4T. With larger values oh,
any policy with reasonably closely distributed retry times will succeed almost im-
mediately after hang-uprhe conditional mean time to hang-up wher= 3T is
0.8428T; the policy withn = 4 could be improved by increasimg

With a = 0, models with more than one trunk have less interBst one can
adapt the above discussion to the Erlang model by noting that the ficdtlotking
calls to hang-up has the same residual life as a single exponential call of mean
durationT/c.

In the model with constant call duratiartBe residual-life distribution is

G(x) =1—x/T, 0=x=T.
With 7 = T (the only reasonable conditipr{21) now leads to the polic¥, = kr/n

instead of(22); the conditional mean wait id + 1/n)7/2.

5.2. Random Policy for the Erlang Loss Model

Instead of waiting a fixed interval between redjadsdialer might pick intervals
X1, X2,... as ii.d. choices of a random variable Indeed random dialing may be
better than perfectly regular dialing as a model of human behdwémh retrial will
now fail with probabilityg = E(G(x)). Because the in (3) are independenthe
random policy will succeed in or fewer trials with probabilityP(n) =1 — g". If
E(x) =y, then

g = E(G(x)) = G(E(x)) = G(y) (23)
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follows from the convexity ofG(x) in (7). For a fixed meary, no random policy
does better than thgspacing policyA random dialer continuing until the call is
placed uses a mean numtgiN) = 1/(1 — g) of retries they require a mean time
E(W) = y/(1— g). Suppose& has the exponential distributipso that

g=9(y = f e YG(x) dx/y = L(1/y)/y, (24)

whereL (s) is the Laplace transform @ (x). L(s) was actually found as a prelimi-
nary step in the derivation @%). Using that resujtwe now find immediately

o)~ ROy=1D
Y= TR

with R(s) the polynomial(6). Exponential spacing is then computationally simpler
than constant spacing because it does not require solving for the zé6)sloffact,
as(23) shows g(y) may serve as another bound on the more complic@tgd.

To compare random with/n-spacing consider the special case= 1, that is
the exponential modeFigure 3 compares the even-spacing success probability in
(11) against the random-spacing success probability ¢"(7/n), whereg(.) is
computed from(24) after substituting4). The integral gives

1+ p7/(nT)
1+ (1+ p)r/(nT)"

As a partial check of the resulisis easily verified thatasn — oo, both(11) and 1—
g"(7/n) tend to 1— e~ /T, the probability the blocking call ends in time

(25)

g(r/n) =

Continuous redialing

0.
0.
q,
0.
0.
1 2 3 4 5
intensity

FIGURE 3. The success probabilify versus the traffic intensity for the even and
random(exponential spacing policies withr/T = 2; the upper curve of each pair
corresponds to the even spacing palioythe limit n — oo, the two policies give the
result labeled “Continuous redialing” in the figure
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6. CERTAIN SUCCESS

Fixed numbers of retrials may be unacceptable to some dialers because failure may
occur on alln trials. In this sectionwe study policies requiring an automatic dialer
to redial until it eventually succeeds

6.1. Exponential and Erlang Loss Models

Assume that retries are made at times2x,... until a successful trial is made
The number of retries actually used is a random variabl&gain, each redial
has probabilityG(x) of failing. The dialer succeeds at trial with probability

[1 - G(x)]G" %(x) so the expected number of trials is

1
1-G(x)°

The dialer’s mean wait to successH(W) = XxE(v). Now the choice ok involves a
compromiseSmallx is needed for a short mean waiut largex is needed for a
small mean number of redial¥able 2.

The following criterion determines an interesting special valuefof the ex-
ponential modelSuppose thatvhen trials aX,, ..., X,_, have failegthe next trial

E(v) =

TABLE 2. Choosingx for the Exponential Model

p x/T E(v) E(W)/T
0.2 02 562398 11248
0.2 05 265964 132982
0.2 1 171722 171722
0.2 2 131972 263945
0.2 10 120001 120001
1 02 6.06649 12133
1 05 316395 158198
1 1 231304 231304
1 2 203731 407463
1 10 2 20
5 02 858608 171722
5 05 6.31437 315719
5 1 601491 601491
5 2 600004 120001
5 10 6 60

25 02 261442 522885

25 05 260001 13

25 1 26 26

25 2 26 52

25 10 26 260
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TaBLE 3. Certain Success Policy with a Special

p x/T E(») E(W)/T
0.05 31534 108975 343642
0.1 255843 117015 299374
0.2 20118 131787 26513
0.5 138629 171429 23765
0.75 115073 201958 232399
1 1 231304 231304
1.25 0892574 259881 231963
15 0.81093 287915 233479
2 0.693147 342857 23765
5 0.402359 658937 26513

10 0255843 117015 299374

25 013412 268204 359715

must maximize the probability of being the first call after the hang-up of the one in
progress at tim&,_,. The choice ok = X, — X, must maximize

X dt efx/T _ efax
f eft/Tfa(xft) ? = — (26)
0 p—1

The maximum lies at/T =In(p)/(p — 1). Table 3 shows how this policy performs
as a function op.

Again, for the Erlang loss modgthe dialer choosesto balanceE(v) against
E(W). If xis large thenE(v) is close to X(1 — p.), with p. the loss probabilitysee
(1) with k=c), butE(W) is large If xis small thenE(W) is nearT/c, the mean wait
for the first of c calls to endbut E(») is large The dialer might now chooseto
maximize the probability that in tinve(i) one of thec calls ends andi) no new calls
arrive afterwardThen a function likg26) (with T replaced byT/c) would be max-
imized the choice would be

x = (T/0)In(p/c)/(p/c—1), (27)

and would be convenient because neitB¢k) nor the rootss are needed if27).

6.2. No New Arrivals

As before the dialer might want a policy that is certain to succeed eventusilig-
pose each retry is assumed to have a cobttimhe units so that the cost to the dialer
of success at triddis X, + bk TheX, are to be chosen to minimize the expected cost

o g[xk +BRILG(X1) — G(X,)]. (28)

https://doi.org/10.1017/50269964899131048 Published online by Cambridge University Press


https://doi.org/10.1017/S0269964899131048

52 E. G. Coffman, Jr., E. N. Gilbert, and Y. A. Kogan

(Note thatk now runs from 1 tao.) A minimizing condition like Eq(21) is

(X1 = X+ )G (X)) = G(Xy) — G(Xy-1), (29)
or
Xer1 + D
MT =ewT—1 (30)

for an exponential busy periotf the retry atX; fails, the call still has the same
residual life distribution it had at time, @nd so the minimizing policy must have
X1 = X,. That condition and Eq30) determine that ak; are equalThe minimumC
becomes

C=T+x,+th,

which is a low costconsidering that is the mean cost of waiting for the call to end
andb is the cost of one retry
For a constant busy peripthe minimizing condition Eq(29) becomes

Xk+l — 2Xk + kal + b = 0
with the solution
X = kX; — k(k—1)b/2. (31)

In Eq. (31), the X, will eventually decreasend so the policy will have to choo3e
and a finite value ofi such thatX; < X, < --- < X, =T. For a givenn, X, =T
requiresX; = T/n+ (n—1)b/2, so

n(in—1) < 2T/b

is needed to make,_; < X,. In this way the solution reduces to trying abol2T/b
values ofn to see which gives the smalleGtin (28). Unlike (22), Eq. (31) now
clusters theX, nearT instead of spreading them evenly

6.3. Constant Busy Periods, First Call

As in Section 61, suppose a dialer always choossso that given the failures at
X1,..., X1, his next call has maximum probability both of succeeding and of ar-
riving before anyone else places a new chlie dialer’s best policy is @-spacing
policy. A proof of this fact can easily be given assuming that Conjecture 1 in Section
4.2 is true The argument that follows shows only the main idea

By Conjecture 1x, = T. To use an induction argumesuppose&; = X, = «++ =
X = T and the firskretrials all fail As in Section 43, the residual lifetime and the
idle timesy; between calls satisfy18). The call that blocked the trial &, has
residual lifetime

Yk+T_kT:Q+Y1+y2+"'+yk>Q,

which is even longer than the original residual lifetime of the call.a&®the best
policy for a single retry waiting for a residual lifetinpeto end tookx; = T, the policy
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to wait for an even longer lifetime should not takg ; < T. But, no lifetime exceeds
T; a policy has nothing to gain by taking.,, > T. That leaves only,,, =T.
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