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Since callers encountering busy signals often want to redial, modern communica-
tion networks have been designed to provide automatic redialing+ Redialing ser-
vices commonly have two parameters: a maximum numbern of retries and a total
durationt over which retries are to be made+ Typically, retries are made at evenly
spaced time intervals of lengtht0n until either the call succeeds orn retries have
failed+ This rule has an obvious intuitive appeal; indeed, among the main results of
this paper are proofs thatt0n-spacing is optimal in certain basic models of called-
number behavior+ However, it is easy to find situations wheret0n-spacing isnot
optimal, as the paper verifies+

All of our models assume Poisson arrivals, but different assumptions are stud-
ied for the call durations; for a given mean, these are allowed to have the relatively
high-variance exponential distribution or the zero-variance distribution concentrated
at a point+We approximate the probability of success for the Erlang loss model with
c. 1 trunks,and we calculate exact probabilities of success for thec51 Erlang model
and the model with one trunk and constant call durations+ For the latter model, we
present two intriguing conjectures, one about the optimal choice oft whenn51 and
one about the optimality of thet0n-spacing policy+ In spite of their apparent sim-
plicity, these conjectures seem difficult to resolve+Finally,we study policies that con-
tinue redialing until they succeed, balancing a short mean wait against a small mean
number of retries to success+

1. INTRODUCTION

Automatic redialing is a relatively recent telephone service; see, for example, Con-
sumer Reports@2#, where several products with automatic redialing are mentioned+
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Redialing services commonly have two parameters: a maximum numbern of retries
and a lengtht of the time interval during which retries are made+When an initial call
fails, that is,meets a busy signal, redialing services typically make retries at evenly
spaced intervals of lengtht0n until either the call succeeds orn retries have also
failed+ This paper proves that, althought0n-spacing is not always optimal, it is
indeed optimal in certain basic models of called-number behavior, to be described in
the following paragraphs+We also study policies that continue redialing until they
succeed, balancing a short mean wait against a small mean number of retries to
success+

Section 2 defines redialing policies and the mathematical models of telephone
traffic analyzed in the remainder of the paper+ All models assume Poisson arrivals,
but the periods during which lines are busy are allowed to be constant or to have an
exponential distribution+ Constant busy periods of lengthT provide an interesting
contrast to the highly variable exponential busy periods+ A constant call duration
models services giving recorded announcements such as weather reports, sports
scores, movie schedules, etc+

The first two models that we analyze assume a single line0trunk and constant or
exponential call durations; the third continues with exponential call durations, but
assumes the Erlang loss model withc . 1 trunks+ ~The casec 5 1 of the Erlang
model is brought out separately because it leads to much simpler results+! The Erlang
loss model describes situations where calls are placed through an exchange with
c . 1 trunks, and failure to complete a call occurs only when all trunks are in use+

Our models apply exactly to a single redialer competing with ordinary custom-
ers, who simply leave if their initial dialing attempt fails+ However, the models
should be reasonable when only a small fraction of the customers are redialers+
Problems with many competing redialers are much more difficult+Note also that we
do not model directly dialing attempts that succeed in ringing the called party but
fail because there is no answer+

Section 3 contains our main results on the optimality of thet0n-spacing policy+
Probabilities of success given in Section 4 for thet0n-spacing policy have simple
expressions only for a single trunk and either exponential holding times or constant
holding times witht # T+ Section 4 also supplies approximations for the probability
of success in the Erlang loss model and calculates probabilities of success for the
model with constant busy periods whenn51, and for the model withnarbitrary, t5
nT, and theT-spacing policy+ The last two results lead to interesting conjectures
about the optimal choice oft 5 T when n 5 1 and about the optimality of the
T-spacing policy whent 5 nT+ These conjectures look simple but apparently do not
have a simple proof+

Section 5 shows that a policy with uneven spacing is appropriate when the
arrival rate is very small, as may be the case for a local call to a number without much
traffic+ For the Erlang loss model, we study a random policy that significantly sim-
plifies the success-probability calculation+ A fixed number of retrials may be un-
acceptable to some dialers because failure may occur on alln trials+ This motivates
Section 6, where we study policies that continue redialing automatically until even-
tual success+
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2. MODELS AND POLICIES

We assume that calls arrive in a Poisson stream at mean ratea+ Calls have indepen-
dent holding times with a common distribution and meanT+ The form of the distri-
bution will depend on the application+Aconvenient dimensionless parameter will be
the traffic intensity

r 5 aT+

In the simplest application, dialing attempts fail because called numbers are
themselves busy+ Busy periods then represent typical phone calls+ In theexponential
model, we assume a single trunk and take the holding time distribution to be expo-
nential with meanT+

We also consider theconstant modelwith a single trunk and holding times of
constant durationT, to contrast the high-variance exponential periods with periods
of zero variance+With constant busy periods, the call that blocked the initial try at
time 0 is sure to end before timeT, which suggests that a good strategy might de-
liberately make all retries before timeT, trying to succeed before any competing
calls+ This strategy is analyzed in the next section+

In other applications, busy periods are apt to be periods when a switching sys-
tem has all trunks busy+ Suppose callers dial through a switch withc trunks and that
dialing failures occur only when all trunks are busy+With Poisson arrivals again, and
with exponential holding times, the switch is modeled as Erlang’s loss system~Ri-
ordan@9# !+TheErlang modelis a Markov chain of birth–death type withc11 states
representing the numbers 0,1, + + + , or c of busy trunks+A dialing attempt fails only if
the state isc+ Statek has transition ratesP~k r k11! 5 a andP~k r k21! 5 k0T
~except that transitionsc r c 11 and 0r 21 do not occur!+ The stationary state
probabilities

pk 5
rk0k!

(
0#i#c

r i0i!
(1)

increase withk if r . c, and peak atk5 r if r , c+We are most interested in cases
with r nearc or larger so that calls have a high probability of being blocked+ Al-
though the exponential model is a particular case of the Erlang model withc51, it
is instructive to study the exponential model separately because of its simplicity+

In general, an initial calling attempt that fails occurs at a random timet0 during
a busy period+ A redialing policy specifiesn waiting timesX1 , {{{ , Xn # t+ The
jth retry is then made at timet01 Xj , j 51, + + + ,n, if retries 1, + + + , j 21 all fail+A basic
problem studied in this paper is: Givenn andt, find an optimal policy, that is, one
that maximizes the probabilityP~n,t! that one of the retries succeeds+

A policy with retries spaced a constant timex apart, that is, with Xk 5 kx for
k 5 1, + + + ,n, will be called thex-spacing policy+ Of course, x # t0n is required but
the`-spacing policy has some interest when large spacingsx are acceptable+ For
any busy-period distribution with meanT, widely spaced retries fail indepen-
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dently with probabilityr0~1 1 r! ; then the`-spacing policy succeeds with
probability

P~n! 5 12 S r

11 r
Dn

+ (2)

3. OPTIMALITY OF t/n -SPACING

Convexity arguments feature in the proof of the following theorem, the main result
of this section+

Theorem 1: Thet0n-spacing policy is optimal in the exponential and the Erlang
loss models+ It is also optimal in the constant model ift # T+

Proof: Define

G~x! :5 P$line is busy at timex6 line was busy at time 0%+

Consider any policy withX15 x1 andXk 5 Xk211 xk, k51, + + + ,n+ Suppose a dialing
attempt at time 0 fails and letQ~x1, + + + , xn! denote the conditional probability that
retries at timesX1, + + + ,Xn all fail+

The exponential and Erlang models will be covered first+ In these models,when-
ever a redial fails, the state of the model is known to bec+The conditional probability
of failing again, by redialing after waiting timex, is thenG~x!+ It follows that

Q~x1, + + + , xn! 5 G~x1!{{{G~xn!+ (3)

Exponential model. Recall that busy periods have exponentially distributed
durations with meanT and that calls arrive at ratea+ The line is busy at timex1 dx
if either~i! it is busy atx and there is no hang-up in@x, x1dx# or ~ii ! it is idle atx and
there is a new arrival in@x, x 1 dx# + This observation leads routinely to the differ-
ential equation

dG

dx
5 2

1

T
@~ r 1 1!G 1 1# +

The solution withG~0! 5 1 is

G~x! 5
r 1 e2~11r!x0T

11 r
+ (4)

Because logG~x! is convex,

log Q~x1, + + + , xn! 5 (
k51

n

log G~xk! $ n log GS(
k51

n

xk0nD+
For a given value ofXn 5 (1#k#n xk 5 t, the policy succeeds with probability

P~n,t! 5 12 Q~x1, + + + , xn! # 1 2 Gn~t0n!+ (5)

The optimal policy then takesxk 5 t0n and achieves its upper bound in~5!, which
completes the proof for the exponential model+
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Erlang loss model. In this model, an arbitrary policy fails with a probability
Q~x1, + + + , xn! of the same form as in~3!, where nowG~x! is the probability, starting
from statec, of being in statec again after timex+ Derivations ofG~x! appear in
Riordan@9, p+ 85# and Benes@1, p+ 208# ~whereG~x! is called the recovery function!+
To calculateG~x!, one must find the zeros of

R~s! 5 (
0#j#c

Ss1 j

j D rc2j

~c 2 j !!
, (6)

a polynomial in s+ The zerossj of R~s! are all real and negative+ In terms of thesj ,
G~x! is computed from

G~x! 5
rc0c!

(
0#k#c

rk0k!
2 (

j51

c esj x0T

sj
)
iÞj
S12

1

sj 2 si
D+ (7)

The functionG~x! is convex because the exponentially decaying terms of~7!
have positive coefficients, a fact proved by Haantjes@4# and Ledermann and Reuter
@7#+ But, we need logG~x! to be convex in order to prove the optimality result for
t0n-spacing and, hence, to prove that the success probability is

P~n,t! 5 12 Gn~t0n!+ (8)

To prove convexity of logG~x!, and, hence, ~8!, write ~7! as

G~x! 5 (
i50

c

Ci e
2ri x

with coefficientsCi and exponent factorsri both known to be non-negative+ Differ-
entiate logG~x! twice and get~GG'' 2 ~G'!2!0G2+ Convexity of logG~x! will
follow if GG''2 ~G'!2 $ 0, that is, if

(
i, j

~r j
2 2 ri rj !Ci Cj e

2~ri1rj !x $ 0+

In this sum, the c 1 1 terms withi 5 j all vanish+ The remaining terms can be
combined in pairs having the same exponential factor+ Thus, the terms with~i, j ! 5
~a,b! and~i, j ! 5 ~b,a! combine into

~ra
2 1 rb

2 2 2ra rb!CaCbe2~a1b!x 5 ~ra 2 rb!2CaCbe2~a1b!x $ 0+

ThenGG''2 ~G'!2 $ 0, log G~x! is indeed convex, ~8! follows, and we have com-
pleted the proof for the Erlang loss model+

Constant model. In this model, a policy with t # T can fail in onlyn 1 1
mutually exclusive ways+One way,with probability 12 t0T, is that the original call
lasts longer than timeXn 5 t+ Thekth of the remainingn ways to fail requires the
original call to end between timesXk21 andXk, say at timeXk21 1 t, 0 , t , xk, and
for a new call to arrive between timesXk21 1 t andXk+ Here, we assume that the
original call arrived during steady state, so the hang-up timeXk21 1 t is uniformly
distributed with probability density 10T+ Given t, thekth failure occurs with condi-

REDIALING POLICIES 41

https://doi.org/10.1017/S0269964899131048 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964899131048


tional probability 12e2a~xk2t!+An integral over 0# t # xk removes the conditioning
on t and gives

q~xk! 5
axk 1 e2axk 2 1

r
(9)

for the probability of akth failure+ Then failure occurs with probability

Q~x1, + + + , xn! 5 q~x1! 1 {{{ 1 q~xn! 1 1 2 t0T, (10)

where(1#k#n xk 5 Xn 5 t+ Sinceq''~x! . 0, a convexity argument shows that the
choicexk 5 t0n is optimal+ This completes the proof of the theorem+ n

4. PROBABILITIES OF SUCCESS

Probabilities of success for thet0n-spacing policy have simple expressions only for
the exponential model and for the model with constant busy periods whent # T+ In
the exponential case, the success probability is, by ~4! and~5!,

P~n,t! 5 12 Sr 1 e2~11r!t0~nT!

11 r
Dn

+ (11)

Note thatP~n,t! in ~11! is an increasing function oft+ As P~n,t! approachesP~n!
in Eq+ ~2! for larget, the`-spacing policy would be optimal if long waits between
redials were allowed+Comparing~2! and~11!, one sees that little is gained by taking

t0n .. @T0~11 r!# ln r+

By Eqs+ ~9! and~10!, the optimal policy in the constant model witht # T has
success probability

P~t,n! 5 12 Q~t, + + + ,t!

5
t

T
2 nqSt

n
D5

at 2 n~12 e2at0n!

r
+ (12)

Note thatP~t,n! is again an increasing function oft; t 5 T is a best choice if anyt
in 0 , t # T is allowed+

For the Erlang loss model, we illustrate in Figure 1 a family of curves ofG~x!
vs+ x0T for c5 20 trunks andr 5 2, 16, 30+As x becomes large, these curves flatten
out to approach asymptotes that represent the stationary probabilitypc of ~1!, the
familiar Erlang loss function+ As can be seen, the curves verify the convexity of
G~x!+

In the remainder of this section, we first approximate the probability of success
for the Erlang loss model+We then calculate probabilities of success for the constant
model whenn51, and whenn is arbitrary, t5nTandT-spacing is used+The last two
results lead to interesting conjectures+

42 E. G. Coffman, Jr., E. N. Gilbert, and Y. A. Kogan

https://doi.org/10.1017/S0269964899131048 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964899131048


4.1. Erlang Loss Model

Applications with largec are made difficult by the problem of finding thec roots of
R~s! in ~6!+ The authors’ version of MAPLE© was limited toc , 27+ However,
Applegate has shown that Müller’s method~Conte and DeBoor@3# ! applied toR~s!
gives the roots withc as high as 100+

For very rough calculations, the simple bound

G~x! #
r 1 ce2~ r1c!x0T

r 1 c
(13)

can be useful as a conservative approximation+With Gc21~x! defined to be the con-
ditional probability of statec 2 1 at timex given that the state at time 0 wasc, the
inequalityGc21~x! 1 G~x! # 1, applied to the transition equation at statec,

dG~x!

dx
5 2

c

T
G~x! 1 aGc21~x!,

can supply an easy proof of~13!+ As long asx is so small that the number of busy
trunks is still highly likely to bec21 orc, ~13! gives a reasonably accurate approx-
imation toG~x!+ Eventually, however, the bound becomes asymptotic tor0~r 1 c!
instead of to the true loss probabilitypc from ~1!+ Similar approximations, with k
exponential terms, could be obtained by working with the transition equations for
statesc,c 2 1, + + + ,c 2 k 1 1+ For further approximations, see Kosten@6#+

By exploiting the special properties of the roots ofR~s!, it might be possible to
extend the calculations ofG~x! well beyondc5100+For very largec, the asymptotic
techniques of Mitra and Weiss@8# and Knessl@5# can also be recommended+

Figure 1. The probabilityG~x! for the Erlang model withc5 20+ The curves are
labeled with values ofr+
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One of the asymptotic approximations introduced in@8# is as follows+ Except
whenx is large, the most likely paths of the Erlang loss model from statec to statec
in timex involve only a few transitions+ Then the intermediate statesk are all nearc+
At these states, the transition rateP~kr k21! 5 k0T may be approximated byc0T+
With that approximation,and with states relabeled by the numberj 5c2kof idle serv-
ers, the Erlang loss model is transformed into anM0M01 queue with a buffer of size
c21+Arrivals ~of idle servers! to the queue represent departures in the Erlang loss
model, and departures~ends of idleness! from the queue represent customer arrivals
in the Erlang loss model+The transition rates for the queue areP~ j r j 11!5c0Tand
P~ j r j 21!5a,except that 0r21 andcr c11 have probability 0+G~x! becomes
the probability that the queue is empty at timex,given that it was empty at time 0+With
c large enough so that the queue’s buffer is unlikely to be nearly full during timex, a
further reasonable approximation replaces the finite buffer by one of infinite capac-
ity+ The probability that anM0M01 queue in state 0 returns to state 0 in a timex is a
standard result@9, p+ 45,Eq+ 8#+ In our notation~Riordan’s use ofr anda is different!,
it is

G~x! 5 e2~c1r!x0TF I0~2!rx0T ! 1 %r0cI1~2!rx0T !

1 ~12 c0r! (
k52

`

~ r0c!k02Ik~2!rx0T !G , (14)

whereIk~z! is the Bessel function of imaginary argument~2i !kJk~iz!+ The approx-
imateG~x! in ~14! is often quite accurate+ Thus, with r 5 c5 20, ~14! is accurate to
1% for 0 # x0T # 0+08, that is, for G~x! $ 0+43+ As the approximations used to
derive ~14! all increased the probabilities of transitions toward states with more
servers idle, ~14! is probably a lower bound onG~x!+

4.2. Constant Busy Periods, n = 1

In the exponential model, the probability of success increased witht 5 Xn until, for
larget, the probability in~2! was obtained+ That is no longer true with constant-
length busy periods, as is made clear below just from the casen 5 1+

Let ® be the residual lifetime of the call at time 0; ® is uniformly distributed on
~0,T !+ Before timet, when the single retry is made, the called line can have some
numberk ~0 # k , t0T ! of other calls+ The retry succeeds, for a givenk, if and only
if thesek calls arrived and were served before timet+ Because the service time ofk
calls iskT, for a given value of® 5 r, 0 , r , min$T,t 2 kT% , thesek calls must
arrive during the intervalt 2 r 2 kT, an event having the Poisson probability dis-
tribution with meana~t 2 r 2 kT!+ The probability that the retry succeeds is then
(0#k#{t0T}Pk , where

Pk 5E
0

min$T,t2kT% @a~t 2 r 2 kT!# k

k! T
e2a~t2r2kT! dr+
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Integrations by parts yield

rPk 5 Hk~a max$t 2 ~k 1 1!T,0%! 2 Hk~a~t 2 kT!!, (15)

where

Hk~t! 5 e2t @11 t 1 t 202! 1 {{{ 1 t k0k!# + (16)

The termsPk depend ont in a way that changes its analytic form att 5 ~k 1 1!T+
With k 5 0, for example,

rP0 5 H12 e2at t # T

e2a~t2T ! 2 e2at t $ T
+ (17)

Moreover, the number of termsPk in the success probability depends ont+As a
result, the success probability depends ont in a complicated way~Fig+ 2!+At t 5 T,
the termP0, which is always present, has a maximum exceeding 10~1 1 r! by as
much as 30%~depending onr!+ Then,with n51, the choicet 5 T always improves
on ~2!+ Curves like Figure 2 for other values ofr lead to the following conjecture+

Conjecture 1: In the model with constant busy periods andn51, a best choice oft
is t 5 T+

4.3. Constant Busy Periods, T -Spacing

TheT-spacing policy,with Xk5kT, is allowed ift can be as large asnT+Calculations
below show that this policy is better than eitherT0n-spacing or̀ -spacing; it may be
optimal fort 5 nT, but that is not proved+As calls all last for timeT, theT-spacing
policy fails only when, for k51, + + + ,n, the retry atXk is blocked by a call that arrived

Figure 2. ProbabilityP of success versusu 5 t0T for one retry andr 5 2+
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in ~~k21!T,kT!+ The conditions that makeT-spacing fail will be given in terms of
the residual lifetime® of the call at time 0 and the idle timeyk between the end of the
~k21!st call and the start of thekth call after time 0+When the policy fails, the retry
at timekTwas blocked by a call that started at timeYk5 ® 1 y11 {{{ 1 yk1 ~k21!T
and ended at timeYk 1 T, whereYk , Xk 5 kT , Yk 1 T+ All n retries fail if

® 1 y1 1 y2 1 {{{ 1 yk , T (18)

for k51, + + + ,n+As ® and theyi are all positive, all n inequalities~18! hold if ~18! just
holds atk 5 n+

In Eq+ ~18!, ® is uniformly distributed on~0,T ! andyi is exponential with mean
10a+ For a given® 5 r andk 5 n, they1, + + + , yn satisfy~18! with probability

12 (
i50

n21 @a~T 2 r !# i

i!
ea~T2r !+

The policy’s failure probability is obtained by averaging overr+ The probability of
success becomes

P~n,t! 5
n

r
2 (

0

n21 Hi ~ r!

r

with Hi ~t!, as in~16!+ Terms of the sum can be combined to give the simpler result

P~n,t! 5
n

r
2 e2r (

i50

n21

~n 2 i !
~ r! i21

i!
+ (19)

Table 1 compares the probabilities of success for Eqs+ ~12! and ~19! against
Eq+ ~2!; the first two policies use even-spacing parametersx5 T0n, t 5 T andx5 T,
t 5 nT+ For fixedn, Table 1 shows thatT-spacing is better than eitherT0n-spacing or
`-spacing, especially whenn andr are large+ The results suggest the following+

Conjecture 2: In the model with constant busy periods andt 5 nT, theT-spacing
policy is optimal+

It is also interesting to see that Table 1 shows neitherx 5 T0n nor x 5` to be
always better than the other+

5. UNEVEN-SPACING POLICIES WITH A FIXED NUMBER OF RETRIES

This section shows that a policy using uneven spacing is appropriate whena is very
small, as may be the case for a local call to a number without much traffic+ Compe-
tition with other dialers is then not an important problem+ If the dialer is willing to
wait a timet, a single retry at that time will come close to maximizing the proba-
bility of success+ However, other trials before timet might place the call with a
shorter wait+

We also study a random policy that significantly simplifies calculation of prob-
ability of success for the Erlang loss model+
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5.1. No New Arrivals

Supposea 5 0 and the dialer uses a policy ofn retries, the last at timeXn 5 t+ Any
such strategy succeeds with probability 12 G~t!+ As a 5 0, only a call in progress
at time 0 can cause blocking+ ThenG~x! becomes the probability that the call in
progress has a residual lifetimex or more+ With that interpretation, what follows
applies even to the constant model; Eq+ ~3! is not used in this subsection+

In cases when the called number becomes free before timet, the dialer now
wants to succeed in the shortest mean time+The conditional probability of success at
trial k, given a hang-up before timet, is

G~Xk6t! 5
G~Xk21! 2 G~Xk!

12 G~t!
, (20)

Table 1. Probabilities of Success for Threex-spacing Policies

n r x 5 T0n x5 T x5`

1 0+1 0+951626 0+951626 0+909091
1 0+3 0+863939 0+863939 0+769231
1 1 0+632121 0+632121 0+5
1 3 0+316738 0+316738 0+25
1 10 0+0999955 0+0999955 0+0909091

2 0+1 0+975412 0+998414 0+991736
2 0+3 0+928613 0+98706 0+946746
2 1 0+786939 0+896362 0+75
2 3 0+517913 0+583688 0+4375
2 10 0+198652 0+199946 0+173554

4 0+1 0+987604 0+999999 0+999932
4 0+3 0+96342 0+999945 0+997164
4 1 0+884797 0+995651 0+9375
4 3 0+703511 0+893548 0+683594
4 10 0+367166 0+398635 0+316987

7 0+1 0+992891 1 1
7 0+3 0+978874 1 0+999965
7 1 0+931855 0+999989 0+999023
7 3 0+813309 0+994269 0+866516
7 10 0+532244 0+675987 0+486842

10 0+1 0+995017 1 1
10 0+3 0+985149 1 1
10 1 0+951626 1 0+999023
10 3 0+863939 0+999872 0+943686
10 10 0+632121 0+87489 0+614457
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and the policy must minimize the conditional mean

(
k51

n

XkG~Xk6t!+

Minimizing conditions are obtained by setting derivatives with respect toXk equal to
zero+ The result is a recurrence

@Xk11 2 Xk#G
'~Xk! 5 G~Xk! 2 G~Xk21!, k 5 1, + + + ,n 2 1+ (21)

For the exponential model anda 5 0, G~x! 5 e2x0T andxk 5 Xk 2 Xk21+ Then
~21! becomes

xk11

T
5 exk0T 2 1+ (22)

For givent andn, the policy with smallest mean is found from~22!+ Starting with
any trial value forx1, ~22! determinesx2, + + + , xn+ The initial x1 must be adjusted to
makexn5t+ In a typical example, a dialer makingn54 retries in timet53Tshould
dial at times 0+456T, 1+033T, 1+815T, and 3T to succeed in mean time 1+204T+ Al-
though the best policy requires most of the retries to be made early, it does not
improve much ont0n-spacing unlesst0T is large+ In the example witht0T5 3 and
n5 4, uniform spacing gives success in mean time 1+264T+With larger values ofn,
any policy with reasonably closely distributed retry times will succeed almost im-
mediately after hang-up+ The conditional mean time to hang-up whent 5 3T is
0+8428T; the policy withn 5 4 could be improved by increasingn+

With a 5 0, models with more than one trunk have less interest+ But one can
adapt the above discussion to the Erlang model by noting that the first ofc blocking
calls to hang-up has the same residual life as a single exponential call of mean
durationT0c+

In the model with constant call durations, the residual-life distribution is

G~x! 5 12 x0T, 0 # x # T+

With t # T ~the only reasonable condition!, ~21! now leads to the policyXk 5 kt0n
instead of~22!; the conditional mean wait is~11 10n!t02+

5.2. Random Policy for the Erlang Loss Model

Instead of waiting a fixed interval between redials, a dialer might pick intervals
x1, x2, + + + as i+i+d+ choices of a random variablex+ Indeed, random dialing may be
better than perfectly regular dialing as a model of human behavior+ Each retrial will
now fail with probabilityg 5 E~G~x!!+ Because thexk in ~3! are independent, the
random policy will succeed inn or fewer trials with probabilityP~n! 5 1 2 gn+ If
E~x! 5 y, then

g 5 E~G~x!! $ G~E~x!! 5 G~ y! (23)
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follows from the convexity ofG~x! in ~7!+ For a fixed meany, no random policy
does better than they-spacing policy+ A random dialer continuing until the call is
placed uses a mean numberE~N! 5 10~12 g! of retries; they require a mean time
E~W! 5 y0~12 g!+ Supposex has the exponential distribution, so that

g 5 g~ y! 5Ee2x0yG~x! dx0y 5 L~10y!0y, (24)

whereL~s! is the Laplace transform ofG~x!+ L~s! was actually found as a prelimi-
nary step in the derivation of~7!+ Using that result, we now find immediately

g~ y! 5
R~T0y 2 1!

R~T0y!
(25)

with R~s! the polynomial~6!+ Exponential spacing is then computationally simpler
than constant spacing because it does not require solving for the zeros of~6!+ In fact,
as~23! shows, g~ y! may serve as another bound on the more complicatedG~ y!+

To compare random witht0n-spacing, consider the special casec 5 1, that is,
the exponential model+ Figure 3 compares the even-spacing success probability in
~11! against the random-spacing success probability 12 gn~t0n!, whereg~+! is
computed from~24! after substituting~4!+ The integral gives

g~t0n! 5
11 rt0~nT!

11 ~11 r!t0~nT!
+

As a partial check of the results, it is easily verified that, asnr`, both~11! and 12
gn~t0n! tend to 12 e2t0T, the probability the blocking call ends in timet+

Figure 3. The success probabilityP versus the traffic intensityr for the even and
random~exponential! spacing policies witht0T 5 2; the upper curve of each pair
corresponds to the even spacing policy+ In the limit nr`, the two policies give the
result labeled “Continuous redialing” in the figure+
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6. CERTAIN SUCCESS

Fixed numbers of retrials may be unacceptable to some dialers because failure may
occur on alln trials+ In this section, we study policies requiring an automatic dialer
to redial until it eventually succeeds+

6.1. Exponential and Erlang Loss Models

Assume that retries are made at timesx, 2x, + + + until a successful trial is made+
The number of retries actually used is a random variablen+ Again, each redial
has probabilityG~x! of failing+ The dialer succeeds at trialn with probability
@1 2 G~x!#Gn21~x! so the expected number of trials is

E~n! 5
1

12 G~x!
+

The dialer’s mean wait to success inE~W! 5 xE~n!+ Now the choice ofx involves a
compromise+ Small x is needed for a short mean wait, but largex is needed for a
small mean number of redials~Table 2!+

The following criterion determines an interesting special value ofx for the ex-
ponential model+ Suppose that, when trials atX1, + + + ,Xk21 have failed, the next trial

Table 2. Choosingx for the Exponential Model

r x0T E~n! E~W!0T

0+2 0+2 5+62398 1+1248
0+2 0+5 2+65964 1+32982
0+2 1 1+71722 1+71722
0+2 2 1+31972 2+63945
0+2 10 1+20001 12+0001
1 0+2 6+06649 1+2133
1 0+5 3+16395 1+58198
1 1 2+31304 2+31304
1 2 2+03731 4+07463
1 10 2 20
5 0+2 8+58608 1+71722
5 0+5 6+31437 3+15719
5 1 6+01491 6+01491
5 2 6+00004 12+0001
5 10 6 60

25 0+2 26+1442 5+22885
25 0+5 26+0001 13
25 1 26 26
25 2 26 52
25 10 26 260
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must maximize the probability of being the first call after the hang-up of the one in
progress at timeXk21+ The choice ofx 5 Xk 2 Xk21 must maximize

E
0

x

e2t0T2a~x2t!
dt

T
5

e2x0T 2 e2ax

r 2 1
+ (26)

The maximum lies atx0T5 ln~ r!0~ r 21!+ Table 3 shows how this policy performs
as a function ofr+

Again, for the Erlang loss model, the dialer choosesx to balanceE~n! against
E~W!+ If x is large, thenE~n! is close to 10~12 pc!, with pc the loss probability~see
~1! with k5 c!, butE~W! is large+ If x is small, thenE~W! is nearT0c, the mean wait
for the first of c calls to end, but E~n! is large+ The dialer might now choosex to
maximize the probability that in timex ~i! one of theccalls ends and~ii ! no new calls
arrive afterward+ Then a function like~26! ~with T replaced byT0c! would be max-
imized; the choice would be

x 5 ~T0c! ln~ r0c!0~ r0c 2 1!, (27)

and would be convenient because neitherG~x! nor the rootssj are needed in~27!+

6.2. No New Arrivals

As before, the dialer might want a policy that is certain to succeed eventually+ Sup-
pose each retry is assumed to have a cost ofb time units so that the cost to the dialer
of success at trialk is Xk1 bk+ TheXk are to be chosen to minimize the expected cost

C 5 (
k51

`

@Xk 1 bk# @G~Xk21! 2 G~Xk!# + (28)

Table 3. Certain Success Policy with a Specialx

r x0T E~n! E~W!0T

0+05 3+1534 1+08975 3+43642
0+1 2+55843 1+17015 2+99374
0+2 2+0118 1+31787 2+6513
0+5 1+38629 1+71429 2+3765
0+75 1+15073 2+01958 2+32399
1 1 2+31304 2+31304
1+25 0+892574 2+59881 2+31963
1+5 0+81093 2+87915 2+33479
2 0+693147 3+42857 2+3765
5 0+402359 6+58937 2+6513

10 0+255843 11+7015 2+99374
25 0+13412 26+8204 3+59715
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~Note thatk now runs from 1 tò +! A minimizing condition like Eq+ ~21! is

~Xk11 2 Xk 1 b!G'~Xk! 5 G~Xk! 2 G~Xk21!, (29)

or

xk11 1 b

T
5 exk0T 2 1 (30)

for an exponential busy period+ If the retry atX1 fails, the call still has the same
residual life distribution it had at time 0, and so the minimizing policy must have
x1 5 x2+ That condition and Eq+ ~30! determine that allxi are equal+ The minimumC
becomes

C 5 T 1 x1 1 b,

which is a low cost, considering thatT is the mean cost of waiting for the call to end
andb is the cost of one retry+

For a constant busy period, the minimizing condition Eq+ ~29! becomes

Xk11 2 2Xk 1 Xk21 1 b 5 0

with the solution

Xk 5 kX1 2 k~k 2 1!b02+ (31)

In Eq+ ~31!, theXk will eventually decrease, and so the policy will have to chooseX1

and a finite value ofn such thatX1 , X2 , {{{ , Xn 5 T+ For a givenn, Xn 5 T
requiresX1 5 T0n 1 ~n 2 1!b02, so

n~n 2 1! , 2T0b

is needed to makeXn21 , Xn+ In this way, the solution reduces to trying about%2T0b
values ofn to see which gives the smallestC in ~28!+ Unlike ~22!, Eq+ ~31! now
clusters theXk nearT instead of spreading them evenly+

6.3. Constant Busy Periods, First Call

As in Section 6+1, suppose a dialer always choosesXk so that, given the failures at
X1, + + + ,Xk21, his next call has maximum probability both of succeeding and of ar-
riving before anyone else places a new call+ The dialer’s best policy is aT-spacing
policy+A proof of this fact can easily be given assuming that Conjecture 1 in Section
4+2 is true+ The argument that follows shows only the main idea+

By Conjecture 1, x15 T+ To use an induction argument, supposex15 x25 {{{ 5
xk5 T and the firstk retrials all fail+As in Section 4+3, the residual lifetime® and the
idle timesyi between calls satisfy~18!+ The call that blocked the trial atXk has
residual lifetime

Yk 1 T 2 kT 5 ® 1 y1 1 y2 1 {{{ 1 yk . ®,

which is even longer than the original residual lifetime of the call at 0+ As the best
policy for a single retry waiting for a residual lifetime® to end tookx15T, the policy
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to wait for an even longer lifetime should not takexk11 , T+But, no lifetime exceeds
T; a policy has nothing to gain by takingxk11 . T+ That leaves onlyxk11 5 T+
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