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Abstract. We establish the limiting distribution of certain subsets of Farey sequences,
i.e., sequences of primitive rational points, on expanding horospheres in covers1\SL(n +
1, R) of SL(n + 1, Z)\SL(n + 1, R), where1 is a finite-index subgroup of SL(n + 1, Z).
These subsets can be obtained by projecting to the hyperplane {(x1, . . . , xn+1) ∈ Rn+1

:

xn+1 = 1} sets of the form A=
⋃J

j=1 a j1, where for all j , a j is a primitive lattice point
in Zn+1. Our method involves applying the equidistribution of expanding horospheres in
quotients of SL(n + 1, R) developed by Marklof and Strömbergsson, and more precisely
understanding how the full Farey sequence distributes in1\SL(n + 1, R)when embedded
on expanding horospheres as done in previous work by Marklof. For each of the
Farey sequence subsets, we extend the statistical results by Marklof regarding the full
multidimensional Farey sequences, and solutions by Athreya and Ghosh to Diophantine
approximation problems of Erdős–Szüsz–Turán and Kesten. We also prove that Marklof’s
result on the asymptotic distribution of Frobenius numbers holds for sets of primitive
lattice points of the form A.
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1. Introduction

Let Ẑn+1
= {a = (a1, . . . , an+1) ∈ Zn+1

\{0} : gcd(a1, . . . , an+1)= 1}, with 0=
(0, . . . , 0), be the set of primitive lattice points in Zn+1. The n-dimensional Farey
sequence F(Q) of level Q ∈ N is defined as the set of rational points p/q ∈ Rn such
that ( p, q) ∈ Ẑn+1 and 1≤ q ≤ Q. In [17], Marklof proved certain limiting statistical
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properties of F(Q) as Q→∞ as a consequence of the equidistribution of the Farey
points on expanding horospheres in a certain subspace of SL(n + 1, Z)\SL(n + 1, R),
which he demonstrated in the course of proving the asymptotic distribution of Frobenius
numbers [15]. These results follow from the equidistribution of expanding horospheres
in quotients of SL(n + 1, R) by lattices obtained by Marklof and Strömbergsson [18]
as a consequence of Ratner’s measure classification theorem [20], and in particular the
work of Shah [21]. Recently, Athreya and Ghosh [2] extended and solved Diophantine
approximation problems of Erdős, Szüsz and Turán [7] and Kesten [11] for, among
other settings, Euclidean dimensions n ≥ 2 by finding limiting distributions of particular
measures of subsets of [0, 1]n which are well approximated by certain elements in the
Farey sequence.

In dimension n = 1, Athreya and Cheung [1] provided a unified explanation for various
statistical properties of Farey fractions, which were originally proven by analytic methods,
by realizing the horocycle flow in SL(2, R)/SL(2, Z) as a suspension flow over the BCZ
map introduced by Boca, Cobeli and Zaharescu [5] in their study of Farey fractions.
The author’s recent work [10] used a process of Fisher and Schmidt [9] to lift the
Poincaré section of Athreya and Cheung to obtain sections of the horocycle flow in covers
SL(2, R)/1 of SL(2, R)/SL(2, Z), which in turn yielded results on the spacing statistics
of the various subsets of Farey fractions related to those lifted sections.

In this paper, we extend this lifting method to higher dimensions in order to obtain
results analogous to those of Marklof [17] and Athreya and Ghosh [2] for subsets of
the multidimensional Farey sequences associated with finite-index subgroups 1⊆ SL
(n + 1, Z) giving covers 1\SL(n + 1, R) of SL(n + 1, Z)\SL(n + 1, R). Additionally,
we show that the limiting distribution of Frobenius numbers established by Marklof [15]
holds also for restricted sets of primitive lattice points given by orbits of 1. The method
of proof mimics [15, 17] in utilizing the equidistribution of expanding horospheres and
their Farey points. Specifically, we appeal to Marklof’s extension of the Farey point
equidistribution to general homogeneous spaces 0′\SL(n + 1, R) [16]. For 0′ =1,
we can locate the desired restricted subset of Farey points in appropriate sheets of the
cover 1\SL(n + 1, R)→ SL(n + 1, Z)\SL(n + 1, R), which then allows us to discern
the equidistribution of the subset.

In §2, we establish notation and review the results of Marklof on the spacing statistics
of the full Farey sequences [17] and the distribution of Frobenius numbers [15], and
the Diophantine results of Athreya and Ghosh [2]. We also formulate analogous results
for Farey sequence subsets, and corresponding primitive lattice points, formed from the
given subgroup 1. In §3, we formulate the appropriate variation of the equidistribution
of horospheres and Farey points in 1\SL(n + 1, R), following essentially from works
of Marklof and Strömbergsson [15, 16, 18]. In §4, we prove our spacing statistics and
Diophantine results for the Farey sequence subsets. Lastly, in §5, we establish the limiting
distribution of the Frobenius numbers for orbits of 1.
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2. Farey sequences and horospheres in SL(n + 1, R)
Since F(Q) is closed under addition by lattice points in Zn , we may henceforth view
F(Q) as a finite subset of Tn

= Rn/Zn :

F(Q)=
{

p
q
+ Zn

∈ Tn
: ( p, q) ∈ Ẑn+1, 1≤ q ≤ Q

}
.

(Below, we regularly identify elements in Rn with their corresponding elements in Tn ; and
we abuse notation and omit adding Zn when writing elements of Tn .) In [17], Marklof
considered the following statistical measures on F(Q): for k ∈ Z≥0 and subsets D ⊆ Tn

and A⊆ Rn that are bounded and have boundaries of Lebesgue measure zero and non-
empty interiors, let

PQ(k,D,A)=
λ({x ∈D : #((x + σ−1/n

Q A) ∩ F(Q))= k})

λ(D)
and (1)

P0,Q(k,D,A)=
#{r ∈ F(Q) ∩D : #(r + σ−1/n

Q A) ∩ F(Q))= k}

#(F(Q) ∩D)
. (2)

Above and throughout this paper, λ denotes the Lebesgue measure (by abuse of notation,
on any torus or Euclidean space of any dimension) and

σQ =
Qn+1

(n + 1)ζ(n + 1)
(3)

gives the asymptotic growth rate of #F(Q) as Q→∞. The quantity P0,Q(k,D,A) is
a higher dimensional analogue of the gap distribution in dimension one and provides a
measure for the statistical distribution of the location of the points in F(Q) relative to one
another; and the quantity PQ(k,D,A) measures the statistical distribution of the points
F(Q) relative to a random point in Tn .

Let G = SL(n + 1, R) and 0 = SL(n + 1, Z), and similarly G0 = SL(n, R) and 00 =

SL(n, Z). Then let µ denote the Haar measure on G such that the µ-measure of 0\G is
one; and view µ as a measure on other quotients 0′\G by discrete groups 0′ in the natural
way. Similarly, let µ0 be the Haar measure on G0 such that 00\G0 is of µ0-measure one.
Also, define the subgroups H ⊆ G and 0H ⊆ 0 by

H = {M ∈ G : (0, 1)M = (0, 1)} =
{(

A bt

0 1

)
: A ∈ G0, b ∈ Rn

}
and

0H = 0 ∩ H =
{(
γ mt

0 1

)
: γ ∈ 00, m ∈ Zn

}
.

Then let µH denote the Haar measure on H such that the µH -measure of 0H\H ∼= 0\0H
equals one. In [17], F(Q) was embedded in 0\G as follows: define the matrices

h(x)=
(

In 0t

−x 1

)
and a(y)=

(
y1/n In 0t

0 y−1

)
for x ∈ Rn and y ∈ (0,∞). Then h(x) parameterizes a horosphere which expands in 0\G
under right multiplication of a(y) as y→∞. Then a given Farey point r ∈ F(Q) of
level Q was associated with the element 0h(r)a(Q) ∈ 0\G. The existence of the limit
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as Q→∞ of (1) and (2) was then reduced by Marklof to showing the equidistribution
of the horosphere {0h(x)a(Q) : x ∈ Tn

} in 0\G, and the points {0h(r)a(Q) : r ∈ F(Q)}
in the subspace 0\0H{a(y) : y ≥ 1}, respectively (see §4). For ease of notation, denote
Ha = H{a(y) : y ≥ 1}.

We now fix a finite-index subgroup 1⊆ 0, and let µ1 be the Haar probability measure
for1\G. We also fix elements a1, . . . , aJ ∈ Ẑn+1. Then define the set of primitive lattice
points

A=
J⋃

j=1

a j1 (4)

for which we can define the set FA(Q) consisting of the Farey points p/q such that
( p, q) ∈ A and 1≤ q ≤ Q. Note that since 1 is a finite-index subgroup of SL(n + 1, Z),
the set {

x ∈ Rn
:

(
In 0t

x 1

)
∈1

}
is a sublattice 31 of rank n in Zn . Then, for p/q ∈ FA(Q) so that ( p, q) ∈ a j1 for some
j , and m ∈31, we have

( p+ qm, q)= ( p, q)
(

In 0t

m 1

)
∈ a j1

(
In 0t

m 1

)
= a j1;

hence, p/q + m ∈ FA(Q). Thus, FA(Q) is closed under addition by elements in 31 and
so we may henceforth view FA(Q) as a subset of Tn

1 = Rn/31:

FA(Q)=
{

p
q
+31 ∈ Tn

1 : ( p, q) ∈ A, 1≤ q ≤ Q
}
.

(As for Tn , we regularly identify elements of Rn with the corresponding elements in
Tn
1, and omit adding 31 when writing elements of Tn

1.) For convenience, we define
F1(Q) to be the set of all Farey points of level Q, viewed as a subset of Tn

1, so that
FA(Q)⊆ F1(Q). (In a sense, F1(Q) is [Zn

:31] copies of F(Q).) Also, let λ1 denote
the Lebesgue probability measure on Tn

1. The primary dynamical result in this paper is
the equidistribution of the restricted set of Farey points {1h(r)a(Q) : r ∈ FA(Q)} in a
subspace of 1\G. Our first application of this result, and the equidistribution of the entire
horospheres in 1\G, is the following.

THEOREM 2.1. For a1, . . . , aJ ∈ Ẑn+1, let A=
⋃J

j=1 a j1. Then the set FA(Q)=
{ p/q ∈ Tn

1 : ( p, q) ∈ A, 1≤ q ≤ Q} equidistributes in Tn
1 with respect to the measure

λ1. Also, for k ∈ Z≥0 and bounded subsets D ⊆ Tn
1 and A⊆ Rn with boundaries of

measure zero and non-empty interiors, let

PA
Q (k,D,A)=

λ1({x ∈D : #((x + (#FA(Q))−1/nA) ∩ FA(Q))= k})
λ1(D)

and (5)

PA
0,Q(k,D,A)=

#{r ∈ FA(Q) ∩D : #(r + (#FA(Q))−1/nA) ∩ FA(Q))= k}
#(FA(Q) ∩D)

. (6)

Then the limits as Q→∞ of both quantities exist and are independent of D. Furthermore,
we have the following evaluation of the limiting expected value of k corresponding to the
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measures PA
Q (k,D,A):

lim
Q→∞

∞∑
k=0

k PA
Q (k,D,A)= λ1(A).

The main noteworthy application of Theorem 2.1 comes from letting1= 0(m), where
m is a positive integer and 0(m)⊆ 0 is the congruence subgroup

0(m)= {M ∈ 0 : M ≡ In+1 (mod m)}.

For a given a ∈ Ẑn+1, a0(m)= {b ∈ Ẑn+1
: b≡ a (mod m)}. Therefore, a set of the form

A in (4) in this situation is the set of points in Ẑn+1 which are congruent modulo m to a
vector in {a1, . . . , aJ }. As a result, the set FA(Q) consists of the Farey points p/q such
that ( p, q)≡ a j (mod m) for some j .

Remark 2.1. Equidistribution results in the spaces 0(m)\G have also been used in [18,
Theorem 2.1] to understand the fine-scale statistics of the directions of the visible lattice
points in Zn with respect to an observer at a rational point in Rn .

In [7], Erdős, Szüsz and Turán introduced the following Diophantine approximation
problem: for constants Q ∈ N, A > 0, and c > 1, let ESTA,c,Q be the function on [0, 1]
such that for x ∈ [0, 1], ESTA,c,Q(x) is the number of solutions p/q ∈Q satisfying

|qx − p| ≤
A
q
, Q ≤ q ≤ cQ.

Then, for fixed A and c, determine the existence of the limit

lim
Q→∞

λ({x ∈ [0, 1] : ESTA,c,Q(x) > 0}). (7)

Another Diophantine problem of Kesten [11] is as follows: define the function K A,Q on
[0, 1] such that K A,Q(x) is the number of solutions p/q ∈Q satisfying

|qx − p| ≤
A
Q
, 1≤ q ≤ Q.

Kesten’s problem is to determine the existence of the limit

lim
Q→∞

λ({x ∈ [0, 1] : K A,Q(x) > 0}). (8)

In the original paper [7], Erdős, Szüsz and Turán showed that the limit (7) exists when
A ≤ c/(1+ c2). Later, while resolving the limit (8), Kesten [11] extended the existence of
(7) for when Ac ≤ 1. The limit was then shown to exist in all cases by Kesten and Sós [12].
Explicit formulas for the limit were obtained much later by Xiong and Zaharescu [22] and
Boca [4].

In their recent work [2], Athreya and Ghosh generalized the Erdős–Szüsz–Turán and
Kesten problems to higher dimensions, in addition to other settings such as translation
surfaces. They proved the existence of the limiting distribution of the functions ESTn

A,c,Q
and K n

A,Q on [0, 1]n , analogous to the corresponding functions above, defined so that for

x ∈ [0, 1]n , ESTn
A,c,Q(x) is the number of solutions ( p, q) ∈ Ẑn+1 satisfying

‖qx − p‖ ≤ Aq−1/n, Q ≤ q ≤ cQ, (9)
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where ‖ · ‖ denotes the Euclidean norm on Rn ; and K n
A,Q(x) is the number of solutions

satisfying
‖qx − p‖ ≤ AQ−1/n, 1≤ q ≤ Q. (10)

Specifically, they showed that for each k ∈ Z≥0, the limits

lim
Q→∞

λ({x ∈ [0, 1]n : ESTn
A,c,Q(x)= k}) and lim

Q→∞
λ({x ∈ [0, 1]n : K n

A,Q(x)= k})

exist and can be expressed in terms of the Haar measure of certain subsets of the space of
unimodular lattices G/0.

In this paper, we extend the results of Athreya and Ghosh to our setting, restricting the
set of points ( p, q) in the inequalities (9) and (10) to A. Our second main result is the
following.

THEOREM 2.2. For a1, . . . , aJ ∈ Ẑn+1, let A=
⋃J

j=1 a j1. Then, for A > 0 and c > 1,
define the functions ESTA

A,c,Q and K A
A,Q on Tn

1 so that for x ∈ Tn
1, ESTA

A,c,Q(x) is the
number of solutions ( p, q) ∈ A satisfying (9), and K A

A,Q(x) is the number of solutions
satisfying (10). For fixed A and c, the limiting distributions of the functions ESTA

A,c,Q and
K A

A,Q as Q→∞ exist. More specifically, for each k ∈ Z≥0 and D ⊆ Tn
1 with boundary

of measure zero and non-empty interior, the limits

lim
Q→∞

λ1({x ∈D : ESTA
A,c,Q(x)= k})

λ1(D)
and lim

Q→∞

λ1({x ∈D : K A
A,Q(x)= k})

λ1(D)
exist and are independent of D. Also, the limiting expected values of ESTA

A,c,Q and K A
A,Q

as Q→∞ exist.

Analogously to Theorem 2.1, letting 1= 0(m) allows us to obtain limiting
distributions for EST and K functions corresponding to lattice points satisfying
congruence conditions modulo m.

The original motivation for studying the distribution of Farey sequences on horospheres
was in the study of Frobenius numbers. For a given a in the set Ẑn+1

≥2 of primitive
integer lattice points with coordinates at least two, the Frobenius number F(a) of a is
defined as the largest natural number which cannot be represented as a non-negative integer
combination of the coordinates of a, that is,

F(a)=max(N\{m · a : m = (m1, . . . , mn+1) ∈ Zn+1
≥0 }).

For n = 1, the equality F(a)= a1a2 − a1 − a2 holds, while for higher dimensions no
explicit formula is known. However, in [15], Marklof determined the limit distribution
of Frobenius numbers for n ≥ 2 by relating the values of Frobenius numbers F(a) to the
location of points in the Farey sequence F(Q) when embedded in 0\G. Marklof proved
[15, Theorem 1] that there is a continuous non-increasing function 9n+1 : R≥0→ R≥0

such that for bounded D ⊆ Rn+1
≥0 with boundary of measure zero and R ≥ 0,

lim
T→∞

1
T n+1 #

{
a ∈ Ẑn+1

≥2 ∩ TD :
F(a)

(a1 · · · an+1)1/n > R
}
=

λ(D)
ζ(n + 1)

9n+1(R).

The function 9n+1 can be expressed in terms of the covering radius of the simplex

δ(n) = {x ∈ Rn
≥0 : x · e ≤ 1}, e= (1, 1, . . . , 1),
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with respect to lattices in 00\G0. The covering radius of δ(n) with respect to 00 A ∈ 00\G0

is the quantity ρ(00 A) defined by

ρ(00 A)= inf{ρ′ > 0 : Zn A + ρ′δ(n) = Rn
}. (11)

We then have [15, Theorem 2]

9n+1(R)= µ0({A ∈ 00\G0 : ρ(A) > R}).

The last main result of this paper is to prove that the distribution of Frobenius numbers
according to 9n+1 continues to hold when restricting the lattice points one considers to A.

THEOREM 2.3. For a1, . . . , aJ ∈ Ẑn+1, let A=
⋃J

j=1 a j1. Also, assume that n ≥ 2 and
let D ⊆ Rn+1

≥0 be bounded with boundary of measure zero. Then there exists a positive
integer iA ≤ [0 :1], depending on A, such that

lim
T→∞

1
T n+1 #

{
a ∈ Ẑn+1

≥2 ∩ A ∩ TD :
F(a)

(a1 · · · an+1)1/n > R
}

=
iAλ(D)

[0 :1]ζ(n + 1)
9n+1(R). (12)

We record the special case of Theorems 2.1–2.3 for 1= 0(m), in which case A is the
set of points in Ẑn+1 satisfying certain congruence conditions modulo m, in the following
corollary.

COROLLARY 2.1. Fix a1, . . . , aJ ∈ Ẑn+1 and let A be the set of points a ∈ Ẑn+1 such
that a ≡ a j (mod m) for some j . Then let FA(Q)⊆ (R/mZ)n be the set of Farey points
p/q such that ( p, q) ∈ A.
(a) The set FA(Q) equidistributes with respect to the Lebesgue probability measure

λ0(m) on (R/mZ)n; and the limits as Q→∞ of the spacing statistics PA
Q and PA

0,Q
defined by (5) and (6), respectively, exist for all k ∈ Z≥0 and bounded subsets D ⊆
(R/mZ)n and A⊆ Rn with boundaries of measure zero and non-empty interiors.
Also, the expected value of k corresponding to the measure PA

Q exists and equals
λ0(m)(A).

(b) For x ∈ (R/mZ)n , define ESTA
A,c,Q(x) to be the number of solutions ( p, q) ∈ A

satisfying (9), and K A
A,Q(x) the number of solutions satisfying (10). Then, for A, c,

and D as in Theorem 2.2, the limiting distributions and expectations for the functions
ESTA

A,c,Q and K A
A,Q as Q→∞ exist and do not depend on the restricting subset D.

(c) Assume that n ≥ 2 and D ⊆ Rn+1
≥0 is bounded and has boundary of measure zero.

Then (12) holds for 1= 0(m) and some positive integer iA ≤ [0 : 0(m)].

Remark 2.2. For n ≥ 2, Theorems 2.1–2.3 can be essentially reduced to Corollary 2.1 by
the congruence subgroup property of SL(n + 1, Z) [3, 19]. However, this is not the case
for n = 1 in Theorems 2.1 and 2.2.

Remark 2.3. Marklof’s result [15] was improved in [14], where Li obtained an effective
equidistribution result for the Farey points {0h(r)a(Q) : r ∈ F(Q)}, as well as the
horosphere {0h(x)a(Q) : x ∈ Tn

}, which in turn allowed him to obtain an error term for
the limit distribution of Frobenius numbers. Einsiedler et al [6] made another advancement
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by proving the equidistribution of the Farey points in 0\G corresponding to the elements
p/q ∈ F(Q) such that q = Q. (They additionally obtained analogous equidistribution
results for horospheres in SL(n + 1, R) taking up more than one matrix row.) This result
was then made effective in dimension n = 2 by Lee and Marklof [13].

3. Equidistribution in 1\G
We now set out to prove Theorems 2.1–2.3, appealing to the equidistribution results of
Marklof and Strömbergsson [15–18]. We derive the limit of the measure PA

Q , and the
limiting distributions of ESTA

A,c,Q and K A
A,Q , from the equidistribution of expanding

horospheres in 1\G. We specifically use the following adaptation of [18, Theorem 5.8]
(see also [17, Theorem 1]).

THEOREM 3.1. Let f : Tn
1 ×1\G→ R be bounded and continuous. Then

lim
Q→∞

∫
Tn
1

f (x, 1h(x)a(Q)) dλ1(x)=
∫
Tn
1×1\G

f (x, M) dλ1(x) dµ1(M).

This result follows from the mixing of the diagonal subgroup {a(y) : y > 0} on 1\G
via the arguments in [8]; we omit the proof.

Next, let π1 :1\G→ 0\G be the canonical projection. By [15, Theorem 6], the
points {0h(r)a(Q) : r ∈ F(Q)} equidistribute in the subspace �= 0\0Ha of 0\G with
respect to the measure dµ�(Ma(y))= dµH (M)(n + 1)y−(n+2)dλ(y). In our setting, we
seek to lift � via π1 to get the subspace �1 = π−1

1 (�)=1\0Ha of 1\G, in which
to obtain the analogous equidistribution of {1h(r)a(Q) : r ∈ F1(Q)} with respect to the
probability measure µ�1 obtained as the normalized pullback of µ� with respect to π1.
This is in essence the content of [16, Theorem 2(A)]. We refine this result to find the
equidistribution of the restricted set {1h(r)a(Q) : r ∈ FA(Q)}, which we then use to
establish the equidistribution of FA(Q) in Tn

1, the existence of the limit of the measure
PA

0,Q , and the limiting distribution of the Frobenius numbers of A.
To obtain this result, we utilize the fact that the full set of Farey points naturally partition

themselves into different sheets in the cover π1|�1 :�1→�. We can therefore extract
subsets of Farey points based on the particular sheets in which we are interested. The
sheets corresponding to FA(Q) for all Q ∈ N are determined as follows: define the subset
A∗ ⊆ 0 to be the set of all γ ∈ 0 for which there exists a ∈ A such that aγ = (0, 1). Since
A is closed under right multiplication by 1, A∗ is closed under left multiplication by 1
and hence is a union of cosets in 1\0. We therefore view A∗ as a subset of 1\0.

Note that for 1γ ∈ A∗ so that aγ = (0, 1) for some a ∈ A, we have aγ γ ′ = (0, 1) for
any γ ′ ∈ 0H , implying that 1γγ ′ ⊆ A∗. Thus, A∗ is closed under right multiplication
by elements in 0H . In fact, for any fixed γ1, . . . , γ j ∈ 0 such that a jγ j = (0, 1), A∗ is
the union of the orbits of the elements 1γ1, . . . , 1γJ ⊆1\0 under the action by right
multiplication of 0H . Indeed, if 1γ ∈ A∗ so that a jδγ = (0, 1) for some j ∈ {1, . . . , J }
and δ ∈1, then (0, 1)(δγ )−1γ j = a jγ j = (0, 1). Thus, (δγ )−1γ j ∈ 0H , implying that
γ−1

j δγ = ((δγ )−1γ j )
−1
∈ 0H , which in turn implies that 1γ is in the 0H -orbit of 1γ j .

We show below that �A =1\A∗Ha is the union of the appropriate sheets
corresponding to FA(Q) for all Q ∈ N. We can now formulate the main equidistribution
result we need to prove Theorems 2.1 and 2.3.
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THEOREM 3.2. Let f : Tn
1 ×�1→ R be bounded and continuous. Then:

(a) lim
Q→∞

1
#F1(Q)

∑
r∈F1(Q)

f (r, 1h(r)a(Q))=
∫
Tn
1×�1

f (x, M) dλ1(x) dµ�1(M);

(b) lim
Q→∞

1
#F1(Q)

∑
r∈FA(Q)

f (r, 1h(r)a(Q))=
∫
Tn
1×�A

f (x, M) dλ1(x) dµ�1(M).

Part (a) is essentially a corollary of [16, Theorem 2(A)]. We nevertheless provide a
detailed proof for our particular situation, closely following [15, Theorem 6] and [16,
Theorem 2(A)]. We then obtain part (b) as a straightforward consequence, locating in �1
the Farey points corresponding to the restricted set FA(Q) as described above.

Proof of Theorem 3.2. Part (a). To begin, we first note that it is elementary to show
that �1 is a closed subset of 1\G. (In the proof of part (b), we show that a set of the
form 1\1γ Ha , with γ ∈ 0, is closed in 1\G.) Thus, since 1\G is a metric space,
any bounded and continuous function on �1 can be extended to a bounded continuous
function on 1\G. So, we can assume without loss of generality that f is a bounded
continuous function on 1\G. By standard approximation arguments, we can furthermore
assume that f has compact support and hence is uniformly continuous. Let C ⊆ G be
compact such that supp f ⊆ Tn

1 ×1\1C. Also, let d : G × G→ R≥0 be a left invariant
Riemannian metric on G such that d(h(x), h(x′))≤ ‖x − x′‖. We also let d act as a metric
on quotients of G by discrete subgroups in the obvious manner. Note that by the uniform
continuity of f , for a given δ > 0 there exists ε > 0 such that | f (x, M)− f (x′, M ′)| ≤ δ
whenever x, x′ ∈ Tn

1 and M, M ′ ∈1\G such that ‖x − x′‖< ε and d(M, M ′) < ε.
The basic plan of the proof of part (a) is as follows. For θ ∈ (0, 1), let Fθ

1(Q)= { p/q ∈
F1(Q) : θQ ≤ q ≤ Q}. For a fixed θ and ε > 0, we use Theorem 3.1 to examine the
value of the integral of f (x, 1h(x)a(Q)) over the points x ∈ Tn

1 within ε/Q(n+1)/n of
an element in Fθ

1(Q). Letting ε→ 0 then establishes the equidistribution of the sequence
of Farey points corresponding to Fθ

1(Q). The final step of the proof is taking the limit as
θ→ 0.

So, let θ ∈ (0, 1) and ε > 0 and define the set

Fθ,ε
1 (Q)=

⋃
r∈F θ

1(Q)

{
x ∈ Tn

1 : ‖x − r‖ ≤
ε

Q(n+1)/n

}
.

For x ∈ Rn+1 and ( p, q) ∈ Ẑn+1, we have ‖x − p/q‖ ≤ ε/Q(n+1)/n and θQ ≤ q ≤ Q if
and only if ( p, q)h(x)a(Q) is in the set

Cθ,ε = {(y1, . . . , yn+1) ∈ Rn+1
: ‖(y1, . . . , yn)‖ ≤ εyn+1, θ ≤ yn+1 ≤ 1}.

It is therefore straightforward to see that

Fθ,ε
1 (Q)= {x ∈ Tn

1 : Ẑ
n+1h(x)a(Q) ∩ Cθ,ε 6= ∅}.

Let χε : G→ R be the characteristic function of the set Hε = {M ∈ G : Ẑn+1 M ∩
Cθ,ε 6= ∅}. Since Hε is closed under left multiplication by 0, we may view χε as a function
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on 0\G as well as 1\G. Also, since Cθ,ε has boundary of Lebesgue measure zero, χε is
continuous outside of a set of µ-measure zero. By Theorem 3.1, we have

lim
Q→∞

∫
F θ,ε
1 (Q)

f (x, 1h(x)a(Q)) dλ1(x)

= lim
Q→∞

∫
Tn
1

f (x, 1h(x)a(Q))χε(1h(x)a(Q)) dλ1(x)

=

∫
Tn
1×1\G

f (x, M)χε(M) dλ1(x) dµ1(M)

=

∫
Tn
1×0\G

f̄ (x, M)χε(M) dλ1(x) dµ(M), (13)

where f̄ : Tn
1 × 0\G→ R is defined by

f̄ (x, 0M)=
1

[0 :1]

∑
1γ∈1\0

f (x, 1γM).

Next, we wish to replace χε(M) in the product f̄ (x, M)χε(M) with the sum of
characteristic functions of the sets Hε(a)= {M ∈ G : aM ∈ Cθ,ε}, where a ∈ Ẑn+1. To
do so, we must ensure that the sets H(a) are pairwise disjoint over the support of f̄ when
viewed as a function on G, which is 0C. It was proven in [16, 17] that this is always
possible as long as ε is chosen to be small enough. We provide the following simpler
proof of this fact.

Suppose on the contrary that for every ε > 0, the sets {Hε(a) : a ∈ Ẑn+1
} are not

pairwise disjoint over 0C. Then, for every j ∈ N, there exist distinct a j , b j ∈ Ẑn+1 such
that H1/j (a j ) ∩H1/j (b j ) ∩ 0C; thus, there exist M j ∈ G, γ j ∈ 0, and C j ∈ C such that
a j M j ∈ Cθ,1/j , b j M j ∈ Cθ,1/j , and M j = γ j C j . Then, since C is compact, we may assume
by taking an appropriate subsequence that (C j ) j converges to an element C ∈ C. Similarly,
since a j M j , b j M j ∈ Cθ,1/j for all j ∈ N, we may take another subsequence so that

lim
j→∞

a j M j = a and lim
j→∞

b j M j = b,

where a, b ∈ {(0, yn+1) ∈ Rn+1
: θ ≤ yn+1 ≤ 1}. Since M j = γ j C j and lim j→∞ C j = C ,

we have
lim

j→∞
a jγ j = aC−1 and lim

j→∞
b jγ j = bC−1.

Since a jγ j , b jγ j ∈ Ẑn+1 and Ẑn+1 is discrete, there exists N ∈ N such that if j ≥ N , then
a jγ j = aC−1 and b jγ j = bC−1; hence, aC−1, bC−1

∈ Ẑn+1. However, since a and b
are positive multiples of (0, 1), aC−1 and bC−1 are positive multiples of the last row
of C−1 and thus of each other. This is possible only if aC−1

= bC−1. So, for j ≥ N ,
a jγ j = aC−1

= bC−1
= b jγ j . This yields a j = b j , which contradicts our choice of a j

and b j to be distinct.
Thus, there exists ε0 > 0 such that if ε ∈ (0, ε0], which we henceforth assume, then the

sets {Hε(a) : a ∈ Ẑn+1
} are disjoint in 0C. Let χ1

ε : G→ R be the characteristic function
of H1

ε =Hε((0, 1)). Note that the map 0Hγ 7→ (0, 1)γ defines a bijection from 0H\0
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to Ẑn+1, and the characteristic function of H1
ε((0, 1)γ ) is M 7→ χ1

ε (γM). These facts
imply that

χε(0M)=
∑

γ∈0H \0

χ1
ε (γM) for 0M ∈ 0C.

Therefore, (13) equals∫
Tn
1×0\G

f̄ (x, M)
∑

γ∈0H \0

χ1
ε (γM) dλ1(x) dµ(M)

=

∫
Tn
1×0H \G

f̄ (x, M)χ1
ε (M) dλ1(x) dµ(M)

=

∫
Tn
1×0H \H1

ε

f̄ (x, M) dλ1(x) dµ(M)

=

∫
Tn
1×0H \H×Cθ,ε

f̄ (x, M M y) dλ1(x)
dµH (M)dλ( y)
ζ(n + 1)

.

For the last step above, we parameterize 0H\H1
ε by the coordinates (M, y) 7→ M M y,

where (M, y) ∈ 0H\H × Cθ,ε and

M y =

(
y−1/n

n+1 In 0t

y′ yn+1

)
, y = ( y′, yn+1).

In these coordinates, we have dµ= ζ(n + 1)−1 dµH (M) dλ( y).
So, to summarize thus far, we have

lim
Q→∞

∫
F θ,ε
1 (Q)

f (x, 1h(x)a(Q)) dλ1(x) (14)

=

∫
Tn
1×0H \H×Cθ,ε

f̄ (x, M M y) dλ1(x)
dµH (M)dλ( y)
ζ(n + 1)

. (15)

We now divide both sides by the Lebesgue measure λ(Bn
ε )= ε

nλ(Bn
1 ) of a ball Bn

ε in
Rn of radius ε, and examine both sides as ε→ 0. We begin with (15). By the uniform
continuity of f , and hence of f̄ , for a given δ > 0 there exists εδ > 0 such that | f̄ (x, M)−
f̄ (x′, M ′)| ≤ δ whenever ‖x − x′‖ ≤ εδ and d(M, M ′)≤ εδ . (Assume without loss of
generality that εδ→ 0 as δ→ 0, and that all εδ are less than the constant ε0 found above.)
For y = ( y′, yn+1) ∈ Cθ,εδ , we have

d(M y, a(y−1
n+1))= d(a(y−1

n+1)h(−y−1
n+1 y′), a(y−1

n+1))= d(h(−y−1
n+1 y′), In+1)

≤ y−1
n+1‖ y′‖ ≤ εδ.

Thus, | f̄ (x, M M y)− f̄ (x, Ma(y−1
n+1)| ≤ δ for all x ∈ Tn

1, M ∈ 0H\H , and y ∈ Cθ,εδ ,
implying that∫

Tn
1×0H \H×Cθ,εδ

| f̄ (x, M M y)− f̄ (x, Ma(y−1
n+1))|

dλ1(x) dµH (M) dλ( y)
λ(Bεδ )ζ(n + 1)

≤
δλ(Cθ,εδ )

ζ(n + 1)λ(Bε)
≤

δ

ζ(n + 1)
.
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Also, we have
1

λ(Bεδ )ζ(n + 1)

∫
Tn
1×0H \H×Cθ,εδ

f̄ (x, Ma(y−1
n+1)) dλ1(x) dµH (M) dλ( y)

=
1

ζ(n + 1)

∫ 1

θ

∫
Tn
1×0H \H

f̄ (x, Ma(y−1
n+1))y

n
n+1 dλ1(x) dµH (M) dλ(yn+1)

=
1

ζ(n + 1)

∫ θ−1

1

∫
Tn
1×0H \H

f̄ (x, Ma(y))y−(n+2) dλ1(x) dµH (M) dλ(y).

(16)

This shows that as ε→ 0, the ratio of (15) to λ(Bn
ε ) approaches (16) uniformly in θ ∈

(0, 1).
Next, we examine (14). For x ∈ Fθ,εδ

1 (Q), there exists r ∈ Fθ
1(Q) such that ‖x − r‖ ≤

εδ/Q(n+1)/n and thus

d(h(x)a(Q), h(r)a(Q))= d(a(Q)h(Q(n+1)/n x), a(Q)h(Q(n+1)/n x))
≤ Q(n+1)/n

‖x − r‖ ≤ εδ.

So, for any r ∈ Fθ
1(Q), we have

1
λ(Bn

εδ
)

∫
‖x−r‖≤εδ/Q(n+1)/n

| f (x, 1h(x)a(Q))− f (r, 1h(r)a(Q))| dλ1(x)

≤

δλ1
(
Bn
εδ/Q(n+1)/n

)
λ(Bn

εδ
)

=
δ

[Zn :31]Qn+1 .

Summing this inequality over all r ∈ Fθ
1(Q), we see that the ratio of the integral in the

limit (14) to λ(Bn
ε ) is within δ(#Fθ

1(Q))/[Z
n
:31]Qn+1 of the sum

1
[Zn :31]Qn+1

∑
r∈F θ

1(Q)

f (r, 1h(r)a(Q))).

Recall that σQ defined in (3) is the asymptotic growth rate of #F(Q) and hence
[Zn
:31]σQ is the asymptotic growth rate of #F1(Q). This implies that the ratio

(#Fθ
1(Q))/[Z

n
:31]Qn+1 has an upper bound that is uniform in Q (and θ ). Therefore,

for any θ ∈ (0, 1), we have

lim
Q→∞

(n + 1)ζ(n + 1)
[Zn :31]Qn+1

∑
r∈F θ

1(Q)

f (r, 1h(r)a(Q)))

=

∫ θ−1

1

∫
Tn
1×0H \H

f̄ (x, Ma(y))
(n + 1)

yn+2 dλ1(x) dµH (M) dλ(y). (17)

Since #(F1(Q)\Fθ
1(Q))∼ #(F1(bθQc))∼ [Zn

:31]σθQ , we may let θ→ 0 to get

lim
Q→∞

(n + 1)ζ(n + 1)
[Zn :31]Qn+1

∑
r∈F1(Q)

f (r, 1h(r)a(Q)))=
∫
Tn
1×�

f̄ (x, M) dλ1(x) dµ�(M)

=

∫
Tn
1×�1

f (x, M) dλ1(x) dµ�1(M).
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Part (b). We first show that for each γ ∈ 0, the set 1\1γ Ha is a connected component
of �1. The former set is clearly connected since it is the image of the connected subset
γ Ha ⊆ G under the projection G→1\G. Next, we show that 1\1γ Ha is closed in
1\G and hence is closed in �1. So, let (1γ h j a(y j )) j ⊆1\1γ Ha be a sequence (with
h j ∈ H and y j ≥ 1) such that1γ h j a(y j ) converges to an element1g ∈1\G as j→∞.
Then there exists a sequence (δ j ) j ⊆1 such that δ jγ h j a(y j )→ g as j→∞. Define the
sequence (γ j ) j ⊆ 0 by γ j = δ jγ . We then have lim j→∞ a(y−1

j )h−1
j γ
−1
j = g−1.

The final row of a(y−1
j )h−1

j γ
−1
j is y j times the final row of γ−1

j , which is an element

in Ẑn+1. Thus, (y j ) j cannot be unbounded, lest the length of the final rows of the
elements in (a(y−1

j )h−1
j γ
−1
j ) j be unbounded, contradicting the convergence of the matrix

to g−1. Thus, y j is bounded and, by taking a subsequence, we may assume that
lim j→∞ y j = y ≥ 1. Then lim j→∞ h−1

j γ
−1
j = a(y)g−1 and as a result the final row of

h−1
j γ
−1
j , which is that of γ−1

j , is eventually constant for large enough j . Let β be a fixed

element in (γ j ) j such that β−1 has the same last row as γ−1
j for all large j . Then γ−1

j β,
and hence β−1γ j , is in 0H for large j . Therefore, our original sequence 1γ h j a(y j )

can be rewritten as 1β(β−1γ j h j )a(y j )=1γ (β
−1γ j h j )a(y j ) (recall that β ∈ (δ jγ ) j ).

From the above, we see that (β−1γ j h j ) j is a sequence in H converging to β−1ga(y−1),
which must then be in H since H is closed in G. We also have that y j → y and therefore
1g =1γ (β−1ga(y−1))a(y) is an element of1γ Ha . This proves that1\1γ Ha is closed
in 1\G.

To complete the proof that1\1γ Ha is a connected component of�1, we show that for
any two γ1, γ2 ∈ 0, either1\1γ1 Ha and1\1γ2 Ha are the same sets, or they are disjoint.
Suppose that1\1γ1 Ha and1\1γ2 Ha are not disjoint, so there exist δ1 ∈1, h1, h2 ∈ H ,
and y > 0 such that δ1γ1h1 = γ2h2a(y). Then γ−1

2 δ1γ1 = h2a(y)h−1
1 . The left-hand side

of this equation is in 0 and, on the other hand, the bottom row of the right-hand side is
(0, y−1). These facts imply that y = 1. We then have γ−1

2 δ1γ1 = h2h−1
1 , which is in 0H

since the left-hand side is in 0 and the right-hand side is in H . So, we have 1γ1 Ha =

1γ2(h2h−1
1 )Ha =1γ2 Ha , implying that 1\1γ1 Ha =1\1γ2 Ha . We have thus proven

that the connected components of�1 are of the form1\1γ Ha , with γ ∈ 0. Furthermore,
the above shows that for γ1, γ2 ∈ 0, 1\1γ1 Ha =1\1γ2 Ha exactly when 1γ1 =1γ2γ̃

for some γ̃ ∈ 0H .
Next, we show that for every r ∈ F1(Q), we have r ∈ FA(Q) if and only if

1h(r)a(Q) ∈�A. See [15, Remark 3.3] for the observation that the full set of Farey
points embed in 0\0Ha . To prove the forward implication, let p/q ∈ FA(Q). Then let
γ ∈ 0 be such that ( p, q)γ = (0, 1). By the definition of A∗, we have 1γ ∈ A∗. Now
observe that

1h
(

p
q

)
a(Q)=1

(
In 0t

− p/q 1

) (
q1/n In 0t

0 q−1

)
a
(

Q
q

)
=1γ

[(
q−1/n In 0t

p q

)
γ

]−1

a
(

Q
q

)
, (18)

which is in 1γ Ha since ( p, q)γ = (0, 1). Thus, 1h( p/q)a(Q) ∈�A.
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To prove the converse, suppose that p/q ∈ F1(Q) satisfies 1h( p/q)a(Q) ∈�A, that
is, there exists 1γ ∈ A∗ such that 1h( p/q)a(Q) ∈1\1γ Ha . Repeating the process
above, we find that for any γ ′ ∈ 0 such that ( p, q)γ ′ = (0, 1), we have 1h( p/q)a(Q) ∈
1\1γ ′Ha as well. Hence, 1\1γ Ha =1\1γ

′Ha , which implies that 1γ ′ =1γ γ̃ for
some γ̃ ∈ 0H . We showed in the remarks before Theorem 3.2 that A∗ is closed under
right multiplication by elements 0H . We can therefore conclude that 1γ ′ ∈ A∗. By the
definition of A∗, we must have ( p, q) ∈ A and p/q ∈ FA(Q). This completes the proof
that r ∈ FA(Q) if and only if 1h(r)a(Q) ∈�A.

To finish the proof of part (b), we now apply part (a) to the product of f with χA∗ , the
characteristic function on Tn

1 ×�A. We can apply part (a) to this function since �A is a
union of connected components of �1 and hence χA∗ is a continuous function. We thus
have

lim
Q→∞

1
#F1(Q)

∑
r∈F1(Q)

(χA∗ · f )(r, 1h(r)a(Q))

=

∫
Tn
1×�1

(χA∗ · f )(x, M) dλ1(x) dµ�1(M)

=

∫
Tn
1×�A

f (x, M) dλ1(x) dµ�1(M).

Then, since a given r ∈ F1(Q) is in FA(Q) if and only if 1h(r)a(Q) ∈�A, we have∑
r∈F1(Q)

(χA∗ · f )(r, 1h(r)a(Q))=
∑

r∈FA(Q)

f (r, 1h(r)a(Q)).

The proof of Theorem 3.2 is now complete. �

4. Spacing statistics and the Erdős–Szüsz–Turán and Kesten distributions
We now obtain Theorem 2.1 as a corollary of Theorems 3.1 and 3.2 in essentially the same
way Marklof obtained analogous results for the full Farey sequence in [17]. We then obtain
Theorem 2.2 as a corollary to Theorem 3.1 in a similar manner.

4.1. Proof of Theorem 2.1. First, notice that applying Theorem 3.2(b) to the constant
function f (x, M)= 1 yields

lim
Q→∞

#FA(Q)
#F1(Q)

= µ�1(�A)=
#A∗

[0 :1]
.

So, the asymptotic growth rate of #FA(Q) is given by

σA,Q =
(#A∗)[Zn+1

:31]

[0 :1](n + 1)ζ(n + 1)
Qn+1.

Thus, in the definitions of PA
Q and PA

0,Q in (5) and (6), respectively, we may replace the

scaling factor (#FA(Q))−1/n by σ−1/n
A,Q without affecting the existence or value of the

limits of PA
Q or PA

0,Q . Also, notice that if D ⊆ Tn
1 has boundary of measure zero and

non-empty interior, then we can apply Theorem 3.2(b) to the characteristic function of
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D ×�1, which yields

lim
Q→∞

#(FA(Q) ∩D)
#F1(Q)

=
#A∗

[0 :1]
λ1(D) and hence

lim
Q→∞

#(FA(Q) ∩D)
#FA(Q)

= λ1(D).

This proves the equidistribution of FA(Q) in Tn
1.

Now fix k ∈ Z≥0 and subsets D ⊆ Tn
1 and A⊆ Rn with boundaries of measure zero

and non-empty interiors. Then define the set

C(A)= {(x, y) ∈ Rn
× (0, 1] : x ∈ σ−1/n

A,1 yA} ⊆ Rn+1.

For any ( p, q) ∈ Rn+1, we have p/q ∈ x + σ−1/n
A,Q A with 1≤ q ≤ Q if and only if

( p, q)h(x)a(Q) ∈ C(A).

So, if Q is large enough so that σ−1/n
A,Q A fits inside a single fundamental domain for Tn

1,
we have, for x ∈ Tn

1,

#((x + σ−1/n
A,Q A) ∩ FA(Q))= #(Ah(x)a(Q) ∩ C(A)).

We can thus rewrite (5) and (6) as follows:

PA
Q (k,D,A)=

λ1({x ∈D : #(Ah(x)a(Q) ∩ C(A))= k})
λ1(D)

,

PA
0,Q(k,D,A)=

#{r ∈ FA(Q) ∩D : #(Ah(r)a(Q) ∩ C(A))= k}
#(FA(Q) ∩D)

. (19)

Notice that since the boundary of A is of measure zero in Rn , the boundary of C(A) is of
measure zero in Rn+1. Also, the characteristic function χA

k,D,A : T
n
1 ×1\G→ R of the

set D × {1M ∈1\G : #(AM ∩ C(A))= k} (whose second factor is a well-defined subset
of 1\G since A is closed under right multiplication by 1) is discontinuous at (x, 1M)
only if x is in the boundary of D or if there exists a ∈ A such that aM is in the boundary
of C(A). Such (x, 1M) comprise a set of measure zero in Tn

1 ×1\G. We may therefore
apply Theorem 3.1 to χA

k,D,A to obtain

lim
Q→∞

PA
Q (k,D,A)= lim

Q→∞

1
λ1(D)

∫
Tn
1

χA
k,D,A(x, 1h(x)a(Q)) dλ1(x)

=
1

λ1(D)

∫
Tn
1×1\G

χA
k,D,A(x, M) dλ1(x) dµ1(M)

=µ1({M ∈1\G : #(AM ∩ C(A))= k}),

proving the existence of the limiting measure PA
Q (k,D,A) as Q→∞.

Note furthermore that the limit of the expected value

EPA
Q (D,A)=

∞∑
k=0

k PA
Q (k,D,A)

as Q→∞ exists by an application of Theorem 3.1 to the function

(x, 1M) 7→ χD(x)(#(AM ∩ C(A))) : Tn
1 ×1\G→ R,
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where χD : Tn
1→ R is the characteristic function on D. The limiting value of EPA

Q (D,A)
is computed as follows: first, the application of Theorem 3.1 yields

lim
Q→∞

EPA
Q (D,A)= lim

Q→∞

1
λ1(D)

∫
Tn
1

χD(x)(#(Ah(x)a(Q) ∩ C(A))) dλ1(x)

=
1

λ1(D)

∫
Tn
1×1\G

χD(x)(#(AM ∩ C(A))) dµ1(M) dλ1(x)

=

∫
1\G

(#(AM ∩ C(A))) dµ1(M)

=

J∑
j=1

∫
1\G

∑
a∈a j1

χC(A)(aM) dµ1(M), (20)

where χC(A) : Rn+1
→ R is the characteristic function on C(A). Now, for each j ∈

{1, . . . , J }, let γ j ∈ 0 be an element such that (0, 1)γ j = a j . If we then define 1 j =

1 ∩ (γ−1
j 0Hγ j ), it is readily seen that

1 jδ 7→ a jδ :1 j\1→ a j1

is a bijection. Thus, the term in (20) corresponding to index j is equal to∫
1\G

∑
1 j δ∈1 j\1

χC(A)(a jδM) dµ1(M)=
∫
1 j\G

χC(A)(a j M)
dµ(M)
[0 :1]

.

Making the change of variable M ′ = γ j Mγ−1
j and letting 1′j = γ j1 jγ

−1
j = 0H ∩

(γ j1γ
−1
j ) yields∫
γ j1 jγ

−1
j \G

χC(A)(a jγ
−1
j M ′γ j ) dµ1(M ′)=

∫
1′j\G

χC(A)((0, 1)M ′)
dµ(M ′)
[0 :1]

=

∫
0H \G

∑
1′jγ∈1

′
j\0H

χC(A)((0, 1)γM)
dµ(M)
[0 :1]

= [0H :1
′

j ]

∫
0H \G

χC(A)((0, 1)M)
dµ(M)
[0 :1]

.

(Note that in the first equality, we use the invariance of µ to remove the factor of γ j on
the right of M ′.) Using the coordinates (M, y) 7→ M M y to parameterize 0H\G as in the
proof of Theorem 3.2(a), we find that (20) equals

J∑
j=1

[0H :1
′

j ]

[0 :1]

∫
0H \H×C(A)

dµH (M) dλ( y)
ζ(n + 1)

=
λ1(A)

#A∗

J∑
j=1

[0H :1
′

j ].

Now notice that for every j , the set of cosets1′j\0H is in one-to-one correspondence with

the orbit of 1γ−1
j in the coset space 1\0 under the action by right multiplication by 0H .

Furthermore, we showed in our remarks preceding Theorem 3.2 that the set A∗ is the union
of the 0H -orbits of the cosets 1γ−1

1 , . . . , 1γ−1
J . So, the sum of the indices [0H :1

′

j ]

equals #A∗ and thus
lim

Q→∞
EPA

Q (D,A)= λ1(A).
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The result is λ1(A) instead of λ(A) due to the scaling factor (#FA(Q))−1/n in (5); because
#FA(Q) counts the number of points in an entire fundamental domain of Rn/31 instead
of a region of λ-measure one, the measure of the test set A is scaled to compare with the
measure of the fundamental domain.

Next, recall from the proof of Theorem 3.2(b) that for a given p/q ∈ F1(Q),
1h( p/q)a(Q)=1h( p/q)a(q)a(Q/q), where 1h( p/q)a(q) ∈1\0H . So, the points
p/q ∈ FA(Q) ∩D which belong to the set in the numerator of (19) are those whose
corresponding point 1h( p/q)a(Q) belongs to the set

�A
k,A = {1γMa(y) ∈�1 : γ ∈ 0, M ∈ H, y ≥ 1, #(AγMa(y) ∩ C(A))= k} ⊆�1.

Let χA,�
k,D,A : T

n
1 ×�1→ R be the characteristic function of D ×�A

k,A. Then χA,�
k,D,A

is discontinuous at (x, 1γMa(y)) ∈ Tn
1 ×�1 only when x is on the boundary of D

or when there exists a point a ∈ Ẑn+1 such that aMa(y) is on the boundary of C(A).
Since the boundaries of D and A are of measure zero in their respective spaces, the
points of discontinuity of χA,�

k,D,A are of measure zero in Tn
1 ×�1. So, we can apply

Theorem 3.2(b) to χA,�
k,D,A, which yields

lim
Q→∞

#{r ∈ FA(Q) ∩D : #(Ah(r)a(Q) ∩ C(A))= k}
#F1(Q)

= λ1(D) · µ�1({M ∈�A : #(AM ∩ C(A))= k}).

Multiplying by #F1(Q)/#(FA(Q) ∩D) then yields

lim
Q→∞

#{r ∈ FA(Q) ∩D : #(Ah(r)a(Q) ∩ C(A))= k}
#(FA(Q) ∩D)

=
µ�1({M ∈�A : #(AM ∩ C(A))= k})

µ�1(�A)
.

This completes the proof of Theorem 2.1.

4.2. Proof of Theorem 2.2. Fix A > 0, c > 1, k ∈ Z≥0, and D ⊆ Tn
1 with boundary of

measure zero and non-empty interior. Recall that we defined the functions ESTA
A,c,Q and

K A
A,Q on Tn

1 such that for x ∈ Tn
1, ESTA

A,c,Q(x) is the number of solutions ( p, q) ∈ A of

‖qx − p‖ ≤ Aq−1/n, Q ≤ q ≤ cQ (21)

and K A
A,Q(x) is the number of solutions ( p, q) ∈ A of

‖qx − p‖ ≤ AQ−1/n, 1≤ q ≤ Q. (22)

We aim to show that the limiting distributions of both functions exist. Now define the sets

EA,c = {(x, y) ∈ Rn
× R : |y|1/n

‖x‖ ≤ A, 1≤ y ≤ c},

KA = {(x, y) ∈ Rn
× R : ‖x‖ ≤ A, 0≤ y ≤ 1},

and notice that a given x ∈ Rn and ( p, q) ∈ Ẑn+1 satisfy (21) if and only if

( p, q)h(x)a(Q) ∈ EA,c;
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and similarly x and ( p, q) satisfy (22) if and only if

( p, q)h(x)a(Q) ∈KA.

We may therefore write ESTA
A,c,Q(x) and K A

A,Q(x) as

ESTA
A,c,Q(x)= #(Ah(x)a(Q) ∩ EA,c) and K A

A,Q(x)= #(Ah(x)a(Q) ∩KA).

Thus, if we define the functions ηA,c, κA :1\G→ Z≥0 by

ηA,c(1M)= #(AM ∩ EA,c) and κA(1M)= #(AM ∩KA),

we have

ESTA
A,c,Q(x)= ηA,c(1h(x)a(Q)) and K A

A,Q(x)= κA(1h(x)a(Q)).

Since the sets EA,c and KA have boundaries of measure zero in Rn+1, the level sets η−1
A,c(k)

and κ−1
A (k) have boundaries of measure zero in 1\G. So, we may apply Theorem 3.1 to

the characteristic function of D × η−1
A,c(k), which then yields

lim
Q→∞

λ1({x ∈D : #(Ah(x)a(Q) ∩ EA,c)= k})

= λ1(D)µ1({M ∈1\G : #(AM ∩ EA,c)= k}).

This is equivalent to

lim
Q→∞

λ1({x ∈D : ESTA
A,c,Q(x)= k})

λ1(D)
= µ1({M ∈1\G : #(AM ∩ EA,c)= k}).

Similarly, we can apply Theorem 3.1 to the characteristic function of D × κ−1
A (k) to find

that

lim
Q→∞

λ1({x ∈D : #(Ah(x)a(Q) ∩KA)= k})

= λ1(D)µ1({M ∈1\G : #(AM ∩KA)= k})

and hence

lim
Q→∞

λ1({x ∈D : K A
A,Q(x)= k})

λ1(D)
= µ1({M ∈1\G : #(AM ∩KA)= k}).

We note additionally that the limiting expected values of ESTA
A,c,Q and K A

A,Q as Q→∞
can be computed as

(#A∗)λ(EA,c)

[0 :1]ζ(n + 1)
and

(#A∗)λ(KA)

[0 :1]ζ(n + 1)
,

respectively, in a similar way as the limit of EPA
Q (D,A) computed above. This concludes

the proof of Theorem 2.2.
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5. The distribution of the Frobenius numbers of A
In this section, we complete the proof of Theorem 2.3. Throughout we regularly use,
for a given y ∈ Rn+1, the notation y′ to denote the first n coordinates of y so that y =
( y′, yn+1). We first prove the following alteration of Theorem 3.2(b), which is analogous
to [15, Theorem 7].

THEOREM 5.1. Let D ⊆ {x ∈ [0, 1]n+1
: 0< x1, . . . , xn ≤ xn+1} have boundary of

Lebesgue measure zero, and f :D ×�1→ R be bounded and continuous. Then we have

lim
T→∞

1
T n+1

∑
a∈A∩TD

f
(

a
T
, 1h

(
a′

an+1

)
a(T )

)
=

1
ζ(n + 1)

∫
D×1\A∗H

f ( y, Ma(yn+1)) dλ( y)
dµH (M)
[0 :1]

. (23)

Proof. First, let g : [0, 1] × Tn
1 ×1\0Ha→ R be continuous with compact support and,

for every pair of constants b, c ∈ [0, 1] with b < c, define Lg,b,c, Ug,b,c : Tn
1 ×1\G→ R

by

Lg,b,c(x, M)= inf
u∈[b,c]

g(u, x, M) and Ug,b,c(x, M)= sup
u∈[b,c]

g(u, x, M).

Then, for T > 0, define Fb,c
1 (T )= { p/q ∈ F1(T ) : bT ≤ q ≤ cT }. By the proof of

Theorem 3.2(a) (in particular, see (17)), we have

lim sup
T→∞

1
#F1(T )

∑
p/q∈Fb,c

1 (T )

g
(

q
T
,

p
q
, 1h

(
p
q

)
a(T )

)

≤ lim
T→∞

1
#F1(T )

∑
r∈Fb,c

1 (T )

Ug,b,c(r, 1h(r)a(T ))

=

∫ c

b

∫
Tn
1×1\0H

Ug,b,c(x, Ma(y))(n + 1)yn dλ1(x)
dµH (M)
[0 :1]

dλ(y).

So, for any finite partition 0= b0 < b1 < · · ·< bm = 1 of [0, 1],

lim sup
T→∞

1
#F1(T )

∑
p/q∈F1(T )

g
(

q
T
,

p
q
, 1h

(
p
q

)
a(T )

)

≤

m−1∑
j=0

∫ b j+1

b j

∫
Tn
1×1\0H

Ug,b,c(x, Ma(y))(n + 1)yn dλ1(x)
dµH (M)
[0 :1]

dλ(y).

By the uniform continuity of g, we can take the infimum over all finite partitions {b j } j of
[0, 1] to obtain

lim sup
T→∞

1
#F1(T )

∑
p/q∈F1(T )

g
(

q
T
,

p
q
, 1h

(
p
q

)
a(T )

)

≤

∫ 1

0

∫
Tn
1×1\0H

g(y, x, Ma(y))(n + 1)yn dλ1(x)
dµH (M)
[0 :1]

dλ(y).

https://doi.org/10.1017/etds.2019.71 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2019.71


490 B. Heersink

We can similarly use the functions Lg,b,c to get the reverse inequality while replacing
lim sup with lim inf; and hence

lim
T→∞

1
#F1(T )

∑
p/q∈F1(T )

g
(

q
T
,

p
q
, 1h

(
p
q

)
a(T )

)

=

∫ 1

0

∫
Tn
1×1\0H

g(y, x, Ma(y))(n + 1)yn dλ1(x)
dµH (M)
[0 :1]

dλ(y). (24)

By a standard approximation argument, we can replace g in the above equality by the
function g̃ : [0, 1] × Tn

1 ×1\0H → R defined by

g̃(y, x, M)= χ(0,1]n (x)χD(yx, y)χA∗(x, M) f ((yx, y), M).

Here χ(0,1]n : Tn
1→ R is the characteristic function of (0, 1]n viewed as a subset of Tn

1,
χD : Rn+1

→ R is the characteristic function of D, and χA∗ is the characteristic function
of Tn

1 ×�A as defined in the proof of Theorem 3.2(b). Also, assuming that x ∈ Tn
1 is

such that χ(0,1]n (x)= 1, x ∈ Rn denotes the representative of x ∈ Tn
1 lying in (0, 1]n .

Applying (24) with g̃ yields

lim
T→∞

(n + 1)ζ(n + 1)
[Zn :31]T n+1

∑
( p,q)∈A∩TD

f
(
( p, q)

T
, 1h

(
p
q

)
a(T )

)

=

∫
[0,1]n+1×1\A∗H

χD(yx, y) f ((yx, y), Ma(y))(n + 1)yn dλ(x)
[Zn :31]

dµH (M)
[0 :1]

dλ(y).

Making the substitutions a = ( p, q) and y = (yx, y) and simplifying yields (23). �

A way of interpreting Theorem 5.1 is that {(a/T, 1h(a′/an+1)a(T )) : a ∈ A ∩ TD} is,
by (18), a subset of

M1,A,D = {( y, Ma(yn+1)) : y ∈D, M ∈1\A∗H} ⊆D ×1\0Ha

that equidistributes with respect to a scalar multiple of the measure ν1 obtained as the
pushforward of the measure λ× µH on D ×1\0H via the map

( y, M) 7→ ( y, Ma(yn+1)) :D ×1\0H →D ×1\0Ha . (25)

It is easy to see that M1,A,D is a closed subset of D ×1\G and we may therefore apply
Theorem 5.1 to characteristic functions of appropriate subsets of M1,A,D.

A key fact proven in [15] is that for a ∈ Ẑn+1
≥2 , the quantity

F(a)+
∑n+1

j=1 a j

(a1 · · · an+1)1/n

can be written as an appropriate function of a/T and h(a′/an+1)a(T ) ∈ 0\0Ha as
follows: let ρ : 00\G0→ R be the covering radius of the simplex δ(n) as defined in
(11). Then let H†

= (H t )−1
= {(M t )−1

: M ∈ H} and define the projection π0 from
0\0H†

{a(y) : y > 0} to 00\G0 so that for any y > 0 and

M = 0
(

A 0t

b 1

)
∈ 0\0H†,
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we have π0(Ma(y))= 00 A. Next, for y = (y1, . . . , yn) ∈ Rn , we define the matrices

m( y)=
(
(y1 · · · yn)

−1/ndiag(y1, . . . , yn) 0t

0 1

)
and h†( y)=

(
In yt

0 1

)
,

where, for the former, we assume that y j > 0 for all j . (Note that h†( y) is the inverse
transpose of h( y).) We then have

F(a)+
∑n+1

j=1 a j

(a1 · · · an+1)1/n = (ρ ◦ π0)

(
0h†

(
a′

an+1

)
a(a−1

n+1)m
(

a′

T

))
= (ρ ◦ π0)

(
0

((
h
(

a′

an+1

)
a(T )

)t)−1

m
(

a′

T

))
.

The first equality is an application of equation (5.13) together with Theorems 3 and 9
in [15], where d = n + 1, y = a/T , and M = h(a′/an+1)a(an+1) in the equation. The
second equality follows from the fact that the value of π0 is not changed when its argument
is multiplied on the right by a(an+1/T ).

So, for R ≥ 0 and a subset D ⊆ [0, 1]n+1 as in Theorem 5.1, one establishes the limiting
value of

1
T n+1 #

{
a ∈ Ẑn+1

≥2 ∩ TD :
F(a)+

∑n+1
j=1 a j

(a1 · · · an+1)1/n > R
}

(26)

by applying [15, Theorem 7], i.e., Theorem 5.1 with 1= 0 and A= Ẑn+1, to the
characteristic function of the subset

AR = {( y, Ma(yn+1)) : ( y, M) ∈D × 0\0H,

(ρ ◦ π0)(((Ma(yn+1))
t )−1m( y′)) > R}

of M
0,Ẑn+1,D. To ensure that this application is valid, Marklof showed that the boundary

of AR in M
0,Ẑn+1,D is of ν0-measure zero (ν0 being the pushforward measure via (25)

with 1= 0). A brief description of his proof is as follows: if 9n+1 : R≥0→ R≥0 is
defined by

9n+1(R)= µ0({A ∈ 00\G0 : ρ(A) > R}),

then ν0(AR)= λ(D)9n+1(R). Marklof showed that ρ : 00\G0→ R is continuous,
implying that for any ε > 0, the measure ν0(∂AR) of the boundary of AR is at most
λ(D)(9n+1(R + ε)−9n+1(R − ε)), and any limit point of (26) as T →∞ is in the
interval (

λ(D)
ζ(n + 1)

9n+1(R − ε),
λ(D)

ζ(n + 1)
9n+1(R + ε)

)
.

Marklof also showed that µ0({A ∈ 00\G0 : ρ(A)= R})= 0 and thus 9n+1 is continuous.
This implies that ν0(∂AR)= 0 and the limit of (26) as T →∞ equals

λ(D)
ζ(n + 1)

9n+1(R).

In our situation, we apply Theorem 5.1 to the characteristic function of the set

A1,A,R = {( y, Ma(yn+1)) : ( y, M) ∈D ×1\A∗H,

(ρ ◦ π0)(((Ma(yn+1))
t )−1m( y′)) > R},
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where we view π0 as a function on 1\0H†
{a(y) : y > 0} by composition with the natural

projection π1. We then have

ν1(A1,A,R)

= (λ× µH )({( y, M) ∈D ×1\A∗H : (ρ ◦ π0)(((Ma(yn+1))
t )−1m( y′)) > R})

=

∫
D
µH ({M ∈1\A∗H : (ρ ◦ π0)(((Ma(yn+1))

t )−1m( y′)) > R}) dλ( y)

=

∫
D
µH ({M ∈1\A∗H : (ρ ◦ π0)((M t )−1) > R}) dλ( y)

= (#A∗)λ(D)µH ({M ∈ 0\0H : (ρ ◦ π0)((M t )−1) > R})

= (#A∗)λ(D)9n+1(R).

For the third equality, we use the {a(y) : y > 0}-invariance of π0 and the H -invariance
of µH , and for the fourth equality we use the fact that the natural projection 1\A∗H →
0\0H is locally µH -preserving and a (#A∗)-to-one cover. Using again the continuity of
ρ and 9n+1, we see that ν1(∂A1,A,R)= 0, and the application of Theorem 5.1 to the
characteristic function of A1,A,R yields

lim
T→∞

1
T n+1 #

{
a ∈ Ẑn+1

≥2 ∩ A ∩ TD :
F(a)+

∑n+1
j=1 a j

(a1 · · · an+1)1/n > R
}

=
(#A∗)λ(D)
[0 :1]ζ(n + 1)

9n+1(R).

One can easily remove the sum
∑n+1

j=1 a j above by replacing D with D ∩ [η, 1]n+1 for

η > 0 (under this condition the expressions (a1 · · · an+1)
−1/n ∑n+1

j=1 a j decay uniformly to
zero as T →∞) and then letting η→ 0. (See [15, Lemma 2].) This completes the proof of
Theorem 2.3 in the case where D ⊆ {x ∈ [0, 1]n+1

: 0< x1, . . . , xn ≤ xn+1}. To remove
the condition that x1, . . . , xn ≤ xn+1 for every (x1, . . . , xn+1) ∈D, one can partition D
into disjoint regions D1, . . . ,Dn+1 such that Dk ⊆ {x ∈ [0, 1]n+1

: 0< xi ≤ xk, i 6= k}.
For each k, one can find appropriate permutation matrices Pk such that Dk Pk ⊆ {x ∈
[0, 1]n+1

: 0< x1, . . . , xn ≤ xn+1} and then establish the limit

lim
T→∞

1
T n+1 #

{
a ∈ Ẑn+1

≥2 ∩ APk ∩ T (Dk Pk) :
F(a)

(a1 · · · an+1)1/n > R
}

by the above process. However, given that APk =
⋃J

j=1 a j Pk(P−1
k 1Pk), 1 must be

replaced by P−1
k 1Pk . Finally, to remove the condition that D ⊆ [0, 1]n+1, one can rescale

the parameter T .
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