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Abstract

Let ‖x‖ denote the distance from x ∈R to the nearest integer. In this paper, we prove a
new existence and density result for matrices A ∈Rm×n satisfying the inequality

lim inf
|q|∞→+∞

n∏
j=1

max{1, |q j |} log

⎛
⎝ n∏

j=1

max{1, |q j |}
⎞
⎠

m+n−1
m∏

i=1

‖Ai q‖> 0,

where q ranges in Zn and Ai denote the rows of the matrix A. This result extends previous
work of Moshchevitin both to arbitrary dimension and to the inhomogeneous setting. The
estimates needed to apply Moshchevitin’s method to the case m > 2 are not currently
available. We therefore develop a substantially different method, based on Cantor-like set
constructions of Badziahin and Velani. Matrices with the above property also appear to
have very small sums of reciprocals of fractional parts. This fact helps us to shed light on
a question raised by Lê and Vaaler on such sums, thereby proving some new estimates in
higher dimension.

2020 Mathematics Subject Classification: 11J13, 11J20, 11J83, 11H46 (Primary);
11H16 (Secondary)

1. Introduction

1·1. Notation

For x ∈R we denote by ‖x‖ the distance from x to the nearest integer. For a matrix A ∈
Rm×n we denote by Ai ∈Rn (i = 1, . . . ,m) the rows of A, and by Ai x the sum

∑n
j=1 Ai j x j ,

where x ∈Rn . Given a set X and a pair of functions f, g : X →R, we write f � g (or f �
g) when there exists a constant c> 0 such that f (x)≤ cg(x) (or f (x)≥ cg(x)) for all x ∈ X .
If the constant c depends on some parameters, we write them under the symbol � (or �).
We denote by | · |2 the Euclidean norm and by | · |∞ the supremum norm on Rn . We denote
by dist2 and dist∞ the Euclidean and supremum distances respectively. For a set X ⊂Rn

we denote by diam(X) its diameter and by Vol(X) its n-dimensional Hausdorff measure.
If X is a (hyper)cube, we denote by edge(X) the length of its edges, i.e., its 1-dimensional
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faces. If f :Zn → [0,+∞) is a function, we denote by lim inf|q|∞→+∞ f (q) the number
lim infq→+∞ min{ f (q) : |q|∞ = q}. Finally, by any product

∏b
a where b< a, we signify the

constant 1.

1·2. Background

It is well known that the set of real numbers α ∈R such that

lim inf
q→∞ q‖qα‖> 0 (1·1)

is non empty and has full Hausdorff dimension. Such numbers are known as badly approx-
imable and play a key role in the theory of Diophantine approximation. The notion of bad
approximablity can be extended to a higher-dimensional setting, where it becomes signif-
icantly more varied and multi-faceted. In the standard setting, a matrix A ∈Rm×n (where
m, n are positive integers) is said to be badly approximable if, in analogy to (1·1),

lim inf
|q|∞→+∞

|q|n∞
m

max
i=1

{‖Ai q‖}m > 0.

Schmidt [16] showed that the set of such matrices has full Hausdorff dimension in Rm×n . In
the multiplicative setting [5], a matrix A ∈Rm×n is said to be badly approximable if

lim inf
|q|∞→+∞

n∏
j=1

max{1, |q j |}
m∏

i=1

‖Ai q‖> 0. (1·2)

To simplify the notation, throughout this paper we shall write

∏
(q) :=

n∏
j=1

max{1, |q j |}

for all q ∈Zn .
The famous Littlewood conjecture states that for any pair of real numbers α, β ∈R it

holds

lim inf
q→∞ q‖qα‖‖qβ‖ = 0, (1·3)

or that, in other words, there exist no 2 × 1 multiplicatively badly approximable matrices.
However, if the Littlewood conjecture were true, there would exist no m × n multiplicatively
badly approximable matrices for any value of m and n (except when n = m = 1). This fol-
lows easily from the fact that every submatrix of a multiplicatively badly approximable
matrix is itself multiplicatively badly approximable and from a well-known transfer-
ence principle (see [12, theorem 2·2]). Proving or disproving the Littlewood conjecture
(formulated around 1920) has eluded the efforts of the mathematical community to date, and
constitutes a major challenge for the future. Nonetheless, partially due to the results achieved
by Einsiedler, Katok and Lindenstrauss [7], who proved that the set of counterexamples
to this conjecture has zero Hausdorff dimension, it is widely believed that the Littlewood
conjecture is true.

Since the set of multiplicatively badly approximable matrices with the current definition
is potentially empty, some authors (Badziahin, Velani, etc.) have suggested to introduce a
different definition of multiplicative bad approximability, by weakening the Diophantine
condition in (1·2). The most obvious way to do this is to increase the exponent of the
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factor
∏
(q) in (1·2). This modification, however, introduces “too many” new matrices, in

consequence of the following two 0 − 1 results.

THEOREM 1·1 (Gallagher). Let m be a positive integer and let ψ :N→ (0, 1] be a non-
increasing function. Let also

W ×(m, 1, ψ) :=
{

A ∈ [0, 1]m×1 :
m∏

i=1

‖Ai q‖<ψ (|q|) for infinitely many q ∈Z

}
.

Then, we have that

L (W ×(m, 1, ψ))=
⎧⎨
⎩

0 if
∑+∞

q=1 ψ (q) log
(
ψ(q)−1

)m−1
<+∞

1 if
∑+∞

q=1 ψ (q) log
(
ψ(q)−1

)m−1 = +∞
,

where L stands for the m-dimensional Lebesgue measure.

THEOREM 1·2 (Sprindžuk). Let m, n be positive integers and let ψ :N→ (0, 1] be any
function. Let also

W ×(m, n, ψ) :=
{

A ∈ [0, 1]m×n :
m∏

i=1

‖Ai q‖<ψ
(∏

(q)
)

for infinitely many q ∈Zn

}
.

Then, we have that

L (W ×(m, n, ψ))=

⎧⎪⎨
⎪⎩

0 if
∑

q∈Zn ψ
(∏
(q)

)
log

(
ψ
(∏
(q)

)−1
)m−1

<+∞
1 if

∑
q∈S ψ

(∏
(q)

)
log

(
ψ
(∏
(q)

)−1
)m−1 = +∞

,

where L stands for the mn-dimensional Lebesgue measure, and S is any infinite set of
pairwise linearly independent vectors in Zn.

The reader may refer to [10, theorem 1] and to [17, chapter 1, theorem 13] for a proof
of these two theorems. Note that there is a discrepancy between the cases n = 1 and n > 1.
In particular, Theorem 1·2 does not imply Theorem 1·1, since for n = 1 there are no infinite
subsets of pairwise linearly independent vectors in Z.

Gallagher and Sprindžuk’s Theorems both imply that the set of matrices A ∈Rm×n

such that

lim inf
|q|∞→+∞

∏
(q)1+ε

m∏
i=1

‖Ai q‖> 0

has full Lebesgue measure in Rm×n for all ε > 0. Therefore, a finer alteration is required.
A natural solution to this problem is to allow for logarithmic factors, i.e., to consider the set

Madλ(m, n) :=
{

A ∈Rm×n : lim inf
|q|∞→+∞

∏
(q) log

(∏
(q)

)λ m∏
i=1

‖Ai q‖> 0

}
. (1·4)

It follows from Theorems 1·1 and 1·2 that Madλ(m, n) has full Lebesgue measure for
λ>m + n − 1 and zero Lebesgue measure for λ≤ m + n − 1. However, it could happen,
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for example, that the set Madλ(m, n) is empty for λ≤ m + n − 1. This is precisely the case
that we treat in this paper.

To have a better understanding of the case λ≤ m + n − 1, we consider the analogue of
the set Madλ(m, n) in the standard setting, i.e., the set

Badλ(m, n) :=
{

A ∈Rm×n : lim inf
|q|∞→+∞

|q|n∞d log(|q|∞)λ max{‖A1q‖, . . . , ‖Am q‖}m > 0

}
.

(1·5)
In this setting, Theorems 1·1 and 1·2 are replaced by the Khintchine–Groshev Theorem

(see [4] and references therein), which we report here for the convenience of the reader.

THEOREM 1·3 (Khintchine–Groshev). Let m, n be positive integers and let ψ :N→
(0, 1] be a non-increasing function. Let also

W +(m, n, ψ) :=
{

A ∈ [0, 1]m×n : m
max
i=1

{‖Ai q‖}m <ψ(|q|∞) for infinitely many q ∈Zn

}
.

Then, we have that

L (W +(m, n, ψ))=
⎧⎨
⎩

0 if
∑+∞

q=1 ψ(q)q
n−1 <+∞

1 if
∑+∞

q=1 ψ(q)q
n−1 = +∞

,

where L stands for the mn-dimensional Lebesgue measure.

This theorem, in combination with Schmidt’s dimensional result for badly approximable
matrices [16] and Dirichlet’s Theorem, implies that

Badλ(m, n)=

⎧⎪⎨
⎪⎩

∅ if λ< 0

full Hausdorff dimension set if 0 ≤ λ≤ 1

full Lebesgue measure set if λ> 1.

(1·6)

In particular, we observe that, in the standard setting, “shaving off” a logarithmic factor from
the Lebesgue 0 − 1 “switch over” (λ= 1) leads precisely to the set of badly approximable
matrices (defined in (1·2)).

Let us move back to the multiplicative setting and draw a comparison. To keep
things simple we set m = 2, n = 1. We note that Theorem 1·3 for m = 2, n = 1 and
Theorem 1·1 for m = 2 differ only by the presence of a logarithmic factor in the sum. In
particular, Gallagher’s Theorem implies that

L
(
Madλ(2, 1)

)=
{

0 if λ≤ 2

+∞ if λ> 2.

Drawing inspiration from (1·6) and from the “shaving off” phenomenon, Badziahin and
Velani [2, statements L1-L3] made the following conjecture.

CONJECTURE 1·4 (Badziahin–Velani).

Madλ(2, 1)=

⎧⎪⎨
⎪⎩

∅ if λ< 1

full Hausdorff dimension set if 1 ≤ λ≤ 2

full Lebesgue measure set if λ> 2.
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This conjecture is also supported by heuristic volume arguments of Peck [14], and Pollington
and Velani [15] (see references in [2]). If it were true, the set Mad1(2, 1) would be rightfully
regarded as the multiplicative analogue of the set Bad0(2, 1).

Multiple authors have contributed towards a partial solution of Conjecture 1·4.
Moshchevitin [13] was the first to show that the set Mad2(2, 1) is non-empty, by using
the so-called Peres–Schlag method. Subsequently, Bugeaud and Moschevitin [6] proved
that dim Mad2(2, 1)= 2, where dim denotes the Hausdorff dimension. Finally, Badziahin
[1] made a significant breakthrough, showing that dim Madλ(2, 1)= 2 for all λ> 1. After
Badziahin’s result in 2013, no further progress has been made on this conjecture and, to date,
the case λ= 1 remains unsolved.

1·3. Main result

Conjecture 1·4 has a natural extension to higher dimension.

CONJECTURE 1·5 (Generalised Mad Conjecture). For all values of m, n ∈N we
have that

Madλ(m, n)=

⎧⎪⎨
⎪⎩

∅ if λ<m + n − 1

full Hausdorff dimension set if m + n − 2 ≤ λ≤ m + n − 1

full Lebesgue measure set if λ>m + n − 1.

Note that the full Lebesgue measure part of Conjecture 1·5 follows directly from
Theorems 1·1 and 1·2.

In analogy with Moshchevitin’s result [13], we show in this paper that the set
Madm+n−1(m, n) is dense and uncountable in Rm×n , and thus non-empty for all values of
m, n ∈N. We furthermore generalise this result to the inhomogeneous setting.

Let C ⊂Rm×n be a cube of edge � (a ball with respect to the supremum norm in Rm×n).
For f : [0,+∞)→ [1,+∞) non-decreasing, γ ∈Rm , and c> 0 we consider the set

Madm,n(C, γ , f, c) :=
{

A ∈ C :
∏
(q)‖A1q + γ1‖ · · · ‖Am q + γm‖> c

f (
∏
(q))

for all q ∈Zn \ {0}
}
.

For x ∈ [0,+∞) we set log∗(x) := log (max{e, x}), where e = 2.71828 . . . is the base of
the natural logarithm. With this notation, the following result holds.

PROPOSITION 1·6. Let m, n ∈N, with m + n ≥ 3, let C be a cube in Rm×n, and let γ ∈Rm.
Then, there exists a constant c = c(m, n, �) > 0, only depending on the integers m and n,
and the length � of the edge of the cube C, such that for any countable (possibly finite)
family of hyperplanes H lying in Rm×n we have that

Madm,n

(
C, γ , log∗(x)m+n−1, c

) \
⋃

H∈H

H �= ∅.

Proposition 1·6 immediately implies the following corollary.
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COROLLARY 1·7. Let m + n ≥ 3. Then, for all γ ∈Rm the set

Madm+n−1(m, n, γ ) :=
{
A ∈Rm×n : lim inf

|q|∞→+∞

∏
(q) log

(∏
(q)

)m+n−1 m∏
i=1

‖Ai q + γi‖> 0

}

is everywhere dense in Rm×n and does not lie on a countable union of hyperplanes.

Note that, for certain choices of the vector γ ∈Rm , the non-emptiness (uncountability)
of the set Madm+n−1(m, n, γ ) becomes trivial (e.g., for n = 1, γ1, . . . , γm−1 /∈Q, γm = 0,
A1, . . . , Am−1 ∈Z, and Am badly approximable). In particular, the case λ<m + n − 1 of
Conjecture 1·5 in the inhomogeneous setting is clearly false. However, the fact that the set
Madm+n−1(m, n, γ ) does not lie on a countable union of hyperplanes implies that there exist
matrices A lying in Madm+n−1(m, n, γ ) whose entries, along with 1 and the entries of the
vector γ , are linearly independent over Q. This additional linear independence condition
excludes most of the trivial counterexamples (such as the one given above) and could poten-
tially lead to a more meaningful generalisation of Conjecture 1·5 to the inhomogeneous
setting.

It is worth observing that to prove Proposition 1·6 we do not follow the Peres–Schlag
method, i.e., the method used by Moshchevitin to show that Mad2(2, 1) �= ∅ (see [13]).
Moshchevitin’s proof relies both on the one dimensional case (m = n = 1), and on estimates
for the sum

Q∑
q=1

1

q‖qα‖ .

This sum is known to grow like O(log(Q)2) for almost all α ∈R [11, theorem 6(b)].
However, to apply inductively Moshchevitin’s argument in dimension, e.g., m × 1, one
would require an estimate of the form

Q∑
q=1

1

q‖qα1‖ . . . ‖qαm‖ �m (log Q)m+1

for at least some vectors (α1, . . . , αm). At present, such estimate is only known to hold
for multiplicatively badly approximable vectors1, which, according to the Littlewood
Conjecture, do not exist. Hence, a different method is required.

To prove Proposition 1·6, we work directly in a higher-dimensional setting, without rely-
ing on induction. We generalise a construction introduced by Badziahin and Velani in [2], in
order to produce a multi-dimensional Cantor-like set contained in Madm,n(C, γ , f, c). Such
a construction requires to count lattice points contained in sets with “hyperbolic spikes”,
which arise naturally in the multiplicative setting. We do this through an elementary geo-
metric argument that is the key to the whole proof. The core of this argument can be found
in Lemma 4·1. We remark that Badziahin’s proof [1] of the fact that dim Madλ(2, 1)= 1 for
λ> 1 also relies on an inductive argument, unlike ours.

We conclude by remarking that it would be equally desirable to prove a dimensional
result for the set Madm+n−1(m, n). Unfortunately, the methods used in this paper do not
seem powerful enough to obtain such a result, as the (suitably generalised) hypothesis

1To see this, it suffices to apply Abel’s summation formula and [12, theorem 2·1].
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in Badziahin and Velani’s [2, theorem 4] does not hold for our construction. An adapta-
tion of [2, theorem 4] to our setting appears equally challenging, due to an obstruction in
[2, lemma 2].

1·4. Applications

Let m, n ∈N, let Q ∈ (0,+∞)n , and let X :=∏n
j=1[−Q j , Q j ]. Let also L ∈Rm×n be a

matrix whose entries Li1, . . . , Lin ∈R together with 1 are linearly independent over Z for
i = 1, . . . ,m. Consider the sum

SL(Q) :=
∑

q∈X∩Zn\{0}

m∏
i=1

‖Li q‖−1.

Sums of this shape, also known as sums of reciprocals of fractional parts, play a key role
in Diophantine approximation as well as in the theory of uniform distibution (see, e.g., [3]
or [9] for a deeper insight). In applications, it is often crucial to find upper or lower bounds
for these sums as a function of the variable Q, once the matrix L is fixed. Lê and Vaaler [12]
proved very general lower bounds for the function SL(Q) through Fourier analysis. More
specifically, they showed [12, corollary 1·2] that for Q := (Q1 · · · Qn)

1/n ≥ 1 it holds

SL(Q)�m,n Qn(log Q)m

independently of the choice of the matrix L. They also asked whether this estimate is sharp,
i.e., whether there exist matrices L such that

SL(Q)�m,n Qn(log Q)m . (1·7)

In [12, theorem 2], they proved that (1·7) holds true for multiplicatively badly approximable
matrices. However, since these matrices are not known to exist, the question remains open.
Proposition 1·6, in combination with previous estimates of the author [9], allows us to find
matrices with “relatively small” (even though not optimal) upper bounds.

Let φ : [1,+∞)→ (0, 1] be a non-increasing function. In [9, corollary 1·8] the author
proved that if a matrix L is φ-semimultiplicatively badly approximable, i.e., if

|q|n∞
m∏

i=1

‖Li q‖ ≥ φ(|q|∞)

for all q ∈Zn \ {0}, then the following upper bound holds for Q ≥ 2:

∑
q∈[−Q,Q]n

∩ Zn\{0}

m∏
i=1

‖Li q‖−1 �m,n Qn log

(
Qn

φ(Q)

)m

+ Qn

φ(Q)
log

(
Qn

φ(Q)

)m−1

. (1·8)

Since
∏n

j=1 max{1, |q j |} ≤ |q|n∞ for all q ∈Zn , from Proposition 1·6 we easily deduce the
following.

COROLLARY 1·8. Let m, n ∈N. Then, there exist uncountably many matrices L ∈Rm×n

such that

SL(Q)�m,n Qn(log Q)2m+n−2 (1·9)

for all Q = (Q, . . . , Q) with Q ≥ 2.
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Note that the linear independence of the row entries of the matrix L together with 1 over Z
follows directly from the definition of the set Madm+n−1(m, n).

This result is not best possible. In particular, for m = 2, n = 1 inequality (1·9) is not sharp.
Indeed, by (1·8), we have that for all ε > 0 and all L ∈ Mad1+ε(2, 1) it holds

SL(Q)�ε Q(log Q)1+ε.

Such matrices L exist thanks to the main result in [1], which implies that dim Madλ(2, 1)= 2
for all λ> 1. It is also well-known (see [8]) that set of 1 × n matrices L such that

SL(Q)�n Qn log Q

has full Hausdorff dimension in R1×n . Thus, (1·9) is again not sharp for m = 1. However, to
the best of our knowledge, for m ≥ 3 or m = 2, n ≥ 2 the existence of matrices satisfying
(1·9) was not previously known.

2. Generalised Cantor sets in higher dimension

In this section we introduce a simple generalisation of a one-dimensional construction
used by Badziahin and Velani in [2]2. This generalisation will be useful in the proof of
Proposition 1·6. Henceforth, the word cube will stand for ball in the supremum norm.

Let l ∈N and let C be a closed cube in Rl . For k ≥ 0 let R := (Rk) be a sequence of nat-
ural numbers, and let r := (rk) and h := (hk) be sequences of non-negative integers with
0 ≤ hk ≤ k. Our goal is to construct a Cantor-like set contained in C depending on the
sequences R, r , and h. We denote such set by K (C, R, h, r). To this end, we introduce
two sequences Ik and Jk of cube collections such that each cube lies in C (k ≥ 0). We set
I0 =J0 := {C} and we define Ik and Jk by recursion on k. We do this in two steps. Suppose
that we have constructed the sets Ih and Jh for h = 0, . . . , k. Then,

Step 1: we split each cube J ∈Jk into Rl
k cubes of equal volume. We denote by Ik+1 the

family of all the cubes obtained via this splitting procedure for J ranging in Jk ;
note that for I ∈ Ik+1 we have that

edge(I )= R−1
k edge(J ) and #Ik+1 = Rl

k#Jk;
Step 2: for each J ∈Jhk we remove from Ik+1 at most rk cubes I ∈ Ik+1 such that I ⊂ J .

We denote by Jk+1 the family given by the remaining cubes in Ik+1.

Finally, we set

K(C, R, h, r) :=
∞⋂

k=1

⋃
J∈Jk

J.

Note that the sequences R, r , and h do not determine a unique set, but a number of different
sets obtained via the procedure described above. Indeed, we did not specify which cubes
we remove in the second step (we only gave a bound on their number). We call every set

2 To be precise, our construction is simplified compared to that of Badziahin and Velani. They use a double-
indexed sequence r = (rh,k), whereas we use two separate single-indexed sequences r = (rk) and h = (hk).
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constructed by using the sequences R, r , and h, in the cube C , a (C, R, h, r)-Cantor set.
We also observe that, by construction,

#Jk+1 ≥ Rl
k#Jk − rk#Jhk (2·1)

for all k ≥ 0.
Now, the following proposition extends [2, theorem 3].

PROPOSITION 2·1 (multidimensional Baziahin–Velani). Let K(C, R, h, r) be a
(C, R, h, r) -Cantor set, where C ⊂Rl is a cube, and let

tk := Rl
k − rk∏k−1

i=hk
ti

for k ≥ 1. If tk > 0 for all k ≥ 0, then we have that K(C, R, h, r) �= ∅.

The proof is almost straightforward and we give it directly in this section.

Proof. We shall prove by induction on k that for k ≥ 1

#Jk ≥ tk−1#Jk−1. (2·2)

The fact that tk > 0 for all k, along with (2·2), implies that

#Jk ≥
(

k−1∏
h=0

th

)
#J0 > 0.

Hence, every (C, R, h, r)-Cantor set is the intersection of a family of nested compact non-
empty sets, and therefore non-empty.

We are left to prove that #Jk ≥ tk−1#Jk−1 for all k ≥ 1. We do this by recursion on k. From
(2·1), we deduce that #J1 ≥ Rl

0#J0 − r0#J0 = t0#J0, and this proves the case k = 1. Now,
let us assume that for all 1 ≤ h ≤ k it holds #Jh ≥ th−1#Jh−1. Then, we have that

#Jk ≥
(

k−1∏
i=hk

ti

)
#Jhk .

This, combined with (2·1), gives

#Jk+1 ≥ Rl
k#Jk − rk#Jhk ≥

(
Rl

k − rk∏k−1
i=hk

ti

)
#Jk = tk#Jk,

whence the claim.

3. Proof of Proposition 1·6
The strategy is simple enough: by picking suitable parameters, we construct a non-empty

(C, R, h, r)-Cantor set K(C, R, h, r) lying in Madm,n

(
C, γ , log∗(x)m+n−1, c

) \⋃H∈H H .
To do so, we fix a non-decreasing sequence of integers R = (Rk) with Rk ≥ 1, a sequence of
non-negative integers h, with 0 ≤ hk ≤ k, and a strictly increasing unbounded function F :
{0} ∪N→ [1,+∞). In the following technical lemma we specify the values of a sequence r
(in terms of c, �, F , R, and h) for which there exists a (possibly empty) (C, R, h, r)-Cantor
set contained in Madm,n

(
C, γ , log∗(x)m+n−1, c

) \⋃H∈H H .
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LEMMA 3·1. Assume that:

(i) 2mc< e−1;
(ii) F(0)= 1 and F(k + 1)/F(k)≥ e for all k ≥ 0;

(iii) F(k + 1)2 log∗(F(k + 1))m+n−1 ≤ c�−1
∏k

h=0 Rh for all k ≥ 0.

Then, there is a (C, R, h, r)-Cantor set contained in Madm+n

(
C, γ , log∗(x)m+n−1, c

) \⋃
H∈H H with r given by

rk := const(m, n)

[
f(c, �, R, h, k)

k∏
h=hk

Rmn
h +

k∏
h=hk

Rmn−1
h

]
, (3·1)

where the factor f(c, �, R, h, k) has the form

f(c, �, R, h, k) := c log

(
1

2mc

)m−1 1

log∗(F(k))
log

(
F(k + 1)

F(k)

)n−1

(3·2)

×
(

log

(
F(k + 1)

F(k)

)
+ �−m

(
2F(k)−m/n − F(k + 1)−m/n

) hk−1∏
h=0

Rm
h

)
,

and const(m, n) > 0 is a constant only depending on m and n.

Lemma 3·1 is a key result in our method. Its proof, although quite technical, is essentially
based on elementary geometric considerations. We prove Lemma 3·1 in Section 4.

Now, we need to show that the (C, R, h, r)-Cantor set constructed in Lemma 3·1 is non-
empty. To do so, we use a non-emptiness condition involving the values of the sequence r .

LEMMA 3·2. Let K (C, R, h, r) be a (C, R, h, r)-Cantor set. If for all k ≥ 0 we have
that

rk ≤ gk

max{2, k}
k∏

h=hk

Rmn
h , (3·3)

where gk := max{2, hk}/(8 max{2, k − 1}), then the set K (C, R, h, r) is non-empty.

We prove this lemma in Section 5.
To conclude the proof of Proposition 1·6, it is enough to show that both the hypothe-

ses of Lemma 3·1 and Lemma 3·2 simultaneously hold for an appropriate choice of the
parameters c, F, R, and h. With this in mind, we fix a constant R > 0, and we set Rk := R,
F(k) := Rk/3, and hk := �k/(3n)� for all k ≥ 0. Then, we prove that, provided R is large
enough, the constant c has enough room to satisfy both the hypotheses of Lemma 3·1 and
Lemma 3·2.

With our choice of R, F, and h, condition i i) in Lemma 3·1 becomes R ≥ e3, whereas
condition (iii) becomes

R
2(k+1)

3 log∗
(

R
k+1

3

)m+n−1 ≤ c�−1 Rk+1,

whence

�R− k+1
3 log∗

(
R

k+1
3

)m+n−1 ≤ c. (3·4)
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On the other hand, by substituting (3·1) into (3·3), we obtain

const(m, n)

[
f(c, �, R, h, k)

k∏
h=hk

Rmn
h +

k∏
h=hk

Rmn−1
h

]
≤ gk

max{2, k}
k∏

h=hk

Rmn
h ,

which, with our choice of R, F, and h, is equivalent to

f(c, �, R, k)+ 1

R(k−� k
3n �+1)

≤ gkconst(m, n)−1

max{2, k} . (3·5)

Since the sequence gk is bounded away from 0 for all values of k, by choosing R suitably
large in terms of m and n, we can ignore the second term at the left-hand side of (3·5).
Hence, we are just left to prove that

f(c, �, R, k)≤ const′(m, n)

max{2, k} ,

where const′(m, n) is a constant only depending on m and n. By using (3·2), this can be
written as

c log∗
(

1

2mc

)m−1 1

max{1, k} log∗ (R1/3
)n−1

×
(

log∗ (R1/3
)+ �−m R

−mk
3n

(
2 − R− m

3n
)

R� k
3n �m

)
≤ const′(m, n)

max{2, k} , (3·6)

where we ignored a factor of log
(
R1/3

)
at the denominator, coming from log∗(F(k)) for

k ≥ 1. Assuming that � < 1, condition (3·6) holds if we have that

c log∗
(

1

2mc

)m−1

≤ const′′(m, n)�m log∗ (R1/3
)−n

, (3·7)

where const′′(m, n) is some other positive constant only depending on m and n.
To conclude the proof, we fix a small real number ε > 0 and we write

log∗(1/2mc)m−1 �m,ε c−ε. Then, condition (3·7) is implied by

c ≤ const′′′(m, n, ε)�
m

1−ε log∗ (R1/3
)− n

1−ε , (3·8)

where const′′′(m, n, ε) is a suitably chosen positive constant only depending on m, n, and
ε. The claim is then proved on noting that (3·4) and (3·8) can simultaneously hold for a
sufficiently large value of R.

4. Proof of Lemma 3·1
4·1. Construction of the Cantor-like set

For each P := ( p, q) ∈Zm × (Zn \ {0}), we introduce the following “bad” set:


(P) :=
{

X ∈Rm×n :
m∏

i=1

|Xi q + γi + pi | ≤ c∏
(q) log∗ (∏(q))m+n−1 ,

|Xi q + γi + pi | ≤ 1

2
i = 1, . . . ,m

}
, (4·1)
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where we ignore the dependence on γ and c for simplicity. Further, we enumerate the hyper-
planes in H , indexing them for k ∈ {0} ∪N. Then, we define the families Jk of a Cantor-like
set so that the intersection of the cubes in Jk avoids all the “bad” sets 
(P) and the hyper-
planes Hk for k ∈N. More precisely, for each J ∈Jk we require that J ∩ (
(P)∪ Hh)= ∅
for all the points P with

∏
(q) < F(k) and all the indices h with h ≤ k (where we assume

H0 = ∅). If this condition is satisfied, we have that

K(C, R, h, r)⊂
+∞⋂
k=0

⋂
∏
(q)<F(k)

⋂
h≤k

C \ (
(P)∪ Hh)

= C
∖(⋃

P


(P)∪
⋃

H∈H

H

)
= Madm,n

(
C, γ , log∗(x)m+n−1, c

) ∖ ⋃
H∈H

H, (4·2)

whence the claim. Note that (4·2) holds true because the function F(k) is unbounded.
We construct the families Jk by recursion on k ≥ 0. For each k we need to ensure that

J ∈Jk ⇒ J ∩
⎛
⎝ ⋃

∏
(q)<F(k)


(P)∪
⋃
h≤k

Hh

⎞
⎠= ∅. (4·3)

If k = 0, we have that J0 = {C} and F(0)= 1. Therefore, by definition,⋃
∏
(q)<1


(P)∪
⋃
h≤0

Hh = ∅.

This shows that the family J0 satisfies (4·3). For k ≥ 1 we subdivide the points P ∈Zm ×
(Zn \ {0}) into “workable” families. Namely, we define

C(k) :=
{

P ∈Zm × (Zn \ {0}) : F(k − 1)≤
∏
(q) < F(k)

}
.

Suppose that we have constructed the family Jk in such a way that (4·3) holds for all
J ∈Jk (note that Jk can be empty). If Jk = ∅, we set Jk+1 := ∅. If Jk �= ∅, we proceed as
follows. Since any cube in Ik+1 lies within some cube in Jk , it is enough to construct the
family Jk+1 in such a way that if J ∈Jk+1 then J ∩ (
(P)∪ Hk+1)= ∅ for all P ∈ C(k +
1). To define Jk+1, we therefore remove from Ik+1 all the cubes I such that I ∩ (
(P)∪
Hk+1) �= ∅ for some P ∈ C(k + 1). This procedure yields a possibly empty Cantor-like set
K (C, R, h, r), contained in the set Madm,n

(
C, γ , log∗(x)m+n−1, c

) \⋃H∈H H .
To conclude the proof, we need to estimate the number of “small” cubes I ∈ Ik+1 that

need to be removed from each “big” cube J ∈Jhk to avoid the sets 
(P) for P ∈ C(k + 1)
and the hyperplane Hk+1, and show that such number is smaller than the constant rk defined
in (3·1). We start by counting the cubes intersecting the sets 
(P) for P ∈ C(k + 1). For a
fixed J ∈Jhk it is enough to estimate the quantity

#{I ∈ Ik+1 : ∃P ∈ C(k + 1) I ∩ J ∩
(P) �= ∅}.
If Ik+1 = ∅, there is nothing to prove. Otherwise, we write

{I ∈ Ik+1 : ∃P ∈ C(k + 1) I ∩ J ∩
(P) �= ∅}
=

⋃
q∈Zn\{0}

F(k)≤∏(q)<F(k+1)

⋃
P∈C(k+1)

q(P)=q

{I ∈ Ik+1 : I ∩ J ∩
(P) �= ∅}.
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From this, we deduce that

#{I ∈ Ik+1 : ∃P ∈ C(k + 1) I ∩ J ∩
(P) �= ∅} ≤
∑

q∈Zn\{0}
F(k)≤∏(q)<F(k+1)

A(q)B(q), (4·4)

where

A(q) := max
P∈C(k+1)

q(P)=q

#{I ∈ Ik+1 : I ∩ J ∩
(P) �= ∅} (4·5)

and

B(q) := # {P ∈ C(k + 1) : q(P)= q, J ∩
(P) �= ∅} . (4·6)

We estimate the factors A(q) and B(q) separately in the next two subsections.

4·2. Estimate of A(q)

To estimate A(q), we rely on the following counting result.

LEMMA 4·1. Let γ ′ ∈Rm, q ∈Zn \ {0}, and ε, T ∈ (0,+∞), with ε/T m < e−1, where
e = 2.71828 . . . is the base of the natural logarithm. Let

C :=
{

X ∈Rm×n :
m∏

i=1

|Xi q + γ ′
i | ≤ ε, |Xi q + γ ′

i | ≤ T, i = 1, . . . ,m

}

and let D ⊂Rm×n be a cube such that D ∩ C �= ∅. Finally, let δ > 0, V ∈Rm×n, and � be
the grid δZm×n + V . Then, we have

δmn#{tiles τ of the grid � : τ ∩ D ∩ C �= ∅} ≤ 22m−1 ε+ (T + n|q|∞δ)m − T m

|q|m∞
× log∗

(
(T + n|q|∞δ)m

ε+ (T + n|q|∞δ)m − T m

)m−1

(edge(D)+ 2δ)m(n−1), (4·7)

where a tile is any set of the form {X ∈Rm×n : δSi j + Vi j ≤ Xi j ≤ δ(Si j + 1)+ Vi j , i =
1, . . . ,m, j = 1, . . . , n} for some S ∈Zm×n.

We prove Lemma 4·1 in Section 6.
We note that if:

(a) ε�m,n (T + n|q|∞δ)m − T m ;
(b) T �m,n |q|∞δ;
(c) edge(D)�m,n δ;

then, Equation (4·7) implies

#{tiles τ of the grid � : τ ∩ D ∩ C �= ∅} �m,n
ε

δmn|q|m∞
log∗

(
T m

ε

)m−1

edge(D)m(n−1).

(4·8)
This is precisely the assertion that we need to prove the claim. We fix a point P ∈

C(k + 1) and a cube J ∈Jhk , and we apply (4·8) to C =
(P), D = J , and to the grid
� formed by the cubes I ∈ Ik+1. We have ε= c(

∏
(q) log∗(

∏
(q))m+n−1)−1, T = 1/2, and
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δ = �
∏k

h=0 R−1
h (note that by the hypothesis ε/T m < e−1). First, we need to show that con-

ditions (a), (b), and (c) hold in this specific case. We start by noting that if condition (b)
is satisfied, then to prove condition (a) it is enough to show that ε�m,n T m−1|q|∞δ. By the
definition of C(k + 1) and part (iii) in the hypotheses of Lemma 3·1, we have that

ε

|q|∞ = c

|q|∞ ∏
(q) log∗ (∏(q))m+n−1 ≥ c

F(k + 1)2 log∗(F(k + 1))m+n−1
≥ �

k∏
h=0

R−1
h = δ.

(4·9)
Hence, ε�m,n T m−1|q|∞δ, and we have (a). Condition (b) is equivalent to 1/|q|∞ �m,n δ,
which is again implied by (4·9). Finally, condition (c) is clearly satisfied since edge(J )≥
edge(I ) for any I ∈ Ik+1. Thus, we can apply (4·8) to obtain

A(q)= max
P∈C(k+1)

q(P)=q

#{I ∈ Ik+1 : I ∩ J ∩
(P) �= ∅} �m,n
c

|q|m∞
∏
(q) log∗ (∏(q))m+n−1

× log∗
(∏

(q) log∗ (∏(q))m+n−1

2mc

)m−1

�−m
hk−1∏
h=0

R−m(n−1)
h

k∏
h=0

Rmn
h

�m,n
c log∗(1/(2mc))m−1

|q|m∞
∏
(q) log∗ (∏(q))n �

−m
hk−1∏
h=0

R−m(n−1)
h

k∏
h=0

Rmn
h . (4·10)

4·3. Estimate of B(q)

We are now left to estimate #{P ∈ C(k + 1) : q(P)= q, J ∩
(P) �= ∅} for each given
q ∈Zn \ {0} such that F(k)≤∏

(q) < F(k + 1). For P ∈ C(k + 1) we consider the hyper-
space

π(P) := {X ∈Rm×n : Xi q + γi + pi = 0, i = 1, . . . ,m},
i.e., the “core” of the set 
(P). We show that to count the number of points P ∈
C(k + 1) such that 
(P) intersects J , it is enough to count the number of points P ∈
C(k + 1) such that the thinner set π(P) intersects an “inflation” of J . In particular, we
claim that

#{P ∈ C(k + 1) : q(P)= q, J ∩
(P) �= ∅}
≤ #{P ∈ C(k + 1) : q(P)= q, J√

m/|q|∞ ∩ π(P) �= ∅}, (4·11)

where J√
m/|q|∞ is the “inflation” of the cube J by the quantity

√
m/|q|∞, i.e., the set {X ∈

Rm×n : dist∞(X, J )≤ √
m/|q|∞}. To prove (4·11) we shall show that for any fixed point P

in the left-hand side of (4·11) it holds

J√
m/|q|∞ ∩ π(P) �= ∅.

We start by observing that, for any Y ∈
(P) we have that

|Yi q + γi + pi | ≤ 1/2 for i = 1, . . . ,m.

Moreover, for i = 1, . . . ,m the Euclidean distance in Rm between the vector Yi and the
hyperplane {Xi q + γi + pi = 0} is given by |Yi q + γi + pi |/|q|2. Hence, the Euclidean
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distance in Rm×n between the vector Y and the hyperspace π(P) is at most
√

m/(2|q|2).
This shows that for any point Y ∈
(P), we have that

dist2(Y , π(P))≤
√

m

2|q|2 .

Since J ∩
(P) �= ∅, we further deduce that

dist∞(J, π(P))≤ dist2(J, π(P))≤ dist2(J ∩
(P), π(P))≤
√

m

2|q|2 ≤
√

m

2|q|∞ .

Hence, by the definition of distance, J√
m/|q|∞ ∩ π(P) �= ∅, whence the claim.

We are now left to bound the right-hand side in (4·11). To do so, we notice that the distance
between two hyperspaces π(P) and π(P ′) defined by the same vector q is at least 1/(n|q|∞).
Indeed, assume that two vectors Xi , X ′

i ∈Rn satisfy Xi q + γi + pi = 0 and X ′
i q + γi + p′

i =
0, with pi �= p′

i . Then, by the Cauchy-Schwartz inequality, we have that

dist∞(Xi , X ′
i )≥

dist2(Xi , X ′
i )√

n
≥ |(Xi − X ′

i )q|√
n|q|2 ≥ |pi − p′

i |√
n|q|2 ≥ 1

n|q|∞ .

This shows that for all X ∈ π(P) and X ′ ∈ π(P ′) it holds

dist∞(X, X ′)≥ 1

n|q|∞ . (4·12)

Now, if J√
m/|q|∞ ∩ π(P) �= ∅ for some P , by an elementary dimensional argument3, the

hyperspace π(P) must intersect at least one m-dimensional face of the cube J√
m/|q|∞ .

For each point P such that J√
m/|q|∞ ∩ π(P) �= ∅ we select a second point Q(P) on an

m-dimensional face of J√
m/|q|∞ lying in π(P). We know, by (4·12), that all such points

are at least at a distance 1/(n|q|∞) away from each other in the supremum norm. To
evaluate their number, we fix any m-dimensional face E of J√

m/|q|∞ and we enlarge it by
1/(2n|q|∞) in all directions, i.e., we consider the set E1/(2n|q|∞). Then, for each intersection
point Q(P) ∈ π(P)∩ J√

m/|q|∞ we take an mn-dimensional cube of edge 1/(n|q|∞) centred
at Q(P). All these cubes are contained in the “inflated” face E1/(2n|q|∞) and they all have
disjoint interiors. Comparing the volume of these cubes and the volume of the inflated face,
we find that

#{P ∈ C(k + 1) : E ∩ π(P) �= ∅}
(

1

n|q|∞
)mn

≤ Vol
(
E1/(2n|q|∞)

)=
(

edge
(
J√

m/|q|∞
)+ 1

n|q|∞
)m (

1

n|q|∞
)m(n−1)

=
(

edge (J )+ 1 + 2n
√

m

n|q|∞
)m (

1

n|q|∞
)m(n−1)

. (4·13)

3 We observe that the hyperspace π(P) must intersect also the boundary of the cube J , i.e., some
(mn − 1)-dimensional face F of J . The intersection of π(P) with the hyperspace Span(F), generated
by F , has dimension at least dim(F)+ dim(π(P))− dim(F + π(P))≥ dim(π(P))− 1. Hence, we have
that the hyperspace π(P)∩ Span(F) of dimension π(P)− 1 intersects a cube F of dimension mn − 1. The
argument can be run recursively dim(π(P))= mn − m times to show the claim.
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Now, since the number of m-dimensional faces of a cube only depends on m, from (4·11)
and (4·13) we finally deduce that

B(q)= #{P ∈ C(k + 1) : q(P)= q, J ∩
(P) �= ∅} ≤ #{P ∈ C(k + 1) :

q(P)= q, J√
m/(2|q|∞) ∩ π(P) �= ∅} �m,n (|q|∞edge (J )+ 1)m �m,n |q|m∞�m

hk−1∏
h=1

R−m
h + 1.

(4·14)

4·4. Conclusion

To conclude the proof of Lemma 3·1, we combine (4·4), (4·10) and (4·14) to obtain

#{I ∈ Ik+1 : ∃P ∈ C(k + 1) I ∩ J ∩
(P) �= ∅}

�m,n

∑
q∈Zn\{0}

F(k)≤∏(q)<F(k+1)

(
c log∗(1/(2mc))m−1

|q|m∞
∏
(q) log∗ (∏(q))n �

−m
hk−1∏
h=0

R−m(n−1)
h

k∏
h=0

Rmn
h

)

×
(

|q|m∞�m
hk−1∏
h=1

R−m
h + 1

)
.

Hence, by using the fact that |q|m∞ ≥∏
(q)m/n , we find that

#{I ∈ Ik+1 : ∃P ∈ C(k + 1) I ∩ J ∩
(P) �= ∅} �m,n c log∗
(

1

2mc

)m−1 k∏
h=hk

Rmn
h

× 1

log∗ (F(k))n
∑

q∈Zn\{0}
F(k)≤∏(q)<F(k+1)

1∏
(q)

(
1 + �−m∏

(q)m/n

hk−1∏
h=0

Rm
h

)
. (4·15)

Now, a simple integration shows that∑
q∈Zn\{0}

F(k)≤∏(q)<F(k+1)

∏
(q)−1 �n log∗(F(k + 1))n−1 log∗

(
F(k + 1)

F(k)

)

and ∑
q∈Zn\{0}

F(k)≤∏(q)<F(k+1)

∏
(q)−1−m/n �n log∗(F(k + 1))n−1

(
2F(k)−m/n − F(k + 1)−m/n

)
.

Therefore, from (4·15) and from the trivial inequality log∗(F(k + 1))n−1 ≤ log∗(F(k +
1)/F(k))n−1 log∗(F(k))n−1, we deduce that

#{I ∈ Ik+1 : ∃P ∈ C(k + 1) I ∩ J ∩
(P) �= ∅}

�m,n c log∗
(

1

2mc

)m−1 1

log∗ (F(k))
log∗

(
F(k + 1)

F(k)

)n−1

×
(

log∗
(

F(k + 1)

F(k)

)
+ �−m

(
2F(k)−m/n − F(k + 1)−m/n

) hk−1∏
h=0

Rm
h

)
k∏

h=hk

Rmn
h . (4·16)
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We are now left to count all the cubes in Ik+1 lying in J and intersecting the hyper-
plane Hk+1. From the set of cubes I ∈ Ik+1 such that I ∩ J ∩ Hk+1 �= ∅, we select a maximal
subset S of pairwise disjoint cubes (with disjoint boundary). For each of these cubes I we
pick a point lying in I ∩ Hk+1. The points that we selected are, by construction, at least
edge(I ) away from each other in the supremum norm. We then take (mn − 1)-dimensional
cubes in Hk+1 of edge edge(I ) around each such point. By construction, these cubes are
disjoint. Comparing the volume of the union of the cubes with the volume of the set
J ∩ Hk+1 inflated in the Euclidean distance by the quantity diam(I ) in Hk+1, i.e., the set
{X ∈ Hk+1 : dist2(X, J ∩ Hk+1)≤ diam(I )}, we find that

#S · edge(I )mn−1 �m,n (diam(J ∩ Hk+1)+ diam(I ))mn−1 �m,n edge(J )mn−1,

whence

# {I ∈ Ik+1 : I ∩ J ∩ Hk+1 �= ∅} �m,n #S �m,n

(
edge(J )

edge(I )

)mn−1

=
k∏

h=hk

Rmn−1
h . (4·17)

Combining (4·16) and (4·17), the proof of Lemma 3·1 is concluded.

5. Proof of Lemma 3·2
We show by induction on k that

tk ≥ Rmn
k

(
1 − 1

max{2, k}
)
> 0 (5·1)

for all k ≥ 0. By Proposition 2·1, this is enough to prove the claim. If k = 0 we have that

t0 = Rmn
0 − r0 ≥ Rmn

0 − g0

2
Rmn

0 .

Thus, the base case is proved, given that g0 = 1/8. Now, let us assume that (5·1) holds for
all 0 ≤ h ≤ k. Then, we have that

tk+1 = Rmn
k+1 − rk+1∏k

i=hk+1
ti

≥ Rmn
k+1 − rk+1∏k

i=hk+1
Rmn

h

(
1 − max{2, i}−1

) . (5·2)

Moreover, for k ≥ 0 we have that

k∏
i=hk+1

(
1 − max{2, i}−1

)≥ max {2, hk+1} − 1

4 max{2, k} ≥ max{2, hk+1}
8 max{2, k} = gk+1.

Hence, by (5·2) and by the hypothesis, we deduce that

tk+1 ≥ Rmn
k+1 − g−1

k+1rk+1∏k
h=hk+1

Rmn
h

≥ Rmn
k+1

(
1 − 1

max{2, k + 1}
)
,

concluding the proof.
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6. Proof of Lemma 4·1
For a set A ⊂Rm×n we denote by Aδ the “inflation” of A by the quantity δ, i.e., the set

{X ∈Rm×n : dist∞(X,A )≤ δ}. We start by showing that

δmn#{tiles τ of the grid � : τ ∩ D ∩ C �= ∅} ≤ Vol(Dδ ∩ Cδ). (6·1)

This follows from the fact that for any tile τ of the grid � we have that

τ ∩ D ∩ C �= ∅ −−→ τ ⊂ Dδ ∩ Cδ. (6·2)

To see why (6·2) holds, it is enough to observe that for all points P ∈ τ ∩ C and all points
Q ∈ τ we have dist∞(P, Q)≤ δ. Hence, τ ⊂ Cδ. The same is true for D , whence (6·2).

To conclude the proof, we need to estimate the volume of the set Dδ ∩ Cδ. By definition,
if a point X lies in the set Cδ, there exists some point X ′ ∈ C such that dist∞(X, X ′)≤ δ.
Hence, we have that

m∏
i=1

|Xi q + γ ′
i | ≤

m∏
i=1

(|X ′
i q + γ ′

i | + n|q|∞δ
)

≤
m∏

i=1

|X ′
i q + γ ′

i | +
∑

I�{1,...,m}

(∏
i∈I

|X ′
i q + γ ′

i |
)
(n|q|∞δ)m−|I | ≤ ε+ (T + n|q|∞δ)m − T m .

(6·3)

Now, let μ be the centre of the cube D . From (6·3), we deduce that

Dδ ∩ Cδ ⊂⎧⎪⎪⎨
⎪⎪⎩X ∈Rm×n :

⎧⎪⎪⎨
⎪⎪⎩
∏m

i=1 |Xi q + γ ′
i | ≤ ε+ (T + n|q|∞δ)m − T m

|Xi q + γ ′
i | ≤ T + n|q|∞δ i = 1, . . . ,m

|Xi j −μi j | ≤ edge(D)/2 + δ i = 1, . . . ,m, j = 1, . . . , n

⎫⎪⎪⎬
⎪⎪⎭.

(6·4)

Without loss of generality, we can assume that |q|∞ = |qn|. We consider the linear
transformation ξ :Rm×n →Rm×n defined by

ξ(X)i j =
⎧⎨
⎩

Xi j if j �= n

Xi q if j = n
.

Under the action of ξ , the right-hand side of (6·4) is sent into a subset of the set⎧⎪⎪⎪⎨
⎪⎪⎪⎩

X ∈Rm×n :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∏m
i=1 |Xin + γ ′

i | ≤ ε+ (T + n|q|∞δ)m − T m

|Xin + γ ′
i | ≤ T + n|q|∞δ i = 1, . . . ,m

|Xi j −μi j | ≤ edge(D)/2 + δ i = 1, . . . ,m j = 1, . . . , n − 1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
.

(6·5)
Since the determinant of ξ is |qn|m = |q|m∞ �= 0, to obtain an estimate of the quantity
Vol(Dδ ∩ Cδ), it is enough to estimate the volume of the set in (6·5) and to divide it by
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the absolute value of the determinant of ξ . A simple integration shows that the volume of
this set is bounded above by

22m−1(ε+ (T + n|q|∞δ)m − T m)log∗
(

(T + n|q|∞δ)m
ε+ (T + n|q|∞δ)m − T m

)m−1

(edge(D)+ 2δ)m(n−1).

Hence, Vol(Dδ ∩ Cδ) is bounded above by this quantity divided by the absolute value of
the determinant of ξ , that is |qn|m = |q|m∞.
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