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Abstract

We present a method for verifying the correctness of imperative programs which is based on

the automated transformation of their specifications. Given a program prog, we consider a

partial correctness specification of the form {ϕ} prog {ψ}, where the assertions ϕ and ψ are

predicates defined by a set Spec of possibly recursive Horn clauses with linear arithmetic (LA)

constraints in their premise (also called constrained Horn clauses). The verification method

consists in constructing a set PC of constrained Horn clauses whose satisfiability implies

that {ϕ} prog {ψ} is valid. We highlight some limitations of state-of-the-art constrained Horn

clause solving methods, here called LA-solving methods, which prove the satisfiability of the

clauses by looking for linear arithmetic interpretations of the predicates. In particular, we

prove that there exist some specifications that cannot be proved valid by any of those

LA-solving methods. These specifications require the proof of satisfiability of a set PC of

constrained Horn clauses that contain nonlinear clauses (that is, clauses with more than one

atom in their premise). Then, we present a transformation, called linearization, that converts

PC into a set of linear clauses (that is, clauses with at most one atom in their premise). We

show that several specifications that could not be proved valid by LA-solving methods, can be

proved valid after linearization. We also present a strategy for performing linearization in an

automatic way and we report on some experimental results obtained by using a preliminary

implementation of our method.

KEYWORDS: Program verification, Partial correctness specifications, Horn clauses, Con-

straint Logic Programming, Program transformation.

1 Introduction

One of the most established methodologies for specifying and proving the correctness

of imperative programs is based on the Floyd-Hoare axiomatic approach (see (Hoare
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1969), and also (Apt et al. 2009) for a recent presentation dealing with both sequential

and concurrent programs). By following this approach, the partial correctness of a

program prog is formalized by a triple {ϕ} prog {ψ}, also called partial correctness

specification, where the precondition ϕ and the postcondition ψ are assertions in first

order logic, meaning that if the input values of prog satisfy ϕ and program execution

terminates, then the output values satisfy ψ.

It is well-known that the problem of checking partial correctness of programs

with respect to given preconditions and postconditions is undecidable. In particular,

the undecidability of partial correctness is due to the fact that in order to prove

in Hoare logic the validity of a triple {ϕ} prog {ψ}, one has to look for suitable

auxiliary assertions, the so-called invariants, in an infinite space of formulas, and

also to cope with the undecidability of logical consequence.

Thus, the best way of addressing the problem of the automatic verification of

programs is to design incomplete methods, that is, methods based on restrictions of

first order logic, which work well in the practical cases of interest. To achieve this

goal, some methods proposed in the literature in recent years use linear arithmetic

constraints as the assertion language and constrained Horn clauses as the formalism

to express and reason about program correctness (Bjørner et al. 2012; De Angelis

et al. 2014a; Grebenshchikov et al. 2012; Jaffar et al. 2012; Peralta et al. 1998;

Podelski and Rybalchenko 2007; Rümmer et al. 2013).

Constrained Horn clauses are clauses with at most one atom in their conclusion

and a conjunction of atoms and constraints over a given domain in their premise.

In this paper we will only consider constrained Horn clauses with linear arithmetic

constraints. The use of this formalism has the advantage that logical consequence

for linear arithmetic constraints is decidable and, moreover, reasoning within

constrained Horn clauses is supported by very effective automated tools, such as

Satisfiability Modulo Theories (SMT) solvers (de Moura and Bjørner 2008; Cimatti

et al. 2013; Rümmer et al. 2013) and constraint logic programming (CLP) inference

systems (Jaffar and Maher 1994). However, current approaches to correctness

proofs based on constrained Horn clauses have the disadvantage that they only

consider specifications whose preconditions and postconditions are linear arithmetic

constraints.

In this paper we overcome this limitation and propose an approach to proving

general specifications of the form {ϕ} prog {ψ}, where ϕ and ψ are predicates

defined by a set of possibly recursive constrained Horn clauses (not simply linear

arithmetic constraints), and prog is a program written in a C-like imperative

language.

First, we indicate how to construct a set PC of constrained Horn clauses (PC

stands for partial correctness), starting from: (i) the assertions ϕ and ψ, (ii) the

program prog, and (iii) the definition of the operational semantics of the language

in which prog is written, such that, if PC is satisfiable, then the partial correctness

specification {ϕ} prog {ψ} is valid.

Then, we formally show that there are sets PC of constrained Horn clauses

encoding partial correctness specifications, whose satisfiability cannot be proved

by current methods, here collectively called LA-solving methods (LA stands for

https://doi.org/10.1017/S1471068415000289 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068415000289


Proving correctness of imperative programs 637

linear arithmetic). This limitation is due to the fact that LA-solving methods

try to prove satisfiability by interpreting the predicates as linear arithmetic

constraints.

For these problematic specifications, the set PC of constrained Horn clauses

contains nonlinear clauses, that is, clauses with more than one atom in their

premise.

Next, we present a transformation, which we call linearization, that converts the

set PC into a set of linear clauses, that is, clauses with at most one atom in their

premise. We show that linearization preserves satisfiability and also increases the

power of LA-solving, in the sense that several specifications that could not be

proved valid by LA-solving methods, can be proved valid after linearization. Thus,

linearization followed by LA-solving is strictly more powerful than LA-solving

alone.

The paper is organized as follows. In Section 2 we show how a class of

partial correctness specifications can be translated into constrained Horn clauses.

In Section 3 we prove that LA-solving methods are inherently incomplete for

proving the satisfiability of constrained Horn clauses. In Section 4 we present a

strategy for automatically performing the linearization transformation, we prove

that it preserves LA-solvability, and (in some cases) it is able to transform con-

strained Horn clauses that are not LA-solvable into constrained Horn clauses

that are LA-solvable. Finally, in Section 5 we report on some preliminary ex-

perimental results obtained by using a proof-of-concept implementation of the

method.

2 Translating partial correctness into constrained Horn clauses

We consider a C-like imperative programming language with integer variables,

assignments, conditionals, while loops, and goto’s. An imperative program is a

sequence of labeled commands (or commands, for short), and in each program there

is a unique halt command that, when executed, causes program termination.

The semantics of our language is defined by a transition relation, denoted

=⇒, between configurations. Each configuration is a pair 〈〈� : c, δ〉〉 of a labeled

command � : c and an environment δ. An environment δ is a function that maps

every integer variable identifier x to its value v in the integers �. The definition

of the relation =⇒ is similar to that of the ‘small step’ operational semantics

presented in (Reynolds 1998), and is omitted. Given a program prog, we denote by

�0 :c0 its first labeled command.

We assume that all program executions are deterministic in the sense that, for

every environment δ0, there exists a unique, maximal (possibly infinite) sequence

of configurations, called computation sequence, of the form: 〈〈�0 : c0, δ0〉〉 =⇒
〈〈�1 :c1, δ1〉〉 =⇒ · · ·. We also assume that every finite computation sequence ends

in the configuration 〈〈�h : halt, δn〉〉, for some environment δn . We say that a

program prog terminates for δ0 iff the computation sequence starting from the initial

configuration 〈〈�0 :c0, δ0〉〉 is finite.
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2.1 Specifying program correctness

First we need the following notions about constraints, constraint logic programming,

and constrained Horn clauses. For related notions with which the reader is not

familiar, he may refer to (Jaffar and Maher 1994; Lloyd 1987).

A constraint is a linear arithmetic equality (=) or inequality (>) over the integers �,

or a conjunction or a disjunction of constraints. For example, 2 ·X � 3 ·Y − 4 is a

constraint. We feel free to say ‘linear arithmetic constraint’, instead of ‘constraint’.

We denote by CLA the set of all constraints. An atom is an atomic formula of the

form p(t1, . . . , tm ), where p is a predicate symbol not in {=, >} and t1, . . . , tm are

terms. Let Atom be the set of all atoms. A definite clause is an implication of the

form A← c,G , where in the conclusion (or head ) A is an atom, and in the premise

(or body) c is a constraint, and G is a (possibly empty) conjunction of atoms.

A constrained goal (or simply, a goal ) is an implication of the form false ← c,G .

A constrained Horn clause (CHC) (or simply, a clause) is either a definite clause or a

constrained goal. A constraint logic program (or simply, a CLP program) is a set of

definite clauses. A clause over the integers is a clause that has no function symbols

except for integer constants, addition, and multiplication by integer constants.

The semantics of a constraint c is defined in terms of the usual interpretation,

denoted by LA, over the integers �. We write LA |= c to denote that c is true in LA.

Given a set S of constrained Horn clauses, an LA-interpretation is an interpretation

for the language of S that agrees with LA on the language of the constraints. An

LA-model of S is an LA-interpretation that makes all clauses of S true. A set of

constrained Horn clauses is satisfiable if it has an LA-model. A CLP program P is

always satisfiable and has a least LA-model, denoted M (P ). We have that a set S of

constrained Horn clauses is satisfiable iff S =P∪G , where P is a CLP program, G

is a set of goals, and M (P ) |= G . Given a first order formula ϕ, we denote by ∃(ϕ)

its existential closure and by ∀(ϕ) its universal closure.

Throughout the paper we will consider partial correctness specifications which

are particular triples of the form {ϕ} prog {ψ} defined as follows.

Definition 1 (Functional Horn Specification)

A partial correctness triple {ϕ} prog {ψ} is said to be a functional Horn specification

if the following assumptions hold, where the predicates pre and f are assumed to be

defined by a CLP program Spec:

(1) ϕ is the formula: z1 = p1 ∧ . . . ∧ zs = ps ∧ pre(p1, . . . , ps ), where z1, . . . , zs are the

variables occurring in prog, and p1, . . . , ps are variables (distinct from the zi ’s),

called parameters (informally, pre determines the initial values of the zi ’s);

(2) ψ is the atom f (p1, . . . , ps , zk ), where zk is a variable in {z1, . . . , zs} (informally, zk

is the variable whose final value is the result of the computation of prog);

(3) f is a relation which is total on pre and functional, in the sense that the following

two properties hold (informally, f is the function computed by prog):

(3.1) M (Spec) |= ∀p1, . . . , ps . pre(p1, . . . , ps )→ ∃y . f (p1, . . . , ps , y)

(3.2) M (Spec) |= ∀p1, . . . , ps , y1, y2. f (p1, . . . , ps , y1) ∧ f (p1, . . . , ps , y2)→y1 =y2.

We say that a functional Horn specification {ϕ} prog {ψ} is valid , or prog is partially

correct with respect to ϕ and ψ, iff for all environments δ0 and δn ,
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if M (Spec) |= pre(δ0(z1), . . . , δ0(zs )) holds (in words, δ0 satisfies pre) and 〈〈�0 : c0, δ0〉〉
=⇒∗ 〈〈�h :halt, δn〉〉 holds (in words, prog terminates for δ0) holds, then M (Spec) |=
f (δ0(z1), . . . , δ0(zs ), δn (zk )) holds (in words, δn satisfies the postcondition).

The relation rprog computed by prog according to the operational semantics of

the imperative language, is defined by the CLP program OpSem made out of: (i) the

following clause R (where, as usual, variables are denoted by upper-case letters):

R. rprog(P1, . . . ,Ps ,Zk )← initCf (C0,P1, . . . ,Ps ), reach(C0,Ch ), finalCf (Ch ,Zk )

where:

(i.1) initCf (C0,P1,. . . ,Ps ) represents the initial configuration C0, where the variables

z1,. . .,zs are bound to the values P1,. . .,Ps , respectively, and pre(P1,. . .,Ps ) holds,

(i.2) reach(C0,Ch ) represents the transitive closure =⇒∗ of the transition relation =⇒,

which in turn is represented by a predicate tr(C1,C2) that encodes the operational

semantics, that is, the interpreter of our imperative language, by relating a source

configuration C1 to a target configuration C2,

(i.3) finalCf (Ch ,Zk ) represents the final configuration Ch , where the variable zk is

bound to the value Zk ,

and (ii) the clauses for the predicates pre(P1, . . . ,Ps ) and tr(C1,C2). The clauses for

the predicate tr(C1,C2) are defined as indicated in (De Angelis et al. 2014a), and are

omitted for reasons of space.

Example 1 (Fibonacci Numbers)
Let us consider the following program fibonacci, that returns as value of u the n-th

Fibonacci number, for any n (� 0), having initialized u to 1 and v to 0.[
0: while (n>0) { t=u; u=u+v; v=t; n=n-1 } fibonacci

h: halt

The following is a functional Horn specification of the partial correctness of the

program fibonacci :

{n=N, N>=0, u=1, v=0, t=0} fibonacci {fib(N,u)} (‡)
where N is a parameter and fib is defined by the following CLP program:⎡
⎢⎢⎢⎣

S1. fib(0,1). Specfibonacci
S2. fib(1,1).

S3. fib(N3,F3) :- N1>=0, N2=N1+1, N3=N2+1, F3=F1+F2, fib(N1,F1), fib(N2,F2).

For reasons of conciseness, in the above specification (‡) we have slightly deviated

from Definition 1. In particular, we did not introduce the predicate symbol pre, and

in the precondition and postcondition we did not introduce the parameters which

have constant values.

The relation r fibonacci computed by the program fibonacci according to the

operational semantics, is defined by the following CLP program:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

OpSemfibonacci
R1. r fibonacci(N,U) :- initCf(C0,N), reach(C0,Ch), finalCf(Ch,U).

R2. initCf(cf(LC,E),N) :- N>=0, U=1, V=0, T=0, firstCmd(LC),

env((n,N),E), env((u,U),E), env((v,V),E), env((t,T),E).

R3. finalCf(cf(LC,E),U) :- haltCmd(LC), env((u,U),E).

where: (i) firstCmd(LC) holds for the command with label 0 of the program fibo-

nacci ; (ii) env((x,X),E) holds iff in the environment E the variable x is bound to the

value of X; (iii) in the initial configuration C0 the environment E binds the variables
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n, u, v, t to the values N (>=0), 1, 0, and 0, respectively; and (iv) haltCmd(LC) holds

for the labeled command h: halt.

2.2 Encoding specifications into constrained Horn clauses

In this section we present the encoding of the validity problem of functional Horn

specifications into the satisfiability problem of CHC’s.

For reasons of simplicity we assume that in Spec no predicate depends on f

(possibly, except for f itself), that is, Spec can be partitioned into two sets of clauses,

call them Fdef and Aux , where Fdef is the set of clauses with head predicate f, and f

does not occur in Aux.

Theorem 2.1 (Partial Correctness)

Let Fpcorr be the set of goals derived from Fdef as follows : for each clause D ∈Fdef
of the form f (X1, . . . ,Xs ,Y )← B ,

(1) every occurrence of f in D (and, in particular, in B ) is replaced by rprog, thereby

deriving a clause E of the form: rprog(X1, . . . ,Xs ,Y )← B̃ ,

(2) clause E is replaced by the goal G: false ← Y �= Z , rprog(X1, . . . ,Xs ,Z ), B̃ ,

where Z is a new variable, and

(3) goal G is replaced by the following two goals:

G1. false← Y >Z , rprog(X1, . . . ,Xs ,Z ), B̃

G2. false← Y <Z , rprog(X1, . . . ,Xs ,Z ), B̃

Let PC be the set Fpcorr∪Aux ∪OpSem of CHC’s. We have that: if PC is satisfiable,

then {ϕ} prog {ψ} is valid.

The proof of this theorem and of the other facts presented in this paper can be

found in the online appendix. In our Fibonacci example (see Example 1) the set Fdef
of clauses is the entire set Specfibonacci and Aux=∅. According to Points (1)–(3) of

Theorem 2.1, from Specfibonacci we derive the following six goals:

G1. false :- F>1, r fibonacci(0,F).

G2. false :- F<1, r fibonacci(0,F).

G3. false :- F>1, r fibonacci(1,F).

G4. false :- F<1, r fibonacci(1,F).

G5. false :- N1>=0, N2=N1+1, N3=N2+1, F3>F1+F2,

r fibonacci(N1,F1), r fibonacci(N2,F2), r fibonacci(N3,F3).

G6. false :- N1>=0, N2=N1+1, N3=N2+1, F3<F1+F2,

r fibonacci(N1,F1), r fibonacci(N2,F2), r fibonacci(N3,F3).

Thus, in order to prove the validity of the specification (‡) above, since Aux= ∅, it

is enough to show that the set PCfibonacci = {G1,. . . , G6} ∪ OpSemfibonacci of CHC’s

is satisfiable.

3 A limitation of LA-solving methods

Now we show that there are sets of CHC’s that encode partial correctness specifica-

tions whose satisfiability cannot be proved by LA-solving methods.

A symbolic interpretation is a function Σ : Atom −→ CLA such that, for every

A∈Atom and substitution ϑ, Σ(Aϑ) = Σ(A)ϑ. Given a set S of CHC’s, a symbolic

interpretation Σ is an LA-solution of S iff, for every clause A0 ← c,A1, . . . ,An in S ,

we have that LA |= (c ∧ Σ(A1) ∧ . . . ∧ Σ(An ))→ Σ(A0).
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Fig. 1. The relation r fibonacci(N,F) and the convex constraint c(N,F).

We say that a set S of CHC’s is LA-solvable if there exists an LA-solution of S .

Clearly, if a set of CHC’s is LA-solvable, then it is satisfiable. The converse does not

hold as we now show.

Theorem 3.1

There are sets of constrained Horn clauses which are satisfiable and not LA-solvable.

Proof. Let PCfibonacci be the set of clauses that encode the validity of the Fibonacci

specification (‡). PCfibonacci is satisfiable, because r fibonacci(N, F) holds iff F is

the N-th Fibonacci number, and hence the bodies of G1, . . . , G6 are false. (This fact

will also be proved by the automatic method presented in Section 4.)

Now we prove, by contradiction, that PCfibonacci is not LA-solvable. Suppose

that there exists an LA-solution Σ of PCfibonacci. Let Σ(r fibonacci(N, F)) be a

constraint c(N, F). To keep our proof simple, we assume that c(N, F) is defined by a

conjunction of linear arithmetic inequalities (that is, c(N, F) is a convex constraint),

but our argument can easily be generalized to any constraint in CLA. By the definition

of LA-solution, we have that:
(P1) LA �|= ∃(N1�0, N2=N1+1, N3=N2+1, F3>F1+F2, c(N1, F1), c(N2, F2), c(N3, F3))

(P2) M (OpSemfibonacci) |= ∀ (r fibonacci(N, F)→ c(N, F))

Property (P1) follows from the fact that, in particular, an LA-solution satisfies

goal G5. Property (P2) follows from the fact that an LA-solution satisfies all clauses

of OpSemfibonacci and M (OpSemfibonacci) defines the least r fibonacci relation

that satisfies those clauses.

From Property (P2) and from the fact that r fibonacci(N, F) holds iff F is the

N-th Fibonacci number (and hence F is an exponential function of N), it follows that

c(N,F) is a conjunction of the form c1(N, F), . . . , ck(N, F), where, for i = 1, . . . , k, with

k�0, ci(N, F) is either (A) N>ai, for some integer ai, or (B) F>ai ·N+bi, for some

integers ai and bi. (No constraints of the form F<ai ·N+bi are possible, as shown

in Figure 1.)
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By replacing c(N1,F1), c(N2,F2), and c(N3,F3) by the corresponding conjunctions

of atomic constraints of the forms (A) and (B), and eliminating the occurrences of

F1, F2, N2, and N3, from (P1) we get:

(P3) LA �|=∃(N1�0, F3>p1, . . . , F3>pn)

where, for i = 1, . . . , n, pi is a linear polynomial in the variable N1. Then, the

constraint N1�0, F3>p1, . . . , F3>pn is satisfiable and Property (P3) is false. Thus,

the assumption that PCfibonacci is LA-solvable is false, and we get the thesis.

4 Increasing the power of LA-solving methods by linearization

A weakness of the LA-solving methods is that they look for LA-solutions constructed

from single atoms, and by doing so they may fail to discover that a goal is satisfiable

because a conjunction of atoms in its premise is unsatisfiable, in spite of the fact

that each of its conjoint atoms is satisfiable. For instance, in our Fibonacci example

the premise of goal G5 contains three atoms with predicate r fibonacci and our

proof of Section 3 shows that, even if the premise of G5 is unsatisfiable, there is no

constraint which is an LA-solution of the clauses defining r fibonacci that, when

substituted for each r fibonacci atom, makes that premise false. Thus, the notion

of LA-solution shows some weakness when dealing with nonlinear clauses, that is,

clauses whose premise contains more than one atom (besides constraints).

In this section we present an automatic transformation of constrained Horn

clauses that has the objective of increasing the power of LA-solving methods.

The core of the transformation, called linearization, takes a set of possibly

nonlinear constrained Horn clauses and transforms it into a set of linear clauses,

that is, clauses whose premise contains at most one atom (besides constraints). After

performing linearization, the LA-solving methods are able to exploit the interactions

among several atoms, instead of dealing with each atom individually. In particular,

an LA-solution of the linearized set of clauses will map a conjunction of atoms to a

constraint. We will show that linearization preserves the existence of LA-solutions

and, in some cases (including our Fibonacci example), transforms a set of clauses

which is not LA-solvable into a set of clauses that is LA-solvable.

Our transformation technique is made out of the following two steps:

(1) RI: Removal of the interpreter, and (2) LIN: Linearization.

These steps are performed by using the transformation rules for CLP programs

presented in (Etalle and Gabbrielli 1996), that is: unfolding (which consists in

applying a resolution step and a constraint satisfiability test), definition (which

introduces a new predicate defined in terms of old predicates), and folding (which

redefines old predicates in terms of new predicates introduced by the definition rule).

4.1 RI: Removal of the interpreter

This step is a variant of the removal of the interpreter transformation presented

in (De Angelis et al. 2014a). In this step a specialized definition for rprog is

derived by transforming the CLP program OpSem, thereby getting a new CLP

program OpSemRI where there are no occurrences of the predicates initCf, finalCf,
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reach, and tr, which as already mentioned encodes the interpreter of the imperative

language in which prog is written. (See online appendix for more details.)

By a simple extension of the results presented in (De Angelis et al. 2014a), it

can be shown that the RI transformation always terminates, preserves satisfiability,

and transforms OpSem into a set of linear clauses over the integers. It can also be

shown that the removal of the interpreter preserves LA-solvability. Thus, we have

the following result.

Theorem 4.1

Let OpSem be a CLP program constructed starting from any given imperative

program prog. Then the RI transformation terminates and derives a CLP program

OpSemRI such that:

(1) OpSemRI is a set of linear clauses over the integers;

(2) OpSem ∪ Aux ∪ Fpcorr is satisfiable iff OpSemRI ∪ Aux ∪ Fpcorr is satisfiable;

(3) OpSem ∪Aux ∪Fpcorr is LA-solvable iff OpSemRI ∪Aux ∪Fpcorr is LA-solvable.

In the Fibonacci example, the input of the RI transformation is OpSemfibonacci.

The output of the RI transformation consists of the following three clauses:

E1. r fibonacci(N,F):- N>=0, U=1, V=0, T=0, r(N,U,V,T,N1,F,V1,T1).

E2. r(N,U,V,T,N,U,V,T):- N=<0.

E3. r(N,U,V,T,N2,U2,V2,T2):- N>=1, N1=N-1, U1=U+V, V1=U, T1=U,

r(N1,U1,V1,T1,N2,U2,V2,T2).

where r is a new predicate symbol introduced by the RI transformation.

As stated by Theorem 4.1, OpSemRI is a set of clauses over the integers. Since the

clauses of the specification Spec define computable functions from �s to �, without

loss of generality we may assume that also the clauses in Aux ∪ Fpcorr are over the

integers (Sebelik and Stepánek 1982). From now on we will only deal with clauses

over the integers, and we will feel free to omit the qualification ‘over the integers’.

4.2 LIN: Linearization

The linearization transformation takes as input the set OpSemRI ∪ Aux ∪ Fpcorr of

constrained Horn clauses and derives a new, equisatisfiable set TransfCls of linear

constrained Horn clauses.

In order to perform linearization, we assume that Aux is a set of linear clauses.

This assumption, which is not restrictive because any computable function on the

integers can be encoded by linear clauses (Sebelik and Stepánek 1982), simplifies the

proof of termination of the transformation.

The linearization transformation is described in Figure 2. Its input is constructed

by partitioning OpSemRI ∪ Aux ∪ Fpcorr into a set LCls of linear clauses and a set

NLGls of nonlinear goals. LCls consists of Aux, OpSemRI (which, by Theorem 4.1,

is a set of linear clauses), and the subset of linear goals in Fpcorr. NLGls consists of

the set of nonlinear goals in Fpcorr.

When applying linearization we use the following transformation rule.

Unfolding Rule. Let Cls be a set of constrained Horn clauses. Given a clause C of

the form H ← c,Ls,A,Rs, let us consider the set {Ki ← ci ,Bi | i = 1, . . . ,m} made
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Input: (i) A set LCls of linear clauses, and (ii) a set Gls of nonlinear goals.

Output: A set TransfCls of linear clauses.

Initialization: NLCls := Gls; Defs := ∅; TransfCls := LCls;

while there is a clause C in NLCls do
Unfolding: From clause C derive a set U(C ) of clauses by unfolding C with respect to

every atom occurring in its body using LCls;

Rewrite each clause in U(C ) to a clause of the form H ← c, A1, . . . ,Ak , such that, for

i = 1, . . . , k , Ai is of the form p(X1, . . . ,Xm );

Definition& Folding:

F (C ) := U (C );

for every clause E ∈ F (C ) of the form H ← c, A1, . . . ,Ak do

if in Defs there is no clause of the form newp(X1, . . . ,Xt ) ← A1, . . . ,Ak , where

{X1, . . . ,Xt} = vars(A1, . . . ,Ak ) ∩ vars(H , c)

then add newp(X1, . . . ,Xt )← A1, . . . ,Ak to Defs and to NLCls;

F (C ) := (F (C )− {E}) ∪ {H ← c, newp(X1, . . . ,Xt )}
end-for

NLCls := NLCls− {C }; TransfCls := TransfCls ∪ F(C );

end-while

Fig. 2. LIN: The linearization transformation.

out of the (renamed apart) clauses of Cls such that, for i = 1, . . . ,m , A is unifiable

with Ki via the most general unifier ϑi and (c, ci ) ϑi is satisfiable. By unfolding C

with respect to A using Cls, we derive the set {(H← c, ci ,Ls,Bi ,Rs) ϑi | i =1, . . . ,m}
of clauses.

It is easy to see that, since LCls is a set of linear clauses, only a finite

number of new predicates can be introduced by any sequence of applications

of Definition &Folding, and hence the linearization transformation terminates.

Moreover, the use of the unfolding, definition, and folding rules according to the

conditions indicated in (Etalle and Gabbrielli 1996), guarantees the equivalence with

respect to the least LA-model, and hence the equisatisfiability of LCls ∪ Gls and

TransfCls. Thus, we have the following result.

Theorem 4.2 (Termination and Correctness of Linearization)

Let LCls be a set of linear clauses and Gls be a set of nonlinear goals. The

linearization transformation terminates for the input set of clauses LCls ∪ Gls, and

the output TransfCls is a set of linear clauses. Moreover, LCls ∪Gls is satisfiable iff

TransfCls is satisfiable.

Let us consider again the Fibonacci example. We apply the linearization transforma-

tion to the set {E1,E2,E3} of linear clauses, and to the nonlinear goal G5. For brevity,

we omit to consider the cases where the goals G1, . . . ,G4,G6 are taken as input to the

linearization transformation.

After Initialization we have that NLCls = {G5}, Defs = ∅, and TransfCls =

{E1,E2,E3}. By applying the Unfolding step to G5 we derive:
C1. false :- N1>= 0, N2=N1+1, N3=N2+1, F3>F1+F2, U=1, V=0,

r(N1,U,V,V,X1,F1,Y1,Z1), r(N2,U,V,V,X2,F2,Y2,Z2),

r(N3,U,V,V,X3,F3,Y3,Z3).

Next, by Definition & Folding, the following clause is added to NLCls and Defs:
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C2. new1(N1,U,V,F1,N2,F2,N3,F3) :- r(N1,U,V,V,X1,F1,Y1,Z1),

r(N2,U,V,V,X2,F2,Y2,Z2), r(N3,U,V,V,X3,F3,Y3,Z3).

and clause C1 is folded using C2, thereby deriving the following linear clause:
C3. false :- N1>= 0, N2=N1+1, N3=N2+1, F3>F1+F2, U=1, V=0,

new1(N3,U,V,F3,N2,F2,N1,F1).

At the end of the first execution of the body of the while-do loop we have:

NLCls = {C2}, Defs = {C2}, and TransfCls = {E1,E2,E3,C3}. Now, the linearization

transformation continues by processing clause C2. During its execution, linearization

introduces two new predicates defined by the following two clauses:
C4. new2(N,U,V,F) :- r(N,U,V,V,X,F,Y,Z).

C5. new3(N2,U,V,F2,N1,F1) :- r(N1,U,V,V,X1,F1,Y1,Z1), r(N2,U,V,V,X2,F2,Y2,Z2).

The transformation terminates when all clauses derived by unfolding can be

folded using clauses in Defs, without introducing new predicates. The output of the

transformation is a set of linear clauses (listed in the online appendix) which is

LA-solvable, as reported on line 4 of Table 1 in the next section.

In general, there is no guarantee that we can automatically transform any given

satisfiable set of clauses into an LA-solvable one. In fact, such a transformation can-

not be algorithmic because, for constrained Horn clauses, the problem of satisfiability

is not semidecidable, while the problem of LA-solvability is semidecidable (indeed,

the set of symbolic interpretations is recursively enumerable and the problem of

checking whether or not a symbolic interpretation is an LA-solution is decidable).

However, the linearization transformation cannot decrease LA-solvability, as the

following theorem shows.

Theorem 4.3 (Monotonicity with respect to LA-solvability)

Let TransfCls be obtained by applying the linearization transformation to LCls∪Gls.

If LCls ∪ Gls is LA-solvable, then TransfCls is LA-solvable.

Since there are cases where LCls ∪ Gls is not LA-solvable, while TransfCls is

LA-solvable (see the Fibonacci example above and some more examples in the

following section), as a consequence of Theorem 4.3 we get that the combination of

LA-solving and linearization is strictly more powerful than LA-solving alone.

5 Experimental results

We have implemented our verification method by using the VeriMAP system (De An-

gelis et al. 2014b). The implemented tool consists of four modules, which we

have depicted in Figure 3. The first module, given the imperative program prog

and its specification Spec, generates the set PC of constrained Horn clauses (see

Theorem 2.1). PC is then given as input to the module RI that removes the

interpreter. Then, the module LIN performs the linearization transformation. Finally,

the resulting linear clauses are passed to the LA-solver, consisting of VeriMAP

together with an SMT solver, which is either Z3 (de Moura and Bjørner 2008) or

MathSAT (Cimatti et al. 2013) or Eldarica (Rümmer et al. 2013).

We performed an experimental evaluation on a set of programs taken from the

literature, including some programs from (Felsing et al. 2014) obtained by applying
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Fig. 3. Our software model checker that uses the linearization module LIN.

strength reduction, a real-world optimization technique1. In Table 1 we report the

results of our experiments2.

One can see that linearization takes very little time compared to the total

verification time. Moreover, linearization is necessary for the verification of 14

out of 19 programs (including fibonacci ), which otherwise cannot be proved correct

with respect to their specifications. In the two columns under LA-solving-1 we

report the results obtained by giving as input to the Z3 and Eldarica solvers

the set PC generated by the RI module. Under LA-solving-1 we do not have a

column for MathSAT, because the version of this solver used in our experiments

(namely, MSATIC3) cannot deal with nonlinear CHC’s, and therefore it cannot be

applied before linearization. In the last three columns of Table 1 we report the

results obtained by giving as input to VeriMAP (and the solvers Z3, MathSAT, and

Eldarica, respectively) the clauses obtained after linearization.

Unsurprisingly, for the verification problems where linearization is not necessary,

our technique may deteriorate the performance, although in most of these problems

the solving time does not increase much.

6 Conclusions and related work

We have presented a method for proving partial correctness specifications of

programs, given as Hoare triples of the form {ϕ} prog {ψ}, where the assertions ϕ

and ψ are predicates defined by a set of possibly recursive, definite CLP clauses.

Our verification method is based on: Step (1) a translation of a given specification

into a set of constrained Horn clauses (that is, a CLP program together with one

or more goals), Step (2) an unfold/fold transformation strategy, called linearization,

which derives linear clauses (that is, clauses with at most one atom in their body),

and Step (3) an LA-solver that attempts to prove the satisfiability of constrained

Horn clauses by interpreting predicates as linear arithmetic constraints.

We have formally proved that the method which uses linearization is strictly

more powerful than the method that applies Step (3) immediately after Step (1). We

have also developed a proof-of-concept implementation of our method by using the

VeriMAP verification system (De Angelis et al. 2014b) together with various state-

of-the-art solvers (namely, Z3 (de Moura and Bjørner 2008), MathSAT (Cimatti

et al. 2013), and Eldarica (Rümmer et al. 2013)), and we have shown that our

method works on several verification problems. Although these problems refer to

1 https://www.facebook.com/notes/facebook-engineering/three-optimization-tips-for-c/
10151361643253920

2 The VeriMAP tool, source code and specifications for the programs are available at:
http://map.uniroma2.it/linearization
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Table 1. Columns RI and LIN show the times (in seconds) taken for removal of the interpreter

and linearization. The two columns under LA-solving-1 show the times taken by Z3 and Eldarica

for solving the problems after RI alone. The three columns under LA-solving-2 show the times

taken by VeriMAP together with Z3, MathSAT, and Eldarica, after RI and LIN. The timeout

TO occurs after 120 seconds.

Program RI
LA-solving-1

LIN
LA-solving-2: VeriMAP &

Z3 Eldarica Z3 MathSAT Eldarica

1. binary division 0.02 4.16 TO 0.04 17.36 17.87 20.98

2. fast multiplication 2 0.02 TO 3.71 0.01 1.07 1.97 7.59

3. fast multiplication 3 0.03 TO 4.56 0.02 2.59 2.54 9.31

4. fibonacci 0.01 TO TO 0.01 2.00 47.74 6.97

5. Dijkstra fusc 0.01 1.02 3.80 0.05 2.14 2.80 10.26

6. greatest common divisor 0.01 TO TO 0.01 0.89 1.78 0.04

7. integer division 0.01 TO TO 0.01 0.88 1.90 2.86

8. 91-function 0.01 1.27 TO 0.06 117.97 14.24 TO

9. integer multiplication 0.02 TO TO 0.01 0.52 14.76 0.54

10. remainder 0.01 TO TO 0.01 0.87 1.70 3.16

11. sum first integers 0.01 TO TO 0.01 1.79 2.30 6.81

12. lucas 0.01 TO TO 0.01 2.04 8.39 9.46

13. padovan 0.01 TO TO 0.01 2.24 TO 11.62

14. perrin 0.01 TO TO 0.02 2.23 TO 11.89

15. hanoi 0.01 TO TO 0.01 1.81 2.07 6.59

16. digits10 0.01 TO TO 0.01 4.52 3.10 6.54

17. digits10-itmd 0.06 TO TO 0.04 TO 10.26 12.38

18. digits10-opt 0.08 TO TO 0.10 TO TO 15.80

19. digits10-opt100 0.01 TO TO 0.02 TO 58.99 8.98

quite simple specifications, some of them cannot be solved by using the above

mentioned solvers alone.

The use of transformation-based methods in the field of program verification

has recently gained popularity (see, for instance, (Albert et al. 2007; De Angelis

et al. 2014a; Fioravanti et al. 2013; Kafle and Gallagher 2015; Leuschel and

Massart 2000; Lisitsa and Nemytykh 2008; Peralta et al. 1998)). However, fully

automated methods based on various notions of partial deduction and CLP program

specialization cannot achieve the same effect as linearization. Indeed, linearization

requires the introduction of new predicates corresponding to conjunctions of old

predicates, whereas partial deduction and program specialization can only introduce

new predicates that correspond to instances of old predicates. In order to derive

linear clauses, one could apply conjunctive partial deduction (De Schreye et al. 1999),

which essentially is equivalent to unfold/fold transformation. However, to the best

of our knowledge, this application of conjunctive partial deduction to the field of

program verification has not been investigated so far.

The use of linear arithmetic constraints for program verification has been first

proposed in the field of abstract interpretation (Cousot and Cousot 1977), where these

constraints are used for approximating the set of states that are reachable during

program execution (Cousot and Halbwachs 1978). In the field of logic programming,
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abstract interpretation methods work similarly to LA-solving for constrained Horn

clauses, because they both look for interpretations of predicates as linear arithmetic

constraints that satisfy the program clauses (see, for instance, (Benoy and King

1997)). Thus, abstract interpretation methods suffer from the same theoretical

limitations we have pointed out in this paper for LA-solving methods.

One approach that has been followed for overcoming the limitations related

to the use of linear arithmetic constraints is to devise methods for generating

polynomial invariants and proving specifications with polynomial arithmetic con-

straints (Rodrı́guez-Carbonell and Kapur 2007a; Rodrı́guez-Carbonell and Kapur

2007b). This approach also requires the development of solvers for polynomial

constraints, which is a very complex task on its own, as in general the satisfiability

of these constraints on the integers is undecidable (Matijasevic 1970). In contrast,

the approach presented in this paper has the objective of transforming problems

which would require the proof of nonlinear arithmetic assertions into problems

which can be solved by using linear arithmetic constraints. We have shown some

examples (such as the fibonacci program) where we are able to prove specifications

whose post-condition is an exponential function.

An interesting issue for future research is to identify general criteria to answer the

following question: Given a classD of constraints and a classH of constrained Horn

clauses, does the satisfiability of a finite set of clauses inH imply its D-solvability?

Theorem 3.1 provides a negative answer to this question when D is the class of LA

constraints and H is the class of all constrained Horn clauses.

7 Acknowledgments

We thank the participants in the Workshop VPT ’15 on Verification and Program

Transformation, held in London on April 2015, for their comments on a preliminary

version of this paper. This work has been partially supported by the National Group

of Computing Science (GNCS-INDAM).

References
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