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Abstract
Successful prevention of cyberbullying depends on the adequate detection of harmful messages. Given
the impossibility of human moderation on the Social Web, intelligent systems are required to identify
clues of cyberbullying automatically. Much work on cyberbullying detection focuses on detecting abusive
language without analyzing the severity of the event nor the participants involved. Automatic analysis
of participant roles in cyberbullying traces enables targeted bullying prevention strategies. In this paper,
we aim to automatically detect different participant roles involved in textual cyberbullying traces, includ-
ing bullies, victims, and bystanders. We describe the construction of two cyberbullying corpora (a Dutch
and English corpus) that were both manually annotated with bullying types and participant roles and we
perform a series of multiclass classification experiments to determine the feasibility of text-based cyberbul-
lying participant role detection. The representative datasets present a data imbalance problem for whichwe
investigate feature filtering and data resampling as skew mitigation techniques. We investigate the perfor-
mance of feature-engineered single and ensemble classifier setups as well as transformer-based pretrained
language models (PLMs). Cross-validation experiments revealed promising results for the detection of
cyberbullying roles using PLM fine-tuning techniques, with the best classifier for English (RoBERTa) yield-
ing a macro-averaged F1-score of 55.84%, and the best one for Dutch (RobBERT) yielding an F1-score of
56.73%. Experiment replication data and source code are available at https://osf.io/nb2r3.

Keywords: Cyberbullying; Bullying participants; Text classification; Social media text

1. Introduction
Cyberbullying is a prevalent issue that comes with the rise of internet-based mass communica-
tion. Preventing and understanding cyberbullying requires automated detection of bullying and
analysis of bullying situations.

Web 2.0 has a substantial impact on communication and relationships in today’s society.
Adolescents spend a substantial amount of time online, and more specifically on social network-
ing sites (SNSs). Althoughmost of teenagers’ internet use is harmless, the freedom and anonymity
experienced online makes young people vulnerable with cyberbullying being one of the major
threats (Livingstone et al. 2014). Despitemultiple (national and international) anti-bullying initia-
tives that have been launched to increase children’s online safety (e.g., KiVa Salmivalli, Kärnä, and
Poskiparta 2011a, ClickSafe Childfocus 2018,Non au harcèlementMinistre de l’ducation nationale
2018), much undesirable and hurtful content remains online. Tokunaga (2010) analyzed a body
of quantitative research on cyberbullying and observed cybervictimization rates among teenagers
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between 20% and 40%. A study among 2000 Flemish secondary school students (age 12–18 years)
revealed that 11% of them had been bullied online at least once in the 6 months preceding the
survey (Van Cleemput et al. 2013). The 2014 large-scale EU Kids Online Report (EU Kids Online
2014) stated that 20% of 11–16-year-olds had been exposed to online hate messages that year,
and according to a recent report by the European Commission, European Schoolnet and EU Kids
Online cyberbullying remains one of the most prevalent risks as reported to helplines (O’Neill and
Dinh 2018). While there is increased awareness concerning cyberbullying and its consequences,
the large amount of online content generated each day makes manual monitoring practically
impossible. Therefore, SNSs have a need for automated detection of harmful content by means
of text and image mining techniques allowing administrators to remove content, block users, or
take legal action.

Bullying episodes are complex social interactions and their psychosocial dimensions have been
studied extensively in the social sciences by means of surveys (e.g., Kaltiala-Heino et al. 1999;
Nansel et al. 2001; Klein, Cornell, and Konold 2012). Time-consuming surveys in schools are the
typical method for data collection which usually result in small sample sizes and short textual
descriptions. Xu et al. (2012) note that natural language processing methods have the ability to
automatically analyze more data and therefore can more accurately capture the prevalence and
impact of the incidence. Moreover, analyzing the roles of participants in bullying enables preven-
tion strategies: DeSmet et al. (2012) discuss how identifying andmobilizing bystander participants
that defend the victim have a positive impact on bullying prevention. In short, much of previ-
ous work on automated cyberbullying detection can more accurately be called “verbal aggression
detection,” as the conceptualization of cyberbullying is generally limited to aggressive interac-
tions. These studies do not include cyberbullying traces that do not stem from anyone other than
the bully. Automated processing of participant roles goes beyond this limited conceptualization
and provides more granular insights in cyberbullying contexts, which are necessary for effective
prevention.

In this research, we approach cyberbullying detection by identifying different participant roles
in a cyberbullying event to distinguish between bullies, victims, and bystanders. Fine-grained
annotation guidelines (Van Hee et al. 2015c) were developed to enable the annotation of par-
ticipant roles in cyberbullying. While much of the related research focuses on detecting bully
“attacks” in cyberbullying, the present study is the first to classify participant roles based on a
representative real-world dataset that is manually annotated. Given the high skew of the dataset,
both at the level of cyberbullying instances and at the level of the roles, we can present satisfac-
tory results with the best classifier configuration yielding a macro-averaged F1-score of 55.84% for
English and 56.73% for Dutch.

In the remainder of this paper, we discuss related research on the conceptualization of cyberbul-
lying, the definition of participant roles, and detection approaches in Section 2. Section 3 presents
the corpus collection and annotation guidelines together with the results of an inter-annotator
agreement (IAA) study to demonstrate the validity of the guidelines. In Section 4, we present
the setup and optimization steps of the linear classification experiments. The pretrained language
models (PLMs) are described in Section 5. Section 6 presents a general overview of the classifica-
tion results obtained in the two experimental setups for both languages and we provide a results
discussion and comparison between the two corpora in Section 7. Section 8 recapitulates our main
findings and presents some prospects for future work.

2. Related research
As shown by scholars such as Cowie (2013) and Price and Dalgleish (2010), the negative effects
of cyberbullying include a lower self-esteem, worse academic achievement, feelings like sadness,
anger, fear, depression, and—in extreme cases—cyberbullying could lead to self-harm and suicidal
thoughts. As a response to these threats, automated cyberbullying detection has received increased
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interest resulting in several detection systems (Dinakar et al. 2012; Dadvar 2014; Van Hee et al.
2015b; Chen, Mckeever, and Delany 2017) and sociological studies investigating the desirability
of online monitoring tools (Tucker 2010; Van Royen, Poels, and Vandebosch 2016). In fact, social
media users, and specifically teenagers, highly value their privacy and autonomy on social media
platforms and underline that prioritiesmust be set related to the detection of harmful content (Van
Royen et al. 2016). This has important consequences for developers of automatic monitoring sys-
tems, as it means that such systems should enable to balance protection and autonomy and hence
should be optimized for precision so that cyberbullying is not flagged more than necessary. The
following subsections provide theoretical background related to the definition and conceptualiza-
tion of cyberbullying, the analysis of the participant roles, and automatic cyberbullying detection
using text mining techniques.

2.1 Working definition of cyberbullying
A common starting point for conceptualizing cyberbullying are definitions of traditional (or
offline) bullying. Seminal work has been published by Olweus (1993) and Salmivalli et al. (1996),
who describe bullying based on three main criteria, including (i) intention, that is a bully intends
to inflict harm on the victim, (ii) repetition, that is bullying acts take place repeatedly over time,
and (iii) a power imbalance between the bully and the victim, that is a more powerful bully
attacks a less powerful victim. The same criteria are often used to define cyberbullying. Smith
et al. (2008), p. 376, for instance, proposed the popular definition of cyberbullying, identifying the
phenomenon as “an aggressive, intentional act carried out by a group or individual, using elec-
tronic forms of contact, repeatedly and over time, against a victim who cannot easily defend him
or herself.”

Other studies, however, have questioned the relevance of the three criteria to define online
bullying based on theoretical objections and practical limitations. Firstly, while Olweus (1993)
claims intention to be inherent to bullying, this is hard to ascertain in online conversations, which
lack the signals of a face-to-face interaction like intonation, facial expressions, and gestures. In
other words, the receiver might get the unintended impression of being offended or ridiculed
(Vandebosch and Van Cleemput 2009). Another criterion that would not hold in online bullying
is the power imbalance between bully and victim. In real life, this could mean that the bully is
larger, stronger, or older than the victim, but it is difficult to measure online, where it can be
related to technological skills, anonymity, or the inability to escape the bullying (Slonje and Smith
2008). Anonymity and persistence of content are empowering characteristics of the web for the
bully: once defamatory or confidential information is posted online, it is hard—if not impossible—
to remove. Finally, Dooley and Cross (2009) claim that repetition in cyberbullying is problematic
to operationalize, as it is hard to estimate the consequences of a single derogatory message on a
public page. Even a single act of aggression or humiliation may result in continued distress and
humiliation for the victim if it is shared, liked, or read by a large audience (Dooley and Cross 2009).

The above paragraphs demonstrate that defining cyberbullying is far from trivial, and varying
prevalence rates (cf. supra) show that a univocal definition of the phenomenon is still lacking in
the literature. Starting from existing conceptualizations, we define cyberbullying as content that is
published online by an individual and that is aggressive or hurtful against a victim. The motivation
for a rather broad definition of cyberbullying is twofold: first, as mentioned earlier, quantifying
repeated offense is difficult, especially in an online environment. Second, context-rich data would
allow for a better delineation of cyberbullying, but severe challenges are faced given the sensitivity
of the topic and strict general data protection regulations.

Based on this working definition, however, Van Hee et al. (2015c) developed a fine-grained
annotation scheme to signal textual characteristics of cyberbullying that can be considered specific
forms of bullying and identify different participant roles in cyberbullying.
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2.2 Participant roles in bullying situations
In order to capture the complex social interactions involved in bullying events, we set out to auto-
matically detect and classify bullying utterances as belonging to a specific participant role in the
bullying interaction. Participant roles conceptualize typical behavior patterns in bullying situa-
tions as social roles. Salmivalli (1999) were among the first to define bullying in these terms. They
distinguish six roles: the victims (who are the target of repeated harassment), the bullies (who are
the initiative-taking, active perpetrators), the assistants of the bully (who encourage the bullying),
the reinforcers of the bully (who reinforce the bullying), the defenders (who comfort the victim,
take his/her side, or try to stop the bullying), and the outsiders (who distance themselves from the
situation). Their seminal work on bullying relied on surveys with children at schools in real-life
bullying situations, but the conceptual framework and sociometrics used in these are later applied
to cyberbullying (Salmivalli and Pöyhönen 2012).

Although traditional studies on bullying have mainly concentrated on bullies and victims, the
importance of bystanders in a bullying episode has also been acknowledged (Salmivalli 2010;
Bastiaensens et al. 2014). When it comes to prevention many people can take an active role to
intervene, especially bystanders. Bystanders can support the victim and mitigate the negative
effects caused by the bullying (Salmivalli 2010), especially on SNSs, where they have shown to
hold higher intentions to help the victim than in real-life conversations (Bastiaensens et al. 2015).
While Salmivalli et al. (1996) distinguish four bystanders, Vandebosch et al. (2006) identify three
main types, namely bystanders who (i) participate in the bullying, (ii) help or support the victim,
and (iii) ignore the bullying.

The lack of social context in near-anonymous online interactions entails a different opera-
tionalization of author participant roles: anonymity makes it challenging to link roles to actual
persons. It is impossible to ascertain the frequency and different types of roles a person takes as
social behavior. The conversational structure in our dataset is simple compared to full dialogue
due to the limitations of the ASKfm platform (http://ask.fm/) in which a dialogue consists of only
two utterances: a question and a response (which is optional and therefore often missing). Note
that users do hold longer continuous conversations by posting several question–answer pairs,
but reconstructing a dialog is impossible because of anonymous posting on the platform. Due to
limited dialog information, we do not rely on conversational structure but on purely textual utter-
ances that characterize typical social roles in cyberbullying. This allows for social role detection
even if little context is available and user information is anonymized.

2.3 Automated detection and analysis of cyberbullying
Although some studies have investigated rule-based approaches (Reynolds, Kontostathis, and
Edwards 2011), the dominant approach to cyberbullying detection involves machine learning,
mostly based on supervised (Dinakar, Reichart, and Lieberman 2011; Dadvar 2014) or semi-
supervised learning (Nahar et al. 2014). The former constructs a classifier using labeled training
data, whereas semi-supervised approaches rely on classifiers that are built from a small set of
labeled and a large set of unlabeled instances. As cyberbullying detection essentially involves dis-
tinguishing bullying from “not bullying” posts, the problem is generally approached as a binary
classification task.

A key challenge in cyberbullying research is the availability of suitable data. In recent years,
only a few datasets have become publicly available for this task, such as the training sets provided
by the CAW 2.0 workshop (Yin et al. 2009), the Twitter Bullying Traces dataset (Sui 2015), and
more recently the Polish cyberbullying corpus that is made available in the framework of PolEval
2019.a Most studies have, therefore, constructed their own corpus from platforms that are prone to
bullying content, such as YouTube (Dinakar et al. 2011), Formspring.com (Reynolds et al. 2011),

ahttp://poleval.pl/.
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ASKfm (Van Hee et al. 2015b),b Instagram (Hosseinmardi et al. 2016), andWhatsApp (Sprugnoli
et al. 2018). To overcome the problem of limited data accessibility, some studies use simulated
cyberbullying data obtained from carefully setup experiments (Van Hee et al. 2015b; Sprugnoli
et al. 2018). Furthermore, corpora were also compiled covering related subtasks such as aggressive
language, offensive language, hate speech, and other abusive language detection. Many of these
datasets were compiled in the framework of shared tasks, such as the TRAC shared task on aggres-
sion identification (Kumar et al. 2018), the HatEval shared task on multilingual detection of hate
speech against immigrants and women on Twitter (Basile et al. 2019), and the OffensEval shared
task on offensive language identification (Zampieri et al. 2019b). The latter task is based on the
Offensive Language IdentificationDataset (OLID) (Zampieri et al. 2019a), which also includes the
coarse-grained two-class annotation of the target of the offensive language (individual vs. group).
Insults and threats targeted at individuals are often defined as cyberbulling.

Among the first studies on cyberbullying detection are Yin et al. (2009), Reynolds et al. (2011),
Dinakar et al. (2011), who explored the predictive power of n-grams, part-of-speech informa-
tion (e.g., first and second pronouns), and dictionary-based (i.e., profanity lexicons) information
for this task. Similar features were also exploited for the detection of fine-grained cyberbully-
ing categories (Van Hee et al. 2015b). Studies have also demonstrated the benefits of combining
such content-based features with user-based information including previous posts, the user’s age,
gender, location, number of friends and followers, and so on (Dadvar 2014; Nahar et al. 2014;
Al-Garadi, Varathan, and Ravana 2016; Chatzakou et al. 2017). Recently, deep neural network
(DNN) models have also been applied to cyberbullying (Zhang et al. 2016; Zhao and Mao 2017;
Agrawal and Awekar 2018); in case of comparison with traditional machine learning methods in
benchmarking tasks, they currently seem to slightly outperform or perform on par with classifiers
like support vector machine (SVM) and even random forest and logistic regression (LR) (Zhang
et al. 2016; Kumar et al. 2018; Emmery et al. 2019; Basile et al. 2019). The current state of the art
in deep-learning text classification is obtained by large-scale PLMs using the transformer archi-
tecture such as BERT (Devlin et al. 2019) and its derivatives. For offensive language classification
in OffensEval (Zampieri et al. 2019b), BERT-based approaches obtained best performance out of
all deep-learning techniques.

The previously discussed studies have in common that they are aimed at detecting cyberbul-
lying or merely abusive language, without processing information about the participant roles in
a cyberbullying event. We discuss the only two studies—to our knowledge—in modeling some
form of participant roles:

Xu et al. (2012) introduced bully role labeling as a challenge for the field of natural language
processing when laying out future paths for research on bullying. The authors experimented with
tweets containing keywords like “bully” and “bullied” as bullying traces. They studied traces of
real-life bully events, which lead them to define five participant roles: bully, victim, reporter (who
reports a bully event on social media), accuser (who accuses someone of bullying), and other.
They performed supervised classification on 648 role-annotated tweets. A linear-kernel SVM
trained on token uni- and bigrams performed best, yielding a cross-validated accuracy of 61% (no
F-score or ROC-AUC scores were given). Furthermore, they experimented with token-level label-
ing of participant roles where a Conditional Random Field classifier (F1= 0.47) outperformed
an SVM classifier (F1= 0.36). Their dataset is small compared to ours and is composed using
keyword searches, thus limiting the number of relevant posts (i.e., less implicit cyberbullying)
and excluding a lot of negative data as well, which biases the dataset (Cheng and Wicks 2014;
González-Bailón et al. 2014). Because our corpus is randomly crawled instead of collected by key-
word search, it contains a more realistic distribution of cyberbullying posts. Moreover, all posts
were manually annotated with fine-grained information on cyberbullying types and participant

bBoth the former Formspring and ASKfm are social networking sites where users can send each other questions or respond
to them.
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roles, which allowed to identify implicit forms of cyberbullying that would not appear in keyword
search.

Raisi and Huang (2018) defined a weakly supervised n-gram-based model which includes the
sender’s bullying and receiver’s victim scores as parameters in optimization. Their algorithm
optimizes parameters for all users and n-gram features that characterize the tendency of each
user to send and receive harassing keyphrases as well as the tendency of a keyphrase to indicate
harassment. They use a human-curated list of keyphrases as indicators of cyberbullying for weak
supervision. This requires that the user profiles are known and available. The authors evaluate
their approach on three datasets consisting of Twitter, ASKfm, and Instagram. Anonymous user
interactions in their ASKfm corpus were discarded, since they essentially use a communicative
sender–receiver model as a proxy for bully and victim participant roles.

In the present research, cyberbullying is considered a complex phenomenon consisting of sev-
eral types of harmful behavior and realized by different participant roles (Van Hee et al. 2015c).
In our previous work on binary and fine-grained cyberbullying detection (Van Hee et al. 2015b;
2018), we did not differentiate between participant roles in cyberbullying. To our knowledge,
no previous study has been done that aims to automatically predict the participation role in a
cyberbullying event on a representative corpus (i.e., containing real-world data and not biased by
keyword search).

3. Data collection and annotation
To be able to build representative models for cyberbullying, a suitable dataset is required. This
section describes the construction and fine-grained annotation of two cyberbullying corpora, for
English and Dutch.

3.1 Data collection
A Dutch and English corpus were constructed by collecting data from the SNS ASKfm, where
users can create profiles and ask or answer questions, with the option of doing so anonymously.
ASKfm data typically consist of question–answer pairs published on a user’s profile. The data
were retrieved by crawling a number of seed profiles using the GNU Wget software in April and
October 2013. The terms of service of ASKfm did not forbid automated crawling at that time.
Question–answer pairs were kept together and pairs occurring on the same user page were pre-
sented as a conversational thread for annotation as to provide the annotators with as much context
as possible. Basic cleaning was applied to the corpus (e.g., removal of non-ASCII characters, mul-
tiple white spaces, duplicate and mass spam posts), as well as language filtering. Although the
seed profiles were chosen to be of users with Dutch and English as mother tongue, the crawled
corpora both contained a fair amount of non-Dutch and non-English data. Non-English and non-
Dutch posts were removed, which resulted in 113,698 and 78,387 posts for English and Dutch,
respectively.

For more detail on the annotation scheme and dataset, we refer to Van Hee et al. (2015b).

3.2 Data annotation
In the following paragraphs, we present our data annotation guidelines as described in Van Hee
et al. (2015c) and focus on different types and roles related to the phenomenon.

3.2.1 Types of cyberbullying
The guidelines used to annotate our corpora describe specific textual categories related to cyber-
bullying, including threats, insults, defensive statements from a victim, encouragements to the
harasser, sexual talk, defamation, etc. (we refer to Van Hee et al. 2015c for a complete overview).
All of these forms were inspired by social studies on cyberbullying (Vandebosch and Van
Cleemput 2009; Van Cleemput et al. 2013) and manual inspection of cyberbullying examples.
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Table 1. Distribution of participant roles in the English and
Dutch cyberbullying corpus

English Dutch

Harasser 3572 (66.46%) 2890 (56.6%)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Victim 1354 (25.19%) 1603 (31.39%)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Bystander-defender 425 (7.90%) 575 (11.26%)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Bystander-assistant 24 (0.45%) 38 (0.74%)

Figure 1. Examples of ASKfm posts including “harasser,” “victim,” “bystander-defender,” and “bystander-assistant”
instances in the Brat annotation tool.

3.2.2 Participant roles in cyberbullying
In formulating an annotation scheme for supervised classification of participant roles, annotators
were asked to infer the bullying role as an illocutionary act by means of the information present in
the ASKfm corpus. The “outsider” from Salmivalli’s participant classification (Salmivalli, Voeten,
and Poskiparta 2011b) has been left out, given that passive bystanders are impossible to recognize
in online text because they do not leave traces. Concretely, four cyberbullying roles were annotated
in both corpora:

Harasser: person who initiates the harassment, that is the bully.
Victim: person who is harassed.
Bystander-assistant: person who does not initiate but takes part in the actions of the harasser.
Bystander-defender: person who helps the victim and discourages the harasser from continuing.

The annotation scheme describes two levels of annotation. Firstly, the annotators were asked
to indicate, at the post level, whether the post under investigation contained traces of cyberbul-
lying. If so, the annotators identified the author’s role as one out of the four mentioned above.
Secondly, at the subsentence level, the annotators were tasked with the identification of a num-
ber of fine-grained categories related to cyberbullying. More concretely, they identified all text
spans corresponding to one of the categories described in the annotation scheme. To provide the
annotators with some context, all posts were presented within their original conversation when
possible. All annotations were done using the Brat rapid annotation tool (Stenetorp et al. 2012).
Figure 1 shows example annotations of participant roles.

Because of the rare occurrence of bystander-assistants in the dataset (English n= 24 (0.45%),
Dutch n= 38 (0.74%) cf. Table 1), this class was merged with the harasser class for the machine
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Table 2. Statistics of the English and Dutch cyberbullying
corpus

Corpus size Number (ratio) of

(posts) bullying posts

English 113,694 5375 (4.73%)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Dutch 78,387 5106 (6.97%)

learning experiments. First, classification difficulty increases significantly with data imbalance.
Given the low occurrence of bystander-assistant instances, there was too little data to learn a
discriminative model for these posts. Second, the textual content of the post assigned to both
classes is similar; it is from the (incomplete) context that the initiation nature of harasser posts
was determined by annotators. Note that the four labels will be maintained in the discussion of
role distribution and dataset statistics presented in the next section.

3.3 Dataset and annotation statistics
The English and Dutch corpora were independently annotated for cyberbullying by trained lin-
guists after supervised instruction and practice with the guidelines. All were Dutch native speakers
or English second-language speakers. To demonstrate the validity of our annotations, IAA scores
were calculated using Kappa (κ) on a subset of the English and Dutch ASKfm corpus. For English,
3882 posts were annotated by four raters and for Dutch 6498 posts were annotated by two raters.
For both IAA-corpora, all posts were annotated by each rater to have full overlap. Inter-rater
agreement for Dutch is calculated using Cohen’s Kappa (Cohen 1960), while Fleiss’ Kappa (Fleiss
1971) is used for the English corpus due to there being more than two raters. Kappa scores for the
identification of cyberbullying are κ = 0.69 (Dutch) and κ = 0.59 (English), which point to sub-
stantial and moderate agreement (Landis and Koch 1977). Kappa scores for participant roles are
κ = 0.65 (Dutch) and κ = 0.57 (English), again pointing to respectively substantial and moderate
agreement. We also computed cross-averaged F1-score of the annotators: Dutch annotations have
a 0.63 and English annotations a 0.59 macro-averaged F1-score.

As the corpus consists of a random crawl of the ASKfm website, we have at our disposal a
realistic dataset with regard to the occurrence of cyberbullying traces, which has been annotated
at a fine-grained level. This stands in contrast with many previous studies that use keyword-based
search to collect bully traces. The English and Dutch corpus contain 113,694 and 78,387 posts,
respectively (cf. Table 2). A similar skewed distribution of bullying versus not bullying posts can
be observed in both languages, as well as a comparable distribution of bullying roles.

4. Feature engineering and linear classification experiments
Given our annotated dataset, we approached the task of participant role detection as a multiclass
classification task. As discussed in the previous section, the minority class “bystander-assistant”
was merged with the “harasser” class for practical reasons. We set out to classify each textual
post as either “not bullying” or as an instance where one out of the following bully participants
is speaking: “harasser,” “victim,” or “bystander-defender.” In this section, we describe the infor-
mation sources we used as input to our classification algorithms (Section 4.1), we then give an
overview of the different single classifiers and two ensemble learning techniques (Section 4.3) we
investigated to obtain optimal performance (Section 4.2) and we outline how we used feature
selection and data resampling to tackle the large imbalance in our dataset (Section 4.4).
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4.1 Text preprocessing and feature engineering
As preprocessing, we applied tokenization, part-of-speech-tagging, and lemmatization to the data
using the LeTs Preprocess Toolkit (van de Kauter et al. 2013). In supervised learning, a machine
learning algorithm takes a set of training instances (the label of which is known) and seeks to
build a model that generates a desired prediction for an unseen instance. To enable the model
construction, all instances are represented as a vector of features (i.e., inherent characteristics
of the data) that contain information that is potentially useful to distinguish bullying from not
bullying content.

We experimentally tested whether cyberbullying events can be automatically recognized by
lexical markers in a post. To this end, all posts were represented by a number of information
sources (or features) including lexical features like bags of words, sentiment lexicon features, and
topic model features, which are described in more detail below. Prior to feature extraction, some
data cleaning steps were executed, such as the replacement of hyperlinks and @-replies, removal
of superfluous white spaces, and the replacement of abbreviations by their full form (based on
the chatslang.com lexicon). Additionally, tokenization was applied before n-gram extraction and
lemmatization for sentiment lexicon matching, and stemming was applied prior to extracting
topic model features.

After preprocessing the corpus, the following feature types were extracted:
Word n-gram bags of words: binary features indicating the presence of word unigrams,

bigrams, and trigrams.
Character n-gram bags of words: binary features indicating the presence of character bigrams,

trigrams, and fourgrams (without crossing word boundaries). Character n-grams provide some
abstraction from the word level and provide robustness to the spelling variation that characterizes
social media data.

Term lists: one binary feature derived for each one out of six lists, indicating the presence
of a term from the list in a post: proper names, “allness” indicators (e.g., always, everybody),
diminishers (e.g., slightly, relatively), intensifiers (e.g., absolutely, amazingly), negation words,
and aggressive language and profanity words. We hypothesize that “allness” indicators, negation
words, and intensifiers are informative of often hyperbolic bullying style. Diminishers, intensifiers,
and negation words were all obtained from an English grammar describing these lexical classes or
existing sentiment lexicons (see further). Person alternation is a binary feature indicating whether
the combination of the first and second person pronoun occurs in order to capture interpersonal
intent. We hypothesize posts that contain person alternation and proper names to be informative
because cyberbullying is a directed and interpersonal communicative act.

Subjectivity lexicon features: Subjectivity lexicons provide categorical or continuous values
for the affective connotation of a word. Sentiment can correspond to sentiment polarity, that
is positive, negative, or neutral, or as more fine-grained categories of emotions or psychological
processes (as is the case for Linguistic Inquiry and Word Count (LIWC) Pennebaker et al. 2001).
From the sentiment lexicons, we derive positive and negative opinion word ratios, as well as the
overall post polarity. For Dutch, we made use of the Duoman (Jijkoun and Hofmann 2009) and
Pattern (De Smedt and Daelemans 2012) sentiment lexicons. For English, we included the Liu and
Hu opinion lexicon (Hu and Liu 2004), the MPQA lexicon (Wilson,Wiebe, and Hoffmann 2005),
the General Inquirer Sentiment Lexicon (Stone et al. 1966), AFINN (Nielsen 2011), and MSOL
(Mohammad, Dunne, and Dorr 2009). For both languages, we included the relative frequency of
all 68 psychometric categories in the LIWC dictionary for English (Pennebaker et al. 2001) and
Dutch (Zijlstra et al. 2004). We hypothesize that certain psychometric and sentiment categories
are informative of different roles. For instance, we expect more positive opinion to be expressed
by a bystander-defender, whereas a bully is more likely to express negative sentiment and LIWC
affective categories such as anxiety and anger.

Topic model features: Topic models provide hidden semantic structures in collections of text
and are used to uncover thematic information. The similarity score of a post to one of these models
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provides a score for how semantically similar the post is to the topics in that text collection.
By making use of the Gensim topic modeling library (Rehurek and Sojka 2010), several Latent
Dirichlet allocation (LDA) (Blei, Ng, and Jordan 2003) and latent semantic analysis (Deerwester
et al. 1990) topic models with varying granularity (k= 20, 50, 100, and 200) were trained on
data corresponding to each fine-grained cyberbullying category (e.g., threats, defamations, insults,
defenses). The topic models were trained on a background corpus (EN: 1,200,000 tokens, NL:
1,400,000 tokens) scraped with the BootCAT (Baroni and Bernardini 2004) web-corpus toolkit.
Using BootCaT, we collected ASKfm posts from user profiles (different than the ones used for
corpus compilation) using lists of manually determined seed words that are characteristic of the
different cyberbullying categories based on the training data (e.g., “slut” for the insult category
and “ignore” for the defense category). BootCat is crawler software that collects text from the web
if it contains seed words. In this manner, we collect posts that are likely to be representative of the
cyberbullying category corresponding to the characteristic seed words. The resulting background
corpus was cleaned by removing non-English and non-Dutch text and stop words before creating
topic models.

When applied to the training data, this resulted in 871,044 and 795,072 features for English
and Dutch, respectively. To prevent features with greater numerical values to be attributed more
weight in the model than features with smaller values, we used feature scaling, that is all feature
values were scaled to the range [0, 1].

4.2 Classification algorithms
The tested multiclass classification algorithms include a linear-kernel SVM, a LR, a passive-
aggressive (PA), and a stochastic gradient descent (SGD) classifier.c We chose these regularized
linear classification models as this type of algorithms is typically fast enough for handling large
datasets. The linear SVM makes use of the dual l2-loss implementation in LIBLINEAR (Fan et al.
2008), which uses a one-vs-rest strategy for multiclass classification. We fixed the loss function
to squared hinge. The LR classifier also uses a one-vs-rest scheme for multiclass and a coordi-
nate descent algorithm. The PA classifier (Crammer et al. 2006) is a type of online margin-based
learning meant for large-scale data such as ours. We use the hinge loss as the loss function in PA,
which is equivalent to the PA-I algorithm described in Crammer et al. (2006). Other regularized
linear models using SGD learning were tested with a modified-huber loss function (Zhang 2004)
which is the equivalent of a quadratically smoothed SVMwith γ = 2 and the perceptron loss func-
tion. We used 106/n instances iterations for SGD, as well as PA. Testing the effectiveness of online
and batch algorithms such as SGD and PA are useful for large datasets, for dealing with memory
restrictions or for use with streaming data (such as social media content).

Feature selection settings and classifier hyper-parameters for each classifier type were tuned
in grid search in fivefold cross-validation. Table 3 gives an overview of the tested hyper-
parameters for the different algorithms. The winning parametrization was chosen by means of
macro-averaged F1-score averaged over the folds.

4.3 Ensemble approaches
Apart from evaluating the above-described single-algorithm classifiers, we also investigated two
ensemble learning techniques: a Voting classifier and a Cascading classifier. Ensemble learning has
the potential to improve classification performance by combining different individual classifiers
and additionally mitigates data imbalance (Galar et al. 2012).

We tuned an ensemble Voting classifier out of the three best-scoring classifiers. Hence, the final
classification was determined by majority vote on the predicted label by each classifier.

cFor the experiments in this paper, we make use of Scikit-learn (Pedregosa et al. 2011), a machine learning library for the
Python programming language.
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Table 3. Tested hyper-parameters for each step in our machine learning pipeline

Algorithm Hyper-parameters

Feature filtering Feature scoring: “Anova F-value” or “Mutual information”
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Percentile of features retained: 67% or 33%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SVM (linear-kernel) Cost C: [0.02, 0.2, 1, 2, 20, 200]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Balanced class weighting: enabled or disabled
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Logistic regression idem
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Passive aggressive Loss function: hinged or squared hinged
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Cost C: [0.02, 0.2, 1, 2, 20, 200]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Balanced class weighting: enabled or disabled
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SGD Loss function: “modified huber” or “perceptron”
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Balanced class weighting: enabled or disabled

We also tested a Cascading (also known as “multistage”) classifier approach in which the output
of the first classifier for binary detection (i.e., bullying vs. not bullying) of cyberbullying instances
is followed by a multiclass role classifier for the positive predictions (i.e., bullying posts). The
first-stage classifier detects the presence of cyberbullying (i.e., bullying or not). The predicted
cyberbullying instances serve as input for the second-stage classifier, which then predicts to which
one out of three participant roles (i.e., harasser, victim, or bystander-defender) the post appears.
In this manner, we test if it is worthwhile to first detect the presence of cyberbullying in a post and
to proceed with the second classifier that assigns a participant role to the post. For both the Voting
and the Cascading ensemble, the selection of best models is based on the average cross-validation
and holdout F1-scores of the tuned feature selection and resampling pipeline.

Our previous work on cyberbullying detection in ASKfm posts (Van Hee et al. 2018) revealed
that linear-kernel SVMs work well for binary classification of cyberbullying posts. The highest-
scoring classifier setup and hyper-parameters (i.e., out of single-algorithm and ensemble Voting
approaches) were selected for the second-stage multiclass role classification in the Cascading
ensemble: for Dutch, this was the LR classifier, while the Voting classifier performed best for
English. The detection classifier and the second-stage classifier were tuned for the SVM hyper-
parameters in Table 3. Hyper-parameter selection was optimized jointly for both stages. In this
manner, we tested whether it is plausible to first automatically detect instances of cyberbullying
and subsequently classify the participant roles of positive bullying instances.

4.4 Feature selection and resampling for imbalance
Due to the realistic nature of our dataset compared to previously used balanced studies, we
encountered severe class imbalance or skew, which could negatively affect machine learning
performance. In cyberbullying detection experiments on Twitter data, Al-Garadi et al. (2016)
encounter the same data imbalance problem with a similar ratio of bullying to not bullying posts.

In line with Al-Garadi et al. (2016), we investigate feature selection and data resampling, two
techniques that can be used to enhance classification performance in general, but in particular
when faced with (severe) class imbalance (Japkowicz and Stephen 2002).

For the multiclass role of classification experiments, we include random undersampling, which
randomly removes instances of the majority classes to obtain a desired ratio with one or more
minority classes. This technique is used to bias the classifier toward the minority class (i.e.,
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bullying posts). After initial experimentation, we set the ratio to 1/100, so that the majority classes
were undersampled until the minority “bystander-defender” class became 1% of the training set.
Initial runs determined that a balanced ratio and a ratio of 10% and 5% consistently produced
worse results, so a ratio of 1% was chosen. In cyberbullying detection experiments, Al-Garadi
et al. (2016) have shown that synthetic super-sampling such as Synthetic Minority Oversampling
Technique (SMOTE) effectively improve classifier performance. These algorithms create new
observations of minority classes usually by means of some type of nearest neighbors or boot-
strappingmethod.We tested SMOTE+Tomek and SMOTE+Edited Nearest Neighbours (Batista,
Prati, and Monard 2004), as well as ADASYN (He et al. 2008) for synthetic super-sampling but
found these algorithms to be too computationally expensive to work with our high-dimensional
data.

For feature selection, we chose filtermetrics that are used to characterize both the relevance and
redundancy of variables (Guyon and Elisseeff 2003). For feature filtering, we relied on ANOVA
F-value and mutual information (MI) score as metrics. The MI implementation in Scikit-learn
relies on nonparametricmethods based on entropy estimation from k-nearest neighbors distances
as described in Ross (2014) (k= 3). Using grid searches over the different pipeline setups, we
determined the feature filter scoring function and the percentile of retained features to construct
the model.

Feature selection and undersampling were tuned and parameterized for each classification
algorithm, except for the Voting and Cascading ensemble approaches where undersampling
was not applied. We also investigated whether the sequential order of feature selection and
data resampling had any effect on the classification performance. Each possible pipeline setup
and parametrization were evaluated by means of fivefold cross-validation on our hold-in
development set.

5. PLM experiments
The field of Natural Language Processing (NLP) has transitioned from developing task-specific
models to fine-tuning approaches based on large general-purpose language models (Howard and
Ruder 2018; Peters et al. 2018). PLMs of this type are based on the transformer architecture
(Vaswani et al. 2017). Currently, the most widely used model of this type is BERT (Devlin et al.
2019) and its many variants. Fine-tuning BERT-like models obtain state-of-the-art performance
in many NLP tasks including text classification. In the OffensEval shared task, Zampieri et al.
(2019b) BERT-based approaches outperformed all other classification approaches.

We experimented with fine-tuning pretrained transformer models for both English and Dutch
using the “huggingface/transformers” PyTorch library which provides models in their repository
(Wolf et al. 2019). We used the provided default hyper-parameters, tokenizers, and configura-
tion for all models. To add sentence classification capability to the language models, a sequence
classification head was added to the original transformer architecture. The batch size was set
to 32 instances and sequence length to 256 for all models. The only hyper-parameter set in
cross-validation grid search is the number of training epochs (e= {4, 8, 16}). The best hyper-
parametrization was chosen for each architecture by macro-averaged F1-score over fivefold. Due
to the more expensive compute of these Graphics Processing Unit accelerated models compared
to linear classification algorithms, we did not experiment with ensembles, feature selection, and
data resampling.

5.1 Pretrainedmodels
For English, we ran text classification experiments using pretrained BERT (Devlin et al. 2019),
RoBERTa (Liu et al. 2019), and XLNet (Yang et al. 2019) models.
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BERT is an attention-based auto-encoding sequence-to-sequence model using two unsuper-
vised task objectives. The first task is word masking, where the masked language model (MLM)
has to guess which word is masked in its position in the text. The second task is next sen-
tence prediction (NSP) performed by predicting whether two sentences are subsequent in the
corpus or randomly sampled from the corpus. The specific English BERT model used is the
“bert-base-uncased” as provided with the original paperd pretrained on the 3.3B word Wikipedia
+ BookCorpus corpus. We prefer using a lowercase (“uncased”) model over a case-preserving
(“cased”) model as our cyberbullying dataset contains social media text with many mistakes
against capitalization convention. However, a lowercased pretrained model was only available for
English BERT.

The RoBERTa model (Liu et al. 2019) improved over BERT by dropping NSP and using only
the MLM task on multiple sentences instead of single sentences. The authors argue that while
NSP was intended to learn inter-sentence coherence, it actually learned topic similarity because
of the random sampling of sentences in negative instances. The specific RoBERTa model used is
the “roberta-base” cased model provided alongside the original papere pretrained on the 160-GB
Wikipedia + BooksCorpus + CommonCrawl-News + CommonCrawl-Stories + OpenTextWeb
corpus.

XLNet is a permutation language model that combines strengths of auto-regressive and auto-
encoding modeling approaches: permutation language models are trained to predict tokens given
preceding context like a traditional unidirectional language model, but instead of predicting the
tokens in sequential order, it predicts tokens in a random order sampling from both the left and
right context. XLNet incorporates two key ideas from the TransformerXL architecture: relative
positional embeddings and the recurrence mechanism. In combination with the permutation
objective, these techniques effectively capture bidirectional context while avoiding the indepen-
dence assumption and the discrepancy between pretraining and fine-tuning caused by the use of
masked tokens in BERT. The specific XLNet model used is the “xlnet-base” cased model released
alongside the original workf pretrained on a Wikipedia + BooksCorpus + Giga5 + ClueWeb
2012-B + Common Crawl totalling 339B SentencePiece tokens.

For Dutch, we tested BERTje (de Vries et al. 2019) and RobBERT (Delobelle, Winters, and
Berendt 2020) which are the Dutch architectural equivalents of BERT and RobBERTa. The specific
BERTje model is “bert-base-dutch-cased”g trained on a 2.4-B tokenWikipedia+ Books + SoNaR-
500+Web news+Wikipedia corpus. The specific RobBERT model is “robbert-base”h pretrained
on the Dutch part of the OSCAR corpus (39 GB). The choice of these models was informed by
their improved performance over another available monolingual Dutch Bert-NL modeli or the
multilingual mBERT (Devlin et al. 2019) model. As subword token input BERT and BERTje uses
WordPiece, RoBERTa, and RobBERT use byte-level Byte Pair Encoding (BPE), and XLNet uses
SentencePiece (Kudo and Richardson 2018).

6. Experimental results
In this section, we discuss the results of the parametrized classifier approaches. We chose macro-
averaged F1-score to evaluate the models so as to attribute equal weight to each class in the
evaluation. We compared the scores of the winning parametrized model by classifier type on a

dhttps://github.com/google-research/bert.
ehttps://github.com/pytorch/fairseq/tree/master/examples/roberta.
fhttps://github.com/zihangdai/xlnet/.
ghttps://github.com/wietsedv/bertje.
hhttps://github.com/iPieter/RobBERT.
ihttp://textdata.nl/bert-nl.
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Table 4. Results (%) for role classification using a single linear classification algorithm
approach. Boldface indicates highest score for the relevant metric

English

Cross-validation Holdout test

Classifier Precision Recall F1-score Precision Recall F1-score

SVM 59.47 51.54 54.29 58.95 51.95 54.29
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Logistic regression 58.60 53.48 55.47 57.13 53.26 54.54
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Passive aggressive 60.94 46.81 51.03 67.97 47.50 53.31
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SGD 59.78 46.39 50.38 60.83 47.55 51.97
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Random BL 24.98 25.84 12.07 24.96 21.89 12.14
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Majority BL 23.81 25.00 24.39 23.88 25.00 24.43

Dutch

Cross-validation Holdout test

Classifier Precision Recall F1-score Precision Recall F1-score

SVM 59.51 49.00 52.78 59.41 49.65 53.21
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Logistic regression 58.90 50.78 54.03 58.53 50.95 53.92
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Passive aggressive 59.64 46.80 51.34 61.52 45.18 50.31
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SGD 57.56 47.36 51.15 55.98 45.50 49.40
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Random BL 25.01 24.90 12.79 24.80 26.31 12.55
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Majority BL 23.37 25.00 24.16 23.37 25.00 24.16

holdout test set comprising 10% of the entire corpus. Hence, the holdout scores are F1-scores for
10,000 random corpus samples.

For baseline comparison, we chose a majority baseline (a.k.a. the zero-rule baseline) in which
the negative majority class “not bullying” is always predicted, as well as a random baseline in which
random predictions are made.

We first compare the result of hyper-parameter-optimized single-algorithm classifier
approaches without feature filtering or resampling. Then, we discuss the best results obtained by
the models where feature selection and resampling were included. Finally, we discuss the ensem-
ble approaches and recapitulate our main findings in the conclusion. We consider F1-score on
the randomly split 10% holdout test set as the comparative measure in the discussion of the best-
performing system. As is common practice, cross-validation scores served for establishing the best
hyper-parameters and as an indicator of under- or over-fitting of the model when compared to the
holdout test scores.

6.1 Single-algorithm classifier results
As can be deduced from Table 4, for the English dataset, the LR classifier obtained the best results
with F1= 55.47% in cross-validation and F1= 54.54% on the holdout test set. The runner-up is
the SVM classifier which performs comparably but trades in recall. The PA algorithm obtains
a remarkably high precision. All classifiers show a marked improvement over the majority and
random baselines with F1-scores of, respectively, 24.43% and 12.14%.
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Table 5. Results (%) for ensemble role classification, combining logistic regression, SVM, and
SGD for English and logistic regression, SVM, and the passive aggressive classifier for Dutch.
Boldface indicates the highest score for the relevant metric. All scores are macro-averaged

English

Cross-validation Holdout test

Classifier Precision Recall F1-score Precision Recall F1-score

Voting 59.90 51.85 54.71 60.06 51.95 54.70
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Cascading 54.55 56.80 55.19 54.68 58.15 55.67

Dutch

Cross-validation Holdout test

Classifier Precision Recall F1-score Precision Recall F1-score

Voting 59.18 49.70 53.31 59.64 50.72 54.12
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Cascading 54.12 50.48 51.79 53.77 55.26 54.30

Similar results are observed for cyberbullying role classification on the Dutch dataset: the LR
classifier obtained the best results in both cross-validation (F1= 54.03%) and on the holdout set
(F1= 53.92%). The SVM classifier is again a close second and the other algorithms performed
comparably. Like we observed for the English corpus, PA obtained the highest precision for
a trade-off in recall. Here as well, the classifiers substantially outperformed the majority (F1=
24.16%) and random baseline (F1= 12.55%).

The algorithms do not seem to under- or over-fit as evidenced by the similar scores obtained
through cross-validation and on the holdout test set. When recall is important, for instance in a
semi-automatedmoderation context where the system assists humanmoderators by flagging posts
for manual review, LR classification seems to be the desired approach. However, when precision
is important, for instance in fully automated moderation applications, PA appears to be a good
choice. SGD obtains the worst performance on both datasets.

6.2 Ensemble classifier results
In this section, we investigate the benefits of ensemble learning in two different types of ensemble
classifiers: a Voting ensemble and a Cascading ensemble. The Voting ensemble classifier com-
bines the three best-scoring classifiers by majority vote. Concretely, each individual algorithm
provides a prediction and the majority vote is considered for the final prediction. For English, we
combined LR, SVM, and SGD as the individual models. For Dutch, LR, SVM, and PA classifiers
are considered. These were tuned by cross-validation with the same experimental settings and
hyper-parameters as described earlier.

The Cascading ensemble consists of two stages where an SVM first predicts positive instances
of cyberbullying. Second, we choose the best multiclass classifier to perform fine-grained role clas-
sification on these instances. The second-stage role classifier for English is the Voting classifier,
whereas for Dutch it is the SVM. For both models, feature selection was applied. In this manner,
we can examine whether it is worthwhile to detect if cyberbullying is present in the first step before
classifying the participant role in the second step.

As shown in Table 5, for both languages, the Cascading approach outperforms the Voting clas-
sifier in terms of recall while the latter obtains better precision. The second-stage results shown in
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Table 6. Results (%) for the initial cyberbullying detection stage and subsequent role classifi-
cation stage on the holdout test set in the best-performing Cascading ensemble for the Dutch
and English corpus. Macro-averaged scores are given for both stages; binary-averaged scores
on the positive class are shown for the detection stage

English: Cascading ensemble

Holdout macro-averaged Holdout binary-averaged

Stage in cascade Precision Recall F1-score Precision Recall F1-score

1st stage: cyberbullying detection 75.53 83.54 78.9 52.49 70.06 60.02
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2nd stage: role classification 54.43 33.88 41.28

Dutch: Cascading ensemble+ feature selection

Holdout macro-averaged Holdout binary-averaged

Stage in cascade Precision Recall F1-score Precision Recall F1-score

1st stage: cyberbullying detection 78.52 80.33 79.39 59.6 63.67 61.57
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2nd stage: role classification 48.79 30.81 37.52

Table 6 differ from the results in Table 5 because the former shows the macro-averaged scores on
the three bullying roles (i.e., “harasser,” “victim,” and “bystander-defender”) without the negative
“not bullying” class, whereas the latter shows the macro-averaged scores on all four classes.

Both ensemble classifiers outperform the best single classifier on the holdout test set (cf.
Table 4). To conclude, ensemble methods obtain a higher recall than single-classifier approaches,
but they provide marginal practical value taking into account their computational cost.

To examine the performance of the Cascade ensemble in closer detail, we present the scores
obtained in the two stages of the classification in Table 6. The first detection stage obtains a
macro-averaged F1-score of 78.9% on the holdout test set for English and 79.39% for Dutch. Since
this is a binary cyberbullying detection task, binary-averaged precision, recall, and F1-score are
also presented. These are the results for the positive bullying instances only. The detection scores
(stage 1) slightly underperform scores obtained in previous research on cyberbullying detection in
this dataset (Van Hee et al. 2018) using comparable linear classification algorithms (their binary-
averaged F1-score is 64% for English and 61% for Dutch). The second-stage role classifier obtains
an F1-score of 41.28% for English and 37.52% for Dutch. The results show the negative effect of
both error percolation in the first stage and the difficulty of cyberbullying role classification.

However, in spite of the relatively poor performance of the second-stage classifier, final recall
scores for role classification (in cross-validation) remain higher in Cascading ensembles when
compared to the single-algorithm and Voting approaches.

6.3 Feature selection and resampling
To mitigate the effects of data imbalance, we experimented with feature selection and random
undersampling techniques. We created pipelines with each enabled and in sequence with both
possible orders, that is resampling followed by feature selection and inversely, feature selection fol-
lowed by resampling.When looking at the individual classifiers, we found that random undersam-
pling rarely improved results and due to the added computational complexity this step was left out
when testing the ensemble methods. Table 7 presents the results obtained by the best-performing
classification pipelines of the above experiments. The scores were more often improved by feature
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Table 7. Results (%) of the best configurations for both languages. Boldface indicates the
highest score for the relevant metric. All scores are macro-averaged

English

Classifier Cross-validation Holdout test

Precision Recall F1-score Precision Recall F1-score

SVM+ FS 59.35 51.04 53.89 59.75 51.89 54.51
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

LR+ FS 58.74 53.33 55.42 57.86 53.12 54.77
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

PA 61.54 46.13 50.68 73.02 46.15 52.66
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SGD+ FS+ RES 49.49 53.20 50.01 57.33 56.45 56.42
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Voting+ FS 59.76 51.45 54.39 60.92 51.77 54.87
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Cascading 54.55 56.80 55.19 54.68 58.15 55.67
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BERT 61.95 57.61 59.48 60.62 59.89 60.04
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

RoBERTa 62.63 58.88 60.25 58.06 54.66 55.84
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

XLNet 59.66 54.64 56.85 63.73 56.92 59.88

Dutch

Classifier Cross-validation Holdout test

Precision Recall F1-score Precision Recall F1-score

SVM 59.51 49.00 52.78 59.41 49.65 53.21
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

LR 58.90 50.78 54.03 58.53 50.95 53.92
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

PA+ RES 54.11 49.94 51.22 51.46 51.00 50.87
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SGD+ RES 55.08 50.10 52.2 54.15 52.44 53.18
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Voting 59.18 49.70 53.31 59.64 50.72 54.12
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Cascading+ FS 55.07 49.44 51.53 54.08 55.07 54.37
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BERTje 57.52 48.65 52.06 56.54 50.62 52.96
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

RobBERT 60.17 51.60 54.92 61.93 53.58 56.73

selection than by random undersampling. The F1-score improvements are minimal and are in line
with the findings of Al-Garadi et al. (2016) who report similar increases.

The best score for English is obtained when feature selection is included as preprocessing, fol-
lowed by random undersampling and SGD (modified huber loss) with F1= 56.42%. For Dutch,
the Cascading ensemble with ANOVA F-score feature selection obtains the best score with
F1 = 54.37% on the holdout set. It should be noted however, that SGD obtains the worst per-
formance in cross-validation. More robust results are obtained by the Cascading classifier, where
the cross-validation and holdout scores are consistent and obtain the highest recall.

6.4 PLM results
Finally, we discuss the results of the PLM fine-tuning experiments. Table 7 presents all results
obtained by the best-performing classification pipelines of the above experiments including
transformer-based classifiers.
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The default hyper-parameters and configurations were applied for all transformer models. The
only hyper-parameter that was tuned in cross-validation is the number of training epochs. All
Dutch and English models performed best with four epochs, except for the English XLNet model,
which obtained the best results with eight epochs. The results of the cross-validation experiments
in Table 7 show that, respectively, RoBERTa and RobBERT outperform the optimized single clas-
sifiers and the ensemble methods for English and Dutch, with F1-scores of 60.25% and 54.92%,
respectively.

We also observe a precision improvement over the Voting ensembles for both languages. After
applying the best models to the holdout test set, however, we observe a remarkable decrease in
the English RoBERTa model compared with the cross-validated scores and we see the model
outperformed by BERT and XLNet.

Overall, the table shows a performance increase of about 5 points with RoBERTa compared
to the Cascading model (i.e., F1= 60.25% versus F1= 55.19%). For Dutch, the improvement is
less outspoken, with RobBERT scoring about 1.6 points better than the best ensemble method
(i.e., F1= 54.92% versus F1= 53.31%). The transformer-based models further show more balance
between precision and recall than the single and ensemble classifiers for English, but they show
larger differences for Dutch. This observation applies to the cross-validated results and the results
on the holdout test set. In Section 7, we examine the results of the best models in closer detail and
we discuss their performance on the different class labels.

7. Discussion
This section contains a discussion of the resulting scores and a qualitative error analysis providing
insight into the types of misclassifications and areas of potential improvement. Figures 2 and 3
show the results per class on the holdout test set obtained by the best models as determined by
cross-validation experiments, that is RoBERTa and RobBERT for English and Dutch, respectively.

The confusion matrices visualize the amount of mislabeling by class. We see that both models
scored significantly better on the majority “not bullying” class compared to the three cyberbully-
ing classes (i.e., “harasser,” “victim,” and “bystander-defender”). The best linear classifier pipeline
(not pictured) still shows bias toward the majority class despite the use of imbalance mitigation
techniques. However, the imbalance mitigated linear models perform better on the “harasser” and
“victim” classes than the PLMmodels (“harasser” 62.9% correct for English and 56.8% for Dutch,
“victim” 21.3% and 30.5% resp.). The PLM classifiers perform much better on the “bystander-
defender” minority class than the linear classifier pipelines (English: 29% correct, Dutch: 35.8%
correct) even without data imbalance mitigation.

While “harasser” and “bystander-defender” posts are mostly predicted correctly, the figures
show much more confusion for the “victim” class. In the English corpus, such instances are most
often confused with the “not bullying” class, followed by the “harasser” class. In the Dutch corpus,
there is much confusion with the “not bullying” class, but considerably less with the “harasser”
class. One explanation for these results could be that victim posts show important linguistic
variation as they can range from assertive and self-defending utterances (which may be hard to
distinguish from bullying in some contexts) to indifference and to reactions of desperation and
distress.

It is also noteworthy that, in both languages, on average 4 in 10 harasser posts are predicted as
“not bulling,” which indicates that the bullying is rather lexically implicit or goes unnoticed given
the limited context that is available.

Overall, the confusion matrices show that, on the one hand, all three cyberbullying classes
are often confused with “not bullying,” which is most likely due to (i) classifier bias toward the
majority class, (ii) “masked” cyberbullying through implicit language, and (iii) lack of conversa-
tional context. On the other hand, not bullying posts as well as “victim” and “bystander-defender”
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Figure 2. Confusion matrix for best English system.

Figure 3. Confusion matrix for best Dutch system.

utterances that are classified as harassing may be due to users’ socially accepted slang in
non-harmful contexts.

To get a better insight into classification errors, we performed a qualitative analysis of the
predictions by the English RoBERTa and the Dutch RobBERT model and included some cor-
pus examples. As for harasser posts that were classified as “not bullying,” we observed that such
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posts often require more context to understand that bullying is taking place. Such context was
available to the annotators because all posts were presented in their original thread when avail-
able. Recognizing cyberbullying at the post level is, however, much more challenging when the
cyberbullying is implicit (example 1). Other examples of false negatives include utterances with
sexting or sexual requests, the language of which is often suggestive and ambiguous (example 2).

Victim posts that went unnoticed are sensibly shorter (i.e., containing half the number of
characters) than correctly classified victim posts and often contain irony (examples 3 and 4).
“Bystander-defender” posts that were predicted as “not bullying” are considerably shorter than
correct predictions as well (on average 153 versus 225 characters per post in the English corpus
and 103 vs. 212 characters in the Dutch corpus). In addition, defender posts often contain differ-
ent polarities and targets, which may complicate their classification. Sometimes both the bully and
the victim are addressed in the same utterance. For instance, when directed to the bully, the tone
of voice is negative, whereas positive words are for the victim (example 5).

(1) Ik kus nog liever een everzwijn. (EN: I’d rather kiss a boar.) [prediction: “not bullying”]
(2) Pic of u in bikini? [prediction: “not bullying”]
(3) Kijk naar mijn gezicht, kan het mij iets schelen? NEEN. (EN: Look at my face, do you think I

care? NO.) [prediction: “not bullying”]
(4) Criticising me? Thanks. [prediction: “not bullying”])
(5) You’re pretty just ignore the hate. [prediction: “not bullying”]

The confusion matrices also show a certain degree of confusion between the “victim” and
“bystander-defender” classes and the “harasser” class. This will be discussed in the next section,
where we focus on the differences between these misclassifications for English and Dutch.

In sum, our qualitative analysis revealed that false negatives are often examples of cyberbul-
lying that lack explicit profane words (e.g., defamations, sexually inappropriate comments), but
also posts that lack (historical) context to understand that bullying is going on, and posts that
contain noisy language. In fact, the typical language and (rather unintended) spelling mistakes
we observed in both corpora augments the sparsity of lexical features and may therefore affect
classification performance. As mentioned earlier, we observed that false negatives for the “victim”
and “bystander-defender” class contain on average half the number of characters compared to
correctly identified posts, for Dutch as well as for English.

In a semi-automatic (i.e., machine plus human) moderation setup, false negatives are con-
sidered more problematic than false positives, and the matrices show they are in fact a bigger
problem. However, false positives are undesirable as well, especially in fully automated monitor-
ing. In this regard, the qualitative analysis showed that both the English and Dutch models are
mislead by, among other things, socially accepted slang or profanity (examples 6 and 7), genuine
kind statements as if they were meant to counter a negative one (example 8) and rude statements
that address a large group of people rather than an individual victim (example 9). Here as well,
more context would help to judge whether cyberbullying is actually going on. Another type of
information that could be useful here could be world knowledge, for instance to differentiate
between individual targets (which may be considered more urgent cyberbullying cases) and group
or “mass” targets.

(6) Job interview. Wish me luck you cunts! [prediction: “harasser”])
(7) Hahaha, ik bedoel dak u begrijp slet ;) (EN: Hahaha, I mean that I totally get you, slut ;)

[prediction: “harasser”]
(8) Ok, Je bent niet lelijk :O !!! (EN: Ok, you are not ugly :O !!!) [prediction: “victim”]
(9) Ge hebt echt zo rotte, schijnheilige, achterlijke mensen op de wereld eh, ugh. (EN: There really

are rotten, hypocritical and retarded people in this world, ugh.) [prediction: “harasser”]
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Table 8. Casing, flooding, and profanity statistics drawn from
the victim posts (n= 127 and n= 167) in the English and Dutch
cyberbullying corpus, respectively

English Dutch

Uppercase words 7.41% 1.90%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Flooded punctuation tokens 0.58% 0.24%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Profane words toward bully 2.14% 0.87%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

All profane words 2.34% 1.50%

7.1 English versus Dutch cyberbullying role detection
Having at our disposal a similar cyberbullying corpus for English and Dutch allows us to com-
pare cyberbullying role detection performance in the two languages. When looking at Table 7,
we observe that the English RoBERTa outperforms the Dutch RobBERT in the cross-validation
setup. Our analysis revealed that there is more lexical variety in the Dutch corpus compared
to the English, which increases the model complexity of the former. However, the holdout test
scores show a slightly better performance of the Dutch (F1 = 56.73%) compared to the English
best model (F1 = 55.84%).

In the following paragraphs, we examine the most outspoken (i.e., > 5%) differences in
misclassifications between the English and Dutch best system as visualized in Figures 2 and 3.

The most outstanding difference concerns the “victim” class. Nearly, one out of three is pre-
dicted as a harassing post in the English corpus, whereas for Dutch confusions with the “harasser”
class count for only 15.6%. This suggests that victim posts in the English corpus contain more
aggressive language that resembles harassing compared to Dutch.

In fact, Table 8 shows lexical differences between the two corpora that seems to support this
finding. To account for varying post length, the statistics in Table 8 were calculated with the total
number of corpus tokens as the denominator. “Profane words towards bully” differs from “All
profane words” in that the former only includes profane words directed at the bully (e.g., “Stfu
all of you bitches, leave her alone (. . .)”), whereas the latter also includes profanity in indirect
speech (e.g., “Get off her back, alright? You’re calling her a bitch (. . .)”). While examples like the
latter are not necessarily violent comments, the presence of abusive words may have affected their
classification.

Our qualitative analysis further revealed that 2% of all tokens in the English corpus are swear
words (e.g., “fuck”, “WTF”), whereas this is only 0.6% in the Dutch corpus. At the post level, this
means that more than 1 in 4 (26%) English victim posts contain swearing, as opposed to 1 in 10
(10%) Dutch posts.

Another noticeable difference between the two languages concerns the false negatives for the
three bullying classes. Figure 3 shows that, for Dutch, the “harasser,” “victim,” and “bystander-
defender” posts are more often confused with the “not bullying” class compared to English. This
suggests that (i) the bullying in our Dutch corpus is more implicit or requires more context and
(ii) the bullying classes in the English corpus contain more aggressive language compared to non-
bullying posts.

Lastly, we observe a difference of about 8.5% for the “bystander-defender” posts predicted as
“victim,” with English defender posts being more often confused with victim posts compared to
Dutch.

The above analysis leads us to the tentative conclusion that “victim” posts in the English corpus
are more assertive or even “aggressive” compared to the Dutch corpus and are therefore harder
to distinguish from “harasser” posts. For both languages, false negatives for all cyberbullying
categories (i.e., “harasser,” “victim,” and “bystander-defender”) are most likely due to the absence
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of lexical cues, and the little context we dispose of given the data genre. This lack of con-
text also makes it hard to differentiate between “harassers” and assertive “bystander-defenders”
or self-defending “victims.” When considering a conversation of just two utterances (i.e., one
question–answer pair), both participants are likely to use aggressive language. As social media
are and will be a place of informal communication including slang and non-harmful swearing,
being able to model conversational threads or keeping track of interaction history should allow to
better estimate whether cyberbullying is going on. Another way classification performance could
be improved is by capturing offenses that are implicit (e.g., including irony) or that require world
knowledge to understand (i) their hurtful intent and (ii) who is targeted.

8. Conclusion
In this work, we investigated fine-grained cyberbullying role detection in a real-world social media
corpus for two languages (viz. English and Dutch). Apart from differentiating between “bully-
ing” and “not bullying” messages, we also aimed to detect three participant roles in the bullying
messages (i.e., “harasser,” “victim,” and “bystander-defender”). To our knowledge, no previous
study has been done to automatically predict the participant role in cyberbullying messages on a
representative corpus (i.e., containing real-world data and not biased by keyword search collec-
tion). We presented two different experimental setups, one where we optimized and compared
linear task-specific classification algorithms, and another one where we explored the performance
of fine-tuning pretrained transformer models for this task. In the first setup, different classifica-
tion algorithms were compared and evaluated as part of a combined ensemble architecture (i.e.,
Cascading and Voting). Given the highly imbalanced nature of the dataset, we also experimented
with filter-based feature selection and random undersampling to facilitate the classifier to learn
from the positive class. Feature selection seemed to generally have a minimal positive impact,
whereas random undersampling more often had a negative effect on the system performance
for both languages. In the second setup, we experimented with pretrained BERT, RoBERTa, and
XLNet models for English and BERTje and RobBERT for Dutch.

With both experimental setups, we have shown that participant roles can be classified with
satisfactory results. The transformer-based models RoBERTa and RobBERT achieved the high-
est score for English and Dutch. While RoBERTa outperformed the best Cascading classifier by
5%, the difference between RobBERT and the Voting classifier is less outspoken (1.6%). There
is a practical trade-off to consider as the linear models are much less computationally expensive
to train than fine-tuning large-scale language models. For English, the best model obtained an
macro-averaged F1-score of 60.25% in cross-validation and 55.84% on the holdout test set. For
Dutch, the best F1-score reached 54.92% in cross-validation and 56.73% on the holdout test set.

Both are a marked improvement over the majority and random baselines. This demonstrates
that cyberbullying role detection is feasible, even with little to no conversational and author-based
historic context. All bullying content is solely identified by textual content at the post level. We
have shown that automated role classification methods can be assistive tools for moderation pur-
poses. In addition, they can help in collecting data for bullying research, in a more efficient and
effective way than manual or commonly used keyword-based search.

While our results show that cyberbullying role classification in English and Dutch text are
feasible tasks, there is still room for improvement. As the data used for this research has lim-
ited context, it is often hard to distinguish between different roles, for example, discriminating
between “harassers” that initiate the bullying and assertive “victims” or aggressive “bystander-
defenders” often requires more context than what we had available (i.e., one question–answer pair
per instance). An interesting future research direction will be to investigate other conversational
data genres that allow to take user and context information into account.

Another challenge inherent to this type of task is data imbalance. In future research, we will
therefore investigate different methodologies to use DNNs for problems containing a high level of
class imbalance (see Johnson and Khoshgoftaar 2019 for a recent survey on the topic).
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Lastly, we will investigate whether our approach for role detection could be complementedwith
a script-based approach (Schank 1975) and (Tomkins 1978), in which stereotypical sequences of
(cyberbullying) events in a specific context are modeled.

Data availability and reproducibility. For reproducibility, we provide experiment replication data and source code for
download at https://osf.io/nb2r3/. The full annotated dataset is available upon request.
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