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A graph G is H-saturated if it contains no copy of H as a subgraph but the addition of any new
edge to G creates a copy of H. In this paper we are interested in the function satt(n, p), defined
to be the minimum number of edges that a Kp-saturated graph on n vertices can have if it has
minimum degree at least t. We prove that satt(n, p) = tn−O(1), where the limit is taken as n tends
to infinity. This confirms a conjecture of Bollobás when p = 3. We also present constructions for
graphs that give new upper bounds for satt(n, p).
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1. Introduction

We say a graph G is H-saturated if it contains no copy of H as a subgraph but the addition of
any new edge to G creates a copy of H. In this paper we are interested in the case where H is the
complete graph on p vertices, denoted Kp. For further results on saturated graphs see surveys by
either Faudree, Faudree and Schmitt [6] or Pikhurko [12]. Erdős, Hajnal and Moon [4] showed
that if G is a Kp-saturated graph on n vertices then e(G) � n(p−2)−

(p−1
2

)
, and that the unique

graph achieving equality is formed by taking a clique on p− 2 vertices and fully connecting it
to an independent set of size n− (p− 2). This extremal graph has minimum degree p− 2, and
no Kp-saturated graph on at least p vertices can have smaller minimum degree. Thus it is natural
to ask: How few edges can a Kp-saturated graph have if it has minimum degree at least t for
t � p−2?

Observe that any K3-saturated graph on n vertices must be connected and so cannot have
fewer than n− 1 edges. The graph comprising a single vertex connected to all other vertices is
K3-saturated, has minimum degree 1 and has this minimum number of edges. Duffus and Hanson
[3] showed that any K3-saturated graph on n vertices with minimum degree 2 has at least 2n−5
edges. Moreover, they showed that the unique graphs achieving this are obtained by taking a
5-cycle and repeatedly duplicating vertices of degree 2, that is, picking a vertex of degree 2
and adding a new vertex to the graph with the same neighbourhood as the chosen vertex. They

https://doi.org/10.1017/S0963548316000377 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548316000377


202 A. N. Day

also showed that any K3-saturated graph on n � 10 vertices with minimum degree 3 has at least
3n−15 edges and that any graph achieving this contains the Petersen graph as a subgraph.

In this paper we consider the function

satt(n, p) = min{e(G) : |V (G)| = n,G is Kp-saturated,δ (G) � t},

where δ (G) is the minimum degree of G. We also define the set Satt(n, p) to be

{G : |V (G)| = n,G is Kp-saturated,δ (G) � t,e(G) = satt(n, p)}.

The complete bipartite graph Kt,n−t shows that for n � 2t we have satt(n,3) � tn− t2. This upper
bound and Duffus and Hanson’s results led Bollobás [8] to conjecture that for fixed t we have
satt(n,3) = tn−O(1).

For more general values of p, Duffus and Hanson [3] showed that satt(n, p) � n(t + p−2)/2−
O(1). Writing α(G) for the size of the largest independent set in G, Alon, Erdős, Holzman and
Krivelevich [1] showed that any Kp-saturated graph on n vertices with at most O(n) edges has
α(G)� n−O(n/log logn). This shows that satt(n, p)� tn−O(n/log logn) as e(G)� α(G)δ (G).
Pikhurko [12] improved this result to show that satt(n, p) � tn−O(n log logn/logn).

Our main result in this paper improves these results by confirming and generalizing Bollobás’s
conjecture.

Theorem 1.1. Let t ∈ N. There exists a constant c = c(t) such that, for all 3 � p ∈ N and all
n ∈ N, if G is a Kp-saturated graph of order n and minimum degree at least t then e(G) � tn−c.

The proof of Theorem 1.1 is presented in Section 2. To see that this result is best possible (up
to the value of the constant), consider the graph obtained from fully connecting a clique of size
p− 3 to the complete bipartite graph Kt−(p−3),n−t . This graph is Kp-saturated and has minimum
degree t, showing that

satt(n, p) � tn− t2 + t(p−3)−
(

p−2
2

)
(1.1)

for n � 2t − (p−3) and t � p−2.
We remark that although it may seem surprising that the constant c(t) in the statement of

Theorem 1.1 does not depend on p, it is a consequence of the fact that any Kp-saturated graph
(on at least p−1 vertices) has minimum degree at least p−2. As a result, Theorem 1.1 is trivially
true whenever p � 2t + 2, and so, for fixed t, there are only a finite number of values of p we
need to consider. The independence of c(t) from p is also reflected in our proof of Theorem 1.1,
which only makes use of the fact that our graph is Kp-saturated for some 3 � p ∈ N and does not
make use of p’s value in any way.

On the other hand, Theorem 1.1 can be used to show the following: for all t, p ∈ N with
t � p− 2 � 1, there exists a constant c(t, p) such that, for all sufficiently large n ∈ N, we have
satt(n, p) = tn− c(t, p). Indeed, Theorem 1.1 together with (1.1) shows that, for n sufficiently
large, all G ∈ Satt(n, p) have δ (G) = t. Duplicating a vertex of degree t in such a graph G gives
a Kp-saturated graph on n + 1 vertices with minimum degree t and satt(n, p)+ t edges. Thus, as
n increases, the integer sequence tn−satt(n, p) becomes non-decreasing but bounded above by
c(t), and so is eventually constant.
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The proof of Theorem 1.1 can be used to show that c(t, p) � t(t
(2t2)). In Section 3 we discuss

constructing Kp-saturated graphs and prove a lower bound for c(t, p).

Theorem 1.2. Let 3 � p ∈N. There exists a constant C =C(p) > 0 such that, for all sufficiently
large t ∈ N, we have c(t, p) � C2t t3/2.

The large distance between these upper and lower bounds for c(t, p) naturally leads to the
problem of improving these bounds, or perhaps even determining c(t, p) for all t and p. Our
proof of Theorem 1.1 seems to be inefficient for the purposes of bounding c(t, p), and so we
believe c(t, p) is likely to be closer to the lower bound we give in Theorem 1.2 than the upper
bound obtained from Theorem 1.1.

We remark that one may also ask how few edges a Kp-saturated graph can have if restrictions
are placed on its maximum degree rather than its minimum degree. Results on this problem for
p = 3 can be found in the paper of Füredi and Seress [7] and also in the paper of Erdős and
Holzman [5]. Results for the case p = 4 can be found in the paper of Alon, Erdős, Holzman and
Krivelevich [1]. There are currently no known results for p � 5.

2. Proof of Theorem 1.1

For a graph G and a vertex v ∈ V (G), let N(v) be the set of vertices in G that are adjacent to v.
For X ⊆V (G) let NX (v) = N(v)∩X , let dX(v) = |NX(v)| and let e(X) be the number of edges in
the graph G[X ]. For another set Y ⊆V (G) that is disjoint from X , let NY (X) be the set of vertices
in Y adjacent to X and let e(X ,Y ) be the number of edges between X and Y .

Proof of Theorem 1.1. Let G be a Kp-saturated graph on vertex set V with |V |= n and δ (G) �
t. Given a set R ⊆V , let R be the closure of R under t-neighbour bootstrap percolation on G. That
is, let R =

⋃
i�0 Ri where R0 = R and

Ri = Ri−1 ∪{v ∈V : dRi−1
(v) � t}

for i � 1. Any vertex x ∈ Ri \Ri−1 sends at least t edges to Ri−1 and so e(R) � t(|R|− |R|). Let
Y (R) = V \R and for a vertex v ∈V let

wR(v) = d
R
(v)+

1
2

dY (R)(v).

We call wR(v) the weight of v (with respect to R). Within Y (R), we define B(R) to be the set
{v ∈ Y (R) : wR(v) < t}, which we call the set of bad vertices. Our aim will be to prove the
following claim.

Claim 2.1. There exists a constant c1 = c1(t) and a set R ⊆ V with |R| � c1(t) such that
B(R) = /0.

https://doi.org/10.1017/S0963548316000377 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548316000377


204 A. N. Day

If we can prove Claim 2.1 then we have proved the theorem as

e(G) = e(R)+ e(R,Y (R))+ e(Y (R))

� t(|R|− |R|)+ ∑
y∈Y (R)

wR(y)

� t(|R|− c1)+ t|Y (R)|
= t(n− c1),

as required. To prove Claim 2.1, we would like to show that if a set R⊆V does lead to B(R) being
non-empty, then we can move a small number of vertices into R so that the remaining vertices in
B(R) have strictly larger weight. If so, we can start with some initial small set of vertices R and
keep moving small numbers of vertices into R until B(R) is empty. This idea of moving vertices
into R fits naturally with our set-up so far. Indeed, suppose that S is a set of vertices with R ⊆ S.
We have that R ⊆ S and Y (R) ⊇ Y (S) and so wR(v) � wS(v) for all v ∈ V . Thus, we have that
B(R) ⊇ B(S).

It turns out that dealing with wR(v) directly is difficult and so we introduce a control function
lR(v) = ∑x∈N(v) fR(x) defined for all v ∈V , where for all x ∈V

fR(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 if x ∈ R,

1
2

if x ∈ R\R,

1
2t

dR(x) if x ∈ Y (R).

Observe that lR(v) � wR(v) for every v ∈ V , since dR(X) � t − 1 for every x ∈ Y (R). Similarly,
we have fR(v) � fS(v) for every R ⊆ S and every v ∈V , since Y (S) ⊆ Y (R).

We use our control function lR(v) to make the following claim.

Claim 2.2. For every set R ⊆ V , there exists a set S ⊆ V such that R ⊆ S, |S| � |R|+ t2|R| and
lS(v) � lR(v)+1/2t for all v ∈ B(S).

We note that Claim 2.2 is enough to prove Claim 2.1 and hence our theorem. Indeed, begin
by taking R = {v} for any v ∈ V and repeatedly replace R with S. After at most 2t2 such
replacements, we will have that B(R) is empty: any bad vertex v ∈ B(R) would have wR(v) �
lR(v) � t, which is not possible by the definition of B(R). Moreover, each time we replace R with
S we have |S| � |R|+ t2|R|, and so our final set will have size bounded above by some function
c1(t), as required.

We now describe how to find a suitable set S given some set R. Suppose that B(R) is non-empty.
Let C be the set

{C ⊆ R : C = NR(y) for some y ∈ B(R)}

and label its elements C = {C1, . . . ,Ck}. The set C is a collection of subsets of R and so k � 2|R|.
For each Ci ∈ C pick a representative yi ∈ B(R) such that Ci = NR(yi). As yi ∈Y (R), we have that
d

R
(yi) < t and so, as d(yi) � t, we can pick some xi ∈ Y (R) such that yi and xi are adjacent. Let
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X = {x1, . . . ,xk} and let

S = R∪X ∪N
R
(X).

Clearly R ⊆ S. Noting that d
R
(x) � t −1 for each x ∈ X , which holds as X ⊆Y (R), it follows that

|S| � |R|+ tk � |R|+ t2|R|. It remains to check that lS(y) � lR(y)+ 1/2t for all y ∈ B(S). Recall
that for each v ∈V we have fS(v) � fR(v). Thus, to show that lS(y) � lR(y)+1/2t for y ∈ B(S) it
is sufficient to find v ∈ N(y) with fS(v) � fR(v)+1/2t.

Given y ∈ B(S) let Ci ∈ C be such that NR(y) = Ci. We have two cases to deal with depending
on whether or not y is adjacent to xi. If y is not adjacent to xi then there are a few further subcases
to deal with.

Case 1: xi ∈ N(y). If y is adjacent to xi then, as xi ∈ Y (R)∩ S, we have fR(xi) < 1/2 while
fS(xi) = 1, and so we are done.

Case 2: xi /∈ N(y). If y is not adjacent to xi then there exists some clique Z ⊆ V of order p− 2
such that adding an edge between y and xi turns Z ∪ {xi,y} into a copy of Kp. Recalling that
NR(y) = NR(yi), we note that Z � R, as otherwise Z ∪{xi,yi} would be an example of a copy of
Kp in G. Thus there exists some z ∈ Z \R such that z is adjacent to xi and y. We conclude the
proof by showing that fS(z) � fR(z)+1/2t.

Case 2a: z ∈ R \ R. If z ∈ R \ R then z ∈ S (as it is adjacent to xi) and so fS(z) = 1, while
fR(z) = 1/2.

Case 2b: z∈Y (R)∩S. If z∈Y (R)∩S then fS(z) � 1/2, while fR(z) � (t−1)/2t, as dR(z) � t−1.

Case 2c: z ∈ Y (R)∩Y (S). If z ∈ Y (R)∩Y (S) then fR(z) = dR(z)/2t and fS(z) = dS(z)/2t. As
xi ∈ Y (R)∩S and R ⊆ S, we have that dS(z) � dR(z)+1, and so fS(z) � fR(z)+1/2t.

In all cases, we have shown that there is some v ∈ N(y) with fS(v) � fR(v)+1/2t. As a result,
we have that lS(y) � lR(y)+1/2t for all y ∈ B(S). This completes the proof of Claim 2.2, which
in turn proves Claim 2.1 and hence our theorem.

As proved in the Introduction, Theorem 1.1 can be used to show that there exists a constant
c(t, p) such that, for n sufficiently large, we have satt(n, p) = tn− c(t, p). From a quantitative
perspective, Theorem 1.1 gives an upper bound for c(t, p) that is larger than a tower of exponen-
tials of height 2t2. This upper bound can be greatly improved by, in the proof of Theorem 1.1,
replacing C with its set of maximal elements (with respect to set inclusion). Under this change,
C becomes an antichain (meaning that if A,B ∈ C then A �⊆ B) whose elements have size at most
t −1. From this, the LYMB-inequality, due to Lubell [10], Yamamoto [13], Meshalkin [11] and
Bollobás [2], shows us that |C| �

( |R|
t−1

)
. As a result, it is possible to prove

c(t, p) � t(t
(2t2)). (2.1)

The nature of the proof of Theorem 1.1 leads us to believe that (2.1) is not a good upper bound
for c(t, p). For example, the proof only used that G is Kp-saturated for some 3 � p ∈ N and did
not make any use of p’s actual value. Moreover, in the proof of Claim 2.2 we only used the Kp-
saturated condition on missing edges in Y (R) rather than on all missing edges in G. In Section 3
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Figure 1. G(n,4) where X1 = {1,2},X2 = {1,3},X3 = {1,4}. An edge between two sets (or between a vertex and a
set) represents that the two sets (or vertex and set) are fully connected.

we construct graphs that give a lower bound for c(t, p). We believe this lower bound to be closer
to the behaviour of c(t, p) than the upper bound (2.1) obtained from Theorem 1.1.

3. Constructing Kp-saturated graphs

Proof of Theorem 1.2. Let n, t ∈ N with t � 4 and n � t
(
1 +

( t−1
	t/2
−1

))
. We begin by con-

structing a graph G(n, t) on n vertices that is K3-saturated and has minimum degree t. Let
X = {X ⊆ [t] : 1 ∈ X , |X | = 	t/2
} and label its elements X = {X1, . . . ,Xr}. The vertices of
G(n, t) are split into vertex classes C,H,V1, . . . ,Vr,W1, . . . ,Wr, where

• H = {h1, . . . ,ht},
• each Vi has 	t/2
 vertices,
• each Wi has �t/2� vertices,
• C has the remaining n− t

(
1+

( t−1
	t/2
−1

))
vertices.

The edges of G(n, t) are as follows:

• C is fully connected to H,
• each Vi is fully connected to the set {hk : k ∈ Xi},
• each Wi is fully connected to the set {hk : k �∈ Xi},
• each Vi is fully connected to Wi.

See Figure 1 for an example of the construction when t = 4. It is easy to verify that G(n, t) has
minimum degree t, is K3-saturated and has tn− f (t) edges, for some function f (t) = Ω(2t t3/2).
We now use G(n, t) to create Kp-saturated graphs for p > 3.

Given a graph G, let G∗ be the graph obtained by adding a new vertex to G and fully connecting
it to all other vertices. If G is a Kp-saturated graph with minimum degree at least t, then G∗ is
a Kp+1-saturated graph with minimum degree at least t + 1. Applying this construction p− 3
times to the graph G(n− p+3, t − p+3) (where t � p−2 and n is sufficiently large) gives a Kp-
saturated graph on n vertices with minimum degree t and fewer than tn− f (t − (p− 3)) edges.
Thus, for fixed p, we have c(t, p) = Ω(2t t3/2).
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The idea of forming a new graph G∗ from G can also be considered in the other direction.
We say a vertex in a graph is a conical vertex if it is connected to all other vertices. Suppose G
is a Kp-saturated graph with minimum degree t. If G has a conical vertex, then removing this
vertex leaves a Kp−1-saturated graph with minimum degree t −1. Hajnal [9] showed that if G is
a Kp-saturated graph without a conical vertex then δ (G) � 2(p− 2). Recall that a consequence
of Theorem 1.1 is that, for n sufficiently large, if G ∈ Satt(n, p) then δ (G) = t. Thus, if t <

2(p − 2), these graphs must have a conical vertex and so are of the form G∗ for some G ∈
Satt−1(n−1, p−1). This leads us to the following question.

Question 3.1. For which n, t, p ∈ N are all graphs in Satt(n, p) of the form G∗ for some G ∈
Sat(t−1)(n−1, p−1)?

We remark that there do exist values of n, t and p where Satt(n, p) contains graphs without a
conical vertex. For example, Sat4(6,4) consists of only the complete tripartite graph K2,2,2. On
the other hand Alon, Erdős, Holzman and Krivelevich [1] showed that sat4(n,4) = 4n− 19 for
n � 11, and that all graphs achieving equality have a conical vertex. Perhaps it is the case that, for
all fixed t, all fixed p � 4 and all n sufficiently large, all graphs in Satt(n, p) have a conical vertex.
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