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The aerodynamics of hovering flight in a hawkmoth (Manduca sexta) are examined
using a computational modelling approach which combines a low-fidelity blade-
element model with a high-fidelity Navier–Stokes-based flow solver. The focus of
the study is on understanding the optimality of the hawkmoth-inpired wingstrokes
with respect to lift generation and power consumption. The approach employs a tight
coupling between the computational models and experiments; the Navier–Stokes model
is validated against experiments, and the blade-element model is calibrated with the
data from the Navier–Stokes modelling. In the first part of the study, blade-element
and Navier–Stokes modelling are used concurrently to assess the predictive capabilities
of the blade-element model. Comparisons between the two modelling approaches also
shed insights into specific flow features and mechanisms that are lacking in the
lower-fidelity model. Subsequently, we use blade-element modelling to explore a large
kinematic parameter space of the flapping wing, and Navier–Stokes modelling is used
to assess the performance of the wing-stroke identified as optimal by the blade-element
parameter survey. This multi-fidelity optimization study indicates that even within a
parameter space constrained by the animal’s natural flapping amplitude and frequency,
it is relatively easy to synthesize a wing stroke that exceeds the aerodynamic
performance of the hawkmoth wing stroke. Within the prescribed constraints, the
optimal wing stroke closely approximates the condition of normal hover, and the
implications of these findings on hawkmoth flight capabilities as well as on the issue
of biomimetic versus bioinspired design of flapping wing micro-aerial vehicles, are
discussed.

Key words: biological fluid dynamics, computational methods, swimming/flying

1. Introduction
The development of flapping wing micro-aerial vehicles (MAVs) in recent years

has been inspired primarily by flying insects and birds (see Ellington et al. 1996;
Lehmann & Dickinson 1997; Dickinson, Lehmann & Sane 1999; Fry, Sayaman &
Dickinson 2003; Warrick, Tobalske & Powers 2005; Wood 2008; Floreano et al. 2009).
Design of such MAVs can either follow a ‘biomimetic’ approach where the designer
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mimics as closely as possible all features of the corresponding biological system or it
can follow a ‘bioinspired’ approach where key features of the biological system are
identified, their function understood and the feature then modified and/or simplified for
adoption into the engineered system. The latter approach is based on the recognition
that an engineered system usually has design objectives that differ from those of the
biological flyer. Biological organisms are a result of evolution through natural selection
which does not necessarily produce designs that are ‘optimal’ in terms of performance
metrics relevant to a MAV designer. The ultimate objective of any biological organism
is to successfully reproduce and pass along its genetic information to subsequent
generations; this may be accomplished in a multitude of ways, some detrimental
to improved flight performance. For example, once adequate flight performance is
achieved, animals may evolve to direct resources toward reproduction rather than
further improvements in flight ability. In contrast, an engineered MAV might have
more specific design objectives in terms of range, payload, etc. In addition, evolution
by natural selection is a dynamic process which is constantly affected by an ever-
changing environment, and biological designs often include vestigial or redundant
features that increase complexity without enhancing performance. This implies the
possibility of learning from biological flyers and then subsequently simplifying their
design and/or improving on their performance.

The bioinspired design approach also recognizes that engineered and biological
flyers differ with respect to the limitations and capabilities of the materials, actuators,
control systems, power and sensory modalities that are available to them, and that
simply mimicking nature might not work. An often-cited example in this regard is
the singular lack of rotary motors in biological organisms (with the notable exception
of the molecular-scale rotary motor powering bacterial flagella (Berg 2003)) and the
preponderance of such motors in engineered systems. Thus, a flapping wing in a
biological flyer that is designed to be powered by muscles (i.e. linear motors) might
have to be modified to work in conjunction with a rotary mechanism.

The bioinspired design approach requires tools that can evaluate candidate designs
and search for optimal (or at least higher-performing) solutions. Evaluation and
optimization through experiments is a possibility, but can be prohibitively expensive
given the dimensionality and size of the parameter space that often needs to be
explored. Computational modelling seems to be well suited for this purpose, but here
too, one has to compromise between model fidelity and computational effort. In the
context of the aerodynamic design of flapping wings, the topic of the current paper,
modelling tools range from low-fidelity, low-cost blade-element models (BEM) to
high-fidelity, high-effort Navier–Stokes (NS) solutions.

BEMs, occasionally also known as strips models, operate by dividing the wing
into a set of chordwise strips and computing the fluid dynamic forces produced
by those elements from their instantaneous velocity about the animal or vehicle,
the velocity of the surrounding fluid and the angle of incidence between the wing
element and fluid (Osborne 1951). These values, which may be generated as part
of a simulation or from kinematic analysis of an organism, are then put into a
function relating the angle of incidence to wing performance, i.e. coefficients of
lift and drag. The forces thus generated are then summed across all wing elements,
and the basic BEM also modified to account for other instantaneous forces such as
those due to fluid added mass or wing rotation (Berman & Wang 2007). As such,
BEM are a form of quasi-steady analysis, where the aerodynamic performance of the
wing is assumed to be independent of all events both before and after the instant
under consideration. Thus, simple BEMs cannot accurately model time-history-related
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phenomena such as wing–wing (Weis-Fogh 1973) or wing–wake (Dickinson et al.
1999) interactions in flying insects, and post-stall dynamics of typical aerofoils
(Delaurier 1993). BEMs also lack any notion of the vortex dynamics underlying force
production by flapping foils and are thus unaffected by suboptimal vortex shedding
frequencies (Triantafyllou, Triantafyllou & Grosenbaugh 1993). Furthermore, BEM
depend critically on the function relating element angle of incidence to aerodynamic
forces, typically determined by a separate computational or mechanical modelling
study, although some researchers apply the BEM approach in reverse, calculating the
minimum average coefficient-of-lift required to support an animal given observations
of its flapping movement (Osborne 1951; Pennycuick, Hedenstrom & Rosén 2000).

Despite these weaknesses, BEMs have seen wide application to both biological and
engineered systems, largely because of their computational simplicity and amenability
of combining experimental recordings with the modelling approach. Computational
simplicity allowed early application before the wide use of digital computers (e.g.
Osborne 1951; Blake 1979) and in more recent times, has facilitated large-scale
parameter optimization studies in animal swimming (Walker & Westneat 2000) and
flying (Hedrick & Daniel 2006; Berman & Wang 2007) as well as wind turbines
(Benini & Toffolo 2002).

An example of bioinspired design based on NS modelling can be found in the work
of Bozkurttas et al. (2009) and Tangorra et al. (2010). In these studies, NS modelling
was coupled with a proper orthogonal decomposition (POD)-based analysis of the
fin kinematics to significantly reduce the design complexity of a bioinspired robotic
pectoral fin, while preserving key features of its hydrodynamic performance. However,
NS modelling, especially for realistic three-dimensional cases, is computationally
expensive and cannot be used for an exhaustive parameter sweep.

Given the complementary nature of these modelling techniques, a seemingly viable
approach to bioinspired design is one that combines the two techniques; in this
approach, NS modelling would be used to calibrate the BEM for a particular
flapping-wing configuration; BEM would then be used for an exhaustive survey of
the parameter space and to identify solutions that are optimal; finally, NS modelling
would provide a more accurate assessment of the solution(s) identified as optimal by
the BEM. To the best of the authors’ knowledge, such a multi-fidelity study for the
evaluation and optimization of flapping wings has not been conducted previously and
one objective of the current paper is to explore the viability of such an approach
for the particular case of flight with flapping wings. We choose hovering flight in
a hawkmoth (Manduca sexta) as the source of our bioinspired approach; we show
that the wing stroke employed by this insect for hovering is suboptimal in terms of
aerodynamic performance and we use the multi-fidelity approach to search for optimal
solutions.

2. Approach
The approach employed in the current study is described here. This includes a

discussion of the animal model used, details of the experimental set-up and flight
measurements, a description of the BEM and NS modelling approaches used in the
current study, as well as the techniques used for optimization.

2.1. Animal model
The hawkmoth species examined here, Manduca sexta, is a relatively large (∼2 g
body mass, 10 cm wing span), nectivorous insect with a number of characteristics
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that make it and its close relatives particularly useful subjects in laboratory studies
of animal flight. Specifically, the moths: (i) are readily available year-round from
domestic colonies; (ii) exhibit controlled hovering flight behaviour when feeding from
a nectar source, permitting easy experimental application of techniques ranging from
kinematic analysis to digital particle image velocimetry (PIV); (iii) are able to carry
a substantial payload of experimental apparatus to provide an on-board measurement
capability (Wang, Ando & Kanzaki 2008); and (iv) are well-characterized organisms,
with ongoing research in areas ranging from hormonal and neural control to ecology.
Aerodynamically, hawkmoths exhibit many common features of insect flight, including
a strong leading-edge vortex (LEV), first discovered in this species (Ellington et al.
1996), and substantial inertial and aeroelastic deformation of the wing surface
(Combes & Daniel 2003). For these reasons, the aerodynamics of hawkmoth flight
have been studied by many groups applying a variety of techniques including
kinematics, smoke visualization, dynamically scaled mechanical models, computational
fluid dynamics (CFD) and two-dimensional PIV (Willmott & Ellington 1997a;
Willmott, Ellington & Thomas 1997; Liu et al. 1998; Bomphrey et al. 2005).

The hawkmoth recorded and modelled in this study was a male from the colony
at The University of North Carolina at Chapel Hill, recorded on the third day
post-eclosure. The moth was conditioned to hover and fed from an artificial flower
containing a sugar solution (4:1 water:sugar) placed more than 10 chord lengths
above the floor of the flight chamber. Recordings were collected once the moth was
sufficiently trained to regularly approach the flower. This individual moth weighed
1.39 g at the time of recording, had a 9.86 cm wingspan, 17.5 cm2 total wing area
and a non-dimensional second moment of wing area of 0.51 for the combined fore
and hind wings spread as in mid-downstroke. The moth was not sacrificed after
recording, so specific body-segment masses were not available and were assumed to
follow the distribution established for this colony. A prior examination of the segment
mass proportions from the animals in the UNC colony revealed the following mass
distribution: abdomen 50.1± 5.4 % of total mass (mean ± standard deviation, n= 10),
thorax and head 45.1 ± 3.6 %, wings 4.8 ± 0.9 %. The centre-of-mass (CoM) for
each of these segments was determined for a male moth from the UNC colony by
separating them and suspending them from a string at several points on the periphery.
The CoMs of the abdomen and head plus thorax segments were near the geometric
centre of the segments while the wing CoM was closer to the root than to the
geometric centre.

2.2. Experimental set-up and kinematic analysis
The moth was recorded while hovering in front of the artificial flower (but not in
contact with it) in a 0.37 m3 glass-walled flight chamber (figure 1a) by a set of three
orthogonally positioned high-speed video cameras (2× Phantom v7.1 and 1 Phantom
v5.1, Vision Research, Wayne, NJ) operating at 1000 frames per second and a shutter
duration of 300 µs. The flight chamber was strongly lit at the infrared wavelength of
760 nm to permit operation of the cameras at these shutter speeds, but was only dimly
lit in the visible spectrum (85 lux) to accommodate the behaviour of Manduca sexta,
which are typically active at twilight. Figure 1(b) shows sample frames that were
taken from the high-speed cameras. The cameras were calibrated for three-dimensional
reconstruction using the direct linear transformation (DLT) method (Hedrick 2008).

Three-dimensional kinematics were obtained by tracking the location of the left and
right wing base, wing tip and the forewing notch on the trailing edge of the wing,
the centre of the head, the thorax–abdomen junction and the tip of the abdomen
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(a) (bi) (bii)

(biii) (biv)

FIGURE 1. The flight enclosure and apparatus used to record the moth and sample images
from the high-speed cameras. (a) The moth flew in the centre of a 0.37 m3 glass-walled flight
chamber in the view of three synchronized high-speed (1000 Hz) video cameras. Lighting for
the high-speed cameras was provided by eight infrared light-emitting diodes positioned inside
the chamber. (b) Sample images from the video recordings captured in the apparatus showing
a moth in four stages of a wingbeat cycle: (i) early downstroke; (ii) late downstroke; (iii)
middle upstroke; and (iv) late upstroke.

through 4.5 successive hovering wingbeats including the wingbeat used for the NS
analysis. Kinematics are inherently noisy data due to discretization at the sensor level
and introduction of operator error as points are recognized and marked in the image,
whether the marking is performed by human or computer. Thus, the body segment
landmarks were marked independently by four different researchers and the differences
among outputs from different researchers used to quantify the measurement error rate.
This error rate was used along with a quintic smoothing spline to low-pass filter the
position measurement time series to the smoothest (i.e. smallest magnitude second-
derivative) curve consistent with the measurement and error rate. Next, the smoothed
points (and segment mass information described above) were used to compute the
three-dimensional location of the CoM for each of the four body segments (left wing,
right wing, thorax (including head) and abdomen). We then computed the segment
accelerations by taking the second derivative with respect to time and adding a
gravitational acceleration of 9.81 m s−2. These three-dimensional accelerations were
then converted to forces by multiplying by the segment masses and added together
to reveal the net instantaneous aerodynamic force exerted on the moth, in essence
quantifying the instantaneous acceleration of the CoM of the whole animal. Finally,
to quantify the variation among flaps, we divided the digitized sequence into four
complete phase-matched flapping cycles, and computed the phase-specific standard
deviation among flaps for the total force measurements (figure 2). This variation
among strokes was used as a proxy for the uncertainty in the measurement of any
individual stroke. Camera calibration and kinematics analysis were performed using
the DLTdv package (Hedrick 2008) for MATLAB (The Mathworks, Natick, MA).

2.3. Matching wing kinematics
Using the images from the calibrated high-speed video apparatus (figure 1b), we
reconstructed the flexible wings and body as a mesh suitable for input into our
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FIGURE 2. Instantaneous vertical (a) and horizontal (b) forces measured from the kinematic
reconstruction of the flapping moth. The heavy black line shows the net aerodynamic force,
the error bar around it shows ± one standard deviation measured from the variation among
the four wingbeats in the flapping sequence. The other lines show the forces recovered from
the acceleration of the individual body segments. The wings typically move in the opposite
direction of the head and thorax, such that the magnitude and even direction of the net forces
acting on the moth cannot be determined from the movements of a single location on the
animal. The downstroke portion of the flapping cycle is from t/T of 0 to 0.55; upstroke is
from 0.56 to 1.0.

CFD solver. First, Gridgen (Pointwise, Inc., Fort Worth, TX) was used to reconstruct
the hawkmoth wing mesh with zero thickness. Because the fore and hind wings
do not significantly change their positions relative to each other during the flapping
cycle, they were modelled as a single surface. Next, the three-dimensional modelling,
animation, visual effects and rendering software Maya (Autodesk Inc., San Rafael,
CA) was used to create an ‘animation’ of the moth in flight where the wing kinematics
were matched very closely to 16 different instances in the flapping cycle as observed
in the high-speed videos in three views. Figure 3 shows the match between the images
and our model at one instant in time. Deformation was added to the wing in Maya by
positioning a set of internal wing spars analogous to the veins of the actual moth. This
animation was then interpolated in time with a cubic spline to produce a high-frame-
rate input into the CFD solver. The geometry of the moth body was constructed from a
high-resolution (0.005 in. precision) NextEngine (NextEngine, Inc., Santa Monica, CA)
laser scanner.

2.4. Navier–Stokes flow modelling
A sharp-interface immersed-boundary method (Mittal & Iaccarino 2005) described by
Mittal et al. (2008) and Seo & Mittal (2011) has been used in these simulations. The
governing equations are the three-dimensional unsteady, viscous incompressible NS
equations:

∂ui

∂xi
= 0; ∂ui

∂t
+ ∂uiuj

∂xj
=− 1

ρ

∂p

∂xi
+ ν ∂

∂xj

(
∂ui

∂xj

)
(2.1)

where ui are the velocity components, p is the pressure and ρ and ν are the fluid
density and viscosity, respectively. The above equations are discretized using a cell-
centred, collocated (non-staggered) arrangement of the primitive variables (ui, p). In

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

46
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2013.46


124 L. Zheng, T. L. Hedrick and R. Mittal

FIGURE 3. (Colour online) Comparison of the reconstructed moth model with three video
views of the actual moth at the beginning of the upstroke.

addition to the cell-centre velocities (ui) that satisfy the momentum equations, the
face-centre velocities, which satisfy mass conservation, are also computed (Ye et al.
1999). A fractional-step method (Van Kan 1986; Zang, Street & Koseff 1994) is used
for the time-advancement of the above equation.

The effect of the immersed boundary on the flow is incorporated by using a
multi-dimensional ghost-cell methodology. This method falls in the category of sharp-
interface discrete forcing immersed boundary methods (Mittal & Iaccarino 2005). The
current method employs an unstructured grid with triangular elements to represent the
surface of three-dimensional bodies such as the insect wings which is immersed into
the Cartesian volume grid. The ghost cells are defined as the cells inside the solid
that have at least one neighbour in the fluid. The second-order accurate discretization
on the body surface along with the second-order accuracy of the fluid cells leads
to second-order local and global spatial accuracy in the computations (Mittal et al.
2008). The accuracy of the solver for zero-thickness bodies, such as insect wings, has
been demonstrated by simulating flow past a suddenly accelerated plate and comparing
results with available experiments and simulations (Mittal et al. 2008). More details
regarding such immersed-boundary methods can be found in the work of Ye et al.
(1999), Udaykumar et al. (2001) and Mittal & Iaccarino (2005).

2.5. Blade-element model
BEMs of flapping flight operate under the assumption that the total instantaneous force
on a wing can be computed as the sum of forces acting on a set of infinitesimal
chordwise strips. The forces themselves are provided by reference to quasi-steady
aerodynamic models of varying complexity, but typically require wing orientation,
a flow velocity vector, a wing shape and a set of force coefficients as inputs.
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Early models used quasi-steady force coefficients derived from measurements made
on animal wings fixed in static flows (Osborne 1951; Willmott & Ellington 1997b).
With further improvement in understanding of the aerodynamic properties of flapping
wings, BEMs began to take advantage of quasi-steady aerodynamic force models
derived from dynamically scaled flapping robots (Dickinson et al. 1999; Usherwood
& Ellington 2002). When running with flapping kinematics similar to those used
by actual flying animals, BEMs based on these experimentally derived quasi-steady
models provide sufficient force to support body weight (Hedrick & Daniel 2006;
Berman & Wang 2007). Comparing with CFD models, the chief advantage of all
BEMs is their simplicity, which allows rapid computation and facilitates studies that
require a large number of evaluations of some flight characteristic, e.g. flight control
(Hedrick & Daniel 2006) or energy minimization (Berman & Wang 2007).

In this paper, a previously established BEM of hawkmoth flapping flight (Hedrick
& Daniel 2006) which incorporates quasi-steady approximations of the aerodynamic
forces due to wing translation (Dickinson et al. 1999), rotation of the wing about its
spanwise axis (Sane & Dickinson 2002) and added mass was employed. In this model,
the force on any given strip is calculated based on its angle of incidence with respect
to the local flow, and its angular velocity and acceleration.

For the purpose of optimizing the wing stroke, we assume that the wing of the
hawkmoth in hovering flight can be approximated as a rigid flat plate. While previous
as well as the current (see figure 3) studies clearly show noticeable spanwise and
chordwise curvature as well as spanwise twist during the stroke (Zeng, Hao &
Kawachi 2000; Sunada et al. 2002; Wang et al. 2003; Walker, Thomas & Taylor
2008), a flat-plate approximation has often been used for these insects (Willmott &
Ellington 1997a; Liu & Aono 2009). For a rigid, flat-plate wing, the wing position is
specified in the spherical (φ, θ) coordinate of the wing tip with respect to the wing
root and a spanwise rotation α about the axis extending from the wing root to the
wing tip specifying the wing pitch. For a given motion of the wing, the total force is
calculated as the sum of the blade-element estimates of force due to wing translation,
force due to wing rotation about the spanwise axis and the added-mass acceleration
reaction. As given by Hedrick & Daniel (2006), the force due to wing translation is
computed as

Ftrans = 0.5ρRc̄
∫ 1

0
Ctrans(r̂)U

2(r̂)ĉ(r̂) d(r̂) (2.2)

where ρ is air density (1 kg m−3), R (shown in figure 4c) is the wing length, U
is the instantaneous velocity of the flow across the wing, Ctrans is the aerodynamic
force coefficient, r̂ is the non-dimensional radial position along the wing, c̄ is the
average chord-length and ĉ is the non-dimensional chord length (scaled to c̄), and the
aerodynamic force Ftrans is assumed to act perpendicular to the wing surface.

Following Sane & Dickinson (2002), the force due to wing rotation about the span
axis is estimated as

Frot = CrotρUT α̇c̄2R
∫ 1

0
r̂ĉ2(r̂) d(r̂) (2.3)

where Crot is the force coefficient for wing rotation, UT is the instantaneous velocity
of the wing tip, α̇ is the wing’s instantaneous span-axis rotational velocity, c̄ is mean
chord length and ĉ is the non-dimensional chord length for a particular strip. The
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FIGURE 4. (Colour online) Wing kinematics for the hawkmoth in hover: (a) schematic
showing stroke and elevation angles for the current study as well as that of Liu & Aono
(2009); (b) comparison of AoR relative to stroke plane between current work and Liu & Aono
(2009). The AoR along the spanwise direction is not constant in this work due to the wing
twist; (c) definition of stroke angle (θ ) and elevation angle (φ). Wing length R is defined as
the distance between wing root and wing tip; (d) definition of AoR and AoA. Cr is the wing
curvature obtained by the plane which is vertical to the line joining wing root and tip. C is the
line joining the leading and trailing edge of Cr and the black dot represents the leading-edge.
AoR is defined as the angle between stroke plane and the line perpendicular to the wing
surface (shown as the line with an arrow). During downstroke, AoA equals to AoR(−) plus
90◦; during upstroke, AoA equals to 90◦ minus AoR(+).

forces due to added-mass were estimated based on the following formula:

Facc = ρπc̄2R2

4

∫ 1

0
r̂ĉ2(r̂) d(r̂)[Φ̈ sinα + Φ̇α̇ cosα] + ρπRc̄3α̈

16

∫ 1

0
c̄3(r̂) d(r̂) (2.4)

where Φ̇ and Φ̈ are the wing’s overall instantaneous angular velocity and acceleration,
α is the wing’s span-axis angular position, α̇ is the wing’s span-axis rotational velocity
and α̈ is the wing’s span-axis rotational acceleration. Given that the pressure force
dominates viscous force for the situations of interest here, we assume that the net
force estimated above acts normal to the wing surface and we decompose this net
force into a vertical (lift) and lateral (drag) component.
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2.6. Optimization techniques
As will be discussed in § 4.1, we use harmonic wing motions represented by eight
independent parameters within a combined genetic algorithm (GA) (Krishnakumar
1989) and simplex search (Nelder & Mead 1965) framework to synthesize wing
strokes which might outperform the stroke from the actual moth according to different
criteria. These cost function criteria also include constraints to prevent the optimization
routines from adopting wing strokes with greater overall flapping amplitude or higher
flapping frequency than used by a real animal, thereby keeping the optimization within
some of the constraints which the actual animal appears to operate under. While larger
frequencies or amplitudes are easily shown to lead to greater aerodynamic force or
efficiency in BEMs, they also increase the inertial power requirements of flapping
which were not modelled here.

In brief, the GA creates a population of unique individuals with different, randomly
selected genotypes of flapping kinematic parameters. The performance of these
individuals is then evaluated using the cost function of our choosing and high-
fitness individuals propagated into the next generation as: (A) clones; (B) clones
with mutations or changes to a few parameters; and (C) by mixing their parameters
with those of other high fitness individuals. The next generation is filled randomly
with these novel individuals and the process repeated until it converges to a local
minimum of the cost function, with the random nature of the GA allowing it to reject
poor local minima. After the GA converges, the individual with the highest fitness
are used as the basis for a gradient-based search to find the local minima. These
individuals are selectively transferred to the NS modelling to more accurately assess
their performance.

3. Validation of Navier–Stokes modelling
The underlying assumption in this multi-fidelity approach is that the NS approach

provides an accurate solution of the aerodynamics of flapping flight in the regime
relevant to a hovering hawkmoth. In order to confirm this, the NS approach has to be
validated carefully and resolution requirements established. In this section, we describe
this validation process and the results from the validation. Many prior studies applying
CFD to animal flight (e.g. Aono, Shyy & Liu 2009; Liu & Aono 2009) took the
approach of comparing the whole-stroke mean lift to the weight of the animal. While
this type of validation is a good starting point, it is not sufficient to demonstrate
that the animal and simulation produce similar temporal variation in forces. Correct
prediction of these temporal variations is crucial both for connecting force production
with specific aerodynamic features as well as for accurate estimation of aerodynamic
power.

3.1. Experimental estimation of aerodynamic forces
The net instantaneous aerodynamic force acting on the moth was obtained from the
calibrated video sequences as described above along with the accelerations of the
different body segments of the moth. As shown in figure 2, the moth produces
substantially greater net vertical force during the downstroke phase of the flapping
cycle (t/T < 0.55) compared with the upstroke phase. Vertical force peaks at a t/T
of approximately 0.25, or shortly before mid-downstroke. A second vertical force peak
occurs near mid-upstroke (phase ∼0.8), but the magnitude of this force is less than
half of that during downstroke. Minimal or even slightly negative net vertical forces
are generated at the wing turnaround events near the ends of downstroke and upstroke.
With respect to horizontal force, the magnitude of force generated in the two halves of
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the stroke cycle is similar, although opposite in sign and also tends to peak near the
midpoint of each half stroke. The horizontal force generated in downstroke is directed
rearward, pushing the moth backward, while horizontal force in upstroke is directed
forward.

The experimental results shown are phase-averaged over four consecutive flapping
cycles that were recorded in the experiment where the moth was hovering in place
with no significant lateral or vertical motion. These are also the same cycles that
were used to generate the flapping-wing model for the flow simulations. The cycle-to-
cycle variation in these flaps were used to estimate the variation (shown as bars in
figures 2 and 8) in the experimental values and these are indicative of the level of
variability and uncertainty that is inherent in these biological experiments. Some of
this variability is likely associated with measurement error but some comes from the
fact that there are indeed noticeable cycle-to-cycle variations in the wingbeat even in a
case where the insect seems to be hovering in place.

3.2. Wing kinematics during flapping flight
For the particular moth examined in this work, the body weight, wing length, mean
chord length, flapping frequency, wingbeat amplitude and the stroke plane angle are
m = 1.39 g, R = 4.93 cm, c̄ = S/2R = 1.77 cm, f = 1/T = 25 Hz, θA = 100.3◦ and
β = 21.8◦, respectively. The average tip velocity during one cycle is U = 2θAfR =
4.3 m s−1. Based on these, the wing-flapping Reynolds number was estimated to be
Re = U × c̄/ν = 5297. The above parameters are all within the range of previous
records for hovering hawkmoths (Willmott & Ellington 1997a).

The comparison of wing kinematics between the current study and previous model
with flat-plate wings (Liu & Aono 2009) is presented in figure 4(a,b). The definition
of different angles is shown in figure 4(c,d). Figure 4(a) indicates that the elevation
and stroke angles match reasonably well between the two models except that the
current model shows a smaller and wider peak of the stroke angle at t/T from 0.4 to
0.6. Since the angle of rotation (AoR), defined as α in this work, is not constant due
to the wing twist in the current study, the AoRs at three spanwise location (0.4R, 0.6R
and 0.8R) is presented in figure 4(b) and compared with that from the model of Liu &
Aono (2009). A difference in AoR of ∼20◦ along the spanwise direction is observed
at t/T ∼ 0.6. Similar wing twist, which is quantified by AoR, was also reported by
Willmott & Ellington (1997a). Furthermore, from the relationship between AoR and
angle of attack (AoA), we estimate that for the current study, the AoA is ∼60◦ during
the middle of downstroke (t/T ∼ 0.25) and 30◦ during mid-upstroke (t/T ∼ 0.8). Also,
it is noted that during downstroke, the AoA of the current model is approximately 10◦

larger than the model of Liu & Aono (2009). Figure 4(d) also indicates that the wings
flap with positive camber, which was also observed previously (Sunada et al. 2002;
Young et al. 2009; Nakata & Liu 2012; Zheng, Mittal & Hedrick 2013). The ratio
of maximum camber at 0.8R to the corresponding chord length is approximately 5 %
during mid-downstroke and 15 % during mid-downstroke for the current hawkmoth
wing model.

3.3. Computational setup
Figure 5(a) shows the constructed realistic wing–body model immersed in the three-
dimensional non-uniform Cartesian grid. The coordinate directions, which are also
shown in figure 5(b), are as follows: X is in the horizontal direction with +X pointing
towards the rear of the moth; Z is the spanwise direction with +Z pointing to the
moth’s left wing (viewed from behind the moth); and Y is the vertical direction
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(a) (b)

Zero gradient (top)

Zero gradient (left)

Zero gradient (back)

Zero gradient (fro
nt)

Zero gradient (right)

Outflow (bottom)

FIGURE 5. The constructed realistic wing-body model immersed in the three-dimensional
non-uniform Cartesian grid (a) and boundary conditions for the simulation (b).

with +Y pointing upward. The wings in the validation study are modelled as
deforming membranes and the body (comprising the head, abdomen and thorax) is
treated as a non-deforming and stationary object.

Figure 5(b) shows the boundary conditions applied on the computational domain
boundaries. On all of the boundaries except the bottom boundary, a far-field boundary
condition which amounts to specifying the streamwise (vertical) velocity component
to zero and setting the normal gradients of the other velocity components to zero
is applied. The flapping wings of the moth generate a pair of vortex-ring-like
structures below the body, which will be shown later. Thus, on the bottom boundary,
a convective boundary condition which allows the vortex structures to exit the domain
without any spurious reflections was applied (Mittal & Iaccarino 2005). The final
domain size normalized by the mean chord length c̄ is 25 × 20 × 25 and this large
domain ensures that the boundaries do not have any significant effect on the computed
results. As shown in figure 5(a), the grid is designed to provide high resolution in the
region around body as well as the wake which is expected to develop below the body
and wings. This grid was developed in an iterative fashion starting from a sequence
of coarser grids. Computed results on these earlier meshes were examined and the
resolution in selected regions increased until the key features such as forces and vortex
structures became essentially independent of the grid. The final (baseline) grid adopted
here has 128 × 128 × 128 points. The grid size 1x =1y=1z= 0.1 mm corresponds
to 45 grids across the span and 20 across the chord-wise direction on the wing surface.

Three additional simulations on different grids were carried out to assess the
convergence of the computed flow. Simulation 1 was carried out on a grid which
had 70 % more grid points than the baseline grid and simulation 2 was carried out on
a mesh with 50 % less grid points than the baseline grid. Both of these simulations
produced a maximum 1 % difference from the baseline in mean lift and root-mean-
square (r.m.s.) values of lift and drag. Finally, simulation 3 was carried out on a grid
where the number of grid points in each direction around the wing were twice those in
simulation 2. This simulation also produces mean lift and r.m.s. lift and drag that are
within 1 % of simulation 2 and taken together with the other simulations, provide clear
proof of the grid convergence of the current results.

The time step chosen for the current simulations is ∼5.7× 10−5 s which corresponds
to a Courant-Friedrichs-Lewy (CFL) number of ∼0.48. With this time step, each
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(a) (b)

(c) (d)

(e)

( f )

FIGURE 6. (Colour online) Vortex structures generated by the hovering moth at: (a)
t/T = 0.1; (b) t/T = 0.25; (c) t/T = 0.53; and (d) t/T = 0.82. All of the three-dimensional
vortex topology plots in this paper are visualized by plotting one isosurface of the imaginary
part of the complex eigenvalue of the velocity gradient tensor. The corresponding isosurface
value, which is non-dimensionalized by f , is 16 for all of the vortex topology plots. In (e,f )
we show one isosurface of pressure (p/(0.5ρU2)= 1.1) at t/T = 0.25 and 0.82, respectively.

flapping cycle takes ∼700 time steps. The simulations have been performed on 256
CPUs of Kraken, which is a Cray XT5 system and on this system, it takes ∼20 CPU
hours to simulate one cycle. In the current work, each simulation was integrated over
four flapping cycles. Estimates of cycle mean and r.m.s. lift as well as r.m.s. drag
indicate that there is a less than a 1 % difference in these quantities from the third
to the fourth cycle. Thus, the flow quantities reach a near-stationary state by the third
cycle and all of the flow statistics in the following discussions are estimated based on
averaging over the third and fourth cycles.

3.4. Flow structure
Figure 6(a–d) show the vortex structures around the body and wings of the hovering
moth during one cycle. A distinct LEV is generated at the beginning of downstroke
(see figure 6a). In addition, a tip vortex (TV) and a trailing-edge vortex (TEV) are
also generated from each wing and these are observed to wrap around the wing.
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(a) (b)

FIGURE 7. (Colour online) LEV and TV during (a) downstroke and (b) upstroke. The
discontinuous arrows in (a) represents the flow direction along the vortex core.

Similar horseshoe-shaped vortex which comprises a LEV, a TV and a TEV was also
reported by Liu & Aono (2009). Later, as the wings start to accelerate downward
(figure 6b), the LEVs and TEVs grow in size and the TEVs are shed from the wings.
The LEV covers a large part of the wing surface and accounts for the lift peak during
downstroke; figure 6(e) show an isosurface of negative (suction) pressure at t/T = 0.25
and this clearly shows the large region of suction pressure on the top surface of the
wing due to the strong LEV. During upstroke (figures 6c and 6d), the LEVs are much
weaker than those during downstroke due to a reduced effective AoA of the leading
edge and the corresponding suction pressure in figure 6(f ) is significantly diminished.

Figure 7(a) shows the coherent LEV which stretches from the base to approximately
75 % of the wing length during mid-downstroke. A strong axial flow with a velocity of
50 % of average wing-tip velocity towards wing tip along the LEV core is observed in
the current study during downstroke. The phenomenon was also noted in previous
experiments (Ellington et al. 1996) and numerical simulations (Liu et al. 1998).
Figure 7(a) also indicates a spiral TV with a axial flow towards the wing root. In
contrast, during the upstroke, the LEV is much weaker due to a smaller AoA (∼30◦

compared with 60◦ during the middle of downstroke), and the strength of the LEV
decreases towards the wing tip. The TV is still strong during the upstroke, and this
results in a low pressure at the wing tip as shown in figure 6(f ).

3.5. Force comparison
Figure 8 shows a comparison of the time-varying vertical and horizontal forces
obtained from the experiments as well as NS simulation; the corresponding mean
values are given in table 1. The NS simulation was based on a cyclical repetition
of the one synthesized flapping stroke. First, for the NS simulation, the average lift
produced by the two wings is 14.9 mN and this matches reasonably well with the
weight of the insect (13.6 mN). It should be noted that most past computational
studies have limited their validation to this comparison (Liu & Aono 2009). However,
since our interest here is to correctly predict not only mean values but also the
time-varying variation of lift and drag, we have conducted a more extensive validation.
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Downstroke Upstroke

(a) (b)

Upstroke

Downstroke
–0.01

0

0.01
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0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

0

–0.02

0.02

0.04

FIGURE 8. A comparison of the instantaneous vertical (a) and horizontal (b) force between
the current NS simulation, the experimental results, and the previous simulations of Liu &
Aono (2009).

Going beyond a comparison of mean values, figure 8(a) indicates that the time
variation of the vertical force in the NS simulation is also in good agreement with
the experimental result. The NS simulation accurately predicts the rise of the lift force
during the initial phase of the downstroke as well as the peak lift value of ∼44 mN.
The agreement between the two during the latter half of the downstroke is also quite
good with the simulated value falling mostly within the variability of the experiments.
The upstroke is found to produce less lift but the experimental variability is of the
same magnitude as for the downstroke. In terms of the comparison, the NS simulation
correctly indicates the presence of two small peaks in lift during the upstroke but
over-predicts the lift at mid-upstroke. At all other phases during the upstroke, the
computed values lie within the experimental uncertainty.

The match between NS and experiment is less precise for the horizontal forces, but
the simulation does predict the key features of the overall time course reasonably well.
First, the wings produce a drag force during downstroke and a thrust force during
upstroke. The drag and thrust nearly cancel each other during one flapping cycle for
the hawkmoth in hover in both the simulation and the experiment, with the mean
horizontal force coming out to be ∼3 % of the mean lift force. This is in line with
the fact that during hover, the net acceleration of the insect in the horizontal plane is
expected to be negligible. The horizontal force peak during downstroke is sharper and
larger than that during upstroke. This trend, which is due to the strong LEV formed
in downstroke is also captured correctly in the simulation. The Pearson correlation
coefficients (defined for two variables X and Y as γXY = cov(X,Y)/σXσY where cov
and σ are the covariance and standard deviation, respectively) between simulation
and experiment for the time-varying lift and drag are 0.93 and 0.90, respectively,
which provide quantifiable confirmation of the match between the corresponding
profiles.

Table 1 enables further quantitative comparison between the experiment and the
simulation. The table includes estimates of experimental uncertainties; these are noted
to be larger than those typical for controlled engineering experiments and are a
manifestation of the inherent difficulty of conducting measurements of freely flying
animals. The estimates have been broken down into upstroke and downstroke phases
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as well as mean and r.m.s. quantities in order to provide a more nuanced and critical
assessment of the comparison. We note that every single quantity from the simulation,
except for the upstroke mean drag, falls within the experimentally measured range of
values of the corresponding quantity. The cycle mean, cycle r.m.s. and downstroke
mean of the lift from the simulations are in particularly good agreement with the
experiment. As pointed out earlier, the drag-associated quantities do not show the same
level of agreement. This is likely indicative of the fact that while weight support
during hover requires the animal to generate a more consistent level of lift in every
flapping cycle, horizontal forces are more variable from cycle to cycle so as to enable
flight stabilization and other small adjustments to the lateral location of the animal.
Finally, the ratio of mean lift produced during downstroke to that produced during
upstroke is computed from NS modelling to be 2.81 and is estimated in experiments
to be 3.11. This clearly shows dominant role that the downstroke plays in producing
lift during hover. The comprehensive comparison of forces between simulations and
experiments provides a high level of confidence regarding the fidelity and accuracy of
the computational model.

As noted earlier, while past modelling studies have found a reasonable match
between the computed mean lift value and the weight of the insect, no past study
has validated the time-varying lift and drag with a corresponding experiment in a
comprehensive manner. Figure 8 includes the lift and drag data extracted from the
studies of Liu & Aono (2009) and Aono et al. (2009). In this previous work, the mean
vertical force was 17.1 mN, which was 9 % higher than the reported weight of the
hawkmoth. The mean drag force was reported to be less than 3 % of the mean vertical
force and this is similar to the current study. Furthermore, we have estimated the r.m.s.
values of lift and drag for this previous work to be 20.6 and 20.3 mN respectively, and
these values match reasonably well with the current simulation. Compared with current
model, the lift produced from this previous model is smaller between t/T ∼ 0.2 and
0.3 and larger from t/T ∼ 0.3 to 0.4. The lift peaks during upstroke for the current and
previous models occur at different times. Furthermore, the lift peak during upstroke is
significantly larger for the previous model than for the current model. Consequently,
this previous model predicts a ratio of downstroke to upstroke lift that ranges between
1.5 and 2.3 compared with 2.81 for the current model.

These differences in force production between the two studies are likely connected
with the differences in the wing kinematics. For example, during downstroke (t/T
from 0.2 to 0.3), the wings flap downward with a higher AoA for the current model
than that for the previous model. This could lead to a stronger LEV that results in
a higher lift. For t/T from 0.3 to 0.4, the wings of the current model begins to
decelerate and start to rotate, as indicated by the stroke angle in figure 4(a), while
the wings of previous model continue a downward motion with a large AoA. Also, it
can be seen that the first lift peak during upstroke for previous model is significantly
larger than that for the current study. This may be explained by the significant (∼20◦)
wing twist in the current model during upstroke which is a manifestation of wing
flexibility. It can be noted that the difference of AoA between the proximal and distal
parts of the wing at t/T ∼ 0.7 leads to a significant discrepancy in the angle between
the wing chord and the horizontal plane. In the current model, this angle is much
higher, especially at the proximal part of the wings, which results in a smaller vertical
component (smaller lift peak for current model) of the aerodynamic force.

The simulations also allow us to estimate the power expended in producing the lift
force by integrating the pressure and shear associated work on the surface of the wing.
This quantity is an essential component of hovering efficiency but is not obtainable
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directly from insect flight experiments. Note that power is obtained from a dot-product
between the local time-varying aerodynamic force and wing velocity. Since we have
matched the local wing velocity closely to experimental data and also demonstrated
a reasonably accurate prediction of the time-varying forces on the wing, we can be
reasonably assured that the aerodynamic power estimated from our computations is
accurate. This is crucial since estimates of power form an essential starting point
for the stroke optimization studies described later in the paper. Aerodynamic power
associated quantities are also shown in table 1. We find that the moth uses ∼66 mW
of power per cycle during hover. We compare this to experimental measurements of
power expended in real moths by following Stevenson & Josephson (1990), estimating
that 21 % of the hawkmoth’s mass is flight muscle, giving a muscle mass-specific
power of approximately 230 W kg−1. This is substantially greater than estimates from
early aerodynamic models (Willmott & Ellington 1997b) that predate the discovery
of leading edge vortices in insect flight and also in situ flight muscle work-loop
studies, both of which produce estimates from 90 to 130 W kg−1 (Stevenson &
Josephson 1990; Tu & Daniel 2004). However, our results are consistent with the
measured oxygen consumption of hovering Manduca of 12.2 ml O2 kg−1, which at
20 % muscle efficiency and 20 % flight muscle mass fraction also implies a power
output of 230 W kg−1 (Casey 1976).

This 66 mW mean power per cycle leads to a power-loading (ηp), which is the
ratio of lift produced to the aerodynamic power expended by the wing, of 0.23 N W−1.
Estimates of power-loading for up and downstrokes indicate that even through lower
lift production in the upstroke is associated with lower power consumption, the power
loading of the upstroke is ∼13 % lower than that of the downstroke. This clearly
indicates the potential for improving upon the power efficiency of the hawkmoth
stroke and finding stroke kinematics that are power-optimized for hover. This aspect is
addressed in the following section.

4. Stroke optimization of hawkmoth-inspired flapping wings
As described earlier, the hawkmoth may not have the optimal wing stroke for a

given MAV design criteria and thus, strategies for improving on its performance are
desirable. We use a multi-fidelity approach where we explore a parameter space and
apply numerical optimization strategies with the BEM, and assess the true performance
of candidate strokes identified by the BEM using the NS model. We also constrain our
search for improved flapping kinematics to cases that fit within the existing kinematic
envelope of the moth. For instance, increasing the size of the wings while holding
all other parameters constant could improve the lift generating capability of the moth,
but would not demonstrate meaningful optimization. Similarly, increasing the flapping
amplitude or frequency could also lead to force increases but would not allow us
to understand the optimality of the hawkmoth wing-stroke. Thus, we restrict our
optimization to use the same wing and overall flapping frequency and amplitude as the
actual moth.

4.1. Parametrization of wing kinematics
An initial requirement for such an approach is a reduction in the complexity of wing
motions to a manageable set of parameters which can be varied systematically. Here,
we specify the trajectory of the moth’s wing tip as a simple harmonic motion and use
a hypertangent-based function to describe the spanwise rotation of the wing. A simple
harmonic motion approximation of the flapping kinematics was chosen as the simplest
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0.297

0.007

0
0.815

–0.012
0.641
0.975
1.294
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FIGURE 9. A lateral projection of the actual (heavy black lines with filled circle) and simple
harmonic motion (light black lines with filled circle) wing kinematics recorded from the
hovering hawkmoth. Wing position and orientation is shown with circle/diamond at the
leading edge and a line showing wing orientation. The wing root is shown on the moth body
as a black pentagon. The wing moves in a clockwise manner, with the downstroke trajectory
passing above the wing root and the upstroke below it. The wing chord length shown is one-
quarter of the actual mean chord length to enhance figure visibility. The parameters are those
for the simple harmonic motion equation (4.1)–(4.3). Note that the best-fit simple-harmonic-
motion-based kinematics matches the actual wing kinematics better in the downstroke than
the upstroke. This is a compromise that has to be made in order to retain a simple kinematic
prescription for the optimization study.

means for describing oscillatory wing motion and to simplify the extraction of the
coefficients from real animal data via Fourier analysis. These parameterized motions
are given by

φi = φA sin(2πt̂ + δφ)+ φ̄ (4.1)

θi = θA sin(2πt̂ + δθ)+ θ̄ (4.2)
αi = αA tanh(π/2 sin(2πt̂ + δα))+ ᾱ (4.3)

where φi is the elevation angle at non-dimensional time t/T of t̂, with φA being its
amplitude, φ̄ its mean and δφ its phase. The sweep angle θi is also specified by its
amplitude θA, mean θ̄ and phase δθ . Spanwise rotation αi has an amplitude αA, a phase
δα and a mean ᾱ. Note that these equations describe wing motion in a body coordinate
frame X′Y ′Z′ and not in the global or stroke-plane frames.

Figure 9 shows a comparison of the actual hawkmoth flapping kinematics with the
‘best-fit’ approximation using (4.1)–(4.3), and the adjoining table shows the kinematic
parameters for this best-fit stroke. For the purposes of parameter exploration and
optimization, we consider this stroke to be the baseline case.

4.2. Blade-element tuning based on the NS simulation
Prior to using the BEM as either a parameter-space exploration tool or for numeric
optimization, the BEM coefficients are ‘tuned’ or calibrated to the NS results by
running the NS simulation with a rigid wing and flapping parameters similar to
those shown in figure 9. The same wing planform and kinematic parameters are
then modelled using BEM, and the BEM coefficients varied from values presented
in Hedrick & Daniel (2006) to minimize the mean-square difference in the time-
varying lift and drag reported by the NS simulation. The resulting tuned value for Crot
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FIGURE 10. Lift (a) and drag (b) comparison between NS simulation and BEM for baseline
case. Note that the BEM was tuned by the results from NS simulation.

Baseline case High-lift case High-ηp case
(δθ , δα) (−10, 0) (−30,−30) (20, 10)

BE NS BE NS BE NS

Lift (mN) 12.9 13.5 13.8 11.7 12.5 10.2
Power (mW) 60.7 48.7 61.8 41.3 52.5 38.3
ηp (N W−1) 0.21 0.28 0.22 0.28 0.24 0.27

TABLE 2. Mean values of lift, power and power loading expended during one cycle,
downstroke and upstroke from BEM and NS simulation.

(equation (2.3)) was 0.55, and the tuned Ctrans (equation (2.2)) is given by

Ctrans = [(1.3 sin(2α′ + 0.30)+ 0.4 cos(α′ − 0.59)+ 0.01)2

+ (1.3 sin(2α′ − 0.70)+ 0.3 cos(α′ − 1.33)+ 1.60)2 ]1/2 (4.4)

where α′ is the instantaneous angle of incidence of the strip on the wing relative to
local incoming flow.

The resulting match between BEM and NS simulation for identical wings and
kinematics is shown in figure 10. The BEM lift is a better match to its NS counterpart
than BEM drag, and both BEM lift and drag tend to match the NS output better
in the early to middle portions of downstroke and upstroke. Furthermore, the mean
lift, which is shown in table 2, indicates a 4.4 % difference between NS and BEM.
The general effect of this tuning on the original BEM with coefficients drawn
from studies of insect flight based on mechanical flappers (Dickinson et al. 1999;
Usherwood & Ellington 2002; Sane 2003) is to reduce the forces due to wing rotation
(equation (2.3)) and wing translation (equation (2.2)) to approximately 52 and 95 %,
respectively, of their original magnitude as given in Hedrick & Daniel (2006). The use
of a flat-plate wing with no spanwise or chordwise curvature and the adoption of a
sinusoidal motion with the additional constraints on frequency and amplitude that we
have prescribed here results in an overall reduction in mean lift to 13.5 mN and an
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30

30

–30

–30

FIGURE 11. Wing trajectory of some selected cases in the optimization exercise I. As before,
wing position and orientation is shown with circle at the leading edge and a line showing
wing-chord orientation.

increase in power loading to 0.28, respectively, which represents a 9.4 % reduction and
a 21.7 % increase in these two quantities, respectively. Notwithstanding the difference
in the performance from the actual hawkmoth kinematics, we consider this case to be
the baseline for the optimization studies.

4.3. Optimization exercise I
The multi-fidelity optimization assumes that the BEM provides reasonably accurate
estimates of key quantities such as lift, drag and power in the parametric vicinity
of the baseline case for which it is tuned. If this assumption is borne out, then
the BEM can be used to search the parametric space for optimal solutions and
a NS model employed to more accurately assess the performance of select cases.
Assessing the validity of this assumption is a key component of this section but
before that, we present the results of the BEM-based parameter search and identify
strokes that may be considered high-performing. We systematically varied the timing
of wing horizontal motion and wing spanwise axis rotation, changing δθ and δα,
respectively, in the range of −30 to +30◦ about (δθ , δα) = (0.0, 0.0). The first of
these parameters changes the profile of the stroke from a narrow, tilted ellipse to a
more circular profile and the second changes the angle of incidence throughout the
stroke as is shown in figure 11. These parameters were selected because the BEM
predicts that they influence the magnitude of flight forces without changing the overall
flapping amplitude or frequency. In contrast, changes to the BEM flapping amplitude
parameters φA and θA also influence force production, as is expected under simple,
analytic models of flapping flight (Weis-Fogh 1973) but are less interesting to explore
in the current context. Note that in the current study, δφ is kept at a value of zero and
this provides a distinct datum for the other phase angles.

The wing trajectories of five sample cases are shown in figure 11. Note that even the
variation of just these two parameters produces a wide variety of wing strokes. While
this enhances the possibility that strokes with higher performance might be identified,
it also presents a challenge for BEM-based prediction, which was originally developed
using parameters near those used by actual hawkmoths and may not extrapolate well
to more unusual wing strokes.
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FIGURE 12. (Colour online) Performance map from BEM showing mean (a) lift and (b)
power loading with the two phase-offset angles. The values showed in the plots are the
relative difference with the baseline case (identified by a black dot). The dashed curves show
the cases that can produce the same lift and power loading as the baseline case. Positive
(negative) contour values indicate an increase (decrease) over the baseline value; dark shades
indicate the highest increases.

4.3.1. BEM simulations and predictions
Parameter mapping with the BEM was conducted over a grid of 4δθ and 4δα

ranging from −30◦ to 30◦ with a 2.5◦ spacing which adds up to a total of 576 cases,
and figure 12 shows the relative change (over the baseline case) of the mean lift and
power-loading for all these cases. The following observations can be made from these
BEM-based performance maps.

(a) The baseline case is neither optimal in terms of lift nor power loading since there
are many other cases which seem to provide better performance in these metrics
than the baseline case.

(b) Local maxima in lift and power loading seems to exist thereby reaffirming that
even within the severe constraints imposed here, it may be possible to find
‘optimal’ strokes. The performance gains however seem to be marginal: a 7 %
increase in lift and a 12.5 % increase in power loading over the baseline case.

(c) The strokes for high lift and high power loading are far apart in parametric space;
high lift occurs for large negative values of the two phase offsets whereas high
power loading occurs for large positive values of these two offsets. The strokes for
high lift and high power loading look similar to the cases shown in the lower left
and upper right corners in figure 11, respectively. From the point of view of MAV
design and operation, this is not desirable since it requires a large kinematic range
and variation in two parameters to access both these regimes. However, it should
be noted that this particular behaviour is connected with the two parameters chosen
here, and there might exist other parameter pairs that lead to a better confluence
between high lift and high power loading.

(d) The mean lift and power of the baseline case estimated by BEM is 12.9 mN and
60.7 mW, respectively, which results in a power loading of only 0.21. While many
strokes exceed the lift and power-loading of the baseline case, the BEM modelling
also indicates that many strokes in this parameter space produce sufficient lift
to support the weight of the moth (the line with 0.05 in figure 12a) and power
loading that is larger than the actual moth model, which is 0.23 (the line with
0.08 in figure 12b) calculated by NS simulation. However, the contour plots also
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FIGURE 13. Lift (a) and power (b) comparison for cases with high lift ((δθ , δα) =
(−30,−30)) and high power loading ((δθ , δα)= (20, 10)) estimated by BEM and NS models.

indicate that no case can produce sufficient lift to support the body weight while
achieving higher power loading than the actual moth model.

4.3.2. Evaluation of BEM prediction
The caveat in all of the above observations is that they assume that the BEM

can provide a fairly good estimate of the magnitudes and trend of these quantities
in the vicinity of the baseline case and we now evaluate this assumption using NS
modelling. First, figure 13 shows the time variation of lift and power for the two cases
which correspond to the cases with high lift ((δθ , δα) = (−30,−30)) and high power
loading ((δθ , δα)= (20, 10)), respectively, predicted by the BEM and table 2 shows the
corresponding averaged values of lift, power and power loading for these cases both
from BEM and NS; also included in the table are the values of baseline case for these
two models. It can be seen from figure 13 as well as the table that while the lift
matches reasonably well between BEM and NS, BEM significantly overestimates the
magnitude of the power. In particular, figure 13 shows that overestimation of power
is primarily during the upstroke. Table 2 also shows that the case identified as having
high lift by BEM in fact has a lower lift than the baseline case; similarly, the case
identified by the BEM as having high power loading actually has a power loading
which is slightly lower than the other two cases as predicted by NS modelling.

The above mismatch between BEM and NS seems quite significant, especially for
the power and power loading, but the possibility exists that the mismatch may be
associated with the two cases with high lift and power loading being quite distant in
parameter space from baseline case, which the BEM has been tuned from. To explore
the extent to which BEM correctly predicts the magnitude and trend of aerodynamic
quantities in this parameter space, we have conducted a series of NS simulations of
cases for comparison with the BEM predictions.

Since it is not practical to conduct 576 NS simulations of a three-dimensional
flapping wing, we have conducted a more limited subset (22 in total) of such
simulations which are identified in the parameter space in figure 14. The contour
plots of various quantities (figure 14a,b) for the NS simulations are generated by
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FIGURE 14. (Colour online) Performance map from NS modelling showing variation of lift
(a) and power loading (b) with the two phase-offset angles. The values showed in the plots
are the relative difference with the baseline case (identified by a black dot). The dashed curves
show the cases that can produce the same lift and power loading as the baseline case. Positive
(negative) contour values indicate an increase (decrease) over the baseline value; dark shades
indicate the highest increases.

employing a cubic-spline data interpolation between these 22 cases. We focus here
on comparing key aerodynamic quantities: lift and power loading, and the following
observations can be made regarding this comparison.

(a) Within the parameter space explored, the NS model also predict a maximum in
mean lift. However, the location of this maximum value in the parametric space
is quite different from that predicted by the BEM; for the NS simulations the
maximum occurs at around ((δθ , δα)= (−20, 10)), while for the BEM, it occurs at
around ((δθ , δα) = (−30,−30)). Interestingly, the magnitude of the peak mean lift
is ∼8 % higher than the baseline case and this is similar to the increase of 7 %
predicted by BEM. Thus, the magnitude of lift enhancement predicted by the two
approaches is well matched while the overall trend is not.

(b) The NS simulations also indicate a local maximum in power-loading but in
contrast to BEM, the peak in power loading is centred around ((δθ , δα) =
(−15,−20)). Furthermore, the NS simulations predict a peak in power loading
that is ∼8 % higher than the baseline case whereas BEM predicts a 12.5 % increase
in this value. While this match in magnitude is not as good as that for the lift,
it is nevertheless reasonable. It should be noted that there is also some similarity
in the variation of power loading predicted by the two models in that the peak
values of this quantity occur roughly along the diagonal (from lower left to upper
right corner) of the parameter space. This closer match of the trend in this quantity
could possibly be due to the fact that power loading is a ratio of lift to power
and while lift and power trends are individually not well predicted by BEM, the
differences in these two quantities are reasonably well correlated and cancel out to
some extent in the estimation of the power loading.

(c) For the parameters spanned here, the region of high lift and high power loading do
not coincide. There does not seem to be a region in this parametric space where
both the lift and power loading exceed those for the baseline case 3. However,
according to the NS simulations, with the elevation phase offset fixed at −20◦, the
wings can transition between high lift and high power loading by varying just the
wing spanwise rotation phase offset. Table 3 shows stroke-averaged lift, power and
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FIGURE 15. Performance map from NS modelling identifying particular regimes in lift and
power measures that match the performance for the actual moth.

Case

No. 19 No. 20 No. 21
(δθ , δα) (−20,−20) (−20, 00) (−20, 20)

Lift (mN) 12.5 14.1 14.3
Power (mW) 42.2 55.5 75.7
ηp (N W−1) 0.30 0.25 0.19

TABLE 3. Mean aerodynamic quantities computed from the NS simulations for selected
cases.

power loading for some selected stokes with elevation phase offset fixed at −20◦;
stroke no. 19 is a stroke with the highest power loading; stroke no. 20 lies inside
the hatched region (see figure 15) and therefore has high lift and power loading;
stroke no. 21 has high lift but low power loading. This is potentially a favourable
feature from the point of view of MAV design and operation since it implies
that just one degree of freedom in actuation could be used to transition between
high-lift and high-power-loading regimes.

(d) The heavy solid contour in figure 15 corresponds to the weight of the moth
(13.8 mN) and all of the cases that lie inside this closed contour produce lift that
exceeds that needed to support the weight of the moth. The dash-dotted contour
corresponds to power consumption equal to that of the actual moth from NS
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Mean Mean Mean r.m.s. r.m.s.
lift power ηp lift drag

γBEM–NS 0.79 0.91 0.96 0.97 0.79

TABLE 4. Pearson correlation coefficient γBEM−NS between results from BEM and NS for
force- and power-related quantities.

simulation, and all of the cases below this line consume less power than this value.
The light solid contours corresponds to the power loading of the actual moth and
all of the cases between these two contours exhibit higher power loading than this.
Thus, the hatched region represents cases that exceed the body weight as well
as the power loading of the moth and require power equal to or lower than that
expended by the moth. Thus, even this highly restrictive parameter search produces
wing strokes for hover that are aerodynamically superior to that of the moth. This
also suggests that a more extensive search over a wider parameter space could
possibly lead to strokes that more significantly outperform that of the moth and
this is the subject of the next section.

(e) Many of the qualitative observations made above regarding the match between
BEM and NS simulations are confirmed quantitatively by computing the Pearson
correlation between the results of the 22 NS simulations and the corresponding
BEM predictions. Table 4 shows these correlations for mean lift, power and power
loading, factors which are essential to the aerodynamic performance. The table also
includes correlation for the r.m.s. lift and drag, and these go beyond mean-value
comparisons to provide an assessment of the match in the temporal variability of
these two quantities. Overall, the correlations for the mean values range from 0.79
to 0.96 and those for the r.m.s. values between 0.79 and 0.97 indicating that the
BEM is able to predict the trends in all of these quantities quite well. Interestingly,
as noted earlier, the correlation in power loading is higher than that of mean
lift or power; this observation works in the favour of using BEM as part of a
multi-fidelity modelling tool for optimizing stroke aerodynamics in flapping flight.

4.3.3. Predictive limits of BEM
Although the match between BEM and NS is shown to be reasonably good, the

availability of NS simulation data provides an opportunity to further explore and
understand the limits of BEM as applied to such flows. Figure 16 shows the relative
difference of cycle-averaged lift between BEM and NS models over the parameter
space explored in both approaches. It is noted that isolines of this quantity are
generally inclined along the diagonal from bottom left to top right. This suggests
that the relative accuracy of the BEM prediction is maintained as long as the phase
difference between translation (represented by sweep angle θ ) and spanwise rotation
(represented by rotational angle α) is kept the same. Conversely, the prediction from
the BEM deteriorates rapidly if the relative phase between these two is changed.
Note that along the diagonal line (the line connecting cases 11 and 10), the phase
difference between rotational angle and sweep angle is zero, which implies the rotation
is precisely in phase with stroke reversal; figure 17(a) shows the wing kinematics for
case 19 which is representative of these cases. For cases above this line, wing rotation
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FIGURE 16. (Colour online) Performance map showing the relative lift difference between
BEM and NS modelling. The dashed curve shows the two methods predict the same amount
of lift.

(a) (b) (c)

FIGURE 17. Wing kinematics for: (a) case 19, in which case the rotation occurs
symmetrically with the stroke reversal; (b) case 21, in which case the rotation is prior to
stroke reversal; and (c) case 17, in which case the rotation is delayed. The dots in the plots
indicate the leading edge dashed and solid lines denote upstroke and downstroke, respectively.

precedes stroke reversal (see figure 17b for case 21), while for cases below this line,
the rotation occurs after stroke reversal (see figure 17c for case 17).

In order to understand the flow physics underlying the trend observed in figure 16
we examine the vortex structures for a few selected cases. In figure 18 are shown
the flow structures produced by the baseline cases 3 and 8, which, although separated
by 20◦ phase in both δθ and δα with respect to the phase of the elevation angle,
maintain the same phase relative to each other. An idea of the difference in the two
wing trajectories can be gleaned from figure 11. Despite the significant difference in
wing kinematics, figure 18 shows that the vortex structures produced by the two are
very similar; for both cases, an LEV is generated during early downstroke (a1 and e1
in figure 18a,e respectively). This LEV later grows towards the wing root until it
spans the entire leading edge of the wing during mid-downstroke (figure 18b,f ) and
mid-upstroke (figure 18d,h). Similar LEVs are also generated for the two cases during
the upstroke (figure 18c,g).

The similarity in the vortex structures noted above can be contrasted to cases 17
and 19, examples where the phase angles δθ and δα change relative to one another as
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(a) (e)

(g)

(h)

( f )(b)

(c)

(d)

FIGURE 18. (Colour online) Vortex structures for case 3 (a ∼ d) and case 8 (e ∼ h) at:
(a,e) t/T = 0.1; (b,f ) t/T = 0.25; (c,g) t/T = 0.53; and (d,h) t/T = 0.82. All of the three-
dimensional vortex topology plots in this paper are visualized by plotting one isosurface
of the imaginary part of the complex eigenvalue of the velocity gradient tensor. The
corresponding isosurface value, which is non-dimensionalized by f , is 16 for all of the vortex
topology plots.
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a1 b1

b2

(a)

(c) (d)

(b)

FIGURE 19. (Colour online) Vortex structures during early downstroke for case 17: (a)
t/T = 0.05; (b) t/T = 0.1. Aerodynamic traction vectors on wing surface at 2/3 span: (c)
case 3 at t/T = 0.1; (d) case 17 at t/T = 0.1.

well as with respect to the overall stroke timing. Figure 19 shows the flow structures
produced by the wing in case 17 during early downstroke. As is shown in figure 17(c),
at the beginning of downstroke the wing flaps downward and rotates rapidly at the
same time, which leads to a very strong LEV (see a1 in figure 19a). Compared with
the developing LEV shown in figure 18 (a1 in a and b1 in e) for cases 3 and 8,
the LEV produced by the case 17 wing is significantly stronger and is even detached
(see b1 in figure 19b) from the leading edge of the wing. The surface traction vectors
shown in figure 19(c,d) show that the stronger LEV for case 17, produces a larger
leading-edge suction.

Figure 20 shows a comparison of vortex structures at the beginning of downstroke
for cases 3 and 21. The LEV produced in the immediately preceding upstroke is
already shed from the leading edge in case 3 (see a1 in figure 20a), while it remains
attached due to the rapid rotation at the end of upstroke for case 21 (see b1 in
figure 20b). This attached vortex is ‘captured’ during the downstroke by the wing
and influences the aerodynamic forces as shown in the comparison of corresponding
surface traction vectors in figure 20(c,d). These new phenomena of LEV detachment
(see figure 19) and vortex capture (see figure 20) and the associated force changes
cannot be predicted by the current BEM since it has been tuned for a case that does
not have these flow features. More extensive ‘tuning’ of the BEM force coefficients
and perhaps even improved models that allow for additional flow phenomena might
further enhance the effectiveness of the multi-fidelity approach.
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a1 b1(a) (b)

(c) (d)

FIGURE 20. (Colour online) Vortex structures at the very beginning of downstroke: (a) case
3 at t/T = 0.015; (b) case 21 at t/T = 0.015. Aerodynamic traction vectors on wing surface at
2/3 span: (c) case 3 at t/T = 0.015; (d) case 21 at t/T = 0.015.

4.4. Optimization exercise II

While biological flyers such as the hawkmoth examined here are the product of
millions of years of evolution, this does not necessarily result in optimal flight
performance from the viewpoint of an engineered system designed for a specific
application. Even setting aside biological limitations on available power and material
properties that limit the flapping frequencies, amplitudes and wing sizes of animals,
the hawkmoth may not necessarily use energetically optimal wing kinematics in
hovering flight. For instance, the moth may use flapping kinematics that enhance
maneuverability or stability at the expense of efficiency, or require fewer degrees of
freedom at the wing base to produce. Our initial parameter mapping exercise, designed
to explore the combined use of the BEM and NS approach for flight optimization,
revealed that: (a) even in a highly restricted parameter space, a number of cases offer
greater force and/or power loading than that of the actual moth; (b) overall magnitudes
of lift are reasonably well predicted by a suitably tuned BEM; and (c) trends in power
loading are better predicted than those for lift.

These above three observations suggest a path forward for determining strokes that
are significantly superior in terms of aerodynamic performance than the moth. Here
we use the GA (Krishnakumar 1989) and a simplex search (Nelder & Mead 1965)
framework coupled with the BEM modelling approach to find wing kinematics which
outperform the actual moth as assessed by the power loading; we then assess and
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verify the aerodynamic performance of this stroke using NS simulations. Unlike the
previous optimization exercise, we loosen the constraints on the kinematics; we allow
the BEM-based optimizer to search over a large region of the parameter space defined
by (4.1)–(4.3) for a stroke that maximizes power loading. The following constraints
are imposed on the search.

(a) The overall flapping frequency and flapping amplitude is constrained to be similar
to that of the actual moth. Although changes to these parameters may improve
performance, there is no guarantee that they do not involve costs not measured in
the simulation, such as the additional inertial power requirements.

(b) We require that the lift equals the body weight of the moth. Even though we know
that BEM might not produce the correct magnitude of lift, the constraint on lift
ensures that the subset of solutions considered produce acceptable realistic levels
of lift.

(c) We also require that the strokes produce no net pitching moment. This
constraint on moment guarantees that strokes that significantly modify the stability
characteristics of the animal are deemphasized in the search.

This search, the result of 105 cost function evaluations, structured as 1000
generations of 100 individuals each in the GA and followed by an additional 104

cost function evaluations in the simplex search, results in the wing kinematics that
are depicted and tabulated in figure 21. Compared with the actual moth kinematics
shown in figure 9, the optimized kinematics has a more horizontal stroke plane,
represented in the blade-element parameters by an elevation amplitude φA which is
nearly zero. The optimized flapping kinematics also has a slightly increased spanwise
rotation amplitude αA and sweep amplitude θA compared with the biologically derived
parameters. The role of this increased spanwise rotation amplitude is to bring the
wing closer in orientation to the horizontal plane at mid-upstroke and mid-downstroke
and in the BEM computation, this reduces the magnitude of both lift and drag. Thus,
interestingly, the optimization produced a condition close to normal hover which has
been studied extensively in past studies (Ellington 1984; Liu & Aono 2009; Du & Sun
2010).

This blade-element flapping kinematics which is identified as optimal by BEM is
assessed using NS modelling and the vortex structures associated with this stroke are
shown in figure 21. Unlike the actual moth and other optimized cases in optimization
exercise I, both half-strokes now produce similar LEVs due to the nearly horizontal
stroke plane as well as the near symmetry of the two half-strokes. The suction
pressure corresponding to the two LEVs during the two half-strokes are also quite
comparable (see figure 21b,c). Comparing the instantaneous NS lift and power during
a single flapping cycle for the actual moth and this optimized case (figure 22), the
flapping kinematic with the horizontal stroke plane produces a smaller lift peak during
downstroke and higher lift during upstroke. From both NS simulation and BEM, the
magnitude of two peaks for the optimized case is nearly similar, however, BEM
over-estimates the magnitude of both lift peaks. The optimized model in exercise II
produces a lift of 14.8 mN, which is sufficient to support the weight of the insect. The
power loading for this optimized model is 0.30, which is ∼33 % higher than that of
the actual moth. In fact, the optimized model identified here outperforms all of the
cases in optimization exercise I as well.

The significant increase in aerodynamic efficiency of this optimal stroke over
the natural stroke of the moth raises a number of issues regarding biological and
bioinspired flapping flight. Why has the hawkmoth, for which hovering is an important
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FIGURE 21. (Colour online) (a) A lateral projection of the optimized moth flapping stroke
with a horizontal stroke plane. Wing position and orientation is shown with a dot at the
leading edge and a line showing wing orientation. The wing root is shown on the moth
body as a black pentagon. The wing chord length shown is one-quarter of the actual mean
chord length to enhance figure visibility. The parameters are those for the simple harmonic
motion equations (4.1)–(4.3). In (b,c) we show the vortex structures and the isosurface of non-
dimensional suction pressure corresponding to a value of 1.1, respectively, at mid-downstroke
and mid-upstroke for the optimized model.

Cycle Downstroke Upstroke
BEM NS BEM NS BEM NS

Lift (mN) 16.2 14.8 14.1 14.3 18.3 15.3
Power (mW) 57.5 49.2 61.8 57.0 53.2 41.3
ηp (N W−1) 0.28 0.30 0.23 0.25 0.35 0.37

TABLE 5. Mean values of power, power loading and energy expended during one cycle,
downstroke and upstroke from NS simulation of the actual moth model.
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Actual model (NS)
Optimized model (NS)
Optimized model (BEM)

(a) (b)

0
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FIGURE 22. Comparison of lift (a) and power (b) during one cycle for the actual moth model
as well as the optimized model identified in exercise II.

flight activity, evolved a hovering stroke that does not maximize aerodynamic
efficiency? As pointed out earlier, there is no guarantee that the flight system of
the hawkmoth (or any biological flyer for that matter) is designed to maximize the
aerodynamic efficiency of any particular flight mode, or even of flight in general. One
can however speculate as to the possible reasons for sub-optimal hovering efficiency
in the hawkmoth. We note that the key difference between the hovering stroke of the
moth and the optimized stroke is that while the latter has a nearly horizontal stroke
plane, the former has a stroke plane with a significant angle to the horizontal. A
consequence of this is that the upstroke produces relatively little (26 % of the total)
lift, despite consuming 33 % of the total stoke energy. On the other hand, the more
horizontal stroke for the optimized case produces nearly equal lift during both half-
strokes and the energy expenditure is also more similar. There seem to be a number
of possible reasons as to why the hawkmoth adopts a tilted stroke plane during
hover. First, the stroke plane of the hawkmoth (as of many other flying animals) is
nearly vertical during forward flight and the tilted stroke plane during hover therefore
might be an evolutionary compromise between forward and hovering flight that avoids
complexity in the wing joints and actuation mechanism. An alternate or additional
factor may be that a tilted stroke plane during hover provides a higher level of control
authority for tasks such as stabilization in unsteady environments, attitude adjustment
and other maneuvers. Finally, a tilted stroke plane enables rapid transitions between
forward flight and hover. Thus, it seems likely that in the hawkmoth, the aerodynamic
efficiency of hover is compromised in order to simplify wing actuation and/or enhance
stability and maneuverability.

5. Conclusions
A new multi-fidelity approach that couples blade-element and NS simulations has

been developed. The approach is used to explore the performance of flapping insect
wing strokes in a large parameter space and discover stroke patterns that are high-
performing, particularly in terms of power loading. While the starting point for the
current study is a stroke pattern based on a hovering hawkmoth, the method employed
and tested here could be used for stroke optimization of a wide variety of biological,
bioinspired or engineered flapping foil configurations.
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The parameter survey of wing strokes is preceded by a comprehensive validation
study that provides a clear assessment of the ability of the NS solver to predict the
time-varying aerodynamic forces generated by the wing. The simulations are found
to predict not only the time-mean forces, but also a variety of other measures of the
time variation of the forces. This validation is based on experimental measurements
of the dynamics of a freely hovering hawkmoth and demonstrates that high-speed
videogrammetry coupled with carefully constructed dynamical models of the animal,
enables a degree of validation that has not been attained in past studies. We expect that
such validation protocols will become the standard in animal locomotion modelling
studies.

We find that while the accuracy of the blade-element modelling in predicting flight
forces and power cannot match that of the computationally expensive NS approach,
BEM is nevertheless a useful tool for guiding NS-based optimization. In particular,
the BEM predicts trends in power-loading fairly accurately, and more so than other
quantities such as lift and power, and this makes BEMs particularly useful for
exploring power-efficient flight strokes. A detailed comparison of the differences
between the NS and BEM predictions also provides insights into the reasons that
underpin the variations in predictive capability observed for the BEM. In particular,
the study shows that changes in the relative timing between translation and rotation of
the wing generate flow phenomena such as LEV shedding and vortex-capture which
are not incorporated into the current BEM. More extensive ‘tuning’ of the BEM
force coefficients and perhaps new models that allow for additional flow features
might further improve the effectiveness of the multi-fidelity approach. However, the
quasi-steady nature of the BEM makes a general solution to the discrepancies related
to wing–wake interaction difficult to achieve.

Finally, we show that the flapping kinematics used by the hawkmoth is not optimal
in terms of power loading, even when using a flat wing that has neither twist nor
camber, and with a flapping amplitude and frequency that is constrained to that
used by the animal. The flapping stroke identified as optimal by BEM resembles
the condition of normal hover, and NS modelling shows that this stroke has a 33 %
higher power loading than the biological stroke of the moth. The reason for the
non-optimality of the biological stroke is not revealed by the current study, but is
likely related to the multi-factorial nature of the optimization carried out by evolution
on biological systems. For example, the tilted stroke plane used by hovering moths
may be a compromise between hovering and forward flight and evolved as a way to
reduce the complexity of the wing hinge. Alternatively (or in addition), the biological
kinematics may provide benefits for stability or maneuverability that are not evaluated
in this study. On the whole, the current study indicates that the multi-fidelity approach
of combining blade-element and CFD simulations can be a useful tool for engineers to
learn from Nature and guide MAV designs that may outperform natural flyers.

As noted above, all of the models in the optimization study employ rigid flat-plate
wings. Past studies (Young et al. 2009; Nakata & Liu 2012; Dai, Luo & Doyle
2012) indicate that the flapping motion can cause significant wing deformation, which
can enhance force production as well as aerodynamic efficiency. The optimization
study presented in the current paper does not include these wing deformation effects.
It is, however, reasonable to hypothesize that once wing flexibility is considered in
wing-stroke optimization, further improvements in aerodynamic performance could be
achieved. The inclusion of these effects, however, significantly expands the parameter
space and creates additional challenges for computational modelling and simulation.
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