
Journal of the Inst. of Math. Jussieu (2011) 10(2), 325–348 325
doi:10.1017/S1474748010000204 c© Cambridge University Press 2010

ISOMETRIES ON EXTREMELY NON-COMPLEX BANACH SPACES

PIOTR KOSZMIDER1, MIGUEL MARTÍN2 AND JAVIER MERÍ2
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Abstract Given a separable Banach space E, we construct an extremely non-complex Banach space
(i.e. a space satisfying that ‖Id + T 2‖ = 1 + ‖T 2‖ for every bounded linear operator T on it) whose dual
contains E∗ as an L-summand. We also study surjective isometries on extremely non-complex Banach
spaces and construct an example of a real Banach space whose group of surjective isometries reduces to
±Id, but the group of surjective isometries of its dual contains the group of isometries of a separable
infinite-dimensional Hilbert space as a subgroup.
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1. Introduction

All the Banach spaces in this paper will be real. Given a Banach space X, we write X∗

for the topological dual, L(X) for the space of all bounded linear operators, W (X) for
the space of weakly compact operators and Iso(X) for the group of surjective isometries.

A Banach space X is said to be extremely non-complex if the norm equality

‖Id + T 2‖ = 1 + ‖T 2‖

holds for every T ∈ L(X). This concept was introduced very recently by the authors
in [20], where several different examples of C(K) spaces are shown to be extremely non-
complex. For instance, this is the case for some perfect compact spaces K constructed
by the first author [19] such that C(K) has few operators (in the sense that every
operator is a weak multiplier). There are other examples of extremely non-complex C(K)
spaces which contain complemented copies of �∞ or C(2ω) (and so, they do not have few
operators). It is trivial that X = R is extremely non-complex. The existence of infinite-
dimensional extremely non-complex Banach spaces had been asked in [16, Question 4.11],
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where possible generalizations of the Daugavet equation were investigated. We recall that
an operator S defined on a Banach space X satisfies the Daugavet equation [4] if

‖Id + S‖ = 1 + ‖S‖

and that the space X has the Daugavet property [17] if the Daugavet equation holds
for every rank-1 operator on X. We refer the reader to [1,2,17,27] for background on
the Daugavet property. Let us observe that X is extremely non-complex if the Daugavet
equation holds for the square of every (bounded linear) operator on X. Spaces X in which
the square of every rank-1 operator on X satisfies the Daugavet equation are studied
in [23], where it is shown that their unit balls do not have strongly exposed points. In
particular, the unit ball of an extremely non-complex Banach space (of dimension greater
than one) does not have strongly exposed points and, therefore, the space does not have
the Radon–Nikodým property, even the more it is not reflexive.

The name of extremely non-complex comes from the fact that a real Banach space
X is said to have a complex structure if there exists T ∈ L(X) such that T 2 = −Id,
so extremely non-complex spaces lack of complex structures in a very strong way. Let
us also comment that no hyperplane (actually no finite-codimensional subspace) of an
extremely non-complex Banach space admits a complex structure. The existence of
infinite-dimensional real Banach spaces admitting no complex structure is known since
the 1950s, when Dieudonné [6] showed that this is the case of the James space J . We refer
the reader to the very recent papers by Ferenczi [10] and Ferenczi and Medina Galego [11]
and references therein for a discussion about complex structures on spaces and on their
hyperplanes.

Our first goal in this paper is to present examples of extremely non-complex Banach
spaces which are not isomorphic to C(K) spaces. Namely, it is proved in § 3 that if K

is a compact space such that all operators on C(K) are weak multipliers, L is a closed
nowhere-dense subset of K and E is a subspace of C(L), then the space

CE(K‖L) = {f ∈ C(K) : f |L ∈ E}

is extremely non-complex (see § 2 for the definitions and basic facts about this kind of
spaces). It is also shown that there are extremely non-complex CE(K‖L) spaces which are
not isomorphic to C(K ′) spaces. On the other hand, some spaces CE(K‖L) are isometric
to spaces C(K ′) for some compact K ′. This can be used to note that the extremely non-
complex spaces of the form CE(K‖L) may have many operators besides weak multipliers
(see Remark 3.14).

The next aim is to show that Iso(X) is a ‘discrete’ Boolean group when X is extremely
non-complex. Namely, we show that T 2 = Id for every T ∈ Iso(X) (i.e. Iso(X) is a
Boolean group and is therefore commutative) and that ‖T1 − T2‖ ∈ {0, 2} for every
T1, T2 ∈ Iso(X). Next, we discuss the relationship with the set of all unconditional
projections on X and the possibility of this set to be a Boolean algebra. This is the content
of § 4. In § 5 we particularize these results to spaces CE(K‖L) which are extremely non-
complex, getting necessary conditions on the elements of Iso(CE(K‖L)). In particular, if
C(K) is extremely non-complex, we show that the only homeomorphism from K to K
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is the identity, obtaining that Iso(C(K)) is isomorphic to the Boolean algebra of clopen
sets of K.

Section 6 is devoted to apply all the results above to get an example showing that
the behaviour of the group of isometries with respect to duality can be extremely bad.
Namely, we show that for every separable Banach space E, there is a Banach space X̃(E)
such that Iso(X̃(E)) = {Id,−Id} and X̃(E)∗ = E∗ ⊕1 Z, so Iso(X̃(E)∗) contains Iso(E∗)
as a subgroup. To do so, we have to modify a construction of a connected compact
space K with few operators given by the first named author in [19, § 5] and use our
construction of CE(K‖L) for a nowhere dense L ⊂ K. For the special case E = �2,
we have Iso(X̃(�2)) = {Id,−Id}, while Iso(X̃(�2)∗) contains infinitely many uniformly
continuous one-parameter semigroups of surjective isometries. Let us comment that, in
sharp contrast with the examples above, when a Banach space X is strongly unique
predual, the group Iso(X∗) consists exactly of the conjugate operators to the elements
of Iso(X). Quite a lot of spaces are actually strong unique preduals. We refer the reader
to [14] for more information.

We finish this introduction with some needed notation. If X is a Banach space, we
write BX to denote the closed unit ball of X and given a convex subset A ⊆ X, ext(A)
denotes the set of extreme points of A. A closed subspace Z of X is an L-summand if
X = Z ⊕1 W for some closed subspace W of X, where ⊕1 denotes the �1-sum. A closed
subspace Y of a Banach space X is said to be an M -ideal of X if the annihilator Y ⊥ of
Y is an L-summand of X∗. We refer the reader to [15] for background on L-summands
and M -ideals.

2. Notation and preliminary results on the spaces CE(K‖L)

Throughout the paper, K will be a (Hausdorff) compact (topological) space and L ⊆ K

will stand for a nowhere-dense closed subset. Given a closed subspace E of C(L), we will
consider the subspace of C(K) given by

CE(K‖L) = {f ∈ C(K) : f |L ∈ E}.

This notation is compatible with the Semadeni’s book [25, II.4] notation of

C0(K‖L) = {f ∈ C(K) : f |L = 0}.

This last space can be identified with the space C0(K \ L) of those continuous functions
f : K \ L → R vanishing at infinity.

By the Riesz representation theorem, the dual space of C(K) is isometric to the space
M(K) of Radon measures on K, i.e. signed, Borel, scalar-valued, countably additive and
regular measures. More precisely, given µ ∈ M(K) and f ∈ C(K), the duality is given
by

µ(f) =
∫

f dµ.

We recall that C0(K‖L) is an M -ideal of C(K) [15, Example I.1.4(a)], meaning that
C0(K‖L)⊥ is an L-summand in C(K)∗. This fact allows to show the following well-
known result.
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Lemma 2.1. C0(K‖L)∗ ≡ {µ ∈ M(K) : |µ|(L) = 0}.

Proof. Since C0(K‖L) is an M -ideal in C(K), Proposition 1.12 and Remark 1.13 of [15]
allow us to identify C0(K‖L)∗ with the subspace of C(K)∗ = M(K) given by

C0(K‖L)# = {µ ∈ M(K) : |µ|(K) = |µ|(K \ L)} = {µ ∈ M(K) : |µ|(L) = 0}.

�

When we consider the space CE(K‖L), it still makes sense to talk about functionals
corresponding to the measures on K, namely one understands them as the restriction
of the functional from C(K) to CE(K‖L). However, given a functional belonging to
CE(K‖L)∗ one may have several measures on K associated with it. The next result
describes the dual of a CE(K‖L) space for an arbitrary E ⊆ C(L). It is worth mentioning
that its proof is an extension of that appearing in [21, Theorem 3.3].

Lemma 2.2. Let K be a compact space, L a closed subset of K and E ⊆ C(L). Then,

CE(K‖L)∗ ≡ C0(K‖L)∗ ⊕1 C0(K‖L)⊥ ≡ C0(K‖L)∗ ⊕1 E∗.

Proof. We write P : C(K) → C(L) for the restriction operator, i.e.

[P (f)](t) = f(t) (t ∈ L, f ∈ C(K)).

Then, C0(K‖L) = kerP and CE(K‖L) = {f ∈ C(K) : P (f) ∈ E}. Since C0(K‖L) is
an M -ideal in C(K), it is a fortiori an M -ideal in CE(K‖L) by [15, Proposition I.1.17],
meaning that

CE(K‖L)∗ ≡ C0(K‖L)∗ ⊕1 C0(K‖L)⊥ ≡ C0(K‖L)∗ ⊕1 [CE(K‖L)/C0(K‖L)]∗.

Now, it suffices to prove that the quotient CE(K‖L)/C0(K‖L) is isometrically isomorphic
to E. To do so, we define the operator Φ : CE(K‖L) → E given by Φ(f) = P (f) for
every f ∈ CE(K‖L). Then Φ is well defined, ‖Φ‖ � 1, and kerΦ = C0(K‖L). To see that
the canonical quotient operator Φ̃ : CE(K‖L)/C0(K‖L) → E is a surjective isometry, it
suffices to show that

Φ({f ∈ CE(K‖L) : ‖f‖ < 1}) = {g ∈ E : ‖g‖ < 1}.

Indeed, the left-hand side is contained in the right-hand side since ‖Φ‖ � 1. Conversely,
for every g ∈ E ⊆ C(L) with ‖g‖ < 1, we just use Tietze’s extension theorem to find
f ∈ C(K) such that Φ(f) = f |L = g and ‖f‖ = ‖g‖. �

If φ ∈ CE(K‖L)∗, by the above lemma we have φ = φ1 +φE with φ1 ∈ C0(K‖L)∗ and
φE ∈ C0(K‖L)⊥ ≡ E∗. Observe that φ1 can be isometrically associated with a measure
on K \ L by Lemma 2.1, which will be denoted φ|K\L. Given a subset A ⊆ K satisfying
A ∩ L = ∅, φ|A will stand for the measure φ|K\L restricted to A.

The next result is a straightforward consequence of the above two lemmas.
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Lemma 2.3. Let φ ∈ CE(K‖L)∗ and x ∈ K \ L. Then

‖φ‖ = ‖φ|{x}‖ + ‖φ|K\(L∪{x})‖ + ‖φE‖.

The next easy lemma describes the set of extreme points in the unit ball of the dual of
CE(K‖L) and gives a norming set for CE(K‖L). We recall that a subset A of the unit
ball of the dual of a Banach space X is said to be norming if

‖x‖ = sup{|φ(x)| : φ ∈ A} (x ∈ X).

Lemma 2.4. Let K be a compact space, L a nowhere-dense closed subset and E ⊆ C(L).
We consider the set

A = {θδy : y ∈ K \ L, θ ∈ {−1, 1}} ⊂ CE(K‖L)∗.

Then

(a) ext(BCE(K‖L)∗) = A ∪ ext(BE∗),

(b) A is norming for CE(K‖L) and

(c) therefore, A is weak∗-dense in ext(BCE(K‖L)∗).

Proof. By Lemma 2.2 and the description of the extreme points of the unit ball of an
�1-sum of Banach spaces [15, Lemma I.1.5], we have

ext(BCE(K‖L)∗) = ext(BC0(K\L)∗) ∪ ext(BE∗).

It suffices to recall that ext(BC0(K\L)∗) = A (see [12, Theorem 2.3.5] for example) to
get (a). The fact that A is norming for CE(K‖L) is a direct consequence of the fact that
K \ L is dense in K. Finally, every norming set is weak∗-dense in ext(BCE(K‖L)∗) by the
Hahn–Banach theorem and the reversed Krein–Milman theorem. �

We introduce one more ingredient which will play a crucial role in our arguments.
Given an operator U ∈ L(CE(K‖L)∗), we consider the function

gU : K \ L → [−‖U‖, ‖U‖], gU (x) = U(δx)({x}) (x ∈ K \ L).

This obviously extends to operators on CE(K‖L) by passing to the adjoint, that is, for
T ∈ L(CE(K‖L)) one can consider gT ∗ : K \ L → [−‖T‖, ‖T‖]. This is a generalization
of a tool used in [26] under the name ‘stochastic kernel’. One of the results in that paper
can be generalized to the following.

Lemma 2.5. Let K be a compact space, L a nowhere-dense closed subset of K, E ⊆
C(L), and T ∈ L(CE(K‖L)). If the set {x ∈ K \ L : gT ∗(x) � 0} is dense in K \ L, then
T satisfies the Daugavet equation.
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Proof. We use Lemmas 2.2–2.4 to get

‖Id + T ∗‖ � sup
x∈K\L

‖δx + T ∗(δx)‖

= sup
x∈K\L

|1 + T ∗(δx)({x})| + ‖T ∗(δx)|(K\(L∪{x}))‖ + ‖T ∗(δx)|E‖

= sup
x∈K\L

|1 + T ∗(δx)({x})| − |T ∗(δx)({x})| + ‖T ∗(δx)‖

� sup
x∈K\L

1 + T ∗(δx)({x}) − |T ∗(δx)({x})| + ‖T ∗(δx)‖. (2.1)

Now, we claim that the set {x ∈ K \ L : ‖T ∗(δx)‖ > ‖T‖ − ε} is non-empty and open
in K \ L for every ε > 0. Indeed, take a norm-1 function f ∈ CE(K‖L) such that
‖T (f)‖ > ‖T‖ − ε and use the fact that K \ L is dense in K to find x ∈ K \ L satisfying

‖T ∗(δx)‖ � |T ∗(δx)(f)| = |T (f)(x)| > ‖T‖ − ε.

To show that {x ∈ K \ L : ‖T ∗(δx)‖ > ‖T‖ − ε} is open we prove that the mapping

x �→ ‖T ∗(δx)‖ (x ∈ K \ L)

is lower semicontinuous. To do so, since T ∗ is weak∗ continuous and ‖ · ‖ is weak∗ lower
semicontinuous, it suffices to observe that the mapping which sends x to δx is continuous
with respect to the weak∗ topology on CE(K‖L)∗. But this is so since, for a ∈ R and
f ∈ CE(K‖L), the preimage of the sub-basic set {φ ∈ CE(K‖L)∗ : φ(f) < a} in this
topology is {x ∈ K \ L : f(x) < a} which is open in K \ L.

To finish the proof, we use the hypothesis to find x0 ∈ K \ L satisfying

‖T ∗(δx0)‖ > ‖T‖ − ε and gT ∗(x0) = T ∗(δx0)({x0}) � 0

and we use it in (2.1) to obtain

‖Id + T ∗‖ � 1 + ‖T ∗(δx0)‖ > 1 + ‖T‖ − ε,

which implies that ‖Id + T‖ = ‖Id + T ∗‖ � 1 + ‖T‖ since ε was arbitrary. �

3. Spaces CE(K‖L) when C(K) has few operators

Let us start fixing some notation and terminology that will be used throughout the
section. If g : K → R is a bounded Borel function, we will consider the operator g Id :
C(K)∗ → C(K)∗ which sends the functional which is the integration of a function f ∈
C(K) with respect to a measure µ to the functional which is the integration of the
product fg with respect to µ.

Definition 3.1. Let K be a compact space and T ∈ L(C(K)). We say that T is a weak
multiplier if T ∗ = gId + S where g : K → R is a bounded Borel function on K and
S ∈ W (C(K)∗).
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This definition was given in [19] in an equivalent form (see [19, Definition 2.1] and [19,
Theorem 2.2]).

Definition 3.2. We say that an open set V ⊆ K is compatible with L if and only if
L ⊆ V or L ∩ V̄ = ∅. In the first case, the notation CE(V̄ ‖L) has the same meaning as
in the previous section. If L ∩ V̄ = ∅, we will write CE(V̄ ‖L) just to denote C(V̄ ). Let
us also observe that if L ⊆ V , then

CE(V̄ ‖L)∗ ≡ C0(V̄ ‖L)∗ ⊕1 C0(V̄ ‖L)⊥ ≡ C0(V̄ ‖L)∗ ⊕1 E∗

since Lemma 2.2 applies to V̄ .

Given an open set V ⊆ K compatible with L, we consider the restriction operator
P V̄ : CE(K‖L)∗ → CE(V̄ ‖L)∗ given by

P V̄ (φ) = φ|V̄ \L + φE

for φ = φ|K\L + φE where φ|K\L ∈ C0(K‖L)∗ and φE ∈ C0(K‖L)⊥ ≡ E∗. Observe that
φE can also be viewed as an element of C0(V̄ ‖L)⊥ since the spaces C0(V̄ ‖L)⊥ and
C0(K‖L)⊥ are isometrically isomorphic (both coincide with E∗).

Given an open set V ⊆ K compatible with L and h : K → [0, 1] a continuous function
constant on L with support included in V , we denote by PV̄ : CE(K‖L) → CE(V̄ ‖L) and
Ih,V̄ : CE(V̄ ‖L) → CE(K‖L) the operators defined by

PV̄ (f) = f |V̄ and Ih,V̄ (f̃) = hf̃

for f ∈ CE(K‖L) and f̃ ∈ CE(V̄ ‖L) respectively. We observe that Ih,V̄ is well defined,
that is, hf̃ is a function in C(K) with hf̃ |L ∈ E (indeed, hf̃ is continuous in V as a
product of two continuous functions and it is continuous in K \ Supp(h) as a constant
function, since these two sets form an open cover of K we have that hf̃ is continuous
in K; being h constant on L, it is clear that hf̃ |L ∈ E). Finally, If V1 ⊆ K is an open set
compatible with L satisfying V̄ ⊆ V1 we will also use the notation PV̄ for the restriction
operator from CE(V̄1‖L) to CE(V̄ ‖L). In the next result we gather some easy facts
concerning these operators.

Lemma 3.3. Let V and h be as above. Then, the following hold.

(a) P ∗
V̄

(φ)(f) = φ(f |V̄ ) for φ ∈ CE(V̄ ‖L)∗ and f ∈ CE(K‖L).

(b) I∗
h,V̄

(φ)(f̃) = φ(f̃h) for φ ∈ CE(K‖L)∗ and f̃ ∈ CE(V̄ ‖L).

(c) If V0 is an open set such that V̄0 ⊆ V and h|V̄0
≡ 1, then (I∗

h,V̄
P ∗

V̄
)(µ) = µ for every

µ ∈ C(K)∗ with Supp(µ) ⊆ V0.

(d) If E = C(L), then CE(K‖L) = C(K), CE(V̄ ‖L) = C(V̄ ), and P V̄ P ∗
V̄

(µ) = µ for
every µ ∈ C(V̄ )∗.
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Proof. Parts (a) and (b) of the lemma are obvious from the definitions of the operators.
To prove (c) we fix f̃ ∈ CE(V̄ ‖L), µ ∈ C(K)∗ with Supp(µ) ⊆ V0 and we observe that

(I∗
h,V̄ P ∗

V̄ )(µ)(f̃) = P ∗
V̄ (µ)(Ih,V̄ (f̃))

= P ∗
V̄ (µ)(f̃h)

= µ((f̃h)|V̄ )

=
∫

(f̃h)|V̄ dµ

=
∫

V0

f̃ dµ

= µ(f̃).

The first two assertions of (d) are obvious. For the third one, given µ ∈ C(V̄ )∗ and
f̃ ∈ C(V̄ ), use the regularity of the measure P ∗

V̄
(µ) to find an open set Vn ⊆ K satisfying

V̄ ⊆ Vn and |P ∗
V̄ (µ)|(Vn \ V̄ ) <

1
n

(3.1)

for every n ∈ N. Next, take fn ∈ C(K) satisfying

fn|V̄ ≡ f̃ , fn|K\Vn
≡ 0 and ‖fn‖ = ‖f̃‖

for every n ∈ N, and observe that

P V̄ P ∗
V̄ (µ)(f̃) = (P ∗

V̄ (µ))|V̄ (f̃)

=
∫

V̄

f̃ d(P ∗
V̄ (µ))|V̄

=
∫

K

fn dP ∗
V̄ (µ) −

∫
Vn\V̄

fn dP ∗
V̄ (µ)

= P ∗
V̄ (µ)(fn) −

∫
Vn\V̄

fn dP ∗
V̄ (µ)

= µ(f̃) −
∫

Vn\V̄

fn dP ∗
V̄ (µ).

Therefore, using (3.1) and letting n → ∞, it follows that P V̄ P ∗
V̄

(µ)(f̃) = µ(f̃). �

Our first application uses the above operators in the simple case in which E = C(L).

Proposition 3.4. Let K be a compact space, let V0, V1 and V2 be open non-empty
subsets of K such that V̄ 0 ⊆ V1, and let R : C(V̄ 2) → C(V̄ 1) be a linear operator.
Suppose that all operators on C(K) are weak multipliers. Then, there are a Borel function
g : V̄ 1 → R with support included in V̄ 1 ∩ V̄ 2 and a weakly compact operator S :
C(V̄ 1)∗ → C(V̄ 2)∗ such that

R∗(µ) = gµ + S(µ)

for every µ ∈ C(K)∗ with Supp(µ) ⊆ V0.
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Proof. We fix a continuous function h : K → [0, 1] satisfying h|V̄0
≡ 1 and h|(K\V1) ≡ 0

and we define R0 ∈ L(C(K)) by

R0(f) = Ih,V̄1
RPV̄2

(f) (3.2)

for f ∈ C(K). Hence, there are a bounded Borel function ĝ : K → R and a weakly
compact operator Ŝ ∈ L(C(K)∗) such that R∗

0(µ) = ĝµ + Ŝ(µ) for µ ∈ C(K)∗, which
allows us to write

P V̄2R∗
0P

∗
V̄1

= P V̄2 ĝ IdC(K)∗ P ∗
V̄1

+ P V̄2 ŜP ∗
V̄1

. (3.3)

We claim that, considering the weakly compact operator given by S = P V̄2 ŜP ∗
V̄1

and
defining the functions ğ : K → R and g : V̄ 1 → R by

ğ(x) =

{
ĝ(x) if x ∈ V̄1 ∩ V̄2,

0 if x /∈ V̄1 ∩ V̄2
and g = ğ|V̄1

the following holds for µ ∈ C(V̄ 1)∗:

(P V̄2R∗
0P

∗
V̄1

)(µ) = gµ + S(µ). (3.4)

Indeed, for µ ∈ C(V̄ 1)∗ and f ∈ C(V̄ 2) we observe that

(P V̄2 ĝ IdC(K)∗ P ∗
V̄1

)(µ)(f) = (ĝP ∗
V̄1

(µ))|V̄2
(f)

=
∫

V̄2

ĝf dP ∗
V̄1

(µ)

=
∫

V̄1∩V̄2

ĝf dP ∗
V̄1

(µ)

=
∫

V̄1∩V̄2

ğf dP ∗
V̄1

(µ)

=
∫

K

ğf dP ∗
V̄1

(µ)

and, for n ∈ N, we use Lusin’s Theorem (see, for example, [22, Theorem 21.4]) to find a
compact set Kn ⊆ K such that

ğ|Kn is continuous on Kn, |P ∗
V̄1

(µ)|(K\Kn) <
1
n

and |µ|(V̄1\(V̄1∩Kn)) <
1
n

. (3.5)

Using Tietze’s Extension Theorem we may find a continuous function gn : K → R

satisfying

gn|Kn
= ğ|Kn

and ‖gn‖ = ‖ğ|Kn
‖ � ‖ğ‖
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for every n ∈ N. Now it is easy to check that∫
K

ğf dP ∗
V̄1

(µ) =
∫

K

gnf dP ∗
V̄1

(µ) +
∫

K\Kn

(ğ − gn)f dP ∗
V̄1

(µ)

= P ∗
V̄1

(µ)(gnf) +
∫

K\Kn

(ğ − gn)f dP ∗
V̄1

(µ)

= µ((gnf)|V̄1
) +

∫
K\Kn

(ğ − gn)f dP ∗
V̄1

(µ)

=
∫

V̄1

gnf dµ +
∫

K\Kn

(ğ − gn)f dP ∗
V̄1

(µ)

=
∫

V̄1

gf dµ +
∫

V̄1\(V̄1∩Kn)
(gn − ğ)f dµ +

∫
K\Kn

(ğ − gn)f dP ∗
V̄1

(µ)

= µ(gf) +
∫

V̄1\(V̄1∩Kn)
(gn − ğ)f dµ +

∫
K\Kn

(ğ − gn)f dP ∗
V̄1

(µ)

which, letting n → ∞ and using (3.5), implies that∫
K

ğf dP ∗
V̄1

(µ) = µ(gf)

and, therefore,
(P V̄2 ĝ IdC(K)∗ P ∗

V̄1
)(µ)(f) = µ(gf).

This, together with (3.3) and the definition of S, finishes the proof of the claim. On the
other hand by (3.2), we can write

P V̄2R∗
0P

∗
V̄1

= P V̄2P ∗
V̄2

R∗I∗
h,V̄1

P ∗
V̄1

.

So, if the support of µ is included in V0, by parts (c) and (d) of Lemma 3.3 we obtain

P V̄2R∗
0P

∗
V̄1

(µ) = R∗(µ)

and, consequently, R∗(µ) = gµ + S(µ) follows from (3.4). �

Remark 3.5. The result above shows that if every operator on C(K) is a weak multiplier
then, in the above sense, there are also few operators on C(V̄ ) for V open (since for such
a closed set it is possible to define an appropriate function h as in the proof). In general,
one cannot replace closures of open sets by general closed sets: it is shown in [9] that
under the Continuum Hypothesis, there are compact Ks as above which contain βN

(and, of course, there are many operators on C(βN) ≡ �∞). On the other hand, using
the set-theoretic principle ♦, it is also shown in [9] that there are Ks such that for every
infinite closed K ′ ⊆ K, all operators on the space C(K ′) are weak multipliers.

Corollary 3.6. Let K be a compact space, let V0, V1 and V2 be open non-empty subsets
of K such that V̄0 ⊆ V1 and V̄1 ∩ V̄2 = ∅, and let R : C(V̄2) → C(V̄1) be a linear operator.
Suppose that all operators on C(K) are weak multipliers. Then, PV̄0

R is weakly compact.
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Proof. By Proposition 3.4 there is a weakly compact operator S : C∗(V̄1) → C∗(V̄2)
such that R∗(µ) = S(µ) for every measure µ with support included in V̄0. In other
words, (PV̄0

R)∗ = R∗P ∗
V̄0

is weakly compact and so, by Gantmacher theorem, PV̄0
R is

weakly compact. �

The following result is an easy consequence of the Dieudonné–Grothendieck Theorem
which we state for the sake of clearness.

Lemma 3.7. Let K be a compact space, X a Banach space and S : X∗ → C(K)∗ a
weakly compact operator. Then, for every bounded subset B ⊆ X∗, the set

{x ∈ K : ∃φ ∈ B so that S(φ)({x}) �= 0}

is countable.

Proof. Suppose that the set

{x ∈ K : ∃φ ∈ B so that S(φ)({x}) �= 0}

is uncountable for some bounded set B ⊆ X∗. Then, there is ε > 0 so that the set

{x ∈ K : ∃φ ∈ B so that |S(φ)({x})| � ε}

is infinite, which contradicts the fact of being S(B) relatively weakly compact by the
Dieudonné–Grothendieck Theorem (see, for example, [5, Theorem VII.14]). �

Lemma 3.8. Let K be a compact space, let V0, V1 and V2 be open non-empty subsets
of K compatible with L such that V̄0 ⊆ V1 and V̄1 ∩ L = ∅, and let T : CE(K‖L) →
CE(K‖L) be a linear operator. Then, there exists an operator R : C(V̄1) → CE(V̄2‖L)
such that

R∗(φ)|V̄0
= (T ∗P ∗

V̄2
)(φ)|V̄0

for all φ ∈ CE(V̄2‖L)∗.

Proof. Take a continuous function h : K → [0, 1] satisfying h|V̄0
≡ 1 and h|(K\V1) ≡ 0,

and define the operator R = PV̄2
TIh,V̄1

. Given φ ∈ CE(V̄2‖L)∗ and f ∈ C(V̄1) with
Supp(f) ⊆ V̄0, by parts (b) and (a) of Lemma 3.3 and using the facts h|V0 ≡ 1 and
Supp(f) ⊆ V̄ 0, we can write

R∗(φ)(f) = I∗
h,V̄1

T ∗P ∗
V̄2

(φ)(f) = T ∗P ∗
V̄2

(φ)(fh) = T ∗P ∗
V̄2

(φ)(f),

which finishes the proof. �

We are ready to state and prove the main result of the section.

Theorem 3.9. Let K be a perfect compact space such that all operators on C(K) are
weak multipliers, let L ⊆ K be closed and nowhere dense, and E a closed subspace of
C(L). Then, CE(K‖L) is extremely non-complex.
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Proof. Fixed T ∈ L(CE(K‖L)), we have to show that its square satisfies the Daugavet
equation. By Lemma 2.5, it is enough to prove that the set {x ∈ K \ L : g(T 2)∗(x) � 0}
is dense in K \ L. To do so, we proceed ad absurdum: suppose that there is an open set
U1 ⊆ K such that Ū1 ∩ L = ∅ and g(T 2)∗(x) < 0 for each x ∈ U1. By going to a subset,
we may without loss of generality assume that Ū1 is a Gδ set. Therefore, we can find
open sets Wn ⊆ K such that

⋂
n∈N

Wn = Ū1, W̄n+1 ⊆ Wn, and K \ Wn is the closure of
an open set containing L for every n ∈ N. Next, we fix a non-empty open set U0 ⊆ K

with Ū0 ⊆ U1, and we observe that it is uncountable (since K is perfect) so there is ε > 0
such that the set

A = {x ∈ U0 : g(T 2)∗(x) < −ε}

is uncountable. Moreover, we claim that there is n0 ∈ N such that the set

B =
{

x ∈ A : |T ∗(δx)|(Wn0 \ Ū1) <
ε

2‖T‖

}

is uncountable. Indeed, fixed x ∈ A, the regularity of the measure T ∗(δx) implies that
there is n ∈ N so that |T ∗(δx)|(Wn \ Ū1) < ε/2‖T‖ which gives us

A =
⋃
n∈N

{
x ∈ A : |T ∗(δx)|(Wn \ Ū1) <

ε

2‖T‖

}

and the uncountability of A finishes the argument.
For x ∈ B, we write

φx = T ∗(δx)|K\(L∪Wn0 ) + T ∗(δx)E ∈ CE((K \ Wn0)‖L)∗

and we can decompose T ∗(δx) as follows:

T ∗(δx) = T ∗(δx)|Ū1
+ T ∗(δx)|Wn0\Ū1

+ φx.

Hence, for every x ∈ B, we get

−ε > [(T ∗)2(δx)]({x}) = T ∗[T ∗(δx)|Ū1
+ T ∗(δx)|Wn0\Ū1

+ φx]{x}. (3.6)

However, the following claims show that this is impossible.

Claim 1. ‖T ∗[T ∗(δx)|Wn0\Ū1
]‖ < 1

2ε.

Proof of Claim 1. It follows obviously from the choice of n0.

Claim 2. The function x �→ T ∗(T ∗(δx)|Ū1
)({x}) is non-negative for all but countably

many x ∈ B.

Proof of Claim 2. By Lemma 3.8 applied to V0 = U1, V1 = Wn0 and V2 = U1, we
obtain an operator R : C(W̄n0) → C(Ū1) such that

R∗(ψ)|Ū1
= T ∗P ∗

Ū1
(ψ)|Ū1
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for ψ ∈ C(Ū1)∗. On the other hand, by Proposition 3.4 applied to R and V0 = U0,
V1 = U1, V2 = Wn0 , we get a bounded Borel function g : Ū1 → R and a weakly compact
operator S : C(Ū1)∗ → C(W̄n0)

∗ such that

R∗(µ) = gµ + S(µ)

for every µ with support in U0. In particular, for x ∈ B we have

T ∗(δx)|Ū1
= T ∗P ∗

Ū1
(δx)|Ū1

= R∗(δx)|Ū1
= gδx + S(δx)|Ū1

= g(x)δx + S(δx)|Ū1

and using this twice we get

T ∗(T ∗(δx)|Ū1
)({x}) = T ∗[g(x)δx + S(δx)|Ū1

]({x})

= g(x)T ∗(δx)({x}) + T ∗[S(δx)|Ū1
]({x})

= g(x)T ∗(δx)|Ū1
({x}) + R∗[S(δx)|Ū1

]({x})

= g(x)2 + g(x)S(δx)|Ū1
({x}) + (gS(δx)|Ū1

)({x}) + S[S(δx)|Ū1
]({x})

= g(x)2 + (2gP Ū1S)(δx)({x}) + (SP Ū1S)(δx)({x})

for every x ∈ B. Finally, since gP Ū1S and SP Ū1S are weakly compact operators, we
conclude by Lemma 3.7 that (gP Ū1S)(δx)({x}) and (SP Ū1S)(δx)({x}) are zero for all
but countably many x, completing the proof of the claim.

Claim 3. T ∗(φx)({x}) = 0 for all but countably many x ∈ U0.

Proof of Claim 3. By Lemma 3.8 applied to V0 = U0, V1 = U1, and V2 = K \
W̄n0+1 we obtain an operator R : C(Ū1) → CE((K \Wn0+1)‖L) such that R∗(φ)({x}) =
T ∗P ∗

K\Wn0
(φ)({x}) for x ∈ U0 and φ ∈ CE((K \ Wn0+1)‖L)∗. We denote

J : CE((K \ Wn0+1)‖L) → C(K \ Wn0+1)

the inclusion operator and we apply Corollary 3.6 for the operator JR and the open sets
V0 = K \ W̄n0 , V1 = K \ W̄n0+1, and V2 = U1 to obtain that the operator PK\Wn0

JR is
weakly compact.

Besides, we recall that φx ∈ CE((K \ Wn0‖L))∗ and that it can be viewed as an
element of CE((K \ Wn0+1‖L))∗ by just extending it by zero outside K \ Wn0 . For
x ∈ U0 we take φ̃x a Hahn–Banach extension of φx to C(K \ Wn0) and we observe that
J∗P ∗

K\Wn0
(φ̃x) = φx. Indeed, for f ∈ CE((K \ Wn0+1)‖L) we have that

J∗P ∗
K\Wn0

(φ̃x)(f) = φ̃x(PK\Wn0
(Jf))

= φ̃x(PK\Wn0
(f))

= φ̃x(f |K\Wn0
)

= φx(f |K\Wn0
)

= φx(f).
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Therefore, for x ∈ U0, we can write

T ∗(φx)({x}) = T ∗P ∗
K\Wn0

(φx)({x})

= R∗(φx)({x})

= R∗J∗P ∗
K\Wn0

(φ̃x)({x})

= (PK\Wn0
JR)∗(φ̃x)({x}),

where we are identifying φx with its extension by zero to K. Now the proof of the claim
is finished by just applying Lemma 3.7 to the operator PK\Wn0

JR.
Finally, the claims obviously contradict (3.6) completing the proof of the theorem. �

When E = {0}, we get a sufficient condition to get that a space of the form C0(K \L)
is extremely non-complex.

Corollary 3.10. Let K be a compact space such that all operators on C(K) are weak
multipliers. Suppose L ⊆ K is closed and nowhere dense. Then, C0(K \ L) is extremely
non-complex.

To show that there are extremely non-complex spaces of the form CE(K‖L) which are
not isomorphic to the C(K ′) spaces, we need the following (well-known) result which
allows us to construct spaces CE(K‖L) for every perfect separable compact space K and
every separable Banach space E.

Lemma 3.11. Let K be a perfect compact space. Then

(a) there is a nowhere-dense closed subset L ⊂ K such that L can be continuously
mapped onto the Cantor set;

(b) therefore, every separable Banach space E is (isometrically isomorphic to) a sub-
space of C(L).

Proof. (a) As K is perfect, given a non-empty open subset U in K and x ∈ U , there
are two non-empty open subsets V1, V2 of U such that

V̄1 ∩ V̄2 = ∅ and x �∈ V̄i (i = 1, 2).

This allows us to construct a family of open sets Us for s ∈ {0, 1}<ω such that

U∅ = K, Ūs�0 ∩ Ūs�1 = ∅, Ūs�0, Ūs�1 ⊆ Us and Us \ [Ūs�0 ∪ Ūs�1] �= ∅.

Take any point ys in the above difference. Define L to be the set of all the accumulation
points of the set {ys : s ∈ {0, 1}<ω}.

For n ∈ N, let fn : K → [0, 1] be such continuous functions that for all s ∈ {0, 1}n we
have fn[Ūs�0] = {0} and fn[Ūs�1] = {1} which can be easily obtained since Ūs ∩ Ūs′ = ∅
if s, s′ ∈ {0, 1}n are distinct. Let f : K → [0, 1]N be defined by f(x)(n) = fn(x). We
claim that f |L satisfies the lemma. One can easily check that f is continuous since the
fns are continuous.
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Because each Ūs contains infinitely many points yt, we have that L ∩ Ūs �= ∅ for each
s ∈ {0, 1}<ω. Note that if x ∈ Ūs and s ∈ {0, 1}n, then f(x)|{0, . . . , n − 1} = s. So, as
the image of L under f , is closed, it contains {0, 1}N.

On the other hand, if x ∈ L, then for each n ∈ N there is s ∈ {0, 1}n such that
x ∈ Ūs, this is because K \

⋃
{Ūs : |s| = n} contains only finitely many points yt and

hence no element of L. Thus fn(x) ∈ {0, 1} if x ∈ L which gives that f [L] ⊆ {0, 1}N,
which together with the previous observation gives that f [L] = {0, 1}N.

Finally, let us prove that L has empty interior, and so, as a closed set, it is nowhere
dense. It is enough to see that L has empty interior in the subspace {ys : s ∈ {0, 1}<ω}∪L.
This is true since {ys : s ∈ {0, 1}<ω} is dense and open in {ys : s ∈ {0, 1}<ω} ∪ L, as
each point ys is isolated by Us \ [Ūs�0 ∪ Ūs�1] from the remaining points.

(b) Since the function f |L : L → 2ω of the above item is continuous and surjective,
C(2ω) embeds isometrically into C(L) by just composing every element in C(2ω) with
f |L. Since every separable Banach space E embeds isometrically into C(2ω) (Banach–
Mazur theorem), we get E ⊆ C(L) isometrically. �

Remark 3.12. If K is a compact space such that all operators on C(K) are weak
multipliers, then it is easier to prove the existence of L ⊆ K closed nowhere dense
which maps onto [0, 1] giving also (b) above. Indeed, C(K) is a Grothendieck space
by [19, Theorem 2.4], so K has no convergent sequence (otherwise it would give rise
to a complemented copy of c0 contradicting the Grothendieck property). Now, take any
discrete sequence {xn : n ∈ N} ⊆ K and consider the set L of all its accumulation points.
Then, L is perfect because an isolated point would produce a convergent subsequence of
{xn : n ∈ N}, so L continuously maps onto [0, 1] [25, Theorem 8.5.4]. To see that L is
nowhere dense we use the discreteness of {xn : n ∈ N}. If U ⊆ K is open and intersects
L, then there is n0 ∈ N such that xn0 ∈ U ; but by the discreteness of {xn : n ∈ N},
there is an open neighbourhood V of xn0 not containing the remaining xns and hence,
disjoint from L. Therefore, V ∩ U is an open subset of U disjoint with L, proving that L

is nowhere dense.

Now, we take a perfect compact space K such that every operator on C(K) is a
weak multiplier [19], and we use Lemma 3.11 to find a nowhere-dense closed subset L

such that C(L) contains isometric copies of every separable Banach space. Then, for
every E ⊂ C(L), CE(K‖L) is extremely non-complex by Theorem 3.9 and CE(K‖L)∗ =
C0(K‖L)∗ ⊕1 E∗ by Lemma 2.2. If E is infinite dimensional and reflexive, CE(K‖L) is
not isomorphic to a C(K ′) space, since C(K ′)∗ never contains complemented infinite-
dimensional reflexive subspaces (see, for example, [3, Proposition 5.6.1]). Let us state all
what we have proved.

Example 3.13.

(a) For every separable Banach space E, there is an extremely non-complex Banach
space CE(K‖L) such that E∗ is an L-summand in CE(K‖L)∗.

(b) If E is infinite dimensional and reflexive, then such CE(K‖L) is not isomorphic to
any C(K ′) space.
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(c) Therefore, there are extremely non-complex Banach spaces which are not isomorphic
to C(K) spaces.

We finish the section commenting that some C(K ′) spaces with many operators can
be viewed as CE(K‖L) spaces where C(K) has few operators and for which our previous
results apply.

Remark 3.14. Let L ⊆ K be a nowhere-dense subset of a compact K as before. Consider
the topological quotient map q : K → KL, where KL is obtained from K by identifying
all points of L to one point. The canonical isometric embedding Iq of C(KL) into C(K)
defined by Iq(f) = f ◦ q has the image equal to the subspace of C(K) consisting of all
functions constant on L. Thus C(KL) is isometric to CE(K‖L), where E is the subspace
of C(L) of all constant functions. Hence, by the results above, if all operators on C(K) are
weak multipliers, then all spaces of the form C(KL) are extremely non-complex. It turns
out that the spaces of [20] can be realized as spaces of this form. In particular, there
are extremely non-complex spaces of the form CE(K‖L) which have many operators
besides weak multipliers. For example, take K such that all operators on C(K) are weak
multipliers. Choose a discrete sequence (xn) in K and let L be the set of its accumulation
points. Then the sequence (xn) has a unique accumulation point in KL, that is, it is a
convergent sequence. By a well-known fact, this means that C(KL) ≡ CE(K‖L) has
a complemented copy of c0 and so is not Grothendieck, hence it has more operators
than weak multipliers by results of [19] (actually, many operators which are not weak
multipliers can be directly obtained from automorphisms of the complemented copy of
c0 generated by permutations of the natural numbers).

4. Isometries on extremely non-complex spaces

The following result shows that the group of isometries of an extremely non-complex
Banach space is a discrete Boolean group.

Theorem 4.1. Let X be an extremely non-complex Banach space. Then

(a) if T ∈ Iso(X), then T 2 = Id,

(b) as a consequence, for every T1, T2 ∈ Iso(X), T1T2 = T2T1,

(c) for every T1, T2 ∈ Iso(X), ‖T1 − T2‖ ∈ {0, 2}.

Proof. (a) Given T ∈ Iso(X), we define the operator S = (1/
√

2)(T − T−1) and we
observe that S2 = 1

2T 2 − Id + 1
2T−2. Since X is extremely non-complex, we get

1 + ‖S2‖ = ‖Id + S2‖ = ‖ 1
2T 2 + 1

2T−2‖ � 1

and, therefore, S2 = 0. This gives us that Id = 1
2T 2+ 1

2T−2. Finally, since Id is an extreme
point of L(X) (see, for example, [24, Proposition 1.6.6]) and ‖T 2‖ � 1, ‖T−2‖ � 1, we
get T 2 = Id.
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(b) Commutativity comes routinely from the first part since T1T2 ∈ Iso(X), so

Id = (T1T2)2 = T1T2T1T2,

which finishes the proof by just multiplying by T1 from the left and by T2 from the right.

(c) We start by observing that ‖Id − T‖ ∈ {0, 2} for every T ∈ Iso(X). Indeed, from (a)
we have

(Id−T )2 = Id + Id−2T = 2(Id−T ),

which gives us that
2‖Id − T‖ = ‖(Id−T )2‖ � ‖Id − T‖2.

Therefore, we get either ‖Id−T‖ = 0 or ‖Id−T‖ � 2. Now, if T1, T2 ∈ Iso(X) we observe
that

‖T1 − T2‖ = ‖T1(Id−T1T2)‖ = ‖Id − T1T2‖ ∈ {0, 2}.

�

As an immediate consequence we obtain the following result. Let us observe that there
is no topological consideration on the semigroup.

Corollary 4.2. If X is an extremely non-complex Banach space and Φ : R
+
0 → Iso(X)

is a one-parameter semigroup, then Φ(R+
0 ) = {Id}.

Proof. Just observe that Φ(t) = Φ( 1
2 t + 1

2 t) = Φ( 1
2 t)2 = Id for every t ∈ R

+
0 . �

Let X be a Banach space. A projection P ∈ L(X) is said to be unconditional if 2P −
Id ∈ Iso(X) (equivalently, ‖2P − Id‖ = 1). We write Unc(X) for the set of unconditional
projections on X. It is straightforward to show that P ∈ Unc(X) if and only if P =
1
2 (Id+T ) for some T ∈ Iso(X) with T 2 = Id. It is then immediate that Unc(X) identifies
with {T ∈ Iso(X) : T 2 = Id} and both sets are Boolean groups: the group operation in
{T ∈ Iso(X) : T 2 = Id} is just the composition and so the group operation in Unc(X) is

(P1, P2) �→ P1 + P2 − P1P2.

It also follows that all unconditional projections commute.
If X is extremely non-complex, the set {T ∈ Iso(X) : T 2 = Id} is the whole Iso(X)

(Theorem 4.1). We summarize all of this in the next result, where we will also dis-
cuss when these Boolean groups are actually Boolean algebras. The proof is completely
straightforward. We refer the reader to the book [18, § 1.8] for background on Boolean
algebras of projections.

Proposition 4.3. Let X be an extremely non-complex Banach space.

(a) Iso(X) is a Boolean group for the composition operation.

(b) Unc(X) is (equivalently, Iso(X) is isomorphic to) a Boolean algebra if, and only if,
P1P2 ∈ Unc(X) for every P1, P2 ∈ Unc(X) if, and only if, ‖Id+T1 +T2 −T1T2‖ = 2
for every T1, T2 ∈ Iso(X).
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We will show later that for many examples of extremely non-complex Banach spaces
the set of unconditional projections is a Boolean algebra, but we do not know if this
always happens.

5. Surjective isometries on extremely non-complex CE(K‖L) spaces

Our aim in this section is to describe the group of isometries of the spaces CE(K‖L)
when they are extremely non-complex. We will deduce all the results from the following
theorem.

Theorem 5.1. Suppose that the space CE(K‖L) is extremely non-complex. Then, for
every T ∈ Iso(CE(K‖L)) there is a continuous function θ : K \ L → {−1, 1} such that

[T (f)](x) = θ(x)f(x)

for all x ∈ K \ L and f ∈ CE(K‖L).

Proof. We divide the proof into several claims.

Claim 1. The set D0 = {x ∈ K \ L : ∃y ∈ K \ L, θ0 ∈ {−1, 1} with T ∗(δx) = θ0δy} is
dense in K.

Proof of Claim 1. Let W be a non-empty open subset of K. Since K \ L is open and
dense in K, there is V non-empty and open satisfying V ⊆ W ∩(K\L). Now, {δx : x ∈ V }
is a subset of ext(BCE(K‖L)) by Lemma 2.4, and it is easy to check that it is weak∗ open
in ext(BCE(K‖L)∗) (indeed, for x0 ∈ V take a non-negative f ∈ C0(K‖L) such that
f(x0) = 1 and f(K \ V ) = 0, and observe that δx0 ∈ {δx : δx(f) > 1

2} ⊂ {δx : x ∈ V }).
Now, since T ∗ is a weak∗ continuous surjective isometry, the mapping

T ∗ : (ext(BCE(K‖L)∗), w∗) → (ext(BCE(K‖L)∗), w∗)

is a homeomorphism and so the set {T ∗(δx) : x ∈ V } is weak∗ open in ext(BCE(K‖L)∗).
Since, by Lemma 2.4, the set {θδy : y ∈ K \ L, θ ∈ {−1, 1}} is weak∗ dense in
ext(BCE(K‖L)∗), there are x ∈ V , y ∈ K \ L, and θ0 ∈ {−1, 1} such that T ∗(δx) = θ0δy,
which implies x ∈ V ∩ D0 ⊆ W ∩ D0, finishing the proof of Claim 1.

Now, we can consider functions φ : D0 → D0 and θ : D0 → {−1, 1} such that

T ∗(δx) = θ(x)δφ(x) (5.1)

for all x ∈ D0. Since T 2 = Id by Theorem 4.1, if x ∈ D0 and T ∗(δx) = ±δy, then
T ∗(δy) = ±δx and so y ∈ D0. Therefore, φ is a well-defined function from D0 into itself.
Moreover, it also follows that

φ2(x) = x and θ(x)θ(φ(x)) = 1 (x ∈ D0). (5.2)

Indeed, given x ∈ D0, we use the fact that (T ∗)2 = Id to get

δx = T ∗(T ∗(δx)) = T ∗(θ(x)δφ(x)) = θ(x)θ(φ(x))δφ2(x).

Claim 2. φ is a homeomorphism of D0.
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Proof of Claim 2. As φ2 is the identity on D0, it is enough to prove that φ is continuous.
To do so, fixed x0 ∈ D0 and an open subset W of K \ L with φ(x0) ∈ W , we have to
show that φ−1(W ∩D0) is a neighbourhood of x0 in D0. Indeed, we consider a continuous
function f0 ∈ C0(K‖L) ⊆ CE(K‖L) such that

f0(φ(x0)) = 1 = ‖f0‖ and f0 ≡ 0 in K \ W.

Since the mapping

x �→ [T ∗(δx)](f0) = θ(x)f0(φ(x)) (x ∈ D0)

is continuous at x0, there is an open neighbourhood U0 of x0 such that

||f0(φ(x))| − 1| � |θ(x)f0(φ(x)) − θ(x0)f0(φ(x0))| < 1
2 (x ∈ U0 ∩ D0).

Since f0 ≡ 0 outside W , we get that U0 ∩ D0 ⊆ φ−1(W ∩ D0).

Claim 3. φ(x) = x for all x ∈ D0.

Proof of Claim 3. Suppose otherwise that there are x0, y0 ∈ D0 such that φ(x0) =
y0 �= x0. Let Vi ⊆ V̄ i ⊆ K \ L with i = 1, 2 be open subsets of K satisfying

x0 ∈ V1, y0 ∈ V2, V̄1 ∩ V̄2 = ∅ and V1 ∩ D0 ⊆ φ−1(V2 ∩ D0).

The last condition obviously implies φ(V1 ∩ D0) ⊆ V2 and, since φ is a homeomorphism
of D0, it follows that φ(V1 ∩ D0) is open in D0. Therefore, we can find V0 ⊆ V2 an open
subset of K such that V0∩D0 = φ(V1∩D0). Then, we may find g ∈ C0(K‖L) ⊆ CE(K‖L)
satisfying g(x0) = 1, g(y0) = −1, g(x) ∈ [−1, 0] for x ∈ V0, g(x) ∈ [0, 1] for x ∈ V1, and
g(x) = 0 for x �∈ V1 ∪ V0. In particular, for x ∈ D0, we have that

g(x)g(φ(x)) ∈ [−1, 0].

Next, we define the operator Tg : CE(K‖L) → CE(K‖L) by Tg(f) = gf , which is well
defined (since g|L ≡ 0) and satisfies T ∗

g (δx) = g(x)δx for each x ∈ K \ L. Finally, we
consider the composition S = TgT and, for x ∈ D0, we use (5.1) and (5.2) to write

(S∗)2(δx) = T ∗(T ∗
g (T ∗(T ∗

g (δx)))) = θ(x)θ(φ(x))g(x)g(φ(x))δφ2(x) = g(x)g(φ(x))δx.

This, together with our choice of g, tells us that

‖[Id + (S∗)2](δx)‖ � 1 (x ∈ D0).

As D0 is dense in K by Claim 1 and Id + (S∗)2 is weak∗-continuous, we deduce that
‖Id + (S∗)2‖ � 1. Now, the fact that CE(K‖L) is extremely non-complex implies that
S2 = 0, which is a contradiction since (S∗)2(δx0) = −δx0 �= 0.

Claim 4. D0 = K \ L.
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Proof of Claim 4. Let us fix x0 ∈ K \ L. Since D0 is dense in K \ L, we may find a
net (xλ)λ∈Λ in D0 such that (xλ)λ∈Λ → x0, so (T ∗(δxλ

))λ∈Λ → T ∗(δx0). But T ∗(δxλ
) =

θ(xλ)δxλ
, so the only possible accumulation points of the net (T ∗(δxλ

))λ∈Λ are +δx0 and
−δx0 . Therefore, x0 ∈ D0 as claimed.

Claim 5. θ is continuous on K \ L.

Proof of Claim 5. We fix x0 ∈ K \ L and an open subset W of K such that x0 ∈ W ⊆
W̄ ⊆ K \ L and we take a function f ∈ C0(K‖L) ⊆ CE(K‖L) satisfying f |W̄ ≡ 1. Since
the mapping

x �→ ψ(x) = [T ∗(δx)](f) = θ(x)f(x) (x ∈ K \ L)

is continuous and ψ|W ≡ θ|W , we get the continuity of θ at x0. �

We are now able to completely describe the set of surjective isometries in some special
cases. The first one covers the case when K and K \ L are connected.

Corollary 5.2. Let K be a connected compact space such that K \L is also connected.
Suppose that CE(K‖L) is extremely non-complex. Then, Iso(CE(K‖L)) = {Id,−Id}.

Proof. Given T ∈ Iso(CE(K‖L)), Theorem 5.1 gives a continuous function θ : K \ L →
{−1, 1} such that [T (f)](x) = θ(x)f(x) for every x ∈ K \ L and every f ∈ CE(K‖L).
If K \ L is connected, there are only two possible functions θ. Being L nowhere dense,
the values of [T (f)](x) for x ∈ K \ L determine completely the function T (f) for every
f ∈ CE(K‖L). This gives only two possible surjective isometries, Id and −Id. �

Corollary 5.3. Suppose E is a subspace of C(L) such that CE(K‖L) is extremely non-
complex and for every x ∈ L, there is f ∈ E such that f(x) �= 0. If T ∈ Iso(CE(K‖L)),
then there is a continuous function θ : K → {−1, 1} such that T (f) = θf for all
f ∈ CE(K‖L).

Proof. By Theorem 5.1, we may find θ′ : K \ L → {−1, 1} continuous such that

[T (f)](x) = θ′(x)f(x) (x ∈ K \ L, f ∈ CE(K‖L)).

First, we note that θ′ can be extended to a continuous function θ on K (indeed, if x ∈ L,
there is an open neighbourhood U of x on K and an f ∈ CE(K‖L) such that f(y) �= 0
for every y ∈ U and T (f)|U/f |U is a continuous function on U which extends θ′|U\L).
Now, for each f ∈ CE(K‖L) we have

[T (f)](x) = θ(x)f(x) (x ∈ K \ L),

so T (f) = θf since they are two continuous functions which agree on a dense set. �

By just taking E = C(L) in the above result, we get a description of all surjective
isometries on an extremely non-complex C(K) space. One direction is the above corollary,
the converse result is just a consequence of the classical Banach–Stone Theorem (see, for
example, [12, Theorem 2.1.1]).
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Corollary 5.4. Let K be a perfect Hausdorff space such that C(K) is extremely non-
complex. If T ∈ Iso(C(K)), then there is a continuous function θ : K → {−1, 1} such
that T (f) = θf for every f ∈ C(K). Conversely, for every continuous function θ′ : K →
{−1, 1}, the operator given by T (f) = θ′f for every f ∈ C(K) is a surjective isometry.
In other words, Iso(C(K)) is isomorphic to the Boolean algebra of clopen subsets of K.

It follows from the above result and the Banach–Stone Theorem on the representation
of surjective isometries on C(K) (see, for example, [12, Theorem 1.2.2]) that the only
homeomorphism of K is the identity.

Corollary 5.5. Let K be a perfect Hausdorff space such that C(K) is extremely non-
complex. Then, the unique homeomorphism from K onto K is the identity.

We finish the section with the study of the opposite extreme case, i.e. when E = {0}.
Then, the hypotheses of Corollary 5.3 are not satisfied, but we obtain a description of
the surjective isometries of the spaces C0(K‖L) ≡ C0(K \L) directly from Theorem 5.1.
Again, the converse result comes from the Banach–Stone Theorem (see, for example, [12,
Corollary 2.3.12]).

Corollary 5.6. Let K be a compact Hausdorff space, L ⊂ K closed nowhere dense, and
suppose that C0(K \ L) is extremely non-complex. If T ∈ Iso(C0(K \ L)), then there is a
continuous function θ : K \ L → {−1, 1} such that T (f) = θf for every f ∈ C0(K \ L).
Conversely, for every continuous function θ′ : K \ L → {−1, 1}, the operator

[T (f)](x) = θ′(x)f(x) (x ∈ K \ L, f ∈ C0(K \ L))

is a surjective isometry. In other words, Iso(C0(K \ L)) is isomorphic to the Boolean
algebra of clopen subsets of K \ L.

Proof. The first part is a direct consequence of Theorem 5.1 for E = {0}. For the
converse result, just observe that given any extension of θ′ to L, the product θ′f : K → R

does not depend on the extension, belongs to C0(K‖L) and ‖θ′f‖∞ = ‖f‖∞. �

6. The construction of the main example

Our goal here is to construct a compact space K and a nowhere-dense subset L ⊆ K

with very special properties which will allow us to provide the main example on surjective
isometries and duality.

Theorem 6.1. There exist a compact space K and a closed nowhere-dense subset L ⊆ K

with the following properties:

(a) K and K \ L are connected;

(b) there is a continuous mapping φ from L onto the Cantor set; and

(c) every operator on C(K) is a weak multiplier.
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Proof. K is the compact space constructed in [19, § 5]. The fact that all operators on
C(K) are weak multipliers is given in [19, Lemma 5.2].

We just need to find the appropriate L. We will assume the familiarity of the reader
with the above construction of K in [19, § 5]. In particular, that K ⊆ [0, 1]2

ω

is the inverse
limit of Kα ⊆ [0, 1]α for α � 2ω where K1 = [0, 1]2. For β � α � 2ω the projection from
[0, 1]α onto [0, 1]β is denoted πβ,α.

Choose any N ⊆ [0, 1]2 which is a copy of a Cantor set included in some subinterval
of [0, 1]2. In particular, it is compact nowhere-dense perfect and such that [0, 1]2 \ N is
connected. Let Nα = π1,α[N ]. We claim that L = N2ω works, i.e. is nowhere dense in K,
K \ L is connected and there is a continuous mapping of L onto the Cantor set. The last
part is clear as π1,2ω sends L onto N which is a homeomorphic copy of the Cantor set.

One proves by induction on α � 2ω that Nα is nowhere dense in Kα and Kα \ Nα is
connected. This is essentially a generalization of [19, Lemma 4.6] from a finite set to a
nowhere-dense set with a connected complement in [0, 1]2.

Lemma 4.3.a of [19] says that being nowhere dense is preserved when we pass by
preimages from Kα to Kα+1 so, as the limit stage is trivial, it follows that every Nα is
nowhere dense in Kα. Therefore, L is nowhere dense in K.

So we are left with showing that Kα \ Nα are connected. As in [19, Lemma 4.6], we
prove by induction on α that there are Mn

α ⊆ Kα such that

(1) πα′,α[Mn
α ] = Mn

α′ for α′ � α � β,

(2) the Mn
α s are compact and connected,

(3) Mn
α ∩ Nα = ∅, Mn

α ⊆ Mn+1
α ,

(4)
⋃

n∈N Mn
α is dense in Kα \ Nα.

We start by choosing Mn
1 to satisfy (2)–(4) and such that [0, 1]2 \

⋃
n∈N Mn

α is N =
N1 ⊆ [0, 1]2. The rest of the argument is exactly as in the last part of the proof of [19,
Lemma 4.6]. �

We are now ready to present the main application of the results of the paper.

Theorem 6.2. For every separable Banach space E, there is a Banach space X̃(E) such
that Iso(X̃(E)) = {Id,−Id} and X̃(E)∗ = E∗ ⊕1 Z for a suitable space Z. In particular,
Iso(X̃(E)∗) contains Iso(E∗) as a subgroup.

Proof. Consider the compact space K and the nowhere-dense closed subset L ⊂ K

given in Theorem 6.1. As there is a surjective continuous function from L to the Cantor
set, every separable Banach space E is a subset of C(L). Let X̃(E) be CE(K‖L). Then,
X̃(E) is extremely non-complex since every operator on C(K) is a weak multiplier and
we may use Theorem 3.9. Now, since K \ L is connected, we may apply Corollary 5.2
to get that Iso(X̃(E)) = {Id,−Id}. Finally, Lemma 2.2 gives us that X̃(E)∗ = E∗ ⊕1

C0(K‖L)∗ and so Iso(X̃(E)∗) contains Iso(E∗) as a subgroup (see, for example, [21,
Proposition 2.4]). �
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Let us comment that all the spaces X̃(E) constructed above are non-separable. We do
not know whether separable spaces with the same properties can be constructed.

The case E = �2 in Theorem 6.2 gives the following specially interesting example.

Example 6.3. There is a Banach space X̃(�2) such that Iso(X̃(�2)) = {Id,−Id}
but Iso(X̃(�2)∗) contains Iso(�2) as a subgroup. Therefore, Iso(X̃(�2)) is trivial, while
Iso(X̃(�2)∗) contains infinitely many uniformly continuous one-parameter semigroups of
surjective isometries.

Recently, the second author of this paper constructed a Banach space X(�2) such that
Iso(X(�2)) does not contain any uniformly continuous one-parameter semigroup of sur-
jective isometries, while Iso(X(�2)∗) contains infinitely many of them [21, Example 4.1].
But it is not difficult to show that Iso(X(�2)) does not reduce to {Id,−Id} and, actually,
it contains infinitely many strongly continuous one-parameter semigroups of surjective
isometries. We refer the reader to the books of Engel and Nagel [7, 8] for background
on one-parameter semigroups of operators and to the monographs of Fleming and Jami-
son [12,13] for more information on isometries on Banach spaces.
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