

X-ray powder diffraction data for 3-amino-5-(aminocarbonyl)-2,4,6triiodobenzoic acid methanol solvate

J. Maixner,^{1,a)} M. Kindl,² and P. Kačer²

¹Central Laboratories, University of Chemical Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic ²Department of Organic Technology, University of Chemical Technology Prague, Technická 5, 166 28 Prague, Czech Republic

(Received 4 October 2016; accepted 25 April 2017)

X-ray powder diffraction data, unit-cell parameters, and space group for a $C_9H_9I_3N_2O_4$ are presented $[a = 17.000 (1) \text{ Å}, b = 13.896 (1) \text{ Å}, c = 12.597 (1) \text{ Å}, unit-cell volume <math>V = 2975.9 \text{ Å}^3$, MW = 589.89, T_m (melting point) = 300(1) °C, $\rho_c = 2.641$ g cm⁻³, $\rho_m = 2.66(3)$ g cm⁻³, Z = 8, space group *Pbca*]. All measured lines were indexed and are consistent with the *Pbca* space group. No detectable impurities were observed. © 2017 International Centre for Diffraction Data. [doi:10.1017/S0885715617000598]

Key words: X-ray powder diffraction, radiocontrast agents

I. INTRODUCTION

3-Amino-5-(aminocarbonyl)-2,4,6-triiodobenzoic acid is currently used as a precursor of iosimenol, a non-ionic radiocontrast agent with both low osmolality and viscosity and good water solubility (Sovak *et al.*, 2004; Bailey *et al.*, 2013). In order to produce iosimenol in commercial quantities, its manufacture process must be economic. Such process requires efficient purification techniques, for assuring high yields and high purities in each synthetic step. However, the use of such techniques needs to be cost-effective, and crystallization seems to be the best method. In this manner, the structure of single iosimenol precursors and accompanying impurities is seeked in order to design superior purification techniques. Thus, we present data for the title compound crystallizing as a methanol solvate, as shown in Figure 1.

We have inspected the CSD database (Allen, 2002) and the PDF4+ database (ICDD, 2015) and have not found any entry for this organic substance $C_9H_9I_3N_2O_4$ in the mentioned databases. Therefore, we have decided to characterize this compound by X-ray powder diffraction (XRD) technique.

II. EXPERIMENTAL

A. Synthesis

The title compound was prepared by reacting 3-amino-5-(aminocarbonyl) benzoic acid and sodium iodine dichloride or iodine monochloride in an aqueous solvent, under acidic conditions, at a temperature of 65–85 °C. The crude product was then recrystallized twice from a refluxing mixture of methanol/water.

B. Density measurement

For the title compound, experimental density was evaluated as an average of 10 measurements in 50 ml pycnometer,

Figure 1. Structural formula of 3-amino-5-(aminocarbonyl)-2,4,6-triiodobenzoic acid methanol solvate.

using *n*-heptane as a liquid, resulting in a value of $\rho_m = 2.66$ (3) g cm⁻³.

C. Specimen preparation

Sample was prepared by careful grinding in an agate mortar and front-loaded into the specimen holder.

D. Diffraction data collection and reduction

The diffraction pattern for the title compound was collected at room temperature with an X'Pert³ Powder θ – θ powder diffractometer with parafocusing Bragg-Brentano geometry using Cu*K* α radiation (λ = 1.5418 Å, Ni filter, generator setting: 40 kV, 30 mA). An ultrafast PIXCEL detector was employed to collect XRD data over the angular range from 5° to 80°2 θ with a step size of 0.013°2 θ and a counting time of 118.32 s step⁻¹.

The software package HIGHSCORE PLUS V 3.0e (PANalytical, Almelo, The Netherlands) was used to smooth the data, to fit the background, to eliminate the $K\alpha_2$ component and the top of the smoothed peaks were used to determine the peak positions and intensities of the diffraction peaks (Table I). The *d*-values were calculated using Cu $K\alpha_1$ radiation ($\lambda = 1.5406$ Å).

III. RESULTS AND DISCUSSION

The experimental powder diffraction pattern is depicted in Figure 2. Automatic indexing of results obtained using

^{a)}Author to whom correspondence should be addressed. Electronic mail: jaroslav.maixner@vscht.cz

TABLE I. Indexed X-ray powder diffraction data for C₉H₉I₃N₂O₄. Only the peaks with I_{rel} of 1 or greater are presented [a = 17.000 (1) Å, b = 13.896 (1) Å, c = 12.597 (1) Å, unit-cell volume V = 2975.9 Å³, Z = 8, space group *Pbca*]. All lines were indexed and are consistent with the *Pbca* space group. The *d*-values were calculated using CuKa, radiation ($\lambda = 1.5406$ Å)

TABLE I.	Continued
----------	-----------

 $2\theta_{\rm obs}$ (°) $d_{\rm obs}$ (Å) $I_{\rm obs}$

h

 $k \quad l \quad 2\theta_{\text{cal}} (^{\circ}) \quad d_{\text{cal}} (\mathring{A})$

 $\Delta 2\theta$

Pbca]. All	lines were	indexed	d and	are c	onsis	tent with th	e Pbca spa	ce group.	37.803	2.3779	3	4	2	4	37.809	2.3775	0.007
The <i>d</i> -valu	les were ca	lculated	l using	g Cu <i>k</i>	α_1 ra	adiation (λ =	= 1.5406 Å)).	37.862	2.3743	3	6	3	1	37.871	2.3738	0.009
• • • •						2.0 (0)			37.959	2.3685	18	0	2	5	37.960	2.3684	0.001
$2\theta_{\rm obs}$ (°)	$d_{\rm obs}$ (A)	I _{obs}	h	k	l	$2\theta_{\rm cal}$ (°)	$d_{\rm cal}$ (A)	$\Delta 2\theta$	38.270	2.3499	6	7	1	1	38.263	2.3503	-0.007
10.438	8.4683	19	2	0	0	10.399	8.5002	-0.039	38.364	2.3444	3	1	2	5	38.341	2.3458	-0.024
12.228	7.2323	45	2	1	0	12.196	7.2512	-0.032	38.862	2.3155	2	6	1	3	38.856	2.3158	-0.006
12.769	6.9269	46	0	2	0	12.730	6.9481	-0.039	38.954	2.3102	3	5	0	4	38.951	2.3104	-0.003
14.126	6.2645	3	2	1	1	14.081	6.2843	-0.045	39.232	2.2945	7	5	3	3	39.220	2.2952	-0.013
14.582	6.0699	15	0	2	1	14.548	6.0840	-0.034	39.341	2.2884	5	4	5	1	39.359	2.2874	0.018
15.020	5.8936	34	1	0	2	14.989	5.9060	-0.032	39.473	2.2811	5	2	2	5	39.465	2.2815	-0.008
16.324	5.4256	5	1	1	2	16.295	5.4355	-0.030	39.652	2.2712	4	3	1	5	39.653	2.2711	0.001
16.500	5.3683	3	2	2	0	16.465	5.3796	-0.035	39.743	2.2662	4	7	0	2	39.746	2.2660	0.004
17.947	4.9385	18	2	2	1	17.915	4.9473	-0.032	39.907	2.2572	2	1	6	1	39.899	2.2577	-0.009
18.673	4.7482	18	2	1	2	18.646	4.7550	-0.027	40.333	2.2344	3	2	6	0	40.329	2.2346	-0.004
19.035	4.6586	13	0	2	2	19.003	4.6664	-0.032	41.096	2.1946	16	1	3	5	41.096	2.1946	0.000
19.742	4.4934	4	1	2	2	19.713	4.5000	-0.029	41.289	2.1848	9	3	2	5	41.281	2.1852	-0.009
20.915	4.2440	15	4	0	0	20.884	4.2501	-0.030	41.521	2.1731	5	0	6	2	41.509	2.1737	-0.012
21.097	4.2077	100	1	3	1	21.076	4.2119	-0.021	41.758	2.1614	4	6	4	1	41.723	2.1631	-0.035
21.438	4.1417	50	3	2	1	21.411	4.1467	-0.026	41.877	2.1555	11	1	6	2	41.863	2.1562	-0.014
21.867	4.0612	24	4	1	0	21.851	4.0643	-0.017	42.099	2.1446	6	3	5	3	42.090	2.1451	-0.010
22.051	4.0278	12	3	1	2	22.031	4.0315	-0.020	42.582	2.1214	2	5	5	1	42.589	2.1211	0.007
22.739	3.9074	76	1	1	3	22.715	3.9115	-0.024	42.947	2.1042	14	5	4	3	42.970	2.1032	0.023
22.991	3.8652	12	4	1	1	22.975	3.8679	-0.017	43.046	2.0996	10	0	0	6	43.050	2.0994	0.004
24.551	3.6230	32	4	2	0	24.533	3.6256	-0.018	43.638	2.0725	6	8	1	1	43.649	2.0720	0.011
24.716	3.5992	22	3	2	2	24.695	3.6023	-0.022	43.732	2.0683	7	1	5	4	43.731	2.0683	-0.001
25.285	3.5195	83	4	0	2	25.259	3.5230	-0.026	43.880	2.0616	4	3	3	5	43.883	2.0615	0.003
25.578	3.4799	10	4	2	1	25.546	3.4841	-0.032	44.544	2.0324	5	8	2	0	44.551	2.0321	0.007
25.637	3.4719	9	0	4	0	25.621	3.4741	-0.016	44.642	2.0282	4	0	6	3	44.647	2.0280	0.005
26.083	3.4135	26	4	1	2	26.072	3.4150	-0.011	45.005	2.0127	10	7	2	3	45.016	2.0122	0.012
26.628	3.3450	27	0	4	1	26.595	3.3490	-0.033	45.081	2.0095	11	0	2	6	45.076	2.0097	-0.005
27.194	3.2766	31	3	1	3	27.178	3.2784	-0.016	45.223	2.0035	10	5	1	5	45.233	2.0031	0.010
27.752	3.2120	7	2	4	0	27.718	3.2158	-0.034	45.715	1.9831	4	2	4	5	45.711	1.9832	-0.004
27.922	3.1928	16	5	1	1	27.905	3.1947	-0.016	46.067	1.9687	3	3	0	6	46.068	1.9687	0.002
28.402	3.1399	27	4	2	2	28.381	3.1422	-0.021	46.322	1.9585	2	6	5	1	46.286	1.9599	-0.036
28.651	3.1132	19	2	4	1	28.626	3.1159	-0.026	46.982	1.9325	5	2	7	0	46.965	1.9332	-0.018
28.826	3.0947	15	1	0	4	28.809	3.0965	-0.017	47.217	1.9234	10	7	0	4	47.224	1.9232	0.007
29.183	3.0577	8	1	3	3	29.159	3.0601	-0.024	47.350	1.9183	9	3	4	5	47.333	1.9190	-0.017
29.366	3.0391	29	4	3	1	29.365	3.0391	-0.001	47.450	1.9145	10	7	3	3	47.454	1.9144	0.004
29.847	2.9911	1	5	0	2	29.839	2.9919	-0.008	47.587	1.9093	12	3	6	3	47.585	1.9094	-0.002
30.080	2.9684	1	5	2	1	30.085	2.9680	0.004	47.996	1.8940	4	3	2	6	47.993	1.8941	-0.003
30.251	2.9521	8	2	0	4	30.241	2.9530	-0.010	48.307	1.8825	3	4	0	6	48.313	1.8823	0.006
30.594	2.9198	5	4	1	3	30.588	2.9203	-0.006	49.084	1.8545	15	1	6	4	49.081	1.8546	-0.003
31.016	2.8810	30	3	4	1	30.992	2.8832	-0.024	49.532	1.8388	3	4	4	5	49.534	1.8387	0.001
31.224	2.8623	27	2	4	2	31.204	2.8641	-0.020	49.761	1.8309	2	4	6	3	49.778	1.8303	0.016
31.616	2.8277	8	1	2	4	31.609	2.8283	-0.007	50.156	1.8174	4	6	2	5	50.162	1.8172	0.006
31.903	2.8029	12	4	3	2	31.889	2.8041	-0.015	50.303	1.8124	4	8	4	0	50.292	1.8128	-0.011
32.600	2.7445	2	4	2	3	32.605	2.7442	0.004	50.544	1.8044	4	9	2	1	50.555	1.8040	0.011
32.832	2.7257	6	3	3	3	32.815	2.7270	-0.017	50.705	1.7990	6	4	1	0	50.715	1.7986	0.010
32.926	2.7181	5	2	2	4	32.931	2.7177	0.005	50.872	1.7935	9	6	6	0	50.880	1.7932	0.008
33.012	2./112	5	6	1	1	33.012	2.7112	0.000	51.421	1.7720	4	6	6	1	51.430	1.773	0.009
22.425	2.08/4	15	4	4	1	33.283	2.0898	-0.030	51.500	1.7729	2	3	3	2	51.500	1.7729	0.000
33.425	2.6786	22	2	5	1	33.430	2.6/83	0.005	52.478	1.7423	3	8	4	2	52.485	1.7421	0.008
33.895	2.6426	23	2	2	0	33.908	2.6416	0.013	52.703	1.7354	3	2	1	2	52.722	1./348	0.019
34.073	2.6292	10	4	4	1	34.030	2.0305	-0.018	53.555	1.7104	37	2	/	3	53.515	1.7109	-0.017
34.696	2.5834	10	0	0	2	34.688	2.5840	-0.008	53.843	1.7013	2	2	8	0	53.824	1.7019	-0.019
34.816	2.5/48	8	I	3	4	34.823	2.5743	0.007	54.703	1.6/66	3	/	5	3	54.700	1.0/0/	-0.003
34.913	2.5079	8	0	2	1	34.903	2.5085	-0.009	54.814	1.0/34	3	8 1	3	1	54.824	1.0/32	0.010
25 454	2.3389	12	3 1	2	4 1	55.055 25 449	2.3391	-0.004	55.008	1.0003	4	1	8 2	27	55.005	1.0003	-0.004
33.434 35 721	2.5299	3	4 1	2	4	35.448	2.3303	0.000	55.020	1.0439	4	2	3 0	2	55.020	1.0430	0.008
35.731	2.3109	3 2	4 1	5	Э Л	36.051	2.3103	0.008	56 001	1.0424	4 2	4	0	4	55.920 56.059	1.0429	-0.019
36.240	2.4091	3 12	4	1	4	36 214	2.4093	-0.003	56 192	1.0383	Л	7	2	5	56 195	1.0392	-0.033
30.349	2.4090	13	5 1	2 1	5 5	36 604	2.4098	-0.003	JU.180 57 256	1.0538	4	0	5 9	2	57 250	1.0338	0.001
36.686	2.4508	2	1	1 5) 1	36 695	2.4330	-0.035	57 657	1.0032	∠ 1	10	o n	י ר	57 661	1 5072	0.002
37 126	2.44// 2.4107	с С	2	Л	1	37 117	2.44//	_0.001	58 246	1.59/5	1	10	4	∠ 5	52 750	1.59/5	0.007
37.120	2.4191	∠ 1	5	4 1	5 1	37 670	2.4203	-0.009	58 010	1.5663	∠ 1	4 8	5	2	58 019	1.5663	_0.012
51.104	2.3039	1	5	4	1	57.070	2.3000	-0.034	30.919	1.3003	1	0	5	3	50.710	1.3003	-0.001

Continued

Continued

TABLE I. Continued

TABLE I.	Continued
----------	-----------

									-								
$2\theta_{\rm obs}$ (°)	$d_{\rm obs}$ (Å)	$I_{\rm obs}$	h	k	l	$2\theta_{\rm cal}$ (°)	$d_{\rm cal}({\rm \AA})$	$\Delta 2\theta$	$2\theta_{\rm obs}$ (°)	$d_{\rm obs}$ (Å)	$I_{\rm obs}$	h	k	l	$2\theta_{\rm cal}$ (°)	$d_{\text{cal}}\left(\text{\AA}\right)$	$\Delta 2\theta$
59.103	1.5618	2	7	4	5	59.103	1.5618	0.000	67.400	1.3883	3	5	8	4	67.395	1.3884	-0.005
59.268	1.5579	2	4	8	2	59.264	1.5580	-0.004	67.730	1.3823	2	9	6	3	67.737	1.3822	0.007
59.463	1.5532	2	1	7	5	59.483	1.5527	0.020	68.353	1.3713	3	8	7	3	68.360	1.3711	0.007
59.648	1.5489	2	1	6	6	59.641	1.5490	-0.006	68.569	1.3675	3	1	2	9	68.561	1.3676	-0.008
59.846	1.5442	2	3	8	3	59.839	1.5443	-0.007	68.797	1.3635	3	6	6	6	68.795	1.3635	-0.002
60.214	1.5356	2	0	2	8	60.214	1.5356	0.000	68.945	1.3609	2	11	2	4	68.967	1.3606	0.021
60.432	1.5306	2	2	6	6	60.456	1.5301	0.024	69.698	1.3481	1	6	9	1	69.701	1.3480	0.004
60.667	1.5253	1	7	7	1	60.647	1.5257	-0.020	70.227	1.3392	1	10	6	2	70.231	1.3391	0.004
61.023	1.5172	2	3	0	8	61.028	1.5171	0.005	71.184	1.3235	1	2	3	9	71.188	1.3235	0.004
61.127	1.5149	2	1	8	4	61.124	1.5149	-0.003	71.261	1.3223	2	2	8	6	71.275	1.3220	0.014
61.700	1.5022	4	5	8	2	61.698	1.5022	-0.003	71.914	1.3119	1	12	4	0	71.917	1.3118	0.003
62.526	1.4843	3	10	4	2	62.539	1.4840	0.013	72.296	1.3059	1	10	4	5	72.297	1.3059	0.001
62.693	1.4807	2	6	8	0	62.686	1.4809	-0.007	72.529	1.3023	1	0	6	8	72.536	1.3021	0.007
62.885	1.4767	2	9	2	5	62.881	1.4768	-0.005	73.530	1.2870	1	2	6	8	73.520	1.2871	-0.011
63.296	1.4681	2	9	4	4	63.294	1.4681	-0.002	73.718	1.2842	1	12	4	2	73.711	1.2843	-0.006
63.653	1.4607	2	4	6	6	63.652	1.4607	-0.001	74.028	1.2796	1	6	4	8	74.026	1.2796	-0.001
64.100	1.4516	1	5	8	3	64.105	1.4515	0.004	74.691	1.2698	1	12	2	4	74.664	1.2702	-0.027
64.480	1.4440	5	1	9	3	64.482	1.4439	0.002	74.966	1.2658	1	9	6	5	74.978	1.2657	0.012
64.625	1.4411	5	8	7	1	64.621	1.4411	-0.003	75.346	1.2604	1	5	10	2	75.352	1.2603	0.006
65.252	1.4287	1	5	0	8	65.248	1.4288	-0.004	75.595	1.2569	1	10	5	5	75.595	1.2569	0.000
65.404	1.4258	2	9	6	2	65.402	1.4258	-0.002	75.846	1.2533	1	9	5	6	75.846	1.2533	0.001
65.517	1.4236	2	10	3	4	65.518	1.4236	0.001	76.427	1.2452	1	6	9	4	76.424	1.2453	-0.003
65.604	1.4219	2	2	7	6	65.594	1.4221	-0.011	76.756	1.2407	1	1	9	6	76.770	1.2405	0.014
65.717	1.4197	2	11	2	3	65.716	1.4198	-0.002	77.474	1.2310	1	10	1	7	77.481	1.2309	0.007
65.883	1.4166	2	12	0	0	65.876	1.4167	-0.008	77.746	1.2274	1	3	11	1	77.762	1.2272	0.017
66.006	1.4142	2	4	9	2	66.008	1.4142	0.002	78.008	1.2239	2	6	10	2	78.011	1.2239	0.003
66.571	1.4036	2	11	4	1	66.587	1.4033	0.017	79.068	1.2101	1	6	8	6	79.069	1.2101	0.001
66.672	1.4017	2	2	6	7	66.680	1.4016	0.007	79.336	1.2067	1	1	11	3	79.340	1.2067	0.004
66.944	1.3967	2	6	8	3	66.948	1.3966	0.004	79.760	1.2014	1	13	4	2	79.757	1.2014	-0.003
67.200	1.3920	2	6	4	7	67.208	1.3918	0.008									

Continued

Figure 2. (Color online) X-ray powder diffraction pattern of $C_9H_9I_3N_2O_4$ using $CuK\alpha$ radiation ($\lambda = 1.5418$ Å).

DICVOL04 (Boultif and Louër, 2004) show that title compound C₉H₉I₃N₂O₄ is orthorombic with space group *Pbca* and unit-cell parameters: a = 17.000 (1) Å, b = 13.896 (1) Å, c = 12.597 (1) Å, unit-cell volume V = 2975.9 Å³, and Z = 8. The figures of merits are $F_{20} = 70.5(0.0053, 53)$ (Smith and Snyder, 1979), and $M_{20} = 28.7$ (de Wolff, 1968). All measured lines were indexed and are consistent with the *Pbca* space group.

SUPPLEMENTARY MATERIAL

The supplementary material for this article can be found at https://doi.org/10.1017/S0885715617000598.

ACKNOWLEDGEMENTS

This work was carried out within the framework of the National Programme for Sustainability (NPU I LO1215) Ministry – 34870/2013), GACR project 16-25747S and specific university research (MSMT No 20-SVV/2016).

- Allen, F. H. (2002). "The Cambridge Structural Database: a quarter of a million crystal structures and rising," Acta Crystallogr. B58, 380–388.
- Bailey, A. R., Jones, M. M., Kneller, M. T., Petrov, A. N., White, D. H., Egan, O., and Rooney, F., inventors; Mallinckrodt Llc, assignee. (2013). Process for the preparation of isoimenol. United States patent US 8,445,725.

- Boultif, A. and Louër, D. (2004). "Powder pattern indexing with the dichotomy method," J. Appl. Crystallogr. 37, 724–731.
- de Wolff, P. M. (1968). "A simplified criterion for the reliability of a powder pattern," J. Appl. Crystallogr. 1, 108–113.
- ICDD (**2015**). Powder Diffraction File, edited by S. Kabekkodu, International Centre for Diffraction Data, 12 Campus Boulevard, Newton Square, Pennsylvania 19073–3272.
- Smith, G. S. and Snyder, R. L. (**1979**). " F_N : a criterion for rating powder diffraction pattern and evaluating the reliability of powder indexing," J. Appl. Crystallogr. **12**, 60–65.
- Sovak, M., Terry, R., Abramjuk, C., Faberová, V., Fiserova, M., Laznicek, M., Leuschner, J., Malinak, J., Zahradnik, P., Masner, O., and Seligson, A. (2004). "Iosimenol, a low-viscosity nonionic dimer: preclinical physicochemistry, pharmacology and pharmacokinetics," Invest. Radiol. 39(3), 171–181.