
Proceedings of the Edinburgh Mathematical Society (2018) 61, 57–92

doi:10.1017/S0013091516000559

A CONVENIENT NOTION OF COMPACT SET
FOR GENERALIZED FUNCTIONS

PAOLO GIORDANO∗AND MICHAEL KUNZINGER∗

University of Vienna, Faculty of Mathematics,
Oskar-Morgenstern-Platz 1, A-1090 Wien, Austria

(paolo.giordano@univie.ac.at; michael.kunzinger@univie.ac.at)

(Received 18 March 2015)

Abstract We introduce the notion of functionally compact sets into the theory of nonlinear generalized
functions in the sense of Colombeau. The motivation behind our construction is to transfer, as far
as possible, properties enjoyed by standard smooth functions on compact sets into the framework of
generalized functions. Based on this concept, we introduce spaces of compactly supported generalized
smooth functions that are close analogues to the test function spaces of distribution theory. We then
develop the topological and functional–analytic foundations of these spaces.
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1. Introduction

A main advantage of nonlinear generalized functions in the sense of Colombeau as com-
pared to Schwartz distributions is the fact that they can be viewed as set-theoretic
maps on domains consisting of generalized points. This change of perspective allows
for the development of several branches of the theory in close analogy to classical anal-
ysis, and thereby has become increasingly important in recent years (see, for example,
[1,2,4,5,11,12,16,21,26,27]). In particular, appropriate topologies on spaces of non-
linear generalized functions, the so-called sharp topologies (see below for the definition),
were introduced in [28,29] and have since been studied by many authors. Apart from
their central position in the structure theory of Colombeau algebras, they also supply the
foundation for applications in the theory of nonlinear partial differential equations (for
example, for a suitable concept of well-posedness).

From the point of view of analysis, a key notion underlying many existence results is
that of compactness. It turns out, however, that sharply compact subsets of generalized
points display certain unwanted properties For example, no infinite subset of Rn is sharply
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compact since the trace of the sharp topology on subsets of Rn is discrete. In fact, this is
a necessary consequence of the set of generalized numbers R̃ containing actual infinites-
imals, and hence seems unavoidable also in alternative approaches (see [17, Proposition
2.1] and [21, Theorem 25].

The importance of a convenient notion of compactness for nonlinear generalized func-
tions has been recognized by several authors, most recently in [6]. The approach we take
in the present paper is to introduce an appropriate concept of compactly supported gen-
eralized function, and then to study spaces consisting of such functions, which, in analogy
to the test function space D(Ω) in distribution theory, we denote by GD(U). The domain
U here is a set of generalized points. Based on Garetto’s theory of locally convex C̃-
modules [11,12,14] we then develop the topological and functional analytic foundations
of these spaces. We find that they are indeed close analogues of the classical spaces of
test functions in that they are countable strict inductive limits of complete metric spaces
GDK(U) (analogues of DK(Ω) in distribution theory) satisfying properties paralleling
those of the classical strict (LF)-spaces D(Ω).

The plan of the paper is as follows. In the remainder of this introduction we fix some
basic notions used throughout this work. Section 2 introduces what we call functionally
compact sets, based on work by Oberguggenberger and Vernaeve in [27]. Building on this,
in Section 3 we define compactly supported generalized smooth functions (GSFs), as well
as the corresponding spaces GD(U) and GDK(U). We also show that every Colombeau
generalized function f ∈ Gs(Ω) (in particular, every Schwartz distribution) defines a
compactly supported GSF f̄ : R̃ −→ R̃ that coincides with f on Ω̃c. In order to obtain
appropriate topologies on these spaces, we define so-called generalized norms in Section
4. These are maps that share the basic properties of classical norms, yet take values in
R̃, thereby generalizing a standard alternative description of the sharp topology on gen-
eralized numbers (see [1,17]). In Sections 5 and 6 these generalized norms are employed
to endow the spaces GDK(U) with metric topologies. In particular, in Section 5.1 we
study connections between non-Archimedean properties and Hausdorff topological vector
spaces of generalized functions, proving an impossibility theorem: there does not exist a
Hausdorff topological vector subspace of the Colombeau special algebra that contains the
Dirac delta and even a single trace of an open set of the sharp topology. The complete-
ness of the spaces GDK(U) is established in Section 7. Finally, in Section 8 we derive the
fundamental functional analytic properties of the space GD(U).

1.1. Basic notions

Our main references for Colombeau’s theory are [8,9,22,25]. The special Colombeau
algebra Gs(Ω) over an open subset Ω of Rn is defined as the quotient Es

M (Ω)/N s(Ω),
where (setting I := (0, 1] and noting that in the naturals N = {0, 1, 2, 3 . . .} we include
zero)

Es
M (Ω) := {(uε) ∈ C∞(Ω)I | ∀K � Ω ∀α ∈ Nn ∃N ∈ N : sup

x∈K
|∂αuε(x)| = O(ε−N )},

N s(Ω) := {(uε) ∈ C∞(Ω)I | ∀K � Ω ∀α ∈ Nn ∀m ∈ N : sup
x∈K

|∂αuε(x)| = O(εm)}.
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Elements of Es
M (Ω) are called moderate, those of N s(Ω) are called negligible. Nets in

Es
M (Ω) are written as (uε), and u = [uε] denotes the corresponding equivalence class in

Gs(Ω). For (uε) ∈ N s(Ω) we also write (uε) ∼ 0. We will abbreviate ‘Colombeau gener-
alized function’ by CGF. Gs(·) is a fine sheaf of differential algebras and there exist sheaf
embeddings (based on smoothing via convolution) of the space of Schwartz distributions
D′ into Gs (see [22]).

Given that Ω ⊆ Rn is open, the space of generalized points in Ω is Ω̃ = ΩM/ ∼,
where ΩM = {(xε) ∈ ΩI | ∃N ∈ N : |xε| = O(ε−N )} is called the set of moderate nets
and (xε) ∼ (yε) if |xε − yε| = O(εm) for every m ∈ N. In the particular case Ω = R we
obtain the ring of Colombeau generalized numbers (CGNs) R̃ = RM/ ∼ (and analogously
for C̃), which can also be written as R̃ = RM/N s, where N s is the set of all negligible nets
of real numbers (xε) ∈ RI , i.e. such that (xε) ∼ 0. R̃ is an ordered ring with respect to its
natural order relation: x ≤ y if and only if there are representatives (xε) and (yε) such
that xε ≤ yε for ε sufficiently small. We point out that, in the present work, the notion
x > y does not mean x ≥ y and x 
= y. Rather, it is to be understood as x− y ≥ 0 and
x− y invertible. By [22, Theorem 1.2.38] and [24, Propostion 3.2] we have the following
lemma.

Lemma 1.1. Let x ∈ R̃. Then the following are equivalent:

(i) x > 0,

(ii) for each representative (xε) of x there exists some ε0 and some m such that xε > εm

for all ε < ε0,

(iii) for each representative (xε) of x there exists some ε0 such that xε > 0 for all ε < ε0.

We shall use the notation dεm := [εm] ∈ R̃ for any m ∈ R. Hence x > 0 is equivalent to
x ≥ dεm for some m > 0. If P(ε) is a property of ε ∈ I, we will also sometimes use the
notation ∀0ε : P(ε) to denote ∃ε0 ∈ I ∀ε ∈ (0, ε0] : P(ε).

The space of compactly supported generalized points Ω̃c is defined by Ωc/∼, where
Ωc := {(xε) ∈ ΩI | ∃K � Ω ∀0ε : xε ∈ K} and ∼ is the same equivalence relation as in
the case of Ω̃.

Concerning intervals, we use the following notations: [a, b] := {x ∈ R̃ | a ≤ x ≤ b},
[a, b]R := [a, b] ∩ R. Also, for x, y ∈ R̃n we write x ≈ y if x− y is infinitesimal, i.e. if
|x− y| ≤ r for all r ∈ R>0.

As already indicated above, the natural topology for Colombeau-type spaces is the
so-called sharp topology (see [1,3,7,16,23,28,29]). This topology is generated by balls
Bρ(x) = {y ∈ R̃n | |y − x| < ρ}, where | · | is the natural extension of the Euclidean norm
to R̃n, |[xε]| := [|xε|] ∈ R̃, and ρ ∈ R̃>0 is strictly positive (see [2,4,17]). For Euclidean
balls, we will write

BE
ρ (x) = {y ∈ Rn | |y − x| < ρ}.

On the other hand, the so-called Fermat-topology on R̃n (see [17,21]) is generated by
the balls Br(x) for x ∈ R̃n and r ∈ R>0. Originally, the sharp topology was introduced
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using an ultrametric as follows. The map

v : RM −→ (−∞,∞],

v((uε)) := sup{b ∈ R | |uε| = O(εb)}
gives a pseudovaluation on R̃. Then setting| · |e : R̃ → [0,∞), |u|e := exp(−v(u)) provides
a translation-invariant complete ultrametric

ds : R̃ × R̃ −→ R+,

ds(u, v) := |u− v|e
on R̃, which induces the sharp topology on R̃.

Garetto in [11,12] extended the above construction to arbitrary locally convex spaces
by functorially assigning a space of CGFs GE to any given locally convex space E. In
this approach, the seminorms of E are used to define pseudovaluations that induce a
generalized locally convex topology on the C̃-module GE , again called sharp topology. In
the present paper, we will exclusively work with R̃-modules. We note, however, that all
our constructions trivially carry over to the C̃-case.

For any S ⊆ I, eS denotes the equivalence class in R̃ of the characteristic function of
S (see [1,30]). Any eS is an idempotent, and eS + eSc = 1. Also, eS 
= 0 if and only if
0 ∈ S. For any subset A of R̃n, its interleaving (See [27]) is defined as

interl(A) :=

⎧⎨⎩
m∑

j=1

eSj
aj | m ∈ N, {S1, . . . , Sm} a partition of I, aj ∈ A

⎫⎬⎭ .

If (Aε) is a net of subsets of Rn then the internal set ([27,31]) generated by (Aε) is

[Aε] =
{

[xε] ∈ R̃n | xε ∈ Aε for ε small
}
,

and the strongly internal set (see [21]) generated by (Aε) is

〈Aε〉 :=
{

[xε] ∈ R̃n | xε ∈ε Aε

}
.

Here, xε ∈ε Aε means that xε ∈ Aε for ε small and that the same property holds for
any representative of [xε]. The net (Aε) is called sharply bounded if there exists some
N ∈ R>0 such that for ε sufficiently small we have supx∈Aε

|x| ≤ ε−N . Equivalently, we
have that (Aε) is sharply bounded if there exists ρ ∈ R̃>0 such that [Aε] ⊆ Bρ(0).

Finally, given X ⊆ R̃n and Y ⊆ R̃d, then (see [21])

f : X −→ Y is a generalized smooth function (GSF)

if there exists a net uε ∈ C∞(Ωε,R
d) defining f in the sense that X ⊆ 〈Ωε〉, f([xε]) =

[uε(xε)] ∈ Y and (∂αuε(xε)) ∈ Rd
M for all x = [xε] ∈ X and all α ∈ Nn. The space of

GSFs from X to Y is denoted by GC∞(X,Y ) (in contrast to [21], where the notation
G̃(X,Y ) was used). GSFs are a natural generalization of CGFs to general domains. In
particular, for any Ω ⊆ Rn open, GC∞(Ω̃c) � Gs(Ω). GSFs on subsets of R̃n, endowed
with the sharp topology, form a subcategory of the category of topological spaces. In
particular, they can be composed unrestrictedly.
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2. A new notion of compact subset for nonlinear generalized functions

Even though the intervals [a, b] ⊆ R̃, a, b ∈ R, are neither compact in the sharp nor in the
Fermat topology (see [21, Theorem 25]), analogously to the case of smooth functions, a
GSF satisfies an extreme-value theorem on such sets. In fact, the following proposition.

Proposition 2.1. Let f ∈ GC∞(X, R̃) be a generalized smooth function defined on

the subset X of R̃n. Let ∅ 
= K = [Kε] ⊆ X be an internal set generated by a sharply
bounded net (Kε) of compact sets Kε � Rn , then

∃m,M ∈ K ∀x ∈ K : f(m) ≤ f(x) ≤ f(M). (2.1)

Proof. By [21, Lemma 28], f can be represented by a net uε ∈ C∞(Rn,Rd). Since
K 
= ∅, for ε sufficiently small, say for ε ∈ (0, ε0], Kε is non-empty and, by assumption,
it is also compact. For all ε ∈ (0, ε0] we have

∃mε,Mε ∈ Kε ∀x ∈ Kε : uε(mε) ≤ uε(x) ≤ uε(Mε).

Since the net (Kε) is sharply bounded, both the nets (mε) and (Mε) are moderate.
Therefore m = [mε], M = [Mε] ∈ K ⊆ X. Take any x ∈ [Kε]. Then there exists a rep-
resentative (xε) such that xε ∈ Kε for ε small. Therefore f(m) = [uε(mε)] ≤ [uε(xε)] =
f(x) ≤ f(M). �

We shall use the assumptions on K and (Kε) given in this theorem to introduce a
new notion of a ‘compact subset’ that behaves better than the usual classical notion
of compactness in the sharp topology.

Definition 2.2. A subset K of R̃n is called functionally compact, denoted by K �f R̃n,
if there exists a net (Kε) such that

(i) K = [Kε] ⊆ R̃n,

(ii) (Kε) is sharply bounded,

(iii) ∀ε ∈ I : Kε � Rn.

If, in addition, K ⊆ U ⊆ R̃n then we write K �f U . Finally, we write [Kε] �f U if (ii),
(iii) and [Kε] ⊆ U hold.

We note that in (iii) it suffices to ask that Kε be closed since it is bounded by (ii), at
least for ε small. In fact, we have the following lemma.

Lemma 2.3. A subset K of R̃n is functionally compact if and only if it is internal and
sharply bounded.

Proof. By [27, Lemma 2.4 and Corollary 2.2], every sharply bounded internal set K
has a sharply bounded representative (Kε) consisting of closed (hence compact) subsets
of Rn. �
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We motivate the name functionally compact subset by anticipating that on this type of
subsets, GSFs have properties very similar to those that ordinary smooth functions have
on standard compact sets.

Remark 2.4.

(i) By [27, Proposition 2.3], any internal set K = [Kε] is closed in the sharp topology.
In particular, the open interval (0, 1) ⊆ R̃ is not functionally compact since it is not
closed.

(ii) If H � Rn is a non-empty ordinary compact set, then H̃ = [H] is functionally

compact. In particular, [0, 1] = [̃0, 1]R = [[0, 1]R] is functionally compact.

(iii) The empty set ∅ = ∅̃ �f R̃.

(iv) By Lemma 2.3, R̃n is not functionally compact since it is not sharply bounded.

(v) The set of compactly supported points R̃c is not functionally compact because the
GSF f(x) = x does not satisfy (2.1).

We start the study of functionally compact sets by proving suitable generalizations of
theorems from classical analysis.

Theorem 2.5. Let K ⊆ X ⊆ R̃n, and f ∈ GC∞(X, R̃d). Then K �f R̃n implies

that f(K) �f R̃d.

Proof. Let (Kε) be as in Definition 2.2 and let the GSF f be defined by the net
uε ∈ C∞(Rn,Rd). Let us first prove that f(K) = [uε(Kε)]. In fact, y ∈ f(K) = f([Kε]) is
equivalent to

∃(xε) ∈ Rn
M ∀0ε : xε ∈ Kε and y = [uε(xε)]. (2.2)

This necessary entails y ∈ [uε(Kε)]. Conversely, if y ∈ [uε(Kε)], then there exists (yε) ∈
Rd

M such that yε ∈ uε(Kε) for ε small. Hence, for each of these ε there also exists xε ∈ Kε

such that yε = uε(xε), which implies y = [uε(xε)], i.e. (2.2) holds since (Kε) is sharply
bounded. Clearly, uε(Kε) � Rd, so it remains to prove that the net (uε(Kε)) is sharply
bounded. If ∀ε0 ∃ε ≤ ε0 : Kε = ∅, then [Kε] = K = ∅, so f(K) = ∅ and the conclusion is
trivial. Otherwise, assume that Kε 
= ∅ for ε ≤ ε0 and proceed by contradiction assuming
that

∀k ∈ N∃(εkn)n ↓ 0∀n∃ykn ∈ uεkn
(Kεkn

) : |ykn| > ε−k
kn . (2.3)

We can write ykn = uεkn
(xkn) for some xkn ∈ Kεkn

. Next, set ε0 := ε00 and for k > 0
pick nk such that εknk

< min (1/k, εk−1) and set εk := εknk
. Take any x̄ε ∈ Kε for

each ε ≤ ε0, and set xε := xknk
if ε = εk and xε := x̄ε otherwise. Then xε ∈ Kε for

ε ≤ ε0, so x = [xε] ∈ K ⊆ X and (uε(xε)) ∈ Rd
M by the definition of GSF, which

contradicts (2.3). �
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As a corollary of this theorem and Remark 2.4 (ii), we get the following.

Corollary 2.6. If a, b ∈ R̃ and a ≤ b, then [a, b] �f R̃.

Let us note that a, b ∈ R̃ can also be infinite, for example, a = [−ε−N ], b = [ε−M ] or
a = [ε−N ], b = [ε−M ] with M > N .

Lemma 2.7. Let K, H �f R̃n. Then we have that have:

(i) K ∪H ⊆ interl(K ∪H) �f R̃n;

(ii) If K ∪H is internal, then it is functionally compact;

(iii) If K ∩H is internal, then it is functionally compact.

Proof. Property (i) follows from [27, Proposition 2.8], which implies K ∪H ⊆
interl(K ∪H) = [Kε ∪Hε], where the nets (Kε) and (Hε) satisfy Definition 2.2. Prop-
erty (ii) follows from [27, Lemma 2.7] which implies that if the union of internal sets
is internal, then it is equal to its interleaving. Property (iii) is a consequence of Lemma
2.3. �

If H ⊆ K �f R̃n, then also H is sharply bounded. So, another consequence of Lemma 2.3
is the following corollary.

Corollary 2.8. Let H ⊆ K �f R̃n, Then H internal implies that H �f R̃n.

Finally, in the following result we consider the product of functionally compact sets.

Proposition 2.9. Let K �f R̃n and H �f R̃d, Then K ×H �f R̃n+d. In particular, if
ai ≤ bi for i = 1, . . . , n, then

∏n
i=1[ai, bi] �f R̃n.

Proof. From [27, Proposition 2.13] if follows that K ×H is internal, in fact for K =
[Kε],H = [Hε],K ×H = [Kε ×Hε]. From this representation it immediately follows that
H ×K is sharply bounded as well, so Lemma 2.3 gives the claim. �

3. Compactly supported generalized smooth functions

Our main goal in this section is to define and study an analogue within the framework of
GSFs of the space DK(Ω) of smooth functions supported in a fixed compact set K � Ω.
In order to define this space, we first try to define the concept of support of a GSF.
Clearly, if ϕ ∈ D[−a,a]R(R), one would expect that ϕ should have compact support also
if we think of ϕ as a GSF. In fact, supp(ϕ) should be contained in [−a, a] �f R̃. Already
this basic requirement implies that if f ∈ GC∞(X,Y ), the natural definition

S(f) := X \
⋃{

Bρ(x) ∩X | x ∈ X, ρ ∈ R̃>0, f |Bρ(x)∩X = 0
}

does not fit with our intuition. Indeed, if we take the aforementioned ϕ so that ϕ(0) = 1,
and S ⊆ (0, 1] such that 0 ∈ S̄ and 0 ∈ Sc, then ϕ(eS dε−1) = eSc 
= 0 and eS dε−1 ∈
S(ϕ) \ [−a, a]. This motivates the following definition.
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Definition 3.1. Let X ⊆ R̃n, Y ⊆ R̃d and f ∈ GC∞(X,Y ), then

supp(f) := {x ∈ X | |f(x)| > 0},
where here (·) denotes the relative closure in X with respect to the sharp topology.

Using this concept, we have supp(ϕ) ⊆ [−a, a]. In fact, |ϕ(x)| = [|ϕ(xε)|] > 0 implies that
|ϕ(xε)| > εq for some q ∈ R>0 and for ε small, and hence xε ∈ [−a, a]R.

Remark 3.2.

(i) In the setting of Colombeau algebras, one usually defines the support of some
f ∈ Gs(Ω) as a subset of Ω ⊆ Rn, i.e., as a set of classical points, namely as
suppGs(f) := Ω \⋃{Br(x) ∩Ω | x ∈ Ω, r ∈ R>0, f |Br(x)∩Ω = 0

}
, where the last

equality is understood to hold in Gs(Br(x) ∩Ω). Using X = Ω̃c as the natu-
ral domain of any f ∈ Gs(Ω) (see [21, Theorem 37]), it is then immediate that
supp(f) ∩Ω ⊆ suppGs(f).

(ii) Let u ∈ D′(Ω) be a Schwartz distribution and denote by ι : D′(Ω) → GC∞(Ω̃c,R)
a standard embedding via convolution. Then supp(ι(u)) ∩Ω ⊆ supp(u), as follows
from (i) and the fact that ι is a sheaf-morphism.

(iii) Assume that the embedding ι : D′(Ω) → GC∞(Ω̃c,R) has been defined by using
a mollifier ρ ∈ S(Rn) that is identically equal to 1 in the ball BE

p (0), p ∈ R>0.
Then δ(x) = dε−n for each x ∈ Bp·dε(0) and hence Bp·dε(0) ⊆ supp(ι(δ)), whereas
supp(ι(δ)) ∩ Rn = {0}.

(iv) In general, supp(f) is not an internal set because it is not generally closed by finite
interleaving (see [27, Lemma 2.7]). Consider, for example, X with only near stan-
dard points and f ∈ GC∞(X, R̃) which is strictly positive on two disjoint intervals.
However, if X itself is closed under finite interleaving then so is supp(f).

If (uε) defines f ∈ GC∞(X,Y ), the internal set [supp(uε)] is not intrinsically defined since
it depends on the defining net (uε). Consider, for example, uε(x) := ϕ(x) + ε1/ε > 0 where
ϕ ∈ C∞(R,R≥0).

In our further analysis we will repeatedly make use of the following notion:

Definition 3.3. For A ⊆ R̃n we call the set

ext(A) := {x ∈ R̃n | ∀a ∈ A : |x− a| > 0}
the strong exterior of A.

This set can also be described in the following way:

Lemma 3.4. If A ⊆ R̃n, then ext(A) = {x ∈ R̃n | ∀S ⊆ I : eS 
= 0 ⇒ xeS 
∈ AeS}.

Proof. ⊆: Let x = [xε] ∈ ext(A) and suppose that there exists some S ⊆ I with eS 
= 0
and some a = [aε] ∈ A such that xeS = aeS . Then there exists some q > 0 such that
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|xε − aε| > εq for ε small. However, xeS = aeS implies that |xε − aε| = O(εq+1) for ε→ 0,
ε ∈ S, yielding a contradiction.
⊇ If there exists some a = [aε] ∈ A such that |x− a| 
> 0 then there is a sequence εk ↓ 0

with |xεk
− aεk

| < εk
k for all k. Letting S := {εk | k ∈ N} implies xeS = aeS . �

For non-trivial internal sets we have the following characterization of the strong exterior:

Lemma 3.5. Let ∅ 
= [Kε] = K ⊆ R̃n. Then

ext(K) = 〈Kc
ε〉.

Proof. Suppose first that x ∈ 〈Kc
ε〉 and let S ⊆ I with eS 
= 0. Suppose that there

existed some a ∈ K with xeS = aeS . Since a ∈ K there exists a representative (aε) of a
with aε ∈ Kε for all ε. Then xeS = aeS implies that there exists a representative (xε) of
x and a sequence εk ↓ 0 in S with xεk

= aεk
∈ Kεk

for all k. But this contradicts the fact
that x ∈ 〈Kc

ε〉.
Conversely, if x 
∈ 〈Kc

ε〉 then there exists a representative (xε) of x and a sequence
εm ↓ 0 with xεm

∈ Kεm
for all m. Since K 
= ∅, there exists some w = [wε] ∈ K with

wε ∈ Kε for all ε. Now let

aε :=

{
xεm

if ε = εm,

wε otherwise

and set S := {εm | m ∈ N}. Then a = [aε] ∈ [Kε] and xeS = aeS by construction. Thus
xeS ∈ KeS , and so x 
∈ ext(K). �

As an immediate conclusion we obtain the following corollary.

Corollary 3.6. Let K = [Kε] = [Lε] 
= ∅. Then 〈Kc
ε〉 = 〈Lc

ε〉.

The next result relates the support of a GSF to the exterior of certain internal sets. To
formulate it concisely, we introduce the following notations: Denote by Kf the set of all
internal ∅ 
= K ⊆ R̃n with ext(K) 
= ∅ and such that there exists a net uε ∈ C∞(Rn,Rd)
that defines f and such that [uε(xε)] = 0 for all [xε] ∈ ext(K). Also, denote by Hf the set
of all the internal sets of the form K = [supp(uε)] ⊆ R̃n for some net uε ∈ C∞(Rn,Rd)
that defines f and such that both K and ext(K) are non-empty.
Then we have the following lemma.

Lemma 3.7. Let X ⊆ R̃n, Y ⊆ R̃d and f ∈ GC∞(X,Y ). Then

supp(f) ⊆ X ∩
⋂

K∈Kf

K ⊆ X ∩
⋂

K∈Hf

K. (3.1)
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Proof. Since X ∩⋂K∈Kf
K is a sharply closed subset of X, in order to show the first

inclusion in (3.1), it suffices to prove that

{x ∈ X | |f(x)| > 0} ⊆ X ∩
⋂

K∈Kf

K.

Let x ∈ X be such that |f(x)| > 0, so that

∃r ∈ R>0 : |f(x)| > dεr. (3.2)

Let K = [Kε] ∈ Kf , and assume, by contradiction, that x = [xε] /∈ K. We first prove that

∃q ∈ N>r ∃(εk)k∈N ↓ 0∀k ∈ N : BE
εq

k
(xεk

) ⊆ Kc
εk
, (3.3)

where r comes from (3.2). In fact, suppose to the contrary that

∀q ∈ N>r ∃εq ∀ε ≤ εq ∃y(q)
ε ∈ BE

εq (xε) : y(q)
ε ∈ Kε.

We may assume that (εq)q∈N ↓ 0. Setting ỹε := y
(q)
ε for ε ∈ (εq+1, εq], we have x = [ỹε] ∈

K, which contradicts x /∈ K.
By assumption ∃z = [zε] ∈ ext(K), and hence

∃s ∈ N>q ∀0ε : d(zε,Kε) > εs,

where q comes from (3.3). Using (εk)k∈N from (3.3), we set x̃ε := xεk
if ε = εk and x̃ε := zε

otherwise. Then x̃ := [x̃ε] ∈ ext(K). But K ∈ Kf , so there exists a net uε ∈ C∞(Rn,Rd)
that defines f and such that [uε(x̃ε)] = 0. In particular, |uεk

(x̃εk
)| = |uεk

(xεk
)| = O(ε2s

k )
as k → +∞, which contradicts |f(x)| = [|uε(xε)|] > dεr > dεs.

Turning now to the second inclusion, assume that x ∈ X \⋂K∈Hf
K, so that there

exists a net (uε) that defines f , with ∅ 
= K := [supp(uε)] ⊆ R̃n and ext(K) 
= ∅, but
such that x /∈ K. We want to show that x /∈ ⋂K′∈Kf

K ′. But for all [yε] ∈ ext(K) =
〈supp(uε)c〉, we have yε /∈ supp(uε) for ε small. Hence, uε(yε) = 0 for these ε, and this
yields [uε(yε)] = 0. This proves that K ∈ Kf , but x /∈ K. �

Remark 3.8.

(i) Using methods from non-standard analysis, one can prove the converse of the
first inclusion in (3.1) in the following case: If X = R̃n and the sharp interior of{
x ∈ R̃n | f(x) = 0

}
is non-empty, then

supp(f) =
⋂

K∈Kf

K.

To see this, let x ∈ ⋂K∈Kf
K and choose some z in the interior of

{
y ∈ R̃n |

f(y) = 0} and some q > 0 such that Bdεq (z) ⊆
{
y ∈ R̃n | f(y) = 0

}
. Given a rep-

resentative (vε) of f , let (χε) be a moderate net of smooth functions such that χε
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vanishes on BE
εq+2(zε) and is identically equal to 1 on Rn \BE

εq+1(zε). Then set-
ting uε := χεvε gives a new representative of f such that [{y ∈ Rn | uε(y) = 0}] has
non-empty sharp interior. Letmε ∈ N,mε → ∞ as ε→ 0. Then setKε := {y ∈ Rn |
|uε(y)| ≥ εmε} and K := [Kε]. It follows that ∅ 
= ext(K) ⊆ {y ∈ Rn | f(y) = 0}, so
x ∈ K. Fix any k ∈ N. Now using non-standard notation, letting ρ := [ε], u := [uε],
and fixing a representative of x, which we temporarily simply denote by x, the
above in particular implies that

∗N∞ ⊆ {m ∈ ∗N | ∃yk ∈ ∗Rn : |yk − x| ≤ ρk ∧ |u(yk)| ≥ ρm}.
By the underspill principle, therefore, there also exists some m ∈ N and some yk ∈
∗Rn such that |yk − x| ≤ ρk and |u(yk)| ≥ ρm. Taking equivalence classes of these
nets, it follows that there exist yk ∈ R̃n such that |yk − x| ≤ dεk and |f(yk)| > 0.
Since yk → x in the sharp topology, this implies that x ∈ supp(f).

(ii) The assumption ext(K) 
= ∅ in the definition of Kf is essential. To illustrate this,
take ϕ as defined before Definition 3.1, pick any sequence εk ↓ 0 and set Kε := {0}
for ε = εk, and Kε = Rn otherwise. Then ext(K) = ∅, and obviously supp(ϕ) 
⊆ K.

(iii) The question of whether the reverse of the last inclusion in (3.1) also holds remains
open.

In the following section we shall see that even though the notion of support introduced
above may not be entirely satisfactory, there nevertheless is a very convenient notion of
being compactly supported for GSFs.

3.1. The spaces GDK(U, Y ) and GD(U, Y )

An idea frequently used idea to solve problems like the previous ones comes from
considering a family of GSFs having ‘good representatives’, i.e. possessing a defining net
(uε) that conforms to our intuition and includes the examples we have in mind. In the
following, we denote by (u1, . . . , ud) the components of a function u that takes values, for
example, Rd.

Definition 3.9. Let ∅ 
= K �f U ⊆ R̃n and Y ⊆ R̃d, then we say that f is a GSF
compactly supported in K, and we write

f ∈ GDK(U, Y )

if f ∈ GC∞(U, Y ) and there exists a net (uε) such that

(i) (uε) defines f , where uε ∈ C∞(Rn,Rd) for all ε;

(ii) ∀α ∈ Nn ∀[xε] ∈ ext(K) : [∂αuε(xε)] = 0.

Moreover, we set

GD(U, Y ) :=
⋃

∅	=K�fU

GDK(U, Y ).

We will simply use the symbols GDK(U) and GD(U) if Y = R̃.
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Remark 3.10.

(i) Lemma 3.7 implies that if f ∈ GDK(U, Y ), then supp(f) ⊆ K because K ∈ Kf . The
converse implication for an arbitrary subset U remains an open problem. For the
case U = R̃n, and if supp(f) is not empty, see Theorem 3.17.

(ii) It is clear that, in general, another net defining f : U −→ R̃d will not necessarily
satisfy Definition 3.9 (ii) because such a net is not bound to have any particular
behavior outside of U .

(iii) Set Kε := BE
1 (0) and Lε := Kε \BE

e−1/ε(0), then for the Hausdorff distance of Kε

and Lε we obtain dH(Kε, Lε) = e−1/ε. By [27, Corollary 2.10], it follows that
[Kε] = [Lε]. If we consider a net of smooth functions such that uε|BE

1/2(0)
= 1,

uε|R2\Kε
= 0, uε ≥ 0, then supy∈R2\Kε

|∂αuε(y)| = 0 but supy∈R2\Lε
|∂αuε(y)| = 1.

This motivates the use of the strongly internal set 〈Kc
ε〉 in (ii) instead of the

simpler [Kc
ε ]. Analogously, we can consider as Lε an e−1/ε-mesh of points for

Kε = BE
1 (0). Lε may also contain points in Kc

ε , but so that d(x,Kε) = e−1/ε. This
example shows clearly that we need to be sufficiently ‘far’ from ∂Kε to be sure
that [∂αuε(xε)] = 0, i.e. at points x = [xε] such that [d(xε,Kε)] > 0, as stated in
(ii). Since ext(K) is independent of the choice of representative of K by Corollary
3.6, so is Definition 3.9. This is essential to prove the completeness of the spaces
GDK(U) and GD(U).

The following result will turn out to be useful when proving results by contradiction in
several instances below. It permits to restrict the analysis to only two cases: points in K
or in ext(K). To state it more clearly, we say that a generalized point [yε] joins points of
the sequence (yk)k∈N at (εk)k∈N if ∀N ∈ N∃k ≥ N : yεk

= yk.

Lemma 3.11. Let K = [Kε] �f R̃n, let (εk)k∈N a sequence in (0, 1] that strictly
decreases to 0, and let (yk)k∈N a sequence in Rn. For each k ∈ N, let xk ∈ Kεk

be such
that d(yk, xk) = d(yk,Kεk

). Then either

(i) ∃[yε] ∈ ext(K) : [yε] joins points of the sequence (yk)k∈N at (εk)k∈N

or

(ii) ∃[ȳε], [x̄ε] respectively joining points of the sequences (yk)k∈N and (xk)k∈N at
(εk)k∈N such that [ȳε] = [x̄ε] and x̄ε ∈ Kε ∀ε.

Proof. We can always pick a point eε ∈ Kc
ε so that e := [eε] ∈ ext(K); in fact, since

(Kε) is sharply bounded, we can find eε ∈ Rn \Kε so that d(eε,Kε) > 1 and (eε) is
moderate. We can also take a point iε ∈ Kε for each ε because, without loss of generality,
we can assume that Kε 
= ∅ for all ε.

The first alternative in the statement is realized if

∃b ∈ R>0 ∃N ∈ N∀k ≥ N : |yk − xk| > εb
k. (3.4)
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Set yε := yk if ε = εk and yε := eε otherwise. Then, if ε = εk, by (3.4) we have d(yε,Kε) =
|yk − xk| > εb; otherwise d(yε,Kε) = d(eε,Kε) > 1 ≥ εb. Therefore, [yε] ∈ 〈Kc

ε〉 = ext(K)
and, of course, [yε] joins points of the sequence (yk)k∈N at (εk)k∈N.

Conversely, if
∀h ∈ N∃kh > h : |ykh

− xkh
| ≤ εh

kh
, (3.5)

then we can set ȳε := ykh
, x̄ε := xkh

if ε = εkh
and ȳε := x̄ε := iε otherwise.

Then, if ε = εkh
, by (3.5) we have |ȳε − x̄ε| = |ykh

− xkh
| ≤ εh

kh
= εh; otherwise

|ȳε − x̄ε| = |iε − iε| = 0, and (ii) follows. �

We use the above result to guarantee that the maximum values of any partial derivative
∂αf are attained on K and not outside, as precisely stated in the following lemma

Lemma 3.12. Let (uε) and K = [Kε] satisfy Definition 3.9. Then

∀α ∈ Nn ∀i = 0, . . . , n :
[

sup
y∈Rn

|∂αui
ε(y)|

]
=
[

sup
x∈Kε

|∂αui
ε(x)|

]
. (3.6)

Proof. By contradiction, assume that[
sup
y∈Rn

|∂αui
ε(y)|

]

=
[

sup
x∈Kε

|∂αui
ε(x)|

]
. (3.7)

For simplicity of notation, set vε := ∂αui
ε. Inequality (3.7) means that

∃a ∈ R>0 ∃εk ↘ 0∀k ∈ N :
∣∣∣∣ sup
y∈Rn

|vεk
(y)| − sup

x∈Kε

|vεk
(x)|

∣∣∣∣ > εa
k.

Thus
∀k ∈ N∃yk ∈ Rn : εa

k + sup
x∈Kεk

|vεk
(x)| < |vεk

(yk)| . (3.8)

We can hence apply Lemma 3.11. In case (i) we have y := [yε] ∈ ext(K) so that [vε(yε)] =
0 by Definition 3.9 (ii). Since [yε] joins points of (yk)k∈N at (εk)k∈N, from (3.8) and
[vε(yε)] = 0 we get

εa
k ≤ εa

k + sup
x∈Kεk

|vεk
(x)| < |vεk

(yk)| = |vεk
(yεk

)| < εa+1
k ,

for k sufficiently big, which gives a contradiction in the first case. In Lemma 3.11 (ii)
we have ȳ := [ȳε] = x̄ := [x̄ε] ∈ K ⊆ U . Therefore [vε(ȳε)] = [vε(x̄ε)] by the definition of
GSF. Since [ȳε] and [x̄ε] join points of (yk)k∈N and (xk)k∈N, respectively, at (εk)k∈N, for
k sufficiently big we have

εa
k + sup

x∈Kεk

|vεk
(x)| < |vεk

(yk)| ≤ |vεk
(yk) − vεk

(xk)| + |vεk
(xk)|

≤ εa+1
k + sup

x∈Kεk

|vεk
(x)| ,

again leading to a contradiction. �
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The previous result will be essential to prove that any compactly supported GSF can
be extended to the whole of R̃n, and to define an R̃-valued norm of f that does not
depend on K.

Using Lemma 3.12, we can prove that any derivative of a compactly supported GSF is
globally bounded in an appropriate sense:

Lemma 3.13. Let the net (uε) satisfies Definition 3.9. Then

∀α ∈ Nn ∃C ∈ R̃ ∀β ∈ Nn : |β| ≤ |α| ⇒
[

sup
y∈Rn

|∂βuε(y)|
]
≤ C.

Proof. By the extreme-value property Proposition 2.1, we can set

Ciβ :=
[

sup
y∈Kε

|∂βui
ε(y)|

]
,

where β ∈ Nn, |β| ≤ |α|, and i = 1, . . . , n.
Set

C := 1 +
√
n max

|β|≤|α|
1≤i≤n

, Ciβ .

Then C > Ciβ and property (3.6) yield
[
supy∈Rn |∂βui

ε(y)|
]

=
[
supx∈Kε

|∂βui
ε(x)|

]
= Ciβ ,

and hence
[
supy∈Rn |∂βuε(y)|

]
< C. �

Moreover, compactly supported GSF can be extended in a unique way to the entire
R̃n:

Theorem 3.14. Let ∅ 
= K �f U ⊆ R̃n and f ∈ GDK(U, R̃d) be defined by (uε) which

satisfies Definition 3.9. Then (uε) defines a GSF of the type R̃n −→ R̃d and there exists

one and only one f̄ ∈ GDK(R̃n, R̃d) such that:

(i) f̄ |K = f |K ,

(ii) f̄ |ext(K) = 0.

Moreover, this f̄ satisfies the following conditions:

(i) If U is sharply open and α ∈ Nn, then ∂αf̄ |U = ∂αf ;

(ii) f̄ |
R̃n

c
can be identified with a Colombeau generalized function.

Proof. The existence part follows by showing that for all α ∈ Nn and all [xε] ∈ R̃n we
have (∂αuε(xε)) ∈ Rd

M . This follows since Lemma 3.13 yields that for any α ∈ Nn there
exists some (Cαε) ∈ Rn

M such that | supx∈Rn ∂αuε(x)| ≤ Cαε for all ε small. To prove
uniqueness, let g ∈ GDK(R̃n, R̃d) be such that g|K = f̄ |K = f and g|ext(K) = f̄ |ext(K) = 0.
By contradiction, assume that f̄(y) = [uε(yε)] 
= g(y) = [vε(yε)], for some y = [yε] ∈ R̃n,
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where (vε) defines g. Thus

∃a ∈ R>0 ∃εk ↘ 0∀k ∈ N : |uεk
(yεk

) − vεk
(yεk

)| > εa
k. (3.9)

By Lemma 3.11, this leaves two possibilities. In the first one, there exists a point z = [zε] ∈
ext(K) that joins points of the sequence (yεk

)k∈N at (εk)k∈N. Therefore g(z) = [vε(zε)] =
f̄(z) = [uε(zε)] = 0, which gives a contradiction at ε = εk when compared with (3.9). In
the second one, there exists a point z̄ = [z̄ε] ∈ K joining points of the sequence (yεk

)k∈N

at (εk)k∈N. Once again, we have g(z̄) = [vε(z̄ε)] = f̄(z̄) = [uε(z̄ε)] = f(z), in contradiction
to (3.9).

Furthermore, [21, Theorem 31] implies claim (iii). Finally, (iv) follows from the
isomorphism GC∞(R̃c, R̃

d) � Gs(R)d. �

We also have this simple but useful result:

Lemma 3.15. Let ∅ 
= K �f U ⊆ R̃n, U be a sharply open set, f ∈ GDK(U, R̃d) and

α ∈ Nn. Then ∂αf ∈ GDK(U, R̃d).

Theorem 3.14 provides the possibility to restrict our attention to compactly supported
GSF whose domain is the entire R̃n, as stated in the following theorem

Theorem 3.16. For ∅ 
= K �f R̃n and Y ⊆ R̃d set

GDg(K,Y ) :=
{
f ∈ GC∞(R̃n, Y ) | f |ext(K) = 0

}
, (3.10)

where the g superscript means globally defined. Let K ⊆ U ⊆ R̃n. Then

(i) If f ∈ GDg(K,Y ), then f |U ∈ GDK(U, Y );

(ii) If f ∈ GDK(U, R̃d), then ∃!f̄ ∈ GDg(K, R̃d) : f̄ |K = f |K ;

(iii) GDg(K,Y ) = GDK(R̃n, Y ).

Proof.

(i) Let (uε) be any net that defines f , so that uε ∈ C∞(Rn,Rd). Clearly f |U ∈
GC∞(U, Y ), so for all α ∈ Nn and x = [xε] ∈ ext(K) it remains to show that
[∂αuε(xε)] = 0. By Lemma 3.5, we get ext(K) = 〈Kc

ε〉, which is a sharply open
set. So x ∈ ext(K) yields Br(x) ⊆ ext(K) for some r ∈ R̃>0, and hence f |Br(x) = 0.
Thereby ∂αf(x) = [∂αuε(xε)] = 0.

(ii) This is exactly Theorem 3.14.

(iii) This follows directly from (i) by setting U = R̃n, and by Definition 3.9 which yields
f |ext(K) = 0.

�

For the extension of property (ii) to arbitrary codomains Y ⊆ R̃d (provided that U is
strongly internal) see Theorem 8.14.
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Note explicitly that in (3.10), instead of the more technical properties of Definition 3.9,
we have a concise and simpler pointwise condition. Notwithstanding this and several
other positive aspects of (3.10) (see the second part of Lemma 3.7 and Theorem 3.17),
in the present work, we prefer not to change Definition 3.9 in favor of (3.10): On the one
hand, Definition 3.9 is nearer to the classical definition of DK(Ω), where the domain is
Ω ⊆ Rn; on the other hand, for applications of these notions to geometry, locally defined
functions are a more natural setting. We can also summarize these results by saying that
compactly supported GSFs give rise to a good notion of being compactly supported, and
globally defined compactly supported GSFs are in addition well behaved with respect to
the concept of support introduced above. This is also clearly confirmed by the following
theorem.

Theorem 3.17. Let Y ⊆ R̃d, and let f ∈ GC∞(R̃n, Y ) such that supp(f) 
= ∅. Then

f ∈ GDK(R̃n, Y ) if and only if supp(f) ⊆ K.

Proof. One implication is immediate from Remark 3.10 (i). Conversely, if supp(f) ⊆
K, by Theorem 3.16 (iii) we have to show that f |ext(K) = 0. Let x ∈ ext(K) but

assume that f(x) 
= 0. Pick any y ∈
{
y′ ∈ R̃n | |f(y′)| > 0

}
, which is non-empty because

supp(f) 
= ∅. Let (uε) be a net that defines f and let y = [yε]. Since f(x) 
= 0, there
exists S ⊆ I such that eS 
= 0 and |f(x)eS | > 0. Then setting z := xeS + yeSc , we have
|f(z)| > 0 and hence z ∈ supp(f) ⊆ K. But then xeS = zeS ∈ KeS which, by Lemma 3.4,
yields x /∈ ext(K), a contradiction. �

3.2. Examples of compactly supported GSFs

A first class of examples comes by considering each ϕ ∈ DK(Ω), K � Ω ⊆ Rn. Indeed,
it suffices to set Kε := K and uε(x) := ϕ(x) if x ∈ Ω and uε(x) := 0 otherwise to have
that ϕ ∈ GDK̃(Ω̃c, R̃), where we recall that K̃ = [K]. Therefore DK(Ω) ⊆ GDK̃(Ω̃c, R̃).

Moreover, since any given CGF can be defined by a net (uε) of maps with sharply
bounded compact supports, we have the following result.

Theorem 3.18. Let Ω be an open subset of Rn and let J = [Jε] ∈ R̃ be a CGN
such that limε→0+ Jε = +∞. Set Kε := {x ∈ Ω | |x| ≤ Jε} and K := [Kε]. Then for all

f ∈ GC∞(Ω̃c, R̃
d) there exists f̄ ∈ GDK(R̃n, R̃d) such that f̄ |Ω̃c

= f .

Proof. Set Uε := {x ∈ Ω | |x| < 1
2Jε} so that Uε ⊆ Kε for ε small. Let χε ∈ C∞(Ω,R)

be such that χ|Uε
= 1 and supp(χε) ⊆ Kε. Let f ∈ GC∞(Ω̃c, R̃

d) be represented by (vε),
with vε ∈ C∞(Rn,Rd), and set uε := χε · vε. Then each uε is compactly supported and
any x = [xε] ∈ Ω̃c satisfies xε ∈ Uε for ε small because limε→0+ Jε = +∞. Therefore f̄ :=
[uε(·)] ∈ GDK(R̃n, R̃d), and if xε ∈ Uε then uε(xε) = vε(xε), so f̄ |Ω̃c

= f . �

This theorem gives an infinity of non-trivial examples of compactly supported GSFs.
Moreover, even though f̄ depends on the fixed infinite number J ∈ R̃, every such f̄
contains all the information of the original CGF f because f̄ |Ω̃c

= f .

https://doi.org/10.1017/S0013091516000559 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091516000559


A convenient notion of compact set for generalized functions 73

Finally, the constant function f(x) = 1 for all x ∈ R̃ is not compactly supported. In
fact, by contradiction, assume that f admits (uε) and (Kε) such that Definition 3.9 holds.
Then choosing r large enough that dε−r ∈ R̃ \K we arrive at f( dε−r) = [uε(ε−r)] = 0.

4. Generalized norms on GDK and GD
As a first step to topologizing the spaces GDK and GD we prove the following theorem.

Theorem 4.1. Let ∅ 
= K �f U ⊆ R̃n, Then

(i) GDK(U, R̃d) is an R̃-module

(ii) for all non-empty H �f U , the inclusion K ⊆ H implies GDK(U, R̃d) ⊆
GDH(U, R̃d).

Proof.

(i) is immediate from Definition 3.9.

(ii) Take f ∈ GDK(U, R̃d). Since K ⊆ H, by [27, Proposition 2.8] for each representa-
tive (Kε) of K we get the existence of a representative (Hε) of H such that Kε ⊆ Hε

for all ε. Therefore, ext(K) = 〈Kc
ε〉 ⊇ 〈Hc

ε〉 = ext(H) and hence the conclusion
follows.

�

From the extreme-value property, Proposition 2.1, it is natural to expect that the
following CGNs could serve as generalized R̃-valued norms.

Definition 4.2. Let ∅ 
= K �f U ⊆ R̃n, where U is a sharply open set. Let m ∈ N and
f ∈ GDK(U, R̃d). Then

‖f‖m,K := max
|α|≤m,
1≤i≤d

max
(∣∣∂αf i(Mαi)

∣∣ , ∣∣∂αf i(mαi)
∣∣) ∈ R̃,

where mαi, Mαi ∈ K satisfy

∀x ∈ K : ∂αf i(mαi) ≤ ∂αf i(x) ≤ ∂αf i(Mαi).

The following result permits to calculate the (generalized) norm ‖f‖m,K using any net
(vε) that defines f . In case the net (vε) satisfies Definition 3.9, it also permits to prove
that this norm does not depend on K, as is the case for any ordinary compactly supported
smooth function.

Even though ‖f‖m,K ∈ R̃, using an innocuous abuse of language, in the following we
will simply call ‖f‖m,K a norm.

Proposition 4.3. Under the assumptions of Definition 4.2, let the set K = [Kε] �f

R̃n. Then we have that
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(i) if the net (vε) defines f , then

‖f‖m,K =

⎡⎣ max
|α|≤m,
1≤i≤d

sup
x∈Kε

∣∣∂αvi
ε(x)

∣∣⎤⎦ ;

(ii) if (uε) defines f and (uε) satisfies Definition 3.9, then

‖f‖m,K =

⎡⎣ max
|α|≤m,
1≤i≤d

sup
x∈Rn

∣∣∂αui
ε(x)

∣∣⎤⎦ . (4.1)

Proof. In proving (i) we will also prove that the norm ‖f‖m,K is well defined, i.e. it
does not depend on the particular choice of points mαi, Mαi as in Definition 4.2. As in
the proof of Proposition 2.1, we get the existence of m̄αiε, M̄αiε ∈ Kε such that

∀x ∈ Kε : ∂αvi
ε(m̄αiε) ≤ ∂αvi

ε(x) ≤ ∂αvi
ε(M̄αiε).

Hence
∣∣∂αvi

ε(x)
∣∣ ≤ max

(∣∣∂αvi
ε(m̄αiε)

∣∣ , ∣∣∂αvi
ε(M̄αiε)

∣∣). Thus

max
|α|≤m,
1≤i≤d

sup
x∈Kε

∣∣∂αvi
ε(x)

∣∣ ≤ max
|α|≤m,
1≤i≤d

max
(∣∣∂αvi

ε(m̄αiε)
∣∣ , ∣∣∂αvi

ε(M̄αiε)
∣∣) .

But m̄αiε, M̄αiε ∈ Kε, so⎡⎣ max
|α|≤m,
1≤i≤d

sup
x∈Kε

∣∣∂αvi
ε(x)

∣∣⎤⎦ =

⎡⎣ max
|α|≤m,
1≤i≤d

max
(∣∣∂αvi

ε(m̄αiε)
∣∣ , ∣∣∂αvi

ε(M̄αiε)
∣∣)⎤⎦

= max
|α|≤m,
1≤i≤d

max
(∣∣∂αf i(M̄αi)

∣∣ , ∣∣∂αf i(m̄αi)
∣∣) .

From this, both the fact that the norm ‖f‖m,K is well defined and claim (i) follow.
(ii) By Lemma 3.12, we have that⎡⎣ max

|α|≤m,
1≤i≤d

sup
x∈Kε

∣∣∂αui
ε(x)

∣∣⎤⎦ = max
|α|≤m,
1≤i≤d

[
sup

x∈Kε

∣∣∂αui
ε(x)

∣∣]

= max
|α|≤m,
1≤i≤d

[
sup

x∈Rn

∣∣∂αui
ε(x)

∣∣]

=

⎡⎣ max
|α|≤m,
1≤i≤d

sup
x∈Rn

∣∣∂αui
ε(x)

∣∣⎤⎦ .
�

Corollary 4.4. Let ∅ 
= K �f U ⊆ R̃n, where U is a sharply open set. Let ∅ 
= H �f U
and m ∈ N. If f ∈ GDK(U, R̃d) ∩ GDH(U, R̃d), then ‖f‖m,K = ‖f‖m,H =: ‖f‖m.
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Proof. The right hand side of (4.1) does not depend on K. �

Another consequence of Proposition 4.3 is the following corollary.

Corollary 4.5. Let U ⊆ R̃n, f ∈ GD(U, R̃d) and f̄ ∈ GD(R̃n, R̃d) be the extension of
f defined in Theorem 3.14. Then for all m ∈ N, ‖f‖m = ‖f̄‖m.

Our use of the term ‘norm’ is justified by the following proposition.

Proposition 4.6. Let ∅ 
= K �f U ⊆ R̃n, where U is a sharply open set. Let f , g ∈
GDK(U, R̃d) and m ∈ N. Then

(i) ‖f‖m ≥ 0,

(ii) ‖f‖m = 0 if and only if f = 0,

(iii) ∀c ∈ R̃ : ‖cf‖m = |c|‖f‖m,

(iv) ‖f + g‖m ≤ ‖f‖m + ‖g‖m,

(v) ‖fg‖m ≤ cm‖f‖m‖g‖m for some cm ∈ R>0.

Proof. Properties (i), (iii) and (iv) follow directly from Proposition 4.3, as does (v),
using the Leibniz rule. The ‘if’ part of property (ii) follows from (4.1). �

We now prove that also the space GD(U, R̃d) is an R̃-module, at least for certain U .

Proposition 4.7. Let U ⊆ R̃n be a non-empty sharply open set. Assume that

∀K,H �f U : interl(H ∪K) ⊆ U. (4.2)

Then GD(U, R̃d) is an R̃-module.

Proof. Since in Theorem 4.1 we already proved that GDK(U, R̃d) is closed with respect
to products by scalars, we only need to prove that GD(U, R̃d) is closed with respect to
sum. Let f ∈ GDK(U, R̃d), g ∈ GDH(U, R̃d) and let (uε), (vε) satisfy Definition 3.9 for f
and g, respectively. Lemma 2.7 and [27, Propostion 2.8] imply that interl(H ∪K) = [Hε ∪
Kε] �f R̃n. But ext(H ∪K) = 〈Hc

ε ∩Kc
ε〉 = 〈Hc

ε〉 ∩ 〈Kc
ε〉 = ext(H) ∩ ext(K). Therefore,

∂α(uε + vε) is zero on ext(H ∪K). By our assumption (4.2) ∅ 
= interl(H ∪K) �f U , so
that f + g ∈ GD(U, R̃d). �

In the following result, we give two general sufficient conditions for (4.2) to hold.

Proposition 4.8. Let U ⊆ R̃n be a non-empty sharply open set. If U is R̃-convex or
U is a strongly internal set, then (4.2) holds.

Proof. Assume that U is R̃-convex, i.e. xh+ (1 − x)k ∈ U for all h, k ∈ U and all
x ∈ [0, 1]. Then for all H, K ⊆ U (even if we do not assume them to be functionally
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compact), and all y ∈ interl(H ∪K), we can write y = eS · h+ eSc · k for some S ⊆ I
and h ∈ H, k ∈ K. Thus y = eS · h+ (1 − eS) · k ∈ U since eS ∈ [0, 1] and h, k ∈ U .

Now, assume that U is a strongly internal set, i.e. for some net (Uε) of subsets of Rn,
we have U = 〈Uε〉. We continue to use the notations for y as above. Since h, k ∈ U , [21,
Theorem 8] entails that d(hε, U

c
ε ), d(kε, U

c
ε ) > εq for some q ∈ R>0 and ε small, where

h = [hε], k = [kε]. But y = eS · h+ eSc · k, so for all ε small, if ε ∈ S then yε = hε and if
ε /∈ S then yε = kε. In any case, d(yε, U

c
ε ) > εq, hence y ∈ 〈Uε〉 = U . �

Example 4.9. If U = (−1, 1) ∪ (2, 4) ⊆ R̃, then U is a sharply open set, but it
does not satisfy condition (4.2) of Proposition 4.7. Let H :=

[[− 1
2 ,

1
2

]
R

]
, K :=

[[
5
2 ,

7
2

]
R

]
and xε := 0 if ε ∈ [1/n, 1/(n+ 1)) and n ∈ N>0 is even, and xε := 3 otherwise. Then
x := [xε] ∈ interl(H ∪K) but x /∈ U . Moreover, let ϕ ∈ D[−1/2,1/2]

R
(R) ⊆ GDH(R̃c), ψ ∈

D[5/2,7/2]
R
(R) ⊆ GDK(R̃c) be positive non-trivial functions. Then, as we showed in the

proof of Proposition 4.7, the GSF ϕ+ ψ ∈ GC∞(U, R̃) is compactly supported in[[
−1

2
,
1
2

]
R

∪
[
5
2
,
7
2

]
R

]
= interl(H ∪K) 
⊆ U.

Finally, let f := ϕ|U and g := ψ|U , so that f ∈ GDH(U, R̃) and g ∈ GDK(U, R̃).
Remark 3.10.(i) yields that f + g /∈ GDJ(U, R̃) for all J �f U . Otherwise, taking suit-
able sub-intervals L of

(− 1
2 ,

1
2

)
R

and M of
(

5
2 ,

7
2

)
R

where f and g, respectively, do not
vanish, we would have [L ∪M ] ⊆ supp(f + g) ⊆ J ⊆ U (here supp(f + g) is the support
as in Definition 3.1). But the inclusion [L ∪M ] ⊆ U is impossible — a counterexample
can be constructed similar to the above x.

This example shows that an assumption like (4.2) is necessary to have the closure of
the space GD(U, R̃) with respect to sum.

5. Topological structure on GDK

Using our R̃-valued norms, it is now natural to give the following definition.

Definition 5.1. Let ∅ 
= K �f U ⊆ R̃n, where U is a sharply open set. Let f ∈
GDK(U, R̃d), m ∈ N, ρ ∈ R̃>0. Then the following hold.

(i) We set Bm
ρ (f) :=

{
g ∈ GDK(U, R̃d) | ‖f − g‖m < ρ

}
. In any case where there is

potential for confusion, we use the more precise symbol Bm
ρ (f,K) := Bm

ρ (f).

(ii) If V ⊆ GDK(U, R̃d), then we say that V is a sharply open set if

∀v ∈ V ∃m ∈ N∃ρ ∈ R̃>0 : Bm
ρ (v) ⊆ V.

Moreover, we say that V is Fermat open if

∀v ∈ V ∃m ∈ N∃r ∈ R>0 : Bm
r (v) ⊆ V.

As in [21, Theorem 2] it follows that sharply open sets as well as Fermat open sets
form topologies on GDK(U, R̃d).
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On the other hand, it is also natural to view the space GDK(U, R̃d) inside Garetto’s
theory [11,12] of R̃-locally convex algebras. In this section, we will realize this compari-
son, proving that the space GDK(U, R̃) is a Fréchet R̃-module and a topological algebra.
For this purpose, we will only consider the sharp topology. Indeed, as we will see below,
the Fermat topology is less interesting in this context since it doesn’t permit to prove the
continuity of the product by scalars (r, f) ∈ R̃ × GDK(U, R̃d) �→ r · f ∈ GDK(U, R̃d).

In the following, we will always assume that ∅ 
= K �f U ⊆ R̃n, where U is a non-
empty sharply open set. The main problem in performing this comparison, which does
not permit to view our space GDK(U, R̃) as a particular case of the theory developed in
[11,12], is that the domain U contains generalized points.

Using the valuation v on R̃, it is natural to introduce the following notions.

Definition 5.2. Let m ∈ N and f ∈ GD(U, R̃). Then

(i) vm(f) := v(‖f‖m) ∈ R,

(ii) Pm(f) := e−vm(f).

From the properties of the valuation v and of the e-norm | · |e = e−v(·) on R̃ (see [1]),
the following result directly follows.

Proposition 5.3. For each m ∈ N, we have the following.

(i) vm : GD(U) −→ R ∪ {+∞} is a valuation, i.e. for all f , g ∈ GD(U):
• vm(0) = +∞,

• vm(λ · f) ≥ v(λ) + vm(f) ∀λ ∈ R̃,

• vm( dεa · f) = v( dεa) + vm(f) = a+ vm(f) ∀a ∈ R

• vm(f + g) ≥ min [vm(f), vm(g)].

(ii) Pm : GD(U) −→ R is an ultra-pseudo-norm, i.e. for all f , g ∈ GD(U):
• Pm(f) = 0 if and only if f = 0,

• Pm(λ · f) ≤ |λ|e · Pm(f) ∀λ ∈ R̃,

• Pm( dεa · f) = |dεa|e · Pm(f) = e−a · Pm(f) ∀a ∈ R,

• Pm(f + g) ≤ max [Pm(f),Pm(g)].

The following result states that to define the sharp topology, instead of the above
ultra-pseudo-norms we can equivalently use the countable family of generalized norms
(‖f‖m)m∈N

.

Theorem 5.4.

(i) Sum and product in GDK(U) are continuous in the sharp topology. Therefore,

GDK(U) is a topological R̃-algebra.
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(ii) The product in GDK(U) is continuous in the Fermat topology only on the subspace
{(f, g) ∈ GDK(U) × GDK(U) | ∀m ∈ N : ‖f‖m, ‖g‖m <∞}.

(iii) For f ∈ GDK(U), set

Cm
r (f) := {g ∈ GDK(U) | Pm(f − g) < r} (r ∈ R>0, m ∈ N).

Then for each q, s ∈ R>0 we have:
(i) If q ≤ − log r, then Cm

r (f) ⊆ Bm
dεq (f);

(ii) If q ≥ − log s and s < r, then Bm
dεq (f) ⊆ Cm

r (f).

(i) The sharp topology on GDK(U) is the coarsest topology such that each Pm is
continuous.

(ii) GDK(U) is a separated locally convex topological R̃-module.

Proof. (i), (ii) Continuity of the sum in the sharp (and in the Fermat) topology follows
directly from the triangle inequality Proposition 4.6 (iv). The continuity of the product
at (f0, g0) and property (ii) follow from Proposition 4.6 (v) via

‖f · g − f0 · g0‖m ≤ cm(‖f − f0‖m · ‖g − g0‖m + ‖f − f0‖m · ‖g0‖m +

+ ‖f0‖m · ‖g − g0‖m).

(iii) Let us first assume that q ≤ − log r and g ∈ Cm
r (f), so that Pm(f − g) < r and

vm(f − g) > − log r. This implies that

∃b > − log r : max
|α|≤m

i≤d

sup
x∈Kε

∣∣∂αui
ε(x) − ∂αvi

ε(x)
∣∣ = O(εb), (5.1)

where (uε) and (vε) define f and g, respectively. Property (5.1) yields the existence of
some M > 0 such that for ε sufficiently small we obtain

max
|α|≤m

i≤d

sup
x∈Kε

∣∣∂αui
ε(x) − ∂αvi

ε(x)
∣∣+ εb ≤ (M + 1) · εb < ε− log r ≤ εq.

Therefore, ‖f − g‖m + dεb ≤ dεq, so ‖f − g‖m < dεq.
Now, let us assume q ≥ − log s, s < r, and g ∈ Bm

dεq (f), so that ‖f − g‖m < dεq.
Therefore,

∀0ε : max
|α|≤m

i≤d

sup
x∈Kε

∣∣∂αui
ε(x) − ∂αvi

ε(x)
∣∣ < εq ≤ ε− log s.

Taking the |·|e-norm we get∣∣∣∣∣∣max
|α|≤m

i≤d

sup
x∈Kε

∣∣∂αui
ε(x) − ∂αvi

ε(x)
∣∣∣∣∣∣∣∣

e

≤ elog s = s < r,

that is Pm(f − g) < r as claimed.
(iv) follows directly from (iii) and Proposition 5.3 (ii).
(v) follows from Proposition 4.6 (ii)and [11, Proposition 1.11]. �
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5.1. Generalized functions and non-Archimedean properties

In this section, we want to clarify some relationships between the classical notion of
convexity, the notion of R̃-convexity of [11] and the use of R̃-valued norms.

We have seen that balls Bm
ρ (0), ρ ∈ R̃>0, define a neighborhood system of 0 for

GDK(U); they are convex in the usual sense, i.e. if f , g ∈ Bm
ρ (0), t ∈ [0, 1] (in particular

if t ∈ [0, 1]R), then

‖tf + (1 − t)g‖m ≤ t‖f‖m + (1 − t)‖g‖m < tρ+ (1 − t)ρ = ρ.

Moreover, each ball Bm
ρ (0) is also balanced: if t ∈ R̃, |t| ≤ 1, then t ·Bm

ρ (0) ⊆ Bm
ρ (0).

However, this space is not a classical locally convex topological vector space over the field
R because of two reasons: (i) the product by scalars is not continuous with respect to the
Euclidean topology on R, (ii) Lemma 3.13 implies that the property

∀f ∈ GDK(U)∃t ∈ R̃ : f ∈ t ·Bm
ρ (0)

holds for t ∈ R̃ but it cannot be extended to t ∈ R. As we have seen in the proof of
Theorem 5.4 (ii), this is a necessary consequence of the existence of generalized functions
with infinite R̃-valued ‖·‖m-norm.

On the other hand, even though the sets Cm
r (0) are defined using R only, i.e. without

mentioning any non-Archimedean property, they satisfy

∀f ∈ Cm
r (0)∀λ ∈ R : λ · f ∈ Cm

r (0), (5.2)

and this is possible only because they are infinitesimal sets. In fact, we have seen in
Theorem 5.4 that Cm

r (0) ⊆ Bm
dεq (0) for q ≤ − log r.

More generally, a set A ⊆ GDK(U) can be R̃-balanced (see [11]), i.e.

λA ⊆ A ∀λ ∈ R̃ : |λ|e ≤ 1,

and at the same time can be thought of as ‘small’ only in the case which A consists
infinitesimal points. For example, the ball Bm

dεb(0) is R̃-balanced, but Bm
1 (0) is not. In

fact, we have the following lemma.

Lemma 5.5. Suppose that A ⊆ GDK(U) and m ∈ N are such that

A+A ⊆ A (5.3)

and

∃r ∈ R>0 : A ⊆ Bm
r (0).

Then every element u ∈ A has infinitesimal norm: ‖u‖m ≈ 0.

Proof. In fact, (5.3) implies n · u ∈ A ⊆ Bm
r (0) for all n ∈ N	=0. Therefore, ‖u‖m < r/n

for all n ∈ N	=0, which proves our claim. �

Let us note that condition (5.3) holds both for A which is R̃-balanced or R̃-convex.
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These remarks permit to show that in dealing with generalized functions, we are nat-
urally induced to consider a topology on R̃ which contains infinitesimal neighborhoods
(hence inducing the discrete topology on R, see [17]). This is due to the coexistence of
a continuous product by scalars and of an infinite element in GDK(U), as stated in the
following general result. In a possible interpretation of its statement, we can think of R
as R with a topology τ , R̃ as R̃ with the sharp topology τ̃ , and <R̃ as the strict order
relation < of Lemma 1.1.

Theorem 5.6. Let (R,+R, ·R, <R, τ) and (R̃,+R̃, ·R̃, <R̃, τ̃) be Hausdorff topological
ordered rings such that (R,+, ·, <) is a substructure of (R,+R, ·R, <R), which in turn is

a substructure of (R̃,+R̃, ·R̃, <R̃) and such that

∀r ∈ R ∀s ∈ R : r <R̃ s =⇒ r <R s. (5.4)

Let (G,+G, ·G, σ) be a Hausdorff topological R-module, and | · |G : G→ R̃, | · |R : R→
R be maps such that |r ·G g|G = |r|R ·R̃ |g|G for all r ∈ R and all g ∈ G. Assume that
any τ -neighborhood of 0 ∈ R contains a ball BR

η (0) := {s ∈ R | |s|R <R η} for some η ∈
R, η >R 0, and that there exists some ρ ∈ R̃ with ρ >R̃ 0 such that the ball BG

ρ (0) :=
{g ∈ G | |g|G <R̃ ρ} is σ-open. Finally, assume that

∃g ∈ G : |g|G is invertible, ∀M ∈ R>0 : |g|G >R̃ ρ ·R̃ M. (5.5)

Then the induced topology τ ∩ R is discrete.

Proof. Since G is a topological R-module, the product by scalars is τ × σ-continuous,
and

lim
r→0
r∈R

r ·G g = 0, (5.6)

where g ∈ G comes from assumption (5.5). By hypothesis, the ball BG
ρ (0) ∈ σ and every

τ -neighborhood of r = 0 ∈ R contains some ball BR
η (0). Therefore (5.6) entails that there

exists some η >R 0 such that

∀r ∈ R : |r|R <R η =⇒ ρ >R̃ |r ·G g|G = |r|R ·R̃ |g|G. (5.7)

For each s ∈ R>0 takeM ∈ R>0 such that 1
M < s, so that |g|G >R̃ ρ ·R̃ M >R̃ 0 from (5.5).

For all r ∈ R such that |r|R <R η, we have

|r|R <R̃

ρ

|g|G <R̃

1
M

< s

because |g|G is invertible in R̃. Therefore |r|R <R̃ s and hence |r|R <R s by (5.4). This
means that r is infinitesimal in the ring R, i.e. the ball BR

ρ (0) is contained in the monad
of 0 (see e.g. [17] for the notion of monad) and so also every ball BR

η (r̄) is contained in
the monad of r̄ ∈ R. Therefore, [17, Prop. 2.1] implies the conclusion. �

We can therefore say that if we want to find a space G of generalized functions which is
an ordinary Hausdorff topological vector space on R, then we cannot define the topologies

https://doi.org/10.1017/S0013091516000559 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091516000559


A convenient notion of compact set for generalized functions 81

τ and σ using seminorms valued in a non-Archimedean (see (5.5)) extension of R. This
results confirms [10, Remark 43].

As a consequence, we have the following impossibility result.

Corollary 5.7. There does not exist any real Hausdorff topological vector space
(G,+G, ·G, σ) such that

(i) (G,+G, ·G) is a linear subspace of GDK(U) for some ∅ 
= K �f U ⊆ R̃n

(ii) G contains the Dirac delta δ ∈ G,

(iii) ∃m ∈ N∃ρ ∈ R̃>0 : ρ < 1, Bm
ρ (0) ∩G ∈ σ,

In particular, the Colombeau algebra Gs(Ω) does not contain any real Hausdorff
topological vector subspace G such that some Bm

ρ (0) ∩G is open and δ ∈ G.

Proof. By contradiction, in Thm. 5.6, set R := R with the usual Euclidean topology τ ,
R̃ := R̃ with the sharp topology; set |g|G := ‖g‖m, where m ∈ N comes from (iii) and we
used the inclusion (i); set |r|R := |r| the usual absolute value in R. Note also that Bm

ρ (0) ∩
G = {g ∈ G | ‖g‖m < ρ} = {g ∈ G | |g|G <R̃ ρ}. If δ ∈ G, then |δ|G = ‖δ‖m is infinite and
invertible in R̃, so that Theorem 5.6 implies that the Euclidean topology would be discrete.
The second part of the claim follows from Theorem 3.18. �

We can summarize Corollary 5.7 by saying that a real Hausdorff topological vector
space structure G for a space of generalized functions cannot contain even a single trace
Bm

ρ (0) ∩G, ρ < 1, of a sharply open ball. This result does not contradict [6, Propostion
4], where it is stated that the sharp topology induces on bounded sets of the real locally
convex space Ga(Ω) ⊆ Gs(Ω) a topology which is finer than the topology σa on Ga(Ω).
On the other hand, Corollary 5.7 implies that Bm

ρ (0) ∩ Ga(Ω) /∈ σa for all ρ ∈ R̃>0, ρ < 1.

6. Metric structure on GDK

In this section, we want to use [11, Theorem 1.14] to prove metrizability of GDK(U).
However, we will apply this result using an explicit and simple countable base of neigh-
borhoods of the origin which consists of R̃-absorbent and absolutely R̃-convex sets. In
this way, we will arrive at a simpler metric.

The idea is to consider only points of balls f ∈ Bm
ρ (0) whose norm ‖f‖m are infinitely

smaller than ρ. To formally express this idea, we introduce the following definition

Definition 6.1. Let ρ ∈ R̃>0, m ∈ N and g ∈ GDK(U). Then

Um
ρ (g) :=

{
f ∈ GDK(U) | 1

ρ
· ‖f − g‖m ≈ 0

}
.

In any case confusion might arise, we will use the more precise symbol Um
ρ (g,K) :=

Um
ρ (g).
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Proposition 6.2.

(i) Um
ρ (0) is R̃-absorbent and absolutely R̃-convex.

(ii) Both the system{
Um

ρ (v) | v ∈ GDK(U), m ∈ N, ρ ∈ R̃>0, ρ ≈ 0
}

and the system

{Un
dεn(v) | v ∈ GDK(U), n ∈ N>0}

generate the sharp topology on GDK(U).

Proof. To see that Um
ρ (0) is R̃-absorbent, by [11, Definition 1.1] we have to show that

∀u ∈ GDK(U)∃a ∈ R∀b ∈ R≤a : u ∈ dεb · Um
ρ (0), (6.1)

i.e. u
dεb ∈ Um

ρ (0), which is equivalent to∥∥∥ u

dεb

∥∥∥
m
· 1
ρ

=
‖u‖m

dεb · ρ ≈ 0.

But ρ is strictly positive, so ρ ≥ dεp for some p ∈ R. Moreover, ‖u‖m ∈ R̃, so ‖u‖m ≤ dεq

for some q ∈ R. Therefore,
‖u‖m

dεb · ρ ≤ dεq−b−p,

and we have dεq−b−p ≈ 0 if and only if b < q − p. This proves (6.1).
To prove that Um

ρ (0) is balanced, assume λ ∈ R̃ with |λ|e ≤ 1. Then v(λ) ≥ 0, so |λ| ≤ c
for some c ∈ R>0. Therefore, if u ∈ Um

ρ (0) then

‖λu‖m

ρ
= |λ| ‖u‖m

ρ
≈ 0,

so λu ∈ Um
ρ (0).

Finally, we show R̃-convexity: for all a, b ∈ R≥0 and all u, v ∈ Um
ρ (0), we have

1
ρ
· ‖dεa · u+ dεb · v‖m ≤ dεa · ‖u‖m

ρ
+ dεb · ‖v‖m

ρ
≈ 0.

In order to prove (ii), we note that Um
ρ (v) ⊆ Bm

ρ (v) because ‖u− v‖m/ρ ≈ 0 implies
‖u− v‖m/ρ < 1. Also, if ρ ≈ 0, then Bm

ρ (v) ⊆ Um√
ρ(v) because ‖u− v‖m < ρ implies that

· 1√
ρ‖u− v‖m ≤ √

ρ ≈ 0. Finally, if ρ ≈ 0, every Um
ρ (v) is sharply open: if u ∈ Um

ρ (v) and
w ∈ Bm

ρ2(u), then

1
ρ
· ‖w − v‖m ≤ 1

ρ
· ‖w − u‖m +

1
ρ
· ‖u− v‖m ≈ 0.

The proof for the second system in (ii) follows by observing that given ρ > 0, ρ ≈ 0, there
exists q ∈ N such that ρ ≥ dεq, and setting n := max(m, q) we have Un

dεn(v) ⊆ Um
ρ (v). �
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From [11, Theorem 1.14], we have that GDK(U) is metrizable with metric

d2(u, v) =
+∞∑
n=1

2−n · min
{
PUn

dεn (0)(u− v), 1
}
. (6.2)

Concerning (6.2) we recall (see [11]) that if A ⊆ GDK(U) is R̃-absorbent, then, for all
u ∈ GDK(U), we define

VA(u) := sup
{
b ∈ R | u ∈ dεb ·A} ,

PA(u) := e−VA(u). (6.3)

The following result gives a metric which is equivalent to (6.2) but is defined by a simpler
formula.

Proposition 6.3. Set An := Un
dεn(0) for n ∈ N>0, and let u ∈ GDK(U). Then

(i) VAn
(u) = vn(u) − n and

(ii) the map

de(u, v) =
+∞∑
n=1

emin[n−vn(u−v),0]−n.

is a metric on GDK(U) that is equivalent to d2.

Proof. Concerning (i), we note that

u ∈ dεb ·An ⇒ u

dεb
∈ Un

dεn(0) ⇒ ‖u‖n

dεb+n
≈ 0 ⇒ v

(
dε−b−n · ‖u‖n

) ≥ 0

⇒ b ≤ vn(u) − n,

so VAn
(u) ≤ vn(u) − n. Conversely, if we had VAn

(u) < vn(u) − n, we could pick VAn
(u) <

b < vn(u) − n. Then as above it would follow that ‖u‖n/dεb+n ≈ 0, contradicting the
definition of VAn

(u). This proves (i).
In order to prove (ii), we use (i) in (6.2): PAn

(u− v) = e−vn(u−v)+n and

d2(u, v) =
+∞∑
n=1

2−n · min
{
e−vn(u−v)+n, 1

}

=
+∞∑
n=1

2−n · emin[n−vn(u−v),0]

≥
+∞∑
n=1

emin[n−vn(u−v),0]−n = de(u, v).

But we also have e−n ≥ 2−n−1 for all n, so that de(u, v) ≥ 1
2d2(u, v). Using Proposi-

tion 5.3, it is easily checked that de is a metric, which we have just proved to be equivalent
to d2. �
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7. Completeness of GDK

In order to prove the completeness of GDK(U), we generalize the proof of [11, Proposition
3.4] (based in turn on [28]) to the present context.

Theorem 7.1. The space GDK(U) with the sharp topology is complete.

Proof. By Proposition 6.3 GDK(U) with the sharp topology is metrizable. Hence, it
suffices to consider a Cauchy sequence (un)n∈N in this topology, i.e.,

∀q ∈ R>0 ∀i ∈ N∃N ∈ N∀m,n ≥ N : ‖un − um‖i < dεq.

Setting i = q = k ∈ N>0, this implies the existence of a strictly increasing sequence
(nk)k∈N in N such that ‖unk+1 − unk

‖k < dεk. Hence picking any representatives (unε)
of un as in Definition 3.9 we have[

max
|α|≤k

sup
x∈Rn

∣∣∂αunk+1,ε(x) − ∂αunk,ε(x)
∣∣] < [εk

] ∀k ∈ N>0.

By Lemma 1.1 this yields that for each k ∈ N>0 there exists an εk such that εk ↘ 0 and

∀ε ∈ (0, εk) : max
|α|≤k

sup
x∈Rn

∣∣∂αunk+1,ε(x) − ∂αunk,ε(x)
∣∣ < εk. (7.1)

Now set

hkε :=

{
unk+1,ε − unk,ε ∈ C∞(Rn,R) if ε ∈ (0, εk)
0 ∈ C∞(Rn,R) if ε ∈ [εk, 1)

(7.2)

uε := un0ε +
∞∑

k=0

hkε ∀ε ∈ I.

Since εk ↘ 0, for all ε ∈ I we have ε /∈ (0, εk) for all k ≥ k̄, with k̄ sufficiently big. There-
fore, uε = unk̄+1,ε ∈ C∞(Rn,R). In order to prove that (uε) defines a GSF of the type
U → R̃, take [xε] ∈ U and α ∈ N. We claim that (∂αuε(xε)) ∈ RM . Now if p ∈ N satisfies
|α| ≤ p, then for any x ∈ Rn we have

|∂αuε(x)| ≤
∣∣∂αunp+1,ε(x)

∣∣+ ∞∑
k=p+1

|∂αhkε(x)| .

From (7.1) and (7.2) we get that |∂αhkε(x)| ≤ εk for all k ≥ p+ 1, x ∈ Rn and all ε ∈
(0, 1]. Hence for ε ∈ (0, 1], |α| ≤ p and all x ∈ Rn we obtain

|∂αuε(x)| ≤
∣∣∂αunp+1,ε(x)

∣∣+ εp+1

1 − ε
. (7.3)

Inserting x = xε and noting that (∂αunp+1,ε(xε)) ∈ RM proves our claim. Moreover, since
all (unε) satisfy Definition 3.9, we also conclude from (7.3) that for any α and any
[xε] ∈ ext(K) we have [∂αuε(xε)] = 0, and hence the GSF [uε(−)] |U ∈ GDK(U).

Finally, ‖u− unp
‖i < dεp−1 for all p ∈ N>1 and all i ≤ p. This yields that (unk

)k tends
to u in the sharp topology, and hence so does (un). �
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8. The space GD as inductive limit of GDK

In this section, we always assume that U ⊆ R̃n is a non-empty strongly internal set. By
Proposition 4.7 and Proposition 4.8, this entails that GD(U) is an R̃-module.

In order to define a natural topology on GD(U) we will employ [11, Theorem 1.18],
which we restate here for the reader’s convenience.

Theorem 8.1. Let G be an R̃-module, (Gγ)γ∈Γ be a family of locally convex topological

R̃-modules and, for each γ ∈ Γ, let iγ : Gγ −→ G be an R̃-linear map. Assume that

G = span

⎛⎝⋃
γ∈Γ

iγ (Gγ)

⎞⎠
and let V ∈ V if and only if V ⊆ G, V is absolutely R̃-convex and i−1

γ (V ) is a neighborhood

of 0 in Gγ for all γ ∈ Γ. Then each V ∈ V is R̃-absorbent and the topology τ induced by

the gauges {PV }V ∈V (see [11] and (6.3)) is the finest R̃-locally convex topology on G such
that iγ is continuous for all γ ∈ Γ . Endowed with this topology, G is called the inductive
limit (colimit) of the spaces (Gγ)γ∈Γ and we write G = lim−→ Gγ .

Since GD(U) =
⋃

∅	=K�fU
GDK(U), we may therefore equip it with the inductive limit

topology with respect to the inclusions ιK : GDK(U) ↪→ GD(U). We call the resulting
R̃-locally convex topology the sharp topology on GD(U). Hence,

GD(U) = lim−→ GDK(U) (∅ 
= K �f U).

Henceforth we will denote the sharp topology on GDK(U) by σK(U) (or, for short, by
σK). Also, the inductive limit topology on GD(U) will be denoted by σ(U) (or by σ).
Setting

Un
dεn(0) :=

{
f ∈ GD(U) | ‖f‖n

dεn
≈ 0

}
,

where n ∈ N>0, we obtain an R̃-absorbent and absolutely R̃-convex subset of GD(U) such
that

i−1
K (Un

dεn(0)) = Un
dεn(0) ∩ GDK(U) = Un

dεn(0,K) ∈ σK .

Therefore, these sets generate a coarser topology than the sharp topology σ. The proof
is identical to that of Proposition 6.2 (i).

From the (co)universal property of inductive limits ([11, Proposition 1.19]) we
immediately conclude that the following proposition holds.

Proposition 8.2. Let H be a locally convex topological R̃-module. For each non-
empty K �f U , let TK : GDK(U) −→ H be an R̃-linear and continuous map. Assume
that TK(f) = TH(f) if f ∈ GDK(U) ∩ GDH(U). Then there exists one and only one map

T : GD(U) −→ H which is R̃-linear and continuous and such that T ◦ ιK = TK for all
non-empty K �f U .
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The work [11] includes a detailed analysis of countable inductive limits G = lim−→ Gn

(n ∈ N), where (Gn)n∈N is increasing, G =
⋃

n∈N
Gn, and where the topology on Gn is

that induced by Gn+1. Such inductive limits are called strict. As in the case of classical
function spaces like D(Ω) for Ω open in Rn, the importance of strict inductive limits in
the theory of R̃-locally convex models ultimately stems from the possibility of covering
every open set Ω ⊆ Rn by a countable increasing family of compact sets. The key point in
the structure theory of strict inductive limits as above is that a countable family (Gn)n∈N

permits us to define recursively a family of neighborhoods of 0. Using the latter, one can
prove that the topology on G induces on each Gn its given topology. We will show below
that similar properties hold for GD(U). We shall see that the assumption of U being
strongly internal and sharply open are essential for this task. To begin with, we prove a
strengthening of Theorem 4.1.

Proposition 8.3. Let H, K �f U be non-empty sets, with H ⊆ K. Then GDH(U) is
a topological subspace of GDK(U), i.e.,

σK(U)|GDH(U) = σH(U).

Proof. In this proof we will use the more precise notation Bm
ρ (u,K) for balls (see

Definition 5.1).
Let V ∈ σK . We claim that V ∩ GDH(U) ∈ σH . For each u ∈ V ∩ GDH(U) there

exist m ∈ N and ρ ∈ R̃>0 such that Bm
ρ (u,K) ⊆ V . But Bm

ρ (u,H) ⊆ Bm
ρ (u,K) because

GDH(U) ⊆ GDK(U) and because the norm ‖ · ‖m does not depend on H, K. Therefore,
Bm

ρ (u,H) ⊆ V ∩ GDH(U), which proves our claim.
Conversely, if W ∈ σH , then we set

V :=
⋃{

Bm
ρ (u,K) | u ∈W , m ∈ N , ρ ∈ R̃>0 , B

m
ρ (u,H) ⊆W

}
∈ σK , (8.1)

and we claim that W = V ∩ GDH(U). In fact, since W ∈ σH , for all u ∈W we have
Bm

ρ (u,H) ⊆W for some ρ and m. By (8.1) Bm
ρ (u,K) ⊆ V , and so u ∈ V ∩ GDH(U).

Conversely, if u ∈ V ∩ GDH(U), then u ∈ Bm
ρ (v,K) for some v ∈W , m, ρ, such that

Bm
ρ (v,H) ⊆W . So ‖u− v‖m < ρ and hence u ∈ Bm

ρ (v,H) ⊆W . �

We now show that the space GD(U) can be seen as a strict inductive limit of a countable
increasing family of subspaces GDK(U). Indeed, since U is strongly internal, we can write
U = 〈Uε〉 for some net (Uε) of subsets of Rn. Since U is non-empty, by [21, Theorem 8],
fixing any x = [xε] ∈ U we obtain:

∃N ∈ N∀0ε : d(xε, U
c
ε ) > εN , |xε| ≤ ε−N . (8.2)

With N as in (8.2), we define

Kjε : =
{
x ∈ Rn | d(x,U c

ε ) ≥ εj , |x| ≤ ε−j
}

Kj : = [Kjε] ∀j ∈ N≥N .

Using this notation, the following theorem.
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Theorem 8.4. If N ∈ N satisfies (8.2) for some x ∈ U , then

(i) ∅ 
= Kj �f U for all j ∈ N≥N ,

(ii) Kj ⊆ Kj+1 for all j ∈ N≥N ,

(iii) U =
⋃

j≥N Kj ,

(iv) for every ∅ 
= K �f U = 〈Uε〉 there exists some j ≥ N such that K ⊆ Kj ,

(v) GD(U) is the strict inductive limit of the family GDKj
(U), j ≥ N :

GD(U) = lim−→ GDKj
(U) (j ≥ N).

Proof. (i), (ii): It follows immediately from the definition that each (Kjε) is compact
and that (Kjε)ε is sharply bounded, so Kj �f U . Moreover, KN 
= ∅ by (8.2), hence
Kj 
= ∅ follows by (ii),which again is immediate from the definition.

(iii) If x = [xε] ∈ U = 〈Uε〉, then d(xε, U
c
ε ) > εj1 for ε small and for some j1 ∈

N>0. Since (xε) is moderate, |xε| ≤ ε−j2 for ε small and some j2 ∈ N. Setting j :=
max(j1, j2, N) we hence have that x ∈ Kj .

(iv) In order to prove (iv), we need the following strengthening of [21, Theorem 11].

Lemma 8.5. Let H = [Hε] �f V = 〈Vε〉. Then

∃j ∈ N∀[xε] ∈ [Hε]∀0ε : d(xε, V
c
ε ) ≥ εj . (8.3)

Proof. Equation (8.3) expresses that for all representatives (xε) ∈ Rn
M , if xε ∈ Hε for

ε small, then ∀0ε : d(xε, V
c
ε ) ≥ εj .

By contradiction, assume that

∀j ∈ N∃(xjε) ∈ Rn
M :

(∀0ε : xjε ∈ Hε

)
, ∃(εjk)k ↓ 0∀k : d(xjεjk

, V c
εjk

) < εj
jk.

By recursively applying this condition, we get that for all j ∈ N there exists a moderate
(xjε) and some εj ∈ (0, 1] such that xjε ∈ Hε for ε ≤ εj and

d(xjεjk
, V c

εjk
) < εj

jk, (8.4)

where (εjk)k ↓ 0. Since (εjk)k ↓ 0, without loss of generality we can assume to have defined
recursively (εj)j so that (εj)j ↓ 0 and εj > εjkj

> εj+1 for some subsequence (kj)j ↑ +∞.
Set xε := xjε ∈ Hε for ε ∈ (εj+1, εj ], so that xεjkj

= xjεjkj
for all j. Then (xε) ∈ Rn

M since
H is sharply bounded and x := [xε] ∈ H ⊆ 〈Vε〉, which entails

∃q ∈ R>0 ∀0ε : d(xε, V
c
ε ) > εq. (8.5)

Therefore, for j ∈ N sufficiently big, (8.5) holds at ε = εjkj
< 1 and j > q. Thus

d(xjεjkj
, V c

εjkj
) = d(xεjkj

, V c
εjkj

) > εq
jkj

> εj
jkj

, which contradicts (8.4). �

https://doi.org/10.1017/S0013091516000559 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091516000559


88 P. Giordano and M. Kunzinger

Continuing the proof of (iv), if K �f U is non-empty, by applying Lemma 8.5 we obtain

∃j1 ∈ N∀[xε] ∈ K ∀0ε : d(xε, U
c
ε ) ≥ εj1 .

On the other hand, sharp boundedness of (Kε), where K = [Kε], implies that

∃j2 ∈ N∀[xε] ∈ K ∀0ε : |xε| ≤ ε−j2 .

Therefore, for j := max(j1, j2, N), we get K ⊆ Kj , hence (iv), and thereby also
GDK(U) ⊆ GDKj

(U) (using Theorem 4.1). It follows that GD(U) ⊆ ⋃j≥N GDKj
(U). The

converse inclusion follows directly from (i).
It remains to prove that the topology σ on GD(U) coincides with the inductive R̃-

locally convex topology generated by
(GDKj

(U)
)
j≥N

. Let us denote the latter topology
by σ′. We have σ ⊆ σ′ by definition of the inductive topology and by Thm. 8.4 (i). To see
that, conversely, σ′ ⊆ σ we show that for every K �f U the inclusion (GDK(U), σK) ↪→
(GD(U), σ′) is continuous (see Theorem 8.1). Now given any K �f U , by what we have
proved above there exists some j ≥ N with K ⊆ Kj . But then Proposition 8.3 implies
the continuity of

(GDK(U), σK) ↪→ (GDKj
(U), σKj

) ↪→ (GD(U), σ′)

and thereby our claim. �

As a consequence of this result, we can now prove a series of corollaries by applying the
general theorems of [11] concerning countable strict inductive limits.

Corollary 8.6. If ∅ 
= K �f U = 〈Uε〉, then GDK(U) is a topological subspace of
GD(U), i.e., σ(U)|GDK(U) = σK(U).

Proof. According to Theorem 8.4 (iv) we may pick j ≥ N such that K ⊆ Kj . By [11,
Proposition 1.21], GDKj

(U) carries the trace topology of GD(U). Since, in turn, GDK(U)
is a topological subspace of GDKj

(U) by Proposition 8.3, the claim follows. �

Corollary 8.7. GD(U) is separated.

Proof. This follows from Theorem 5.4 (v) and [11, Corollary 1.24]. �

Lemma 8.8. If ∅ 
= H, K �f U and H ⊆ K, then GDH(U) is closed in GDK(U).

Proof. This is immediate from Proposition 8.3 and Theorem 7.1. �

Corollary 8.9. If ∅ 
= K �f U , then GDK(U) is closed in GD(U).

Proof. This follows from Theorem 7.1, Corollary 8.7, and Corollary 8.6. �

Corollary 8.10. Let B ⊆ GD(U), then B is bounded in GD(U) if and only if there
exists a non-empty K �f U such that B is bounded in GDK(U).

Proof. ⇒: This follows from [11, Theorem 1.26] and Lemma 8.8.
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⇐: If B is bounded in GDK(U), then [11, Lemma 1.27] yields

∀(un)n ∈ BN ∀(λn)n ∈ R̃N : λn → 0 in R̃ =⇒ λnun → 0 in GDK(U). (8.6)

Pick j ≥ N such that K ⊆ Kj . Since generalized norms ‖ · ‖m do not depend on K, Kj ,
condition (8.6) holds also in GDKj

(U) ⊇ GDK(U). Therefore, from [11, Lemma 1.27] we
get that B is bounded in GDKj

(U) and [11, Theorem 1.26] yields that B is bounded in
GD(U). �

A similar proof applies to this corollary, which is a consequence of [11, Corollary 1.29]:

Corollary 8.11. Let (un)n ∈ GD(U)N, then un → 0 in GD(U) if and only if there
exists a non-empty K �f U such that un ∈ GDK(U) and un → 0 in GDK(U).

Finally, from [11, Theorem 1.32], Lemma 8.8 and Theorem 7.1 we obtain the following
corollary.

Corollary 8.12. GD(U) with the sharp topology is complete.

Using Lemma 8.5, we can also show that any compactly supported generalized smooth
function f ∈ GDK(U, Y ) on a sharply open set U ⊆ R̃n is defined by a net (uε) of smooth
functions that are compactly supported in an arbitrarily small extension

[
Kε +BE

εa(0)
]

of K = [Kε]. We recall that in this section we are assuming that U is a strongly internal
set.

Theorem 8.13. Let ∅ 
= K �f U . Let Y ⊆ R̃d, f ∈ GDK(U, Y ) and K = [Kε] �f R̃n.
Let j ∈ N be as in (8.3) and let a ∈ R such that a ≥ j. Then there exist nets (uε), (Hε)
such that:

(i) [Hε] �f U ,

(ii) (uε) defines f and uε ∈ DHε
(Rn,Rd) for all ε,

(iii) Hε ⊆ Kε +BE
εa(0) for all ε.

Proof. Let U = 〈Uε〉, where each Uε ⊆ Rn is an open set (see [18, Corollary 9]), and
let (vε) satisfy Definition 3.9 for f and K = [Kε]. By [18, Theorem 11], we can assume
that Kε ⊆ Uε for all ε. Let Lε := Kε +BE

εa/2(0), and denote by χLε
the characteristic

function of Lε. Let ψ ∈ D(BE
1 (0)) have unit integral and set ψε := (εa/2)−nψ(2x/εa).

Then (ψε) ∈ Es
M (Rn), and (χLε

∗ ψεa)|Kε
= 1. Set uε := (χLε

∗ ψε) · vε. Then (χLε
∗ ψε)

defines a GSF of the type R̃n −→ R̃ and hence (uε) defines a GSF of the type U −→ R̃d.
Moreover,

Hε := supp(uε) ⊆ supp(χLε
∗ ψε) ⊆ Kε +BE

εa(0).

Since a ≥ j, we have [Hε] ⊆ 〈Uε〉 = U .
It remains to prove that f(x) = [uε(xε)] for all x = [xε] ∈ U . Suppose this was not the

case. Then there would exist some y = [yε] ∈ U , some b > 0 and a sequence εk ↘ 0 such
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that
|uεk

(yεk
) − vεk

(yεk
)| ≥ εb

k (8.7)

for all k ∈ N. By Lemma 3.11, we may without loss of generality assume that either yε ∈
Kε for all ε or that y ∈ ext(K). In the first case, vε(yε) = uε(yε) for all ε, contradicting
(8.7). In the second case,

|vε(yε) − uε(yε)| ≤ 2|vε(yε)|.
Since (vε(yε))) is negligible, we again arrive at a contradiction to (8.7). �

Assume that we have an operator I : D(Rn) −→ R with the property that if (uε) and (vε)
define f ∈ GD(U), where uε, vε ∈ D(Rn), then [I(uε)] = [I(vε)] ∈ R̃. Then Theorem 8.13
permits to extend I to the whole of GD(U).

Using this result, we can now prove the extension of Theorem 3.16 (ii) to arbitrary
codomains Y ⊆ R̃d.

Theorem 8.14. Let ∅ 
= K �f U , Y ⊆ R̃d and f ∈ GDK(U, Y ). Then ∃!f̄ ∈ GDg

(K,Y ) : f̄ |K = f |K .

Proof. We only have to prove that f̄(x) ∈ Y for all x ∈ R̃n. Let (uε) and (Hε) as
in Theorem 8.13. By Theorem 3.14, we have that (uε) also defines f̄ . For each ε pick
any point hε ∈ ∂Hε and set x̄ε := xε if xε ∈ Hε, and x̄ε := hε otherwise. Therefore x̄ :=
[x̄ε] ∈ [Hε] ⊆ U . Then, if xε /∈ Hε, |uε(xε) − uε(x̄ε)| = |uε(xε) − uε(hε)| = 0 because uε ∈
DHε

(Rn,Rd). Thus f̄(x) = f(x̄) ∈ Y . �

9. Conclusions and further developments

The notion of functionally compact set we introduced in the present work permits to show
that compactly supported GSFs are close analogues of classical compactly supported
smooth functions. In particular, their functional analytic properties parallel those of the
test function space of distribution theory. At the same time, for suitable K, the space
GDK(R̃n) contains extensions to all CGF Gs(Ω) and hence also all Schwartz distributions.

The theory developed here opens the door to addressing several central topics in the the-
ory of nonlinear generalized functions from a new angle. As indicated after Theorem 8.13,
a direct generalization of the integral of compactly supported functions to compactly sup-
ported GSFs is feasible. An immediate application of this lies in a theory of integration
for GSFs that we hope will allow to harmonize the Schwartz view of generalized functions
as functionals with that prevalent in Colombeau’s theory of considering generalized func-
tions as pointwise maps. Our approach will take inspiration from Garetto’s very fruitful
duality theory of locally convex C̃-modules [12,13,15].

A further natural development of the present article goes in the direction of a gener-
alization to suitable types of asymptotic gauges (see [18,19]) and hence to the full and
the diffeomorphism invariant Colombeau algebras.

Moreover, one can ask whether R̃-valued generalized norms in GDK(U) permit us
to generalize results from classical analysis, like a Picard-Lindelöf theorem for ordinary
differential equations with a GSF right-hand side, or a Hahn-Banach theorem for func-
tionals I : GDK(U) −→ R̃ defined by diffeologically smooth functionals (see [20]) of the
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type Iε : DKε
(Uε) −→ R, analogously to the way a GSF is defined by a net of smooth

functions.
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