
TLP 9 (4): 415–527, 2009. C© 2009 Cambridge University Press

doi:10.1017/S1471068409003780 Printed in the United Kingdom

415

On the cooperation of the constraint domains
H, R, and FD in CFLP

S. ESTÉVEZ-MARTÍN, T. HORTALÁ-GONZÁLEZ,

M. RODRÍGUEZ-ARTALEJO and R. DEL VADO-VÍRSEDA∗

Dpto. de Sistemas Informáticos y Computación,

Universidad Complutense de Madrid, Spain

(e-mail: {s.estevez,teresa,mario,rdelvado}@sip.ucm.es)

F. SÁENZ-PÉREZ�
Dpto. de Ingenieŕıa del Software e Inteligencia Artificial,

Universidad Complutense de Madrid, Spain

(e-mail: fernan@sip.ucm.es)

A. J. FERNÁNDEZ†
Dpto. de Lenguajes y Ciencias de la Computación,

Universidad de Málaga, Spain

(e-mail: afdez@lcc.uma.es)

submitted 26 September 2008; revised 6 February 2009; accepted 6 April 2009

Abstract

This paper presents a computational model for the cooperation of constraint domains

and an implementation for a particular case of practical importance. The computational

model supports declarative programming with lazy and possibly higher-order functions,

predicates, and the cooperation of different constraint domains equipped with their respective

solvers, relying on a so-called constraint functional logic programming (CFLP) scheme.

The implementation has been developed on top of the CFLP system TOY, supporting the

cooperation of the three domains H, R, and FD, which supply equality and disequality

constraints over symbolic terms, arithmetic constraints over the real numbers, and finite

domain constraints over the integers, respectively. The computational model has been proved

sound and complete w.r.t. the declarative semantics provided by the CFLP scheme, while the

implemented system has been tested with a set of benchmarks and shown to behave quite

efficiently in comparison to the closest related approach we are aware of.

KEYWORDS: cooperating constraint domains, constraint functional logic programming,

constrained lazy narrowing, implementation

� The work of these authors has been partially supported by projects MERIT-FORMS (TIN2005-09207-
C03-03), PROMESAS-CAM (S-0505/TIC0407), and STAMP (TIN2008-06622-C03-01).

† The work of this author has been partially supported by projects TIN2008-05941 (from Spanish
Ministry of Innovation and Science) and P06-TIC2250 (from Andalusia Regional Government).

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

416 S. Estévez-Mart́ın et al.

1 Introduction

Constraint programming relies on constraint solving as a powerful mechanism for

tackling practical applications. The well-known constraint logic programming (CLP)

scheme (Jaffar and Lassez 1987; Jaffar and Maher 1994; Jaffar et al. 1998) provides

a powerful and practical framework for constraint programming which inherits

the clean semantics and declarative style of logic programming. Moreover, the

combination of CLP with functional programming has given rise to various so-

called CFLP (constraint functional logic programming) schemes, developed since

1991 and aiming at a very expressive combination of the constraint, logical, and

functional programming paradigms.

This paper tackles foundational and practical issues concerning the efficient use of

constraints in CFLP languages and systems. Both the CLP and CFLP schemes must

be instantiated by a parametrically given constraint domain D which provides specific

data values, constraints based on specific primitive operations, and a dedicated

constraint solver. Therefore, there are different instances CLP (D) of the CLP scheme

for various choices of D, and analogously for CFLP , whose instances CFLP (D)

provide a declarative framework for any chosen domain D. Useful “pure” constraint

domains include the Herbrand domain H which supplies equality and disequality

constraints over symbolic terms; the domain R which supplies arithmetic constraints

over real numbers; and the domain FD which supplies arithmetic and finite domain

constraints over integers. Practical applications, however, often involve more than

one “pure” domain, and sometimes problem solutions have to be artificially adapted

to fit a particular choice of domain and solver.

Combining decision procedures for theories is a well-known problem, thoroughly

investigated since the seminal paper of Nelson and Oppen (1979). In constraint

programming, however, the emphasis is placed in computing answers by the

interaction of constraint solvers with user-given programs, rather than in deciding

satisfiability of formulas. The cooperative combination of constraint domains and

solvers has evolved during the last decade as a relevant research issue that is raising

an increasing interest in the CLP community. Here we mention Baader and Schulz

(1995), Benhamou (1996), Monfroy (1996, 1998), Granvilliers et al. (2001), Marin

et al. (2001), Hofstedt (2001), Monfroy and Castro (2004), and Hofstedt and Pepper

(2007) as a limited selection of references illustrating various approaches to the

problem. An important idea emerging from the research in this area is that of

“hybrid” constraint domain, built as a combination of simpler “pure” domains and

designed to support the cooperation of its components, so that more declarative and

efficient solutions for practical problems can be promoted.

1.1 Aims of this paper

The first aim of this paper is to present a computational model for the cooperation

of constraint domains in the CFLP context, where sophisticated functional program-

ming features such as higher-order functions and lazy evaluation must collaborate

with constraint solving. Our computational model is based on the CFLP scheme

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

On the cooperation of the constraint domains H, R, and FD in CFLP 417

and goal-solving calculus recently proposed in López-Fraguas et al. (2004, 2007),

which will be enriched with new mechanisms for modeling the intended cooperation.

Moreover, we rely on the domain cooperation techniques proposed in our previous

papers (Estévez-Martı́n et al. 2007a, 2007b, 2008a), where we have introduced

so-called bridges as a key tool for communicating constraints between different

domains.

Bridges are constraints of the form X #==di,djY which relate the values of two

variables X :: di, Y :: dj of different base types, requiring them to be equivalent.

For instance, X #==int,real Y (abbreviated as X #== Y in the rest of the paper)

constrains the real variable Y :: real to take an integral real value equivalent to

that of the integer variable X :: int. Note that the two types int and real are

kept distinct and their respective values are not confused.

Our cooperative computation model keeps different stores for constraints corres-

ponding to various domains and solvers. In addition, there is a special store where

the bridge constraints which arise during the computation are placed. A bridge

constraint X #== Y available in the bridge store can be used to project constraints

involving the variable X into constraints involving the variable Y, or vice versa. For

instance, the R constraint RX <= 3.4 (based on the inequality primitive <=—“less

or equal”—for the type real) can be projected into the FD constraint X #<= 3

(based on the inequality primitive #<=—“less or equal”—for the type int) in case

that the bridge X #== RX is available. Projected constraints are submitted to their

corresponding store, with the aim of improving the performance of the corresponding

solver. In this way, projections behave as an important cooperation mechanism,

enabling certain solvers to profit from (the projected forms) of constraints originally

intended for other solvers.

We have borrowed the idea of constraint projection from the works of P. Hofstedt

et al. (Hofstedt 2000a, 2000b, 2001; Hofstedt and Pepper 2007), adapting it to our

CFLP scheme and adding bridge constraints as a novel technique which makes

projections more flexible and compatible with type discipline. In order to formalize

our computation model, we present a construction of coordination domains C as a

special kind of “hybrid” domains built as a combination of various “pure” domains

intended to cooperate. In addition to the specific constraints supplied by its various

components, coordination constraints also supply bridge constraints. As particular

case of practical interest, we present a coordination domain C tailored to the

cooperation of the three pure domains H, R, and FD.

Building upon the notion of coordination domain, we also present a formal

goal-solving calculus called CCLNC(C) (standing for cooperative constraint lazy

narrowing calculus over C) which is sound and complete with respect to the instance

CFLP (C) of the generic CFLP scheme. CCLNC(C) embodies computation rules for

creating bridges, invoking constraint solvers, and performing constraint projections

as well as other more ad hoc operations for communication among different

constraint stores. Moreover, CCLNC(C) uses lazy narrowing (a combination of

lazy evaluation and unification) for processing calls to program defined functions,

ensuring that function calls are evaluated only as far as demanded by the resolution

of the constraints involved in the current goal.

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

418 S. Estévez-Mart́ın et al.

A second objective of the paper is to describe the implementation of a CFLP

system which supports the cooperation of solvers via bridges and projections for

the Herbrand domain H and the two numeric domains R and FD, following

the computational model provided by the CCLNC(C) goal-solving calculus. The

implementation follows the techniques summarized in our previous papers (Estévez-

Martı́n et al. 2007a, 2007c, 2008b). It has been developed on top of the TOY
system (Arenas et al. 2007), which is in turn implemented on top of SICStus Prolog

(2007). The TOY system already supported noncooperative CFLP programming

using the FD and R solvers provided by SICStus along with Prolog code for the

H solver. This former system has been extended, including a store for bridges and

implementing mechanisms for computing bridges and projections according to the

CCLNC(C) computation model.

Last but not least, another important aim of the paper is to provide some

evidence on the practical use and performance of our implementation. To this

purpose, we present some illustrative examples and a set of benchmarks tailored to

test the performance of CCLNC(C) as implemented in TOY in comparison with

the closest related system we are aware of, namely the META-S tool (Frank et al.

2003a, 2003b, 2005) which implements Hofstedt’s framework for solver cooperation

(Hofstedt and Pepper 2007). The experimental results we have obtained are quite

encouraging.

The present paper thoroughly revises, expands, and elaborates our previous related

publications in many respects. In fact, Estévez-Martı́n et al. (2007a) was a very

preliminary work which focused on presenting bridges and providing evidence for

their usefulness. Building upon these ideas, Estévez-Martı́n et al. (2007b) introduced

coordination domains and a cooperative goal-solving calculus over an arbitrary

coordination domain, proving local soundness and completeness results, while

Estévez-Martı́n et al. (2008a) further elaborated the cooperative goal-solving calcu-

lus, providing stronger soundness and completeness results and experimental data on

an implementation tailored to the cooperation of the domains H, FD, and R. Sig-

nificant novelties in this paper include: technical improvements in the formalization

of domains; a new notion of solver taking care of critical variables and well-typed

solutions; a new notion of domain-specific constraint to clarify the behavior of coor-

dination domains; various elaborations in the cooperative goal-solving transforma-

tions needed to deal with critical variables and domain-specific constraints; a more

detailed presentation of the implementation results previously reported in Estévez-

Martı́n et al. (2007a, 2007c, 2008b); and quite extensive comparisons to other related

approaches.

1.2 Motivating examples

As a motivation for the rest of the paper, we present in this subsection a few

simple examples, intended to illustrate the different cooperation mechanisms that

are supported by the computation model CCLNC(C), as well as the benefits resulting

from the cooperation.

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

On the cooperation of the constraint domains H, R, and FD in CFLP 419

To start with, we present a small program written in TOY syntax, which solves the

problem of searching for a two-dimensional (2-D) point lying in the intersection of a

discrete grid and a continuous region. The program includes type declarations, equa-

tions for defining functions, and clauses for defining predicates. Type declarations are

similar to those used in functional languages such as Haskell (Peyton-Jones 2002).

Function applications use curried notation, also typical of Haskell and other higher-

order functional languages. The equations used to define functions must be under-

stood as conditional rewrite rules of the form f tn → r ⇐ Δ, whose condition Δ is a

conjunction of constraints. Predicates are viewed as Boolean functions, and clauses

are understood as an abbreviation of conditional rewrite rules of the form f tn →
true ⇐ Δ, whose right-hand side is the Boolean constant true. Moreover, conditions

consisting of a Boolean expression exp are understood as an abbreviation of the

strict equality constraint exp == true, using the strict equality operator == which is a

primitive operation supplied by the Herbrand domain H. The program’s text is as

follows:

% Discrete versus continuous points:

type dPoint = (int, int)

type cPoint = (real, real)

% Sets and membership:

type setOf A = A -> bool

isIn :: setOf A -> A -> bool

isIn Set Element = Set Element

% Grids and regions as sets of points:

type grid = setOf dPoint

type region = setOf cPoint

% Predicate for computing intersections of regions and grids:

bothIn :: region -> grid -> dPoint -> bool

bothIn Region Grid (X, Y) :- X #== RX, Y #== RY,

isIn Region (RX, RY), isIn Grid (X,Y), labeling [] [X,Y]

% Square grid (discrete):

square :: int -> grid

square N (X,Y) :- domain [X,Y] 0 N

% Triangular region (continuous):

triangle :: cPoint -> real -> real -> region

triangle (RX0,RY0) B H (RX,RY) :-

RY >= RY0 - H,

B * RY - 2 * H * RX <= B * RY0 - 2 * H * RX0,

B * RY + 2 * H * RX <= B * RY0 + 2 * H * RX0

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

420 S. Estévez-Mart́ın et al.

% Diagonal segment (discrete):

diagonal :: int -> grid

diagonal N (X,Y) :- domain [X,Y] 0 N, X == Y

% Parabolic line (continuous):

parabola :: cPoint -> region

parabola (RX0,RY0) (RX,RY) :- RY - RY0 == (RX - RX0) * (RX - RX0)

Because of all the conventions explained above, the clause for the bothIn predicate

included in the program must be understood as an abbreviation of the rewrite rule

bothIn Region Grid (X,Y) -> true <==

X #== RX, Y #== RY,

isIn Region (RX,RY) == true, isIn Grid (X,Y) == true,

labeling [] [X,Y]

whose condition includes two bridge constraints, two strict equality constraints

provided by the domain H, and a last constraint using the labeling primitive

supplied by the domain FD. The other clauses and equations in the program

can be analogously understood as conditional rewrite rules whose conditions are

constraints supported by some of the three domains H, R, or FD.

Let us now discuss the intended meaning of the program. The bothIn predicate

is intended to check if a given discrete point (X,Y) belongs to the intersection

of the continuous region Region and the discrete grid Grid given as parameters,

and the constraints occurring as conditions are designed to this purpose. More

precisely, the two bridge constraints X #== RX, Y #== RY ensure that the discrete

point (X,Y) and the continuous point (RX,RY) are equivalent; the two strict equality

constraints isIn Region (RX, RY) == true, isIn Grid (X,Y) == true ensure

membership to Region and Grid, respectively; and finally the FD constraint

labeling [] [X,Y] ensures that the variables X and Y are bound to integer values.

Note that both grids and regions are represented as sets, represented themselves

as Boolean functions. They can be passed as parameters because our programming

framework supports higher-order programming features. The program also defines

two functions square and triangle, intended to compute representations of square

grids and triangular regions, respectively. Let us discuss them in turn. We first

note that the type declaration for triangle can be written in the equivalent

form triangle :: cPoint -> real -> real -> (cPoint -> bool). A function

call of the form triangle (RX0,RY0) B H is intended to return a Boolean function

representing the region of all continuous 2-D points lying within the isosceles triangle

with upper vertex (RX0,RY0), base B and height H. Applying this Boolean function

to the argument (RX,RY) yields a function call written as triangle (RX0,RY0) B H

(RX,RY) and expected to return true in case that (RX,RY) lies within the intended

isosceles triangle, whose three vertices are (RX0,RY0), (RX0-B/2,RY0-H), and

(RX0+B/2,RY0-H). The three sides of the triangle are mathematically characterized

by the equations RY = RY0-H, B*RY-2*H*RX = B*RY0-2*H*RX0 and B*RY+2*H*RX

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

On the cooperation of the constraint domains H, R, and FD in CFLP 421

Fig. 1. Triangular region.

= B*RY0+2*H*RX0 (corresponding to the lines r1, r2, and r3 in Figure 1, respectively).

Therefore, the conjunction of three linear inequality R constraints occurring as

conditions in the clause for triangle succeeds for those points (RX,RY) lying

within the intended triangle.

Similarly, the type declaration for square can be written in the equivalent form

square :: int -> (dPoint -> bool), and a function call of the form square

N is intended to return a Boolean function representing the grid of all discrete

2-D points with coordinates belonging to the interval of integers between 0 and N.

Therefore, a function call of the form square N (X,Y) must return true in case

that (X,Y) lies within the intended grid, and for this reason the single FD constraint

placed as condition in the clause for square has been chosen to impose the interval

of integers between 0 and N as the domain of possible values for the variables X

and Y.

Finally, the last two functions diagonal and parabola are defined in such a way

that diagonal N returns a Boolean function representing the diagonal of the grid

represented by square N, while parabola (RX0,RY0) returns a Boolean function

representing the parabola whose equation is RY-RY0 = (RX-RX0)*(RX-RX0). The

type declarations and clauses for these functions can be understood similarly to the

case of square and triangle.

Different goals can be posed and solved using the small program just described

and the cooperative goal-solving calculus CCLNC(C) as implemented in the TOY
system. For the sake of discussing some of them, assume two fixed positive integer

values d and n such that n = 2*d. Then (d,d) is the middle point of the grid

(square n), which includes (n+1)2 discrete points. The following three goals ask

for points in the intersection of this fixed square grid with three different triangular

regions:

• Goal 1: bothIn (triangle (d, d+0.75) n 0.5) (square n) (X,Y).

This goal fails.

• Goal 2: bothIn (triangle (d, d+0.5) 2 1) (square n) (X,Y).

This goal computes one solution for (X,Y), corresponding to the point (d,d).

• Goal 3: bothIn (triangle (d, d+0.5) (2*n) 1) (square n) (X,Y).

This goal computes n+1 solutions for (X,Y), corresponding to the points

(0,d), (1,d), ..., (n,d).

These three goals are illustrated in Figure 2 for the particular case n = 4 and

d = 2, although the shapes and positions of the three triangles with respect to the

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

422 S. Estévez-Mart́ın et al.

Fig. 2. Intersection of a fixed square grid with three different triangular regions.

middle point of the grid would be the same for any even positive integer n = 2*d.

The expected solutions for each of the three goals are clear from the figures.

In the three cases, cooperation between the R solver and the FD solver is

crucial for the efficiency of the computation. In the case of Goal 2, cooperative goal

solving implemented in TOY according to the CCLNC(C) computation model

uses the clauses in the program and eventually reduces the problem of solving the

goal to the problem of solving a constraint system that, suitably simplified, becomes:

X #== RX, Y #== RY,

RY >= d-0.5, RY-RX <= 0.5, RY+RX <= n+0.5,

domain [X,Y] 0 n, labeling [] [X,Y].

The TOY system has the option to enable or disable the computation of projections.

When projections are disabled, the two bridges do still work as constraints, and the

last FD constraint labeling [] [X,Y] forces the enumeration of all possible

values for X and Y within their domains, eventually finding the unique solution X

= Y = d after O(n2) steps. When projections are enabled, the available bridges are

used to project the R constraints RY >= d-0.5, RY-RX <= 0.5, RY+RX <= n+0.5

into the FD constraints Y #>= d, Y#-X #<= 0, Y#+X #<= n. Since n = 2*d, the

only possible solution of these inequalities is X = Y = d. Therefore, the FD solver

drastically prunes the domains of X and Y to the singleton set {d}, and solving the

last labeling constraint leads to the unique solution with no effort. For a big value

of n = 2*d the performance of the computation is greatly enhanced in comparison

to the case where projections are disabled, as confirmed by the experimental results

given in Subsection 5.2. The expected speedup in execution time corresponds to

the improvement from the O(n2) steps needed to execute the labeling constraint

labeling [] [X,Y] when the domains of both X and Y have size O(n), to the O(1)

steps needed to execute the same constraint when the domains of both X and Y have

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

On the cooperation of the constraint domains H, R, and FD in CFLP 423

been pruned to size O(1). Similar speedups are observed when solving Goal 1 (which

finitely fails, and where the expected execution time also improves from O(n2) to

O(1)) and Goal 3 (which has just n+1 solutions, and where the expected execution

time reduces from O(n2) to O(n)).

The three goals just discussed mainly illustrate the benefits obtained by the FD
solver from the projection of R constraints. In fact, when TOY solves these three

goals according to the cooperative computation model CCLNC(C), the available

bridge constraints also allow to project the FD constraint domain [X,Y] 0 n

into the conjunction of the R constraints 0 <= RX, RX <= n, 0 <= RY, RY <=

n. These constraints, however, are not helpful for optimizing the resolution of

the previously computed R constraints RY >= d-0.5, RY-RX <= 0.5, RY+RX <=

n+0.5.

In general, it seems easier for the FD solver to profit from the projection of R
constraints than the other way round. This is because the solution of many practical

problems is arranged to finish with solving FD labeling constraints, which means

enumerating values for integer variables, and this process can greatly benefit from

a reduction of the variables’ domains due to previous projections of R constraints.

However, the projection of FD constraints into R constraints can help to define

the intended solutions even if the performance of the R solver does not improve.

For instance, assume that the value chosen for n = 2*d is big, and consider the

goal

• Goal 4: bothIn (triangle (d,d) n d) (square 4) (X,Y).

whose resolution eventually reduces to the problem of solving a constraint system

that, suitably simplified, becomes:

X #== RX, Y #== RY,

RY >= 0, RY-RX <= 0, RY+RX <= n,

domain [X,Y] 0 4, labeling [] [X,Y].

The solutions correspond to the points lying in the intersection of a big isosceles

triangle and a tiny square grid. Projecting RY >= 0, RY-RX <= 0, RY+RX <= n

into FD constraints via the two bridges X #== RX, Y #== RY brings no significant

gains to the R solver whose task is anyhow trivial. The R constraints projected from

domain [X,Y] 0 4 (i.e., 0 <= RX, RX <= 4, 0 <= RY, RY <= 4) do not improve

the performance of the R solver either, but they help to define the intended solutions.

In this example, the last labeling constraint eventually enumerates the right solutions

even if the projection of the domain constraint to R does not take place, but this

projection would allow the R solver to compute suitable constraints as solutions in

case that the labeling constraint were removed.

There are also some cases where the performance of the R solver can benefit from

the cooperation with the FD domain. Consider, for instance, the goal

• Goal 5: bothIn (parabola (2,0)) (diagonal 4) (X,Y).

asking for points in the intersection of the discrete diagonal segment of size 4 and

a parabola with vertix (2,0) (see Fig. 3). Solving this goal eventually reduces to

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

424 S. Estévez-Mart́ın et al.

Fig. 3. Intersection of a parabolic line and a diagonal segment.

solving a constraint system that, suitably simplified, becomes:

X #== RX, Y #== RY,

RY == (RX-2)*(RX-2),

domain [X,Y] 0 4, X == Y, labeling [] [X,Y].

Cooperative goal solving as implemented in TOY processes the constraints within

the current goal in left-to-right order, performing projections whenever possible, and

sometimes delaying a constraint that cannot be managed by the available solvers.

In this case, the quadratic R constraint RY == (RX-2)*(RX-2) is delayed because

the R solver used by TOY (inherited form SICStus Prolog) cannot solve nonlinear

constraints. However, since this strict equality relates expressions of type real, it is

accepted as a R constraint and projected via the available bridges, producing the FD
constraint Y == (X-2)*(X-2), which is submitted to the FD solver. Next, projecting

the FD constraint domain [X,Y] 0 4 and solving X == Y causes the R constraints

0 <= RX, RX <= 4, 0 <= RY, RY <= 4 to be submitted to the R solver, and the

variable X to be substituted in place of Y all over the goal. The bridges X #== RX,

Y #== RY become then X #== RX, X #== RY, and the labeling constraint becomes

labeling [] [X,X]. An especial mechanism called bridge unification infers from

the two bridges X #== RX, X #== RY the strict equality constraint RX == RY, which

is solved by substituting RX for RY all over the current goal. At this point, the

delayed R constraint becomes RX == (RX-2)*(RX-2). Finally, the FD constraint

labeling [] [X,X] is solved by enumerating all the possible values for X allowed

by its domain, and continuing a different alternative computation with each of

them. Because of the bridge X #== RX, each integer value v assigned to X by the

labeling process causes the variable RX to be bound to the integral real number rv

equivalent to v (in our computation model, this is part of the behavior of a solver in

charge of solving bridge constraints). The binding of RX to rv awakens the delayed

constraint RX == (RX-2)*(RX-2), which becomes the linear (and even ground)

constraint rv == (rv-2)*(rv-2) and succeeds if rv is an integral solution of the

delayed quadratic equation. In this way, the two solutions of Goal 5 are eventually

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

On the cooperation of the constraint domains H, R, and FD in CFLP 425

computed, corresponding to the two points (X,Y) lying in the intersection of the

parabolic line and the diagonal segment: (1,1) and (4,4), as seen in Figure 3.

All the computations described in this subsection can be actually executed in the

TOY system and also formally represented in the cooperative goal-solving calculus

CCLNC(C). The formal representation of goal-solving computations in CCLNC(C)

performs quite many detailed intermediate steps. In particular, constraints are

transformed into a flattened form (without nested calls to primitive functions)

before performing projections, and especial mechanisms for creating new bridges in

some intermediate steps are provided. Detailed explanations and examples are given

in Section 3.

1.3 Structure of the paper

To finish the introduction, we summarize the organization of the rest of the

paper. Section 2 starts by presenting the main features of the CFLP scheme,

including a mathematical formalization of constraint domains and solvers. The

presentation follows López-Fraguas et al. (2007), adding an explicit consideration

of type discipline and an improved presentation of constraint domains, solvers, and

their formal properties. The rest of the section is new with respect to previous

presentations of CFLP schemes: it discusses bridge constraints and the construction

of coordination domains, concluding with a presentation of a particular coordination

domain C tailored to the cooperation of the domains H, R, and FD. In the

subsequent sections, C always refers to this particular coordination domain.

Section 3 presents our proposal of a computational model for cooperative

programming and goal solving in CFLP (C). Programs and goals are introduced,

the cooperative goal-solving calculus CCLNC(C) is discussed in detail, and its main

formal properties (namely soundness and limited completeness w.r.t. the declarative

semantics of CFLP (C) provided by the CFLP scheme) are presented.

Section 4 sketches the implementation of the CCLNC(C) computational model

on top of the TOY system (Arenas et al. 2007), which is itself implemented on top

of SICStus Prolog (2007). The architectural components of the current TOY system

are described, and the extensions of TOY responsible for the treatment of bridges

and projections according to the formal model provided by the previous section are

briefly discussed.

Section 5 discusses the practical use of the TOY system for solving problems

involving the cooperation of the domains H, R, and FD. A significant set of

benchmarks is analyzed in order to study how the cooperation mechanisms affect

to the performance of the system, and a detailed comparison to the performance of

the META-S tool is also presented.

Section 6 is devoted to a discussion of related work, trying to give an overview

of different approaches in the area of cooperative constraint solving. Section 7

summarizes the main results of the paper, points out to some limitations of the

current TOY implementation, and presents a brief outline of planned future work.

The results reported in this paper are supported by the experimental results

presented in Section 5 and a number of mathematical proofs, most of which

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

426 S. Estévez-Mart́ın et al.

have been collected in the Appendices A.1 and A.2. In the case of reasonings

concerning type discipline, we have refrained from providing full details, that would

be technically tedious and distract from the main emphasis of the paper. More

detailed proofs could be worked out, if desired, by adapting the techniques from

González-Moreno et al. (2001).

2 Coordination of constraint domains in the CFLP scheme

The scheme presented in López-Fraguas et al. (2007) serves as a logical and semantic

framework for lazy CFLP over a parametrically given constraint domain. The aim

of this section is to model the coordination of several constraint domains with

their respective solvers using instances CFLP (C) of the CFLP scheme, where C
is a so-called coordination domain built as a suitable combination of the various

domains intended to cooperate. We use an enhanced version of the CFLP scheme,

extending (López-Fraguas et al. 2007) with an explicit treatment of a polymorphic

type discipline in the style of Hindley–Milner–Damas and an improved presentation

of constraint domains, solvers, and their formal properties. In this setting, we

discuss the three “pure” constraint domains H, R, and FD along with their

solvers. Next, we present bridge constraints and the construction of coordination

domains, concluding with the construction of a particular coordination domain C
tailored to the cooperation of the domains H, R, and FD, which is the topic of

the rest of the paper.

2.1 Signatures and types

We assume a universal signature Ω = 〈TC, BT , DC, DF, PF〉 consisting of five

pairwise disjoint sets of symbols, where

• TC =
⋃

n∈� TCn is a family of countable and mutually disjoint sets of type

constructors, indexed by arities.

• BT is a set of base types.

• DC =
⋃

n∈� DCn is a family of countable and mutually disjoint sets of data

constructors, indexed by arities.

• DF =
⋃

n∈� DFn is a family of countable and mutually disjoint sets of defined

function symbols, indexed by arities.

• PF =
⋃

n∈� PFn is a family of countable and mutually disjoint sets of primitive

function symbols, indexed by arities.

The idea is that base types and primitive function symbols are related to specific

constraint domains, while type constructors, data constructors, and defined function

symbols are related to user-given programs. For each choice of a specific family

of base types SBT ⊆ BT and a specific family of primitive function symbols

SPF ⊆ PF , we will say that Σ = 〈TC, SBT , DC, DF, SPF〉 is a domain

specific signature. Note that any domain-specific signature Σ inherits all the type

constructors, data constructors, and defined function symbols from the universal

signature Ω, since different programs over a given constraint domain of signature Σ

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

On the cooperation of the constraint domains H, R, and FD in CFLP 427

might use them. All symbols belonging to the family DC∪DF∪SPF are collectively

called function symbols.

All along the paper we will work with a static type discipline based on the Hindley–

Milner–Damas type system (Hindley 1969; Milner 1978; Damas and Milner 1982).

A detailed study of polymorphic type discipline in the context of functional logic

programming (without constraints) can be found in González-Moreno et al. (2001).

In the sequel, we assume a countably infinite set TVar of type variables. Types

τ ∈ TypeΣ have the syntax τ ::= A | d | (ct τ1 . . . τn) | (τ1, . . . , τn) | (τ1 → τ0), where

A ∈ TVar, d ∈ SBT , and ct ∈ TCn. By convention, parenthesis are omitted when

there is no ambiguity, ct τn abbreviates ct τ1 . . . τn, and “→” associates to the right,

τn → τ abbreviates τ1 → · · · → τn → τ. Types ct τn, (τ1, . . . , τn), and τ1 → τ0 are used

to represent constructed values, tuples, and functions, respectively. A type without

any occurrence of “→” is called a datatype.

Type substitutions σt, θt ∈ TSubΣ are mappings from TVar into TypeΣ, extended

to mappings from TypeΣ into TypeΣ in the natural way. By convention, we write

τσt instead of σt(τ) for any type τ. Whenever τ′ = τσt for some σt, we say that τ′ is

an instance of τ (or also that τ is more general than τ′) and we write τ � τ′.

The set of type variables occurring in τ is written tvar(τ). A type τ is called

monomorphic iff tvar(τ) = ∅, and polymorphic otherwise. A polymorphic type τ must

be understood as representing all its possible monomorphic instances τ′.

Function symbols in any signature Σ are required to come along with a so-called

principal type declaration, which indicates its most general type. More

precisely,

• Each n-ary c ∈ DCn must have attached a principal type declaration of the

form c :: τn → ct Ak , where n, k � 0, A1, . . . , Ak are pairwise different type

variables, ct ∈ TCk , τ1, . . . , τn are datatypes, and
⋃n

i=1 tvar(τi) ⊆ {A1, . . . , Ak}
(so-called transparency property).

• Each n-ary f ∈ DFn must have attached a principal type declaration of the

form f :: τn → τ, where τi (1 � i � n) and τ are arbitrary types.

• Each n-ary p ∈ SPFn must have attached a principal type declaration of

the form p :: τn → τ, where τ1, . . ., τn, τ are datatypes and τ is not a type

variable.

For the sake of semantic considerations, we assume a special data constructor

(⊥ :: A) ∈ DC0, intended to represent an undefined value that belongs to any

type. The type and data constructors needed to work with Boolean values and lists

are also assumed to be present in the universal signature Ω. We also assume that

SPF2 includes the polymorphic primitive function symbol == :: A -> A -> bool,

that will be written in infix notation and used to express strict equality constraints

in those domains where it is available.

In concrete programming languages such as TOY (Arenas et al. 2007) and

Curry (Hanus 2006), data constructors and their principal types are introduced by

datatype declarations, the principal types of defined functions can be either declared

or inferred by the compiler, the principal types of primitive functions are predefined

and known to the users, and ⊥ does not textually occur in programs.

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

428 S. Estévez-Mart́ın et al.

Example 2.1 (Signatures and Types)

In order to illustrate the main notions concerning signatures and types, let us

consider the signature Σ underlying the program presented in Subsection 1.2. There

we find:

• Two base types int and real for the integer and real numeric values,

respectively.

• A nullary type constructor bool for the type of Boolean values, and a unary

type constructor list for the type of polymorphic lists. The concrete syntax

for list A is [A].
• [A] is a datatype, since it has no occurrences of the type constructor ->.

Moreover, it is polymorphic, since it includes a type variable. Among the

instances of [A] we can find [int] (for lists of integers) and [int -> int]

(for lists of functions of type int -> int). Note that an instance of a datatype

must not be a datatype.

• Two nullary data constructors false, true :: bool (for Boolean values);

a nullary data constructor nil :: [A] (for the empty list); and a binary

data constructor cons :: A -> [A] -> [A] (for nonempty lists). The concrete

syntax for nil (resp. cons) is [] (resp. :), where : is intended to be used as

an infix operator.

• The principal types of the constructors in the previous item can be derived

from the datatype declarations

data bool = false | true

data [A] = [] | (A : [A])

which are predefined and do not need to be included within programs.

• In the program presented in Subsection 1.2 there are also type alias declara-

tions, such as

type dPoint = (int,int)

type setOf A = A -> bool

type region = setOf dPoint

Such declarations are just a practical convenience for naming certain types.

They cannot involve recursion, and the names of type alias so introduced are

not considered to belong to the signature.

• Defined function symbols of various arities, as, e.g., isIn, square ∈ DF2.

These two function symbols are binary because the rewrite rules given for

them within the program expect two formal parameters at their left-hand

sides. In general, rewrite rules included in programs for defining the behavior

of symbols f ∈ DFn are expected to have n formal parameters at their

left-hand sides. In some cases, this n may not identically correspond to the

number of arrows observed in the principal type of f. For instance, although

square ∈ DF2, the principal type is square :: int -> grid. The apparent

contradiction disappears by noting that grid is declared as a type alias for

(int,int) -> bool. Since the type constructor -> associates to the right, we

have in fact square :: int -> (int,int) -> bool.
• Primitive function symbols of various arities, as, e.g., the binary primitives

#==, labeling, + and <=, and the ternary primitive domain. The concrete

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

On the cooperation of the constraint domains H, R, and FD in CFLP 429

syntax requires #==, + and <= to be used in infix notation. Each primitive

has a predefined principal type. For instance, #== :: int -> real -> bool,

+ :: real -> real -> real and domain :: [int] -> int -> int -> bool.

These declarations do not need to be included within programs.

2.2 Expressions and substitutions

For any domain of specific signature Σ, constraint programming will use expressions

which may have occurrences of certain values of base type. Therefore, in order to

define the syntax of expressions we assume a SBT -indexed family B = {Bd}d∈SBT ,

where each Bd is a nonempty set whose elements are understood as base values of

type d. In the sequel, we will use letters u, v, . . . to indicate base values. By an abuse

of notation, we will also write u ∈ B instead of u ∈
⋃

d∈SBT Bd.

Moreover, we also assume a countable infinite set Var of data variables (disjoint

from TVar and Σ), and we define applicative Σ-expressions e ∈ ExpΣ(B) over B
with the syntax e ::= X | u | h | (e1, . . . , en) | (e e1), where X ∈ Var, u ∈ B, and

h ∈ DC ∪ DF ∪ SPF .

Expressions (e1, . . . , en) represent ordered n-tuples, while expressions (e e1)—not

to be confused with ordered pairs (e, e1)—stand for the application of the function

represented by e to the argument represented by e1. Following a usual convention,

we assume that application associates to the left, and we use the notation (e en) to

abbreviate (e e1 . . . en). More generally, parenthesis can be omitted when there is no

ambiguity. Applicative syntax is common in higher-order functional languages. The

usual first-order syntax for expressions can be translated to applicative syntax by

means of so-called curried notation. For instance, f(X, g(Y)) becomes (f X (g Y)).

Expressions without repeated variable occurrences are called linear, variable-free

expressions are called ground, and expressions without any occurrence of ⊥ are

called total. Some particular expressions are intended to represent data values that

do not need to be evaluated. Such expressions are called Σ-patterns t ∈ PatΣ(B)

over B and have the syntax t ::= X | u | (t1, . . . , tn) | c tm | f tm | p tm, where X ∈ Var,
u ∈ B, c ∈ DCn for some m � n, f ∈ DFn for some n > m, and p ∈ SPFn for some

n > m. The restrictions concerning arities in the last three cases are motivated by

the idea that an expression of the form h tn (where h ∈ DFn ∪ SPFn) is potentially

evaluable and therefore not to be viewed as representing data.

The set of all ground patterns over B is noted GPatΣ(B). Sometimes we will

write UΣ(B) in place of GPatΣ(B), viewing this set as the universe of values over

B. The following classification of expressions is also useful: (X em) (with X ∈ Var
and m � 0) is called a flexible expression; while u ∈ B and all expressions of the

form (h em) (with h ∈ DC ∪DF ∪ SPF) are called rigid. Moreover, a rigid expression

(h em) is called passive iff h ∈ DFn ∪ SPFn and m < n, and active otherwise. Tuples

(e1, . . . , en) are also considered as passive expressions. The idea is that any passive

expression has the outermost appearance of a pattern, although it might not be a

pattern in case that any of its inner subexpressions is active.

As illustrated by the program presented in Subsection 1.2, tuples are useful for

programming and therefore the tuple syntax is supported by many programming

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

430 S. Estévez-Mart́ın et al.

languages, including TOY. On the other hand, tuples can be treated as a particular

case of constructed values, just by assuming data constructors tupn ∈ DCn in

the universal signature and viewing any tuple (e1, . . . , en) as syntactic sugar for

tupn e1 . . . en. For this reason, in the rest of the paper we will omit the explicit

mention to tuples, although we will continue to use them in examples.

As usual in programming languages that adopt a static type discipline, all

expressions occurring in programs are expected to be well-typed. Deriving or

checking the types of expressions relies on two kinds of information: first, the

principal types of symbols belonging to the signature that we assume to be attached

to the signature itself; and second, the types of variables occurring in the expression.

In order to represent this second kind of information, we will use type environments

Γ = {X1 :: τ1, . . . , Xn :: τn}, representing the assumption that variable Xi has

type τi for all 1 � i � n. Following well-known ideas stemming from the work

of Hindley (1969), Milner (1978), and Damas and Milner (1982), it is possible to

define type inference rules for deriving type judgements of the form Σ, Γ �WT e :: τ

meaning that the assertion e :: τ (in words, “e has type τ”) can be deduced from

the type assumptions for symbols resp. variables given in Σ resp. Γ. The reader is

referred to González-Moreno et al. (2001) for a presentation of type inference rules

well suited to functional logic languages without constraints. Adding the treatment

of constraints would be a relatively straightforward task. An expression e is called

well-typed iff there is some type environment Γ such that Σ, Γ �WT e :: τ can be

derived for at least one type τ. Although this τ is not unique in general, it can

be proved that a most general type τ (called the principal type of e and unique up

to renaming of type variables) can be derived for any well-typed expression e. In

practice, principal types of well-typed expressions can be automatically inferred by

compilers.

We will write Σ, Γ �WT en :: τn to indicate that Σ, Γ �WT ei :: τi can be derived

for all 1 � i � n, and Σ, Γ �WT a :: τ :: b to indicate that both Σ, Γ �WT a :: τ and

Σ, Γ �WT b :: τ hold. An expression e is called well-typed iff Σ, Γ �WT e :: τ can

be derived for some type τ using the underlying signature Σ and some suitable type

environment Γ. Sometimes we will write simply e :: τ, meaning that Σ, Γ �WT e :: τ

can be derived using the underlying Σ and some proper choice of Γ (which can be

just ∅ if e is ground).

For the sake of semantic considerations, it is useful to define an information

ordering � over ExpΣ(B), such that e � e′ is intended to mean that the information

provided by e′ is greater or equal than the information provided by e. Mathematically,

� is defined as the least partial ordering over ExpΣ(B) such that ⊥ � e′ for all

e′ ∈ ExpΣ(B) and (e e1) � (e′ e′1) whenever e � e′ and e1 � e′1. For later use, we

accept without proof the following lemma. It is similar to the Typing Monotonicity

Lemma in González-Moreno et al. (2001) and it says that the type of any expression

is also valid for its semantic approximations. It can be proved thanks to the fact

that the undefined value ⊥ belongs to all the types.

Lemma 1 (Type Preservation Lemma)

Assume that Σ, Γ �WT e′ :: τ and e � e′ hold. Then Σ, Γ �WT e :: τ is also true.

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

On the cooperation of the constraint domains H, R, and FD in CFLP 431

As part of the definition of signatures Σ, we have required a transparency property

for the principal types of data constructors. Because of transparency, the types of the

variables occurring in a data term t can be deduced from the type of t. It is useful

to isolate those patterns that have a similar property. To this purpose, we adapt

some definitions from González-Moreno et al. (2001). A type which can be written

as τm → τ is called m-transparent iff tvar(τm) ⊆ tvar(τ) and m-opaque otherwise.

Also, defined function symbols f and primitive function symbols p are called m-

transparent iff their principal types are m-transparent and m-opaque otherwise. Note

that a data constructor c is always m-transparent for all m � ar(c).

Then, transparent patterns can be defined as those having the syntax t ::= X | u |
c tm | f tm | p tm, with X ∈ Var, u ∈ B, c ∈ DCn for some m � n, f ∈ DFn for some

n > m, and p ∈ SPFn for some n > m, where the subpatterns ti in (c tm), (f tm) and

(p tm) must be recursively transparent, and the principal types of both the defined

function symbol f in (f tm), and the primitive function symbol p in (p tm) must be

m-transparent.

For instance, assume a defined function symbol with principal type declaration snd

:: A -> B -> B. Then snd is 1-opaque and the pattern (snd X) is also opaque. In

fact, the principal type B -> B of (snd X) reveals no information on the type of

X, and different instances of (snd X) keep the principal type B -> B independently

of the type of the expression substituted for X. Such a behavior is not possible for

transparent patterns due to the Transparency Lemma stated without proof below.

Similar results were proved in González-Moreno et al. (2001) in a slightly different

context.

Lemma 2 (Transparency Lemma)

(1) Assume a transparent pattern t and two type environments Γ1, Γ2 such that

Σ, Γ1 �WT t :: τ and Σ, Γ2 �WT t :: τ, for a common type τ.

Then, Γ1(X) = Γ2(X) holds for every X ∈ var(t).

(2) Assume that Σ, Γ �WT h am :: τ :: h bm holds for some m-transparent

h ∈ DC ∪ DF ∪ PF and some common type τ.

Then, there exist types τi such that Σ, Γ �WT ai :: τi :: bi holds for all

1 � i � m.

Substitutions σ, θ ∈ SubΣ(B) over B are mappings from Var to PatΣ(B), extended

to mappings from ExpΣ(B) to ExpΣ(B) in the natural way. For given e ∈ ExpΣ(B)

and σ ∈ SubΣ(B), we will usually write eσ instead of σ(e). Whenever e′ = eσ for

some substitution σ, we say that e′ is an instance of e (or also that e is more general

than e′) and we write e � e′.

We write ε for the identity substitution and σθ for the composition of σ and θ, such

that e(σθ) = (eσ)θ for any expression e. A substitution σ such that σσ = σ is called

idempotent. The domain vdom(σ) and the variable range vran(σ) of a substitution are

defined as usual: vdom(σ) = {X ∈ Var | Xσ �= X} and vran(σ) =
⋃

X∈vdom(σ) var(Xσ).

A substitution σ is called finite iff vdom(σ) is a finite set, and ground iff Xσ

is a ground pattern for all X ∈ vdom(σ). In the sequel, we will assume that the

substitutions we work with are finite, unless otherwise said. We adopt the usual

notation σ = {X1 �→ t1, . . . , Xn �→ tn}, whenever vdom(σ) = {X1, . . . , Xn} and Xiσ = ti

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

432 S. Estévez-Mart́ın et al.

for all 1 � i � n. In particular, ε = { } = ∅. We also write σ[X �→ t] for the

substitution σ′ such that Xσ′ = t and Y σ′ = Y σ for any variable Y ∈ Var \ {X}.
For any set of variables X ⊆ Var, we define the restriction σ �X as the substitution

σ′ such that vdom(σ′) = X and σ′(X) = σ(X) for all X ∈ X. We use the notation

σ =X θ to indicate that σ �X= θ �X, and we abbreviate σ =Var\X θ as σ =\X θ.

Given two substitutions σ and θ, we define the application of θ to σ as the

substitution σ � θ =def σθ � vdom(σ). In other words, for any X ∈ Var, X(σ � θ) =

Xσθ if X ∈ vdom(σ) and X(σ � θ) = X otherwise.

We consider two different ways of comparing given substitutions σ, σ′ ∈ SubΣ(B):

• σ is said to be more general than σ′ over X ⊆ Var (in symbols, σ �X σ′)

iff σθ =X σ′ for some θ ∈ SubΣ(B). We abbreviate σ �Var σ
′ as σ � σ′ and

σ �Var\X σ′ as σ �\X σ′.

• σ is said to bear less information than σ′ over X ⊆ Var (in symbols, σ �X σ′)

iff σ(X) � σ′(X) for all X ∈ X. We abbreviate σ �Var σ′ as σ � σ′ and

σ �Var\X σ′ as σ �\X σ′.

Example 2 (Well-typed Expressions)

Let us consider the specific signature Σ and the family of base values B underlying

the program presented in Subsection 1.2. There we find:

• The sets of base values Bint = � and Breal = �.

• Well-typed expressions such as square 4 (2,3) :: bool, RX-RY :: real,

(RY-RX <= RY0-RX0) :: bool.

• Well-typed patterns such as 3 :: int, 3.01 :: real, [X,Y] :: [int],

square 4 :: dPoint -> bool. Note that [X,Y] abbreviates (X:(Y:[])), as

usual in functional languages that use an infix list constructor.

• Finally, note that ⊥ � (0 : ⊥) � (0 : (1 : ⊥)) � ... illustrates the

behavior of the information ordering � when restricted to the comparison of

patterns belonging to the universe UΣ(B). The list patterns of type [int] used

in this example are not allowed to occur textually in programs because of the

occurrences of the undefined value ⊥, but they are meaningful as semantic

representations of partially computed lists of integers.

2.3 Domains, constraints, and solutions

Intuitively, a constraint domain provides data values and constraints oriented to

some particular application domain. Different approaches have been proposed for

formalizing the notion of constraint domain, using mathematical notions borrowed

from algebra, logic, and category theory (see, e.g., Jaffar and Lassez 1987; Saraswat

1992; Jaffar and Maher 1994; Jaffar et al. 1998). The following definition is an

elaboration of the domain notion given in López-Fraguas et al. (2007):

Definition 1 (Constraint Domain)

A constraint domain of specific signature Σ (shortly, Σ-domain) is a structure

D = 〈BD, {pD}p∈SPF〉, where BD = {BD
d }d∈SBT is a SBT -indexed family of sets of

base values and the interpretation pD of each primitive function symbol p :: τn → τ

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

On the cooperation of the constraint domains H, R, and FD in CFLP 433

in SPFn is required to be a set of (n + 1)-tuples pD ⊆ UΣ(BD)n+1. In the sequel,

we abbreviate UΣ(BD) as UD (called the universe of values of D), and we write

pDtn → t to indicate (tn, t) ∈ pD. The intended meaning of “pDtn → t” is that the

primitive function pD with given arguments tn can return a result t. Moreover, the

interpretations of primitive symbols are required to satisfy four conditions:

(1) Polarity: For all p ∈ SPF , “pDtn → t” behaves monotonically w.r.t. the

arguments tn and antimonotonically w.r.t. the result t.

Formally: For all tn, t′n, t, t
′ ∈ UD such that pDtn → t, tn � t′n and t � t′,

pDt′n → t′ also holds.

(2) Radicality: For all p ∈ SPF , as soon as the arguments given to pD have enough

information to return a result other than ⊥, the same arguments suffice already

for returning a total result.

Formally: For all tn, t ∈ UD, if pDtn → t then t = ⊥ or else there is some total

t′ ∈ UD such that pDtn → t′ and t′ � t.

(3) Well-typedness: For all p ∈ SPF , the behavior of pD is well-typed w.r.t. any

monomorphic instance of p’s principal type.

Formally: For any monomorphic type instance (τ′n → τ′) � (τn → τ) and for

all tn, t ∈ UD such that Σ �WT tn :: τ′n and pDtn → t, the type judgement

Σ �WT t :: τ′ also holds.

(4) Strict Equality: The primitive == (in case that it belongs to SPF) is interpreted

as strict equality over UD, so that for all t1, t2, t ∈ UD, one has t1==Dt2 → t iff

some of the following three cases hold:

(a) t1 and t2 are one and the same total pattern, and true � t.

(b) t1 and t2 have no common upper bound in UD w.r.t. the information

ordering �, and false � t.

(c) t = ⊥.

With this definition, it is easy to check that ==D satisfies the polarity, radicality,

and well-typedness conditions.

In Subsection 2.4 we will introduce the notion of solver, and we will see that the

three domains H, R, and FD mentioned in the introduction can be formalized

according to the previous definition. In the rest of this subsection, we discuss how

to work with constraints over a given domain.

For any given domain D of signature Σ, the set UD = UΣ(BD) = GPatΣ(BD)

is called the universe of values of the domain D. We will also write ExpD, PatD,

and SubD in place of ExpΣ(BD), PatΣ(BD), and SubΣ(BD), respectively. Note that

requirement (4) in Definition 1 imposes a fixed interpretation of == as the strict equal-

ity operation ==D over UD, for every domain D whose specific signature includes

this primitive. It is easy to check that the polarity, radicality, and well-typedness

requirements are satisfied by strict equality. The following definition will be useful:

Definition 2 (Conservative Extension of a Given Domain)

Given two domains D, D′ with respective signatures Σ and Σ′, D′ is called a

conservative extension of D iff the following conditions hold:

(1) Σ ⊆ Σ′, i.e., SBT ⊆ SBT ′ and SPF ⊆ SPF ′.

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

434 S. Estévez-Mart́ın et al.

(2) For all d ∈ SBT , one has BD′

d = BD
d .

(3) For all p ∈ SPFn other than == and for every tn, t ∈ UD, one has pD
′
tn → t iff

pD tn → t.

As usual in constraint programming, we define constraints over a given domain D
as logical formulas built from atomic constraints by means of conjunction ∧ and

existential quantification ∃. More precisely, constraints δ ∈ ConD over the constraint

domain D have the syntax δ ::= α | (δ1 ∧δ2) | ∃Xδ, where α is any atomic constraint

over D and X ∈ Var is any variable. We allow two kinds of atomic constraints α

over D: (a) � and �, standing for truth (success) and falsity (failure), respectively;

and (b) atomic constraints of the form p en →! t with p ∈ SPFn, where en ∈ ExpD,

t ∈ PatD, and t is required to be total (i.e., without any occurrences of ⊥). The

intended meaning of p en →! t constrains the value returned by the call p en to be a

total pattern matching the form of t.

By convention, constraints of the form p en →! true are abbreviated as p en.

Sometimes constraints of the form p en →! false are abbreviated as p′ en, using some

symbol p′ to suggest the “negation” of p. In particular, strict equality constraints e1

== e2 and strict disequality constraints e1 /= e2 are understood as abbreviations of

e1 == e2 →! true and e1 == e2 →! false, respectively. The next definition introduces

some useful notations for different kinds of constraints.

Definition 3 (Notations for Various Kinds of Constraints)

Given two domains D, D′ with respective signatures Σ and Σ′, such that D′ is

a conservative extension of D. Let SPF ⊆ SPF ′ be the sets of specific primitive

function symbols of D and D′, respectively. We define:

(1) AConD ⊆ ConD is the set of all atomic constraints over D.

(2) APConD ⊆ AConD is the set of all atomic primitive constraints over D. By

definition, α ∈ APConD iff α has the form �, � or p tn →! t, where tn ∈ PatD
are patterns.

(3) PConD ⊆ ConD is the set of all primitive constraints π over D. By definition,

a constraint π ∈ ConD is called primitive iff all the atomic parts of π are

primitive. Note that APConD = AConD ∩ PConD.

(4) ConD′ � SPF is the set of all SPF-restricted constraints over D′. By definition,

a constraint δ ∈ ConD′ is called SPF-restricted iff all the atomic parts of δ

have the form �, � or p en →! t, where p ∈ SPFn. The subsets APConD′ �
SPF ⊆ AConD′ � SPF ⊆ ConD′ � SPF are defined in the natural way. In

particular, APConD′ � SPF is the set of all the SPF-restricted atomic primitive

constraints over D′, which have the form � or � or p tn →! t, with p ∈ SPFn,

tn, t ∈ PatD′ and t total.

A particular occurrence of a variable X within a constraint δ is called free iff it

is not affected by any quantification, and bound otherwise. In the sequel, we will

write var(δ) (resp. fvar(δ)) for the set of all variables having some occurrence (resp.

free occurrence) in the constraint δ. The notations var(Δ) and fvar(Δ) for a set of

constraints Δ ⊆ ConD have a similar meaning.

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

On the cooperation of the constraint domains H, R, and FD in CFLP 435

The type inference rules mentioned in Subsection 2.2 can also be naturally

extended to derive type judgments of the form Σ, Γ �WT δ, meaning that the

constraint δ is well-typed w.r.t. the type assumptions for symbols resp. variables

given in Σ resp. Γ. Sometimes we will simply claim that δ is well-typed to indicate

that Σ, Γ �WT δ can be derived using the underlying signature Σ and some suitable

type environment Γ (which can be just ∅ if δ has no free variables).

The set of valuations ValD over the domain D consists of all ground substitutions

η such that vran(η) ⊆ UD. Those valuations which satisfy a given constraint are

called solutions. For those constraints δ that include subexpressions of the form f en
for some f ∈ DFn, the solutions of δ depend on the behavior of f, which is not

included in the domain D, but must be deduced from some user-given program, as

we will see in Section 3. However, the solutions of primitive constraints depend only

on the domain D. More precisely:

Definition 4 (Solutions of Primitive Constraints)

(1) The set of solutions of a primitive constraint π ∈ PConD is a subset SolD(π) ⊆
ValD defined by recursion on the syntactic structure of π as follows:

• SolD(�) = ValD; SolD(�) = ∅.
• SolD(p tn →! t) = {η ∈ ValD | (p tn →!t)η ground, pDtnη → tη, tη total}.
• SolD(π1 ∧ π2) = SolD(π1) ∩ SolD(π2).

• SolD(∃Xπ) = {η ∈ ValD | exists η′ ∈ SolD(π) s.t. η′ =\{X} η}.
(2) Any set Π ⊆ PConD is interpreted as a conjunction, and therefore SolD(Π) =⋂

π∈Π SolD(π).

(3) The set of well-typed solutions of a primitive constraint π ∈ PConD is a subset

WTSolD(π) ⊆ SolD(π) consisting of all η ∈ SolD(π) such that πη is well-typed.

(4) Finally, for any Π ⊆ PConD we define WTSolD(Π) =
⋂

π∈Π WTSolD(π).

Note that any solution η ∈ SolD(π) must verify vdom(η) ⊇ fvar(π). For later use,

we accept the following two technical lemmata. The first one can be easily proved by

induction on the syntactic structure of Π and the second one is a simple consequence

of the polarity properties of primitive functions. The notation (WT)Sol used in both

lemmata is intended to indicate that they are valid both for plain solutions and for

well-typed solutions.

Lemma 3 (Substitution Lemma)

For any given Π ⊆ PConD, σ ∈ SubD and η ∈ ValD, the equivalence η ∈
(WT)SolD(Πσ) ⇔ ση ∈ (WT)SolD(Π) is valid.

Lemma 4 (Monotonicity Lemma)

For any given Π ⊆ PConD and η, η′ ∈ ValD such that η � η′ and η ∈ (WT)SolD(Π),

one also has η′ ∈ (WT)SolD(Π).

A given solution η ∈ SolD(Π) can bind some variables X to the undefined value

⊥. Intuitively, this will happen whenever the value of X is not needed for checking

the satisfaction of the constraints in Π. Formally, a variable X is demanded by a set

of constraints Π ⊆ PConD iff η(X) �= ⊥ for all η ∈ SolD(Π). We write dvarD(Π) to

denote the set of all X ∈ fvar(Π) such that X is demanded by Π.

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

436 S. Estévez-Mart́ın et al.

In practice, CFLP programming requires effective procedures for recognizing

“obvious” occurrences of demanded variables in the case that Π is a set of

atomic primitive constraints. We assume that for any practical constraint domain

D and any primitive atomic constraint π ∈ APConD there is an effective way

of computing a subset odvarD(π) ⊆ dvarD(π). Variables X ∈ odvarD(π) will be

said to be obviously demanded by π. We extend the notion to finite constraint sets

Π ⊆ APConD by defining the set odvarD(Π) of all variables obviously demanded by

Π as
⋃

π∈Π odvarD(π). In this way, it is clear that odvarD(Π) ⊆ dvarD(Π) holds for

any Π ⊆ APConD; i.e., obviously demanded variables are always demanded. The

inclusion is strict in general.

In particular, for any constraint domain D whose specific signature includes the

strict equality primitive == and any primitive atomic constraint of the form π =

(t1==t2 →! t), odvarD(π) is defined by a case distinction as follows:

• odvarD(t1==t2 →!R) = {R}, if R ∈ Var.
• odvarD(X==Y) = {X,Y }, if X,Y ∈ Var.
• odvarD(X==t) = odvarD(t==X) = {X}, if X ∈ Var and t /∈ Var.
• odvarD(t1==t2) = ∅, otherwise.

• odvarD(X/=Y) = {X,Y }, if X,Y ∈ Var, X and Y not identical.

• odvarD(X/=t) = odvarD(t/=X) = {X}, if X ∈ Var and t /∈ Var.
• odvarD(t1/=t2) = ∅, otherwise.

The inclusion odvarD(π) ⊆ dvarD(π) is easy to check by considering the behavior

of the interpreted strict equality operation ==D. The method for computing odvarD(π)

for atomic primitive constraints based on primitive functions other than equality

must be given as part of a practical presentation of the corresponding domain

D. In the sequel, we will call critical to those variables occurring in Π which are

not obviously demanded, and we will write cvarD(Π) = var(Π) \ odvarD(Π) for the

set of all critical variables. As we will see in Section 3, goal-solving methods

for CFLP programming rely on the effective recognition of critical variables.

Therefore, the proper behavior of goal solving depends on well-defined methods

for the computation of obviously demanded variables.

In the rest of the paper we will often use constraint stores of the form S = Π � σ,

where Π ⊆ APConD and σ is an idempotent substitution such that vdom(σ) ∩
var(Π) = ∅. We will need to work with solutions of constraint stores, possibly

affected by an existential prefix. This notion is defined as follows:

Definition 5 (Solutions of Constraint Stores)

(1) SolD(∃Y (Π � σ)) = {η ∈ ValD | exists η′ ∈ SolD(Π � σ), s.t. η′ =\Y η}.
(2) SolD(Π � σ) = SolD(Π) ∩ Sol(σ).

(3) Sol(σ) = {η ∈ ValD | η = ση}
(Note that η = ση holds iff Xη = Xση for allX ∈ vdom(σ)).

(4) WTSolD(∃Y (Π � σ)) = {η ∈ ValD | ex. η′ ∈ WTSolD(Π � σ), s.t. η′ =\Y η}.
(5) WTSolD(Π � σ) = {η ∈ SolD(Π � σ) | (Π � σ) � η is well-typed}, where

(Π � σ) � η =def Πη� (σ � η).

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

On the cooperation of the constraint domains H, R, and FD in CFLP 437

Example 3 (Constraints and Their Solutions)

Let us now illustrate different notions concerning constraints by referring again to

the motivating example from Subsection 1.2. The domain C underlying this example

is a “hybrid” domain supporting the cooperation of three “pure” domains named

H, R, and FD, as we will see in Subsections 2.4 and 2.5. For the moment, note that

C allows to work with four different kinds of constraints, namely bridge constraints

and the specific constraints supplied by H, R, and FD, as explained in Section 1.

(1) Concerning well-typed constraints, we note that the small program in this

example is well-typed. Therefore, all the constraints occurring there are also

well-typed. For instance:

• domain [X,Y] 0 N is well-typed (w.r.t. any type environment which

includes the type assumptions X :: int, Y :: int, N :: int).

• RY+RX <= RY0+RX0 is also well-typed (w.r.t. any type environment

which includes the type assumptions RY :: real, RX :: real, RY0

:: real, RX0 :: real).

Of course, the signature underlying the example allows to write constraints

such as domain [X,Y] true 3.2, which cannot be well-typed in any type

environment. Because of static type discipline, the compiler will reject programs

including ill-typed constraints.

(2) Concerning constraint solutions, note that computing by means of the co-

operative goal-solving calculus presented in Section 3 eventually triggers the

computation of solutions for primitive constraints. As already discussed in

Subsection 1.2, solving Goal 2 eventually leads to the following set Π of

primitive constraints (understood as logical conjunction):

X #== RX, Y #== RY,

RY >= d-0.5, RY-RX <= 0.5, RY+RX <= n+0.5,

domain [X,Y] 0 n, labeling [] [X,Y].

Π happens to be the union of three sets of primitive constraints corresponding

to the three lines above: a set of two bridge constraints ΠM , a set of three

real arithmetical constraints ΠR , and a set of two finite domain constraints ΠF .

Therefore, SolC(Π) = SolC(ΠM) ∩ SolC(ΠR) ∩ SolC(ΠF). As we have seen in

Subsection 1.2, the only possibility for η ∈ SolC(Π) is η(X) = η(Y) = d, and

the computation proceeds with the help of constraint solvers and projections,

among other mechanisms.

(3) Concerning obviously demanded variables, let us remark that all the variables

occurring in the constraint set Π shown in the previous item are obviously

demanded. This will become clear from the discussion of the domains H, R,

and FD in Subsection 2.4.

(4) Concerning critical variables, note that a variable may be critical either

because it is demanded but not obviously demanded, or else because it is

not demanded at all. For instance, variables A and B are demanded but

not obviously demanded by the strict equality constraint (A,2) == (1,B).

Therefore, they are critical variables. To illustrate the case of critical but not

demanded variables, consider the primitive constraint π = L /= X:Xs. Because

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

438 S. Estévez-Mart́ın et al.

of the definition of “obvious demand” for strict disequality constraints, variable

L is obviously demanded by π, while X and Xs are not obviously demanded, and

therefore critical. Moreover, it can be argued that neither X nor Xs is demanded

by π. Variable X is not demanded because there exist solutions η ∈ SolD(π)

such that η(X) = ⊥ (either with η(L) = [] or else with η(L) = t : ts such that

η(Xs) is different from ts). Variable Xs is not demanded because of similar

reasons.

2.4 Pure domains and their solvers

In order to be helpful for programming purposes, constraint domains must provide

so-called constraint solvers, which process the constraints arising in the course of

a computation. For some theoretical purposes, it suffices to model a solver as a

function which maps any given constraint to one of the three different values: true,

false, or unknown (see, e.g., Jaffar et al. 1998). In practice, however, solvers are

expected to have the ability of reducing primitive constraints to so-called solved

forms, which are simpler and can be shown as computed answers to the users.

As discussed in the introduction (see, in particular, Subsection 1.2), the constraint

domain underlying many practical problems may involve heterogeneous primitives

related to different base types. In such cases, it may be not realistic to expect that a

single solver for the whole domain is directly available.

In the sequel, we will make a pragmatic distinction between pure constraint

domains which are given “in one piece” and come equipped with a solver, and

hybrid constraint domains which are built as a combination of simpler domains and

must rely on the solvers of their components. In the rest of this subsection, we

give a mathematical formalization of the notion of solver tailored to the needs of

the CFLP scheme, followed by a presentation of H, R, and FD as pure domains

equipped with solvers. In the case of R and FD, we limit ourselves to describe

their most basic primitives, although other useful facilities are available in the TOY
implementation. A proposal for the construction of so-called coordination domains

as a particular kind of hybrid domains will be presented in Subsection 2.5.

2.4.1 Constraint solvers

For any pure constraint domain D, we postulate a constraint solver which can reduce

any given finite set Π of atomic primitive constraints to an equivalent simpler form

while taking proper care of critical variables occurring in Π. Since the value of a

critical variable X may be needed by some solutions of Π and irrelevant for some

other solutions, we require that solvers have the ability to compute a distinction of

cases discriminating such situations.

Definition 6 (Formal Requirements for Solvers)

A constraint solver for the domain D is modeled as a function solveD which can

be applied to pairs of the form (Π,X), where Π ⊆ APConD is a finite set of

atomic primitive constraints and X ⊆ cvarD(Π) is a finite set including some of the

critical variables in Π, where the two extreme cases X = ∅ and X = cvarD(Π) are

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

On the cooperation of the constraint domains H, R, and FD in CFLP 439

allowed. By convention, we may abbreviate solveD(Π, ∅) as solveD(Π). We require

that any solver invocation solveD(Π,X) returns a finite disjunction
∨k

j=1 ∃Y j(Πj � σj)

of existentially quantified constraint stores, fulfilling the following conditions:

(1) Fresh Local Variables: For all 1 � j � k: (Πj � σj) is a store, Y j =

var(Πj � σj) \ var(Π) are fresh local variables and vdom(σj) ∪ vran(σj) ⊆
var(Π) ∪ Y j .

(2) Solved Forms: For all 1 � j � k: Πj � σj is in solved form w.r.t. X. By

definition, this means that solveD(Πj ,X) = Πj � ε.

(3) Safe Bindings: For all 1 � j � k and for all X ∈ X ∩ vdom(σj): σj(X) is a

constant.

(4) Discrimination: Each computed X-solved form Πj � σj (1 � j � k) must

satisfy: either X ∩ odvarD(Πj) �= ∅ or else X ∩ var(Πj) = ∅ (i.e., either some

critical variable in X becomes obviously demanded, or else all critical variables

in X disappear).

(5) Soundness: SolD(Π) ⊇
⋃k

j=1 SolD(∃Y j(Πj � σj)).

(6) Completeness: WTSolD(Π) ⊆
⋃k

j=1 WTSolD(∃Y j(Πj � σj)).

Moreover, solveD is called an extensible solver iff the solver invocation solveD(Π,X) is

defined and satisfies the conditions listed in this definition not just for Π ⊆ APConD
and X ⊆ cvarD(Π), but more generally for Π ⊆ APConD′ � SPF and X ⊆ cvarD′ (Π),

where D′ is any conservative extension of D. The idea is that an extensible solver

can deal with constraints involving the primitives in D and values described by

patterns over arbitrary conservative extensions of D.

The presentation of goal solving in Section 3 will discuss the proper way of

choosing a set X of critical variables for each particular solver invocation. The idea

is that X should include all critical variables which are waiting to be bound to the

result of evaluating some expression at some other place within the goal. This idea

also motivates the safe bindings condition.

Operationally, the alternatives within the disjunctions returned by solver invoca-

tions are usually explored in some sequential order with the help of a backtracking

mechanism. Assuming that solveD(Π,X) =
∨k

j=1 ∃Y j(Πj � σj), we will sometimes

use the following notations:

• Π ��solveDX
∃Y ′(Π′ � σ′) to indicate that ∃Y ′(Π′ � σ′) is ∃Y j(Πj � σj) for some

1 � j � k. In this case we will speak of a successful solver invocation.

• Π ��solveDX
� to indicate that k = 0. In this case we will speak of a failed solver

invocation, yielding the obviously unsatisfiable store � = � � ε.

As defined above, a constraint store Π � σ is said to be in solved form w.r.t. a set

of critical variables X (or simply in solved form if X = ∅) iff solveD(Π,X) = Π � ε.

In practice, solved forms can be recognized by syntactical criteria, and a solver

invocation solveD(Π,X) is performed only in the case that Π � σ is not yet solved

w.r.t. X. Whenever a solver is invoked, the soundness condition requires that no new

spurious solution (whether well-typed or not) is introduced, while the completeness

condition requires that no well-typed solution is lost. In practice, any solver can

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

440 S. Estévez-Mart́ın et al.

be expected to be sound, but completeness may hold only for some choices of the

constraint set Π to be solved. Demanding completeness for arbitrary (rather than

well-typed) solutions would be still less realistic. The solvers of interest for this

paper suffer some limitations regarding completeness, as explained in Subsections

2.4.2, 2.4.3, and 2.4.4.

From a user’s viewpoint, a solver can behave as a black-box or as a glass-box.

Black-box solvers can just be invoked to compute disjunctions of solved forms,

but users cannot observe their inner workings, in contrast to the case of glass-box

solvers. Users can define glass-box solvers by means of appropriate tools, such as

Constraint Handling Rules (Frühwirth 1998). In this paper, we propose to use store

transformation systems (stss) as a convenient abstract technique for specifying the

behavior of glass-box solvers. An sts over the constraint domain D is specified as a

set of store transformation rules (strs) RL that describe different ways to transform a

given store Π � σ w.r.t. a given set X of critical variables. The notions and notations

defined below are useful for working with stss. Some of them refer to a selected set

of strs noted as RS.

• Π � σ ��D,X Π′ � σ′ indicates that the store Π � σ can be transformed into

Π′ � σ′ in one step, using one of the available strs. This notation can also be

used to indicate a failing transformation step, writing the inconsistent store

� = � � ε in place of Π′ � σ′.

• Π � σ ��∗
D,X Π′ � σ′ indicates that Π � σ can be transformed into Π′ � σ′ in

finitely many steps.

• The store Π � σ is called RS-irreducible iff there is no str RL ∈ RS that can

be applied to transform Π � σ. Note that this is trivially true if RS is the

empty set. If RS is the set of all the available strs, the store Π � σ is called

simply irreducible (or also a X-solved form).

• Π � σ ��∗
D,X!Π′ � σ′ indicates that Π � σ ��∗

D,X Π′ � σ′ holds, and moreover,

the final store Π′ � σ′ is irreducible.

Assume a given sts over D such that for any finite Π ⊆ APConD and any

X ⊆ cvarD(Π), the set SFD(Π,X) = {Π′ � σ′ | Π � ε ��∗
D,X! Π′ � σ′} is finite. Then,

the solver defined by the sts can be specified to behave as follows:

solveD(Π,X) =
∨

{∃Y ′(Π′�σ′) | Π′�σ′ ∈ SFD(Π,X), Y ′ = var(Π′�σ′) \ var(Π)}

Once solveD has been so defined, the notation Π ��solveDX
∃Y ′(Π′ � σ′) actually

happens to mean that Π � ε ��∗
D,X! Π′ � σ′ and Y ′ = var(Π′ � σ′)\var(Π). Therefore,

the symbols ��solveDX
and ��∗

D,X! should not be confused, but have related meanings.

The following definition specifies different properties of stss that are useful to check

that the corresponding solvers satisfy the conditions stated in Definition 6.

Definition 7 (Properties of stss)

Assume an sts over D whose transition relation is ��D,X, and a selected set RS of

strs. Then the sts is said to satisfy:

(1) The Fresh Local Variables Property iff Π � σ ��D,X Π′ � σ′ implies that Π′ � σ′

is a store, Y ′ = var(Π′ � σ′)\var(Π � σ) are fresh local variables, and σ′ = σσ1

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

On the cooperation of the constraint domains H, R, and FD in CFLP 441

for some substitution σ1 (responsible for the variable bindings created at this

step) such that vdom(σ1) ∪ vran(σ1) ⊆ var(Π) ∪ Y ′.

(2) The Safe Bindings Property iff Π � σ ��D,X Π′ � σ′ implies that σ1(X) is a

constant for all X ∈ X ∩ vdom(σ1), where σ′ = σσ1 as in the previous item.

(3) The Finitely Branching Property iff for any fixed Π � σ there are finitely many

Π′ � σ′ such that Π � σ ��D,X Π′ � σ′.

(4) The Termination Property iff there is no infinite sequence {Πi � σi | i ∈ �}
such that Πi � σi ��D,X Πi+1 � σi+1 for all i ∈ �.

(5) The Local Soundness Property iff for any D store Π � σ, the union
⋃

{SolD(∃Y ′(Π′ � σ′)) | Π � σ ��D,X Π′ � σ′, Y ′ = var(Π′ � σ′) \ var(Π � σ)}

is a subset of SolD(Π � σ).

(6) The Local Completeness Property for RS-free steps iff for any D store Π � σ

which is RS-irreducible but not in X-solved form, WTSolD(Π � σ) is a subset

of the union
⋃

{WTSolD(∃Y ′(Π′ � σ′)) | Π�σ ��D,X Π′�σ′, Y ′ = var(Π′�σ′) \ var(Π�σ)}

If RS is the empty set (in which case all the stores are trivially RS-irreducible)

this property is called simply local completeness.

In the case of an extensible solver, the six conditions listed in this definition must

be checked for any conservative extension D′ of D and any set Π of SPF-restricted

atomic primitive constraints over D′.

Assume a solver solveD defined by means of a given sts with transition relation

��D,X and a selected set RS of strs. If the sts is terminating, the following recursive

definition makes sense: a given store Π � σ is hereditarily RS-irreducible iff Π � σ is

RS-irreducible and all the stores Π′ � σ′ such that Π � σ ��D,X Π′ � σ′ (if any) are

also hereditarily RS-irreducible. A solver invocation solveD(Π,X) is called RS-free

iff the store Π � ε is hereditarily RS-irreducible. This notion occurs in the following

technical lemma (proved in Appendix A.1), which can be applied to ensure that

solveD satisfies the requirements for solvers listed in Definition 6.

Lemma 5 (Solvers Defined by Means of stss)

Any finitely branching and terminating D-sts verifies:

(1) SFD(Π,X) is always finite, and hence solveD is well defined and trivially

satisfies the solved forms property.

(2) solveD has the fresh local variables resp. safe bindings property if the sts has

the corresponding property.

(3) solveD is sound if the sts is locally sound.

(4) solveD is complete for RS-free invocations if the sts is locally complete for

RS-free steps. In the case that RS is empty, this amounts to say that solveD

is complete if the sts is locally complete.

Note that this lemma can be used for proving global properties of extensible

solvers, provided that the sts can work with constraint stores Π � σ, where Π

is a finite set of SPF-restricted atomic primitive constraints over some arbitrary

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

442 S. Estévez-Mart́ın et al.

conservative extension D′ of D, and the local properties required by the lemma hold

for any such D′.

In the rest of this paper, we will work with the three pure domains H, FD, and

R introduced in the following sections. We will rely on black-box solvers for R and

FD provided by SICStus Prolog, and we will define an extensible glass-box solver

for H using the store transformation technique just explained.

2.4.2 The pure constraint domain H

The Herbrand domain H supports computations with symbolic equality and

disequality constraints over values of any type. Formally, it is defined as

follows:

• Specific signature Σ = 〈TC, SBT , DC, DF, SPF〉, where SBT is empty and

SPF includes just the strict equality operator == :: A -> A -> bool.

• Interpretation ==H, defined as for any domain whose specific signature includes

==.

Recall Definition 2 and note that a conservative extension of H is any domain D
whose specific signature includes the primitive ==. Such a D will be called a domain

with equality in the sequel. The {==}-restricted constraints over a given domain

with equality are also called extended Herbrand constraints. As already explained

in Subsection 2.3, atomic Herbrand constraints have the form e1 == e2 →! t, strict

equality constraints e1 == e2 abbreviate e1 == e2 →! true, and strict disequality

constraints abbreviate e1 == e2 →! false.

Obviously demanded variables (and thus critical variables) for primitive extended

Herbrand constraints are computed as explained in Subsection 2.3. An extensible

Herbrand solver must be able to solve any finite set Π ⊆ APConD � {==} of

atomic primitive extended Herbrand constraints, w.r.t. any X ⊆ cvarD(Π) of critical

variables. Roughly speaking, the solver proceeds by symbolic decomposition and

binding propagation transformations. More precisely, we define an extensible glass-

box solver for H by means of the store transformation technique explained in

Subsection 2.4.1, using the transformation rules for H stores shown in Table 1. Each

of these rules has the form π,Π � σ ��H,X Π′ � σ′ and indicates the transformation

of any store π,Π � σ, which includes the atomic constraint π plus other constraints

Π; no sequential ordering is intended. We say that π is the selected atomic constraint

for this transformation step. The notation tm==sm in transformation H3 abbreviates

t1 == s1, . . . , tm == sm and will be used at some other places. All the stss make

sense for arbitrary extended Herbrand constraints, which ensures extensibility of

the H solver. Note that transformations H3 and H7 involve decompositions. An

application of H3 or H7 is called opaque iff h is m-opaque in the sense explained in

Subsection 2.2, in which case the new constraints resulting from the decomposition

may become ill-typed. Note also that an application of transformation H13 may

obviously lose solutions. An invocation solveH(Π,X) of the H solver is called safe

iff it has been computed without any opaque application of the store transformation

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

On the cooperation of the constraint domains H, R, and FD in CFLP 443

Table 1. Store transformations for solveH

H1 (t == s) →! R, Π � σ ��H,X (t == s, Π)σ1 � σσ1 where σ1 = {R �→ true}.
H2 (t == s) →! R, Π � σ ��H,X (t /= s, Π)σ1 � σσ1 where σ1 = {R �→ false}.
H3 h tm == h sm, Π � σ ��H,X tm==sm, Π � σ

H4 t == X, Π � σ ��H,X X == t, Π � σ if t is not a variable.

H5 X == t, Π � σ ��H,X tot(t), Πσ1 � σσ1 if X /∈ X, X /∈ var(t), X �= t,

where σ1 = {X �→ t}, tot(t) abbreviates
∧

Y ∈var(t)(Y ==Y).

H6 X == t, Π � σ ��H,X � if X ∈ var(t), X �= t.

H7 h tm /= h sm, Π � σ ��H,X (ti /= si, Π � σ) for each 1 � i � m.

H8 h tn /= h′ sm, Π � σ ��H,X Π � σ if h �= h′ or n �= m.

H9 t /= t, Π � σ ��H,X � if t ∈ Var ∪ DC ∪ DF ∪ SPF .

H10 t /= X, Π � σ ��H,X X /= t, Π � σ if t is not a variable.

H11 X/= c tn,Π�σ ��H,X (Zi/=ti,Π)σ1�σσ1 if X/∈X, c∈DCn and X ∩ var(c tn) �=∅
where 1�i�n (nondeterministic choice), σ1={X �→ cZn}, Zn fresh variables.

H12 X /= c tn, Π � σ ��H,X Πσ1 � σσ1 if X /∈ X, c ∈ DCn and X∩ var(c tn) �= ∅
where σ1 = {X �→ dZm}, c ∈ DCn, d ∈ DCm, d �= c, d belongs to the same

datatype as c, Zm fresh variables.

H13 X /= h tm, Π � σ ��H,X � if X /∈ X, X∩ var(h tm) �= ∅ and h /∈ DCm.

rules H3 and H7 and without any application of the store transformation rule

H13. More formally, solveH(Π,X) is a safe invocation of the H solver iff it is

URS-free, where URS is the set {OH3,OH7,H13} consisting of H13 and the

unsafe instances OH3 and OH7 corresponding to opaque applications of H3 and H7,

respectively.

The idea of using equality and disequality constraints in Logic Programming

stems from Colmerauer (1984, 1990). The problem of solving these constraints, as

well as related decision problems for theories involving equations and disequations,

has been widely investigated in works such as Lassez et al. (1988), Maher (1988),

Comon and Lescanne (1989), Comon (1991), Fernandez (1992), and Buntine and

Bürckert (1994), among others. These papers assume the classical algebraic semantics

for the equality relation, and propose methods for solving so-called unification and

disunification problems bearing some analogies to the transformation rules shown

in Table 1. However, there are also some differences, because strict equality in

CFLP is designed to work with lazy and possibly nondeterministic functions, whose

behavior does not correspond to the semantics of equality in classical algebra

and equational logic, as argued in Rodrı́guez-Artalejo (2001). Note, in particular,

transformation H5, which introduces constraints of the form Y == Y in H-solved

forms. These are called totality constraints, because a valuation η is a solution of

Y == Y iff η(Y) is a total pattern. An approach to disequality constraints close to

our semantic framework can be found in Arenas et al. (1994), but no formalization

of a Herbrand solver is provided.

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

444 S. Estévez-Mart́ın et al.

The following theorem ensures that the sts for H stores can be accepted as a

correct specification of an extensible glass-box solver for the domain H, which is

complete for safe solver invocations.

Theorem 1 (Formal Properties of solveH)

The sts with transition relation ��H,X is finitely branching and terminating, and

therefore

solveH(Π,X) =
∨

{∃Y ′(Π′ � σ′) | Π′ � σ′ ∈ SFH(Π,X), Y ′ = var(Π′ � σ′)\var(Π)}

is well defined for any domain with equality D, any finite Π ⊆ APCon(D) � {==}
and any X ⊆ cvarD(Π). Moreover, for any arbitrary choice of a domain D with

equality, solveH satisfies all the requirements for solvers enumerated in Definition

6, except that the completeness property may fail for some choices of the constraint

set Π ⊆ APCon(D) � {==} to be solved, and is guaranteed to hold only if the solver

invocation solveH(Π,X) is safe (i.e., {OH3,OH7,H13}-free).

The proof of the previous theorem is rather technical and can be found in

Appendix A.1. At this point, we just make a few remarks related to the discrimination

and completeness properties that may help to understand some differences between

our H solver and more classical methods for solving unification and disunification

problems. On the one hand, transformations H11 and H12 are designed to ensure the

discrimination property while preserving completeness w.r.t. well-typed solutions. On

the other hand, transformation H13 trivially ensures discrimination, but it sacrifices

completeness because it fails without making sure that no well-typed solutions

exist. This corresponds to situations unlikely to occur in practice and such that

no practical way of preserving completeness is at hand. The other two failing

transformations given in Table 1 (namely H6 and H9) respect completeness, because

they are applied to unsatisfiable stores. Finally, the other cases where completeness

may be lost correspond to unsafe decomposition steps performed with the opaque

instances OH3 and OH7 of the strs H3 and H7. Because of the termination property

of the H-sts, it is decidable wether a given H store Π � σ is hereditarily URS-

irreducible, in which case no opaque decompositions will occur when solving the

store. However, computations in the cooperative goal-solving calculus presented in

Section 3 can sometimes give rise to H stores whose resolution involves opaque

decomposition steps. Because of theoretical results proved in González-Moreno et al.

(2001), the eventual occurrence of opaque decomposition steps during goal solving

is an undecidable problem. In case that opaque decompositions occur, they should

be signaled as warnings to the user.

Example 4 (Behavior of solveH)

In order to illustrate the behavior of solveH, consider the disequality constraint L

/= X:Xs discussed in item (4) of Example 3. Remember that variable L is obviously

demanded, while variables X and Xs are both critical. Therefore, there are four

possible choices for the set X of critical variables to be used within the solver

invocation, namely: ∅, {X}, {Xs} and {X, Xs}. Let us discuss these cases one by one.

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

On the cooperation of the constraint domains H, R, and FD in CFLP 445

• Choosing X = ∅ means that the solver is not asked to discriminate w.r.t. any

critical variable. In this case, solveH(L/=X:Xs,∅) returns L/=X:Xs � ε, showing

that L/=X:Xs is seen as a solved form w.r.t. the empty set of critical variables.

• Choosing X = {X} asks the solver to discriminate w.r.t. the critical variable X.

solveH(L/=X:Xs,{X}) returns a disjunction of alternatives

(� �{L �→ []}) ∨ (X’/= X�{L �→ X′ : Xs′}) ∨ (Xs’/= Xs�{L �→ X′ : Xs′})

whose members correspond to the three different stores Π′ � σ′ such that the

step L/=X:Xs � ε ��H, {X} Π′ � σ′ can be performed with transformation H12.

Since these stores are solved w.r.t. {X}, no further transformations are required.

Note that X does not occur in the first and third alternatives, while it has

become obviously demanded in the second one. In this way, the discrimination

property required for solvers is fulfilled.

• For each of the two choices X = {Xs} and X = {X, Xs}, it is easy to check

that the solver invocation solveH(L/=X:Xs,X) returns the same disjunction of

three alternatives as in the previous item, and the discrimination property is

also fulfilled w.r.t. the chosen set X in both cases.

2.4.3 The pure constraint domain R

The R domain supporting computation with arithmetic constraints over real num-

bers is a familiar idea, used in the well-known instance CLP (R) of the CLP scheme

(Jaffar et al. 1992). In the context of our CFLP framework, a convenient formal

definition of the domain R is as follows:

• Specific signature Σ = 〈TC, SBT , DC, DF, SPF〉, where SBT = {real}
includes just one base type whose values represent real numbers, and SPF

includes the following binary primitive symbols, all of them intended to be

used in infix notation:

— The strict equality operator == :: A -> A -> bool.

— The arithmetical operators +, -, *, / :: real -> real -> real.

— The inequality operator <= :: real -> real -> bool.

• Set of base values BR
real = �.

• Interpretation ==R, defined as for any domain whose specific signature includes

==.

• Interpretation +R, defined so that for all t1, t2, t ∈ UR:

t1 +Rt2 → t is defined to hold iff some of the following cases hold:

either t1, t2, and t are real numbers, t being equal to the addition of t1 and t2,

or else t = ⊥. The interpretations of -, *, and / are defined analogously.

• Interpretation <=R, defined so that for all t1, t2, t ∈ UR:

t1 <=Rt2 → t is defined to hold iff some of the following cases hold:

either t1, t2 are real numbers such that t1 is less than or equal to t2, and t =

true; or else t1, t2 are real numbers such that t1 is greater than t2, and t =

false; or else t = ⊥.

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

446 S. Estévez-Mart́ın et al.

Atomic R constraints have the form e1 � e2 →! t, where � is the strict equa-

lity operator or the inequality operator or an arithmetical operator. An atomic

R constraint is called proper iff � is not the strict equality operator, and an

extended Herbrand constraint otherwise. As already explained in previous sections,

strict equality constraints e1 == e2 and strict disequality constraints e1 /= e2 can be

understood as abbreviations of extended Herbrand constraints. Moreover, various

kinds of inequality constraints can also be defined as abbreviations as follows:

• e1 < e2 =def e2 <= e1 →! false e1 <= e2 =def e1 <= e2 →! true

• e1 > e2 =def e1 <= e2 →! false e1 >= e2 =def e2 <= e1 →! true

Concerning the solver solveR, we expect that it is able to deal with R-specific

constraint sets Π ⊆ APConR consisting of atomic primitive constraints π of the

following two kinds:

• Proper R constraints t1 � t2 →! t, where � is either the inequality operator or

an arithmetical operator.

• R-specific Herbrand constraints having the form t1 == t2 or t1 /= t2, where

each of the two patterns t1 and t2 is either a real constant value or a variable

whose type is known to be real prior to the solver invocation.

For any finite R-specific Π ⊆ APConR, it is clear that dvarR(Π) = var(Π).

Therefore, it is safe to define odvarR(Π) = var(Π) and thus cvarR(Π) = ∅.
Consequently, invocations to solveR can be assumed to be always of the form

solveR(Π, ∅) (abbreviated as solveR(Π)), and the discrimination requirements for

critical variables become trivial. Assuming that solveR is used under the restrictions

described above and implemented as a black-box solver on top of SICStus Prolog,

we are confident that the postulate stated below is a reasonable one. In particular,

we assume that SICStus Prolog solves R-specific Herbrand constraints in a way

compatible with the behavior of the extensible H solver described in the previous

subsection.

Postulate 1 (Assumptions on the R Solver)

solveR satisfies five of the six properties required for solvers in Definition 6 (namely

Fresh Local Variables, Solved Forms, Safe Bindings, Discrimination, and Soundness),

although the Completeness property may fail for some choices of the R-specific

Π ⊆ APConR to be solved. Moreover, whenever Π ⊆ APConR is R-specific and

Π ��solveR ∃Y ′(Π′ � σ′), the constraint set Π′ is also R-specific, and for all X ∈
vdom(σ′): either σ′(X) is a real value, or else X and σ′(X) belong to var(Π).

Example 5 (Behavior of the R Solver)

Let us now illustrate the behavior of solveR by considering the set of primitive atomic

constraints RY >= d-0.5, RY-RX <= 0.5, RY+RX <= n+0.5 occurring in item (2)

of Example 3. The solver invocation solveR(ΠR) returns one single alternative Π′
R � ε

with Π′
R = ΠR ∪ {RY <= d+0.5}. In this case, the new constraint RY <= d+0.5 has

been inferred by adding the two former constraints RY-RX <= 0.5 and RY+RX <=

n+0.5 and taking into account that n = 2*d. In other cases, the R solver can perform

other inferences by means of arithmetical reasoning valid in the mathematical theory

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

On the cooperation of the constraint domains H, R, and FD in CFLP 447

of the real number field. In general, solved forms computed by solvers help to make

more explicit the requirements on variable values already “hidden” in the constraints

prior to solving (as the upper bound RY <= d+0.5 in this example).

2.4.4 The pure constraint domain FD

The idea of an FD domain supporting computation with arithmetic and finite

domain constraints over the integers is a familiar one within the CLP community

(see, e.g., van Hentenryck et al. 1994, 1998). In the context of our CFLP framework,

a convenient formal definition of the domain FD is as follows:

• Specific signature Σ = 〈TC, SBT , DC, DF, SPF〉, where SBT = {int}
includes just one base type whose values represent integer numbers, and SPF

includes the following primitive symbols:

— The strict equality operator == :: A -> A -> bool.

— The arithmetical operators #+, #-, #*, #/ :: int -> int -> int.

— The following primitive symbols related to computation with finite do-

mains:

– domain:: [int] -> int -> int -> bool

– belongs:: int -> [int] -> bool

– labeling:: [labelType] -> [int] -> bool, where labelType is an

enumerated datatype used to represent labeling strategies.

— The inequality operator #<= :: int -> int -> bool.

• Set of base values BFD
int = �.

• Interpretation ==FD, defined as for any domain whose specific signature

includes ==.

• Interpretation #+FD, defined so that for all t1, t2, t ∈ UFD:

t1 #+FDt2 → t is defined to hold iff some of the following cases hold:

either t1, t2, and t are integer numbers, t being equal to the addition of t1
and t2, or else t = ⊥. The interpretations of #-, #*, and #/ are defined

analogously.

• Interpretation domainFD, defined so that for all t1, t2, t3, t ∈ UFD:

domainFD t1 t2 t3 → t is defined to hold iff some of the following cases hold:

either t2 and t3 are integer numbers a and b such that a � b, t1 is a nonempty

finite list of integers belonging to the interval a..b and t = true; or else t2
and t3 are integer numbers a and b such that a � b, t1 is a nonempty list of

integers some of which do not belong to the interval a..b and t = false; or

else t2 and t3 are integer numbers a and b such that a > b and t = false; or

else t = ⊥.

• Interpretation belongsFD, defined so that for all t1, t2, t ∈ UFD:

belongsFD t1 t2 → t is defined to hold iff some of the following cases hold:

either t1 is an integer, t2 is a finite list of integers including t1 as element, and

t = true; or else t1 is an integer, t2 is a finite list of integers not including t1
as element, and t = false; or else t = ⊥.

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

448 S. Estévez-Mart́ın et al.

• Interpretation labelingFD, defined so that for all t1, t2, t ∈ UFD:

labelingFD t1 t2 → t is defined to hold iff some of the following cases hold:

either t1 is a defined value of type labelType, t2 is a finite list of integers, and

t = true; or else t = ⊥.

• Interpretation #<=FD, defined so that for all t1, t2, t ∈ UFD:

t1 #<=FDt2 → t is defined to hold iff some of the following cases hold:

either t1, t2 are integer numbers such that t1 is less than or equal to t2, and t

= true; or else t1, t2 are integer numbers such that t1 is greater than t2, and

t = false; or else t = ⊥.

Atomic FD constraints include those of the form e1 � e2 →! t, where � is either

the strict equality operator or the inequality operator or an arithmetical operator,

as well as domain constraints domain e1 e2 e3 →! t, membership constraints belongs

e1 e2 →! t and labeling constraints labeling e1 e2 →! t. Atomic FD constraints

are called extended Herbrand if they have the form e1 == e2 →! t, and proper

FD constraints otherwise. As already explained in previous sections, strict equality

constraints e1 == e2 and strict disequality constraints e1 /= e2 can be understood

as abbreviations of extended Herbrand constraints. Moreover, various kinds of

inequality constraints can also be defined as abbreviations as follows:

• e1 #< e2 =def e2 #<= e1 →! false e1 #<= e2 =def e1 #<= e2 →! true

• e1 #> e2 =def e1 #<= e2 →! false e1 #>= e2 =def e2 #<= e1 →! true

Concerning the solver solveFD, we expect that it is able to deal with FD-specific

constraint sets Π ⊆ APConFD consisting of atomic primitive constraints π of the

following two kinds:

• Proper FD atomic primitive constraints (which may be t1 � t2 →! t, where

� is either an integer arithmetical primitive or an inequality primitive, or

primitive domain, membership, and labeling constraints).

• FD-specific Herbrand constraints having the form t1 == t2 or t1 /= t2, where

each of the two patterns t1 and t2 is either an integer constant value or a

variable whose type is known to be int prior to the solver invocation.

For any finite FD-specific Π ⊆ APConFD, it is clear that dvarFD(Π) = var(Π).

Therefore, it is safe to define odvarFD(Π) = var(Π) and thus cvarFD(Π) = ∅.
Consequently, invocations to solveFD can be assumed to be always of the form

solveFD(Π, ∅) (abbreviated as solveFD(Π)), and the discrimination requirements for

critical variables become trivial. Assuming that solveFD is used under the restrictions

described above and implemented as a black-box solver on top of SICStus Prolog,

we are confident that the postulate stated below is a reasonable one. In particular,

we assume that SICStus Prolog solves FD-specific Herbrand constraints in a way

compatible with the behavior of the extensible H solver described in the previous

subsection.

Postulate 2 (Assumptions on the FD Solver)

solveFD satisfies five of the six properties required for solvers in Definition 6 (namely

Fresh Local Variables, Solved Forms, Safe Bindings, Discrimination, and Soundness),

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

On the cooperation of the constraint domains H, R, and FD in CFLP 449

although the Completeness property may fail for some choices of the FD-specific

Π ⊆ APConFD to be solved. Moreover, whenever Π ⊆ APConFD is FD-specific

and Π ��solveFD ∃Y ′(Π′ � σ′), the constraint set Π′ is also FD-specific, and for all

X ∈ vdom(σ′): either σ′(X) is an integer value, or else X and σ′(X) belong to var(Π).

In particular, labeling constraints are solved by a systematic enumeration of

possible values for certain integer variables. Therefore, solveFD is unable to solve

a labeling constraint π unless the current constraint store includes domain or

membership constraints for all the variables occurring in π. The next example shows

a typical situation.

Example 6 (Behavior of the FD Solver)

In order to illustrate the behavior of solveFD, let us consider the set of primitive

atomic constraints ΠF = {domain [X,Y] 0 n, labeling [] [X,Y]} occurring

also in item (2) of Example 3. The solver invocation solveFD(ΠF) must solve the

conjunction of a domain constraint and a labeling constraint, both involving the

integer variables X and Y. The solver proceeds by enumerating all the possible values

of both variables X and Y within their respective domains (determined in this case

by the domain constraint domain [X,Y] 0 n) and returns a disjunction of (n+1)2

alternatives, each of which describes one single solution:

(� �{X �→ 0, Y �→ 0}) ∨ · · · ∨ (� �{X �→ n, Y �→ n})

In general, solving labeling constraints can give rise to very expensive enumera-

tions of solutions, unless the finite domains of the integer variables involved have

been pruned by some precedent computation. As already discussed in Subsection

1.2, the efficiency of solving the constraint system occurring in item (2) of Example 3

can be greatly improved by cooperation among the the domains H, R, and FD. We

propose to use the coordination domains defined in the next subsection as a vehicle

for domain cooperation in CFLP programming.

2.5 Coordination domains

Coordination domains C are a kind of “hybrid” domains built from various compo-

nent domains Di, intended to cooperate. The construction of coordination domains

also involves a so-called mediatorial domain M, whose purpose is to supply bridge

constraints for communication among the component domains. In practice, the

component domains will be chosen as pure domains equipped with solvers, and the

communication provided by the mediatorial domain will also benefit the solvers.

Mathematically, the construction of coordination domains relies on a joinability

condition. Two given constraint domains D1 and D2 with specific signatures Σ1 =

〈TC, SBT1, DC, DF, SPF1〉 and Σ2 = 〈TC, SBT2, DC, DF, SPF2〉, respectively,

are called joinable iff the following two conditions hold:

• SPF1 ∩ SPF2 ⊆ {==}; i.e., the only primitive function symbol p allowed to

belong both to SPF1 and SPF2 is the strict equality operator ==.
• For every common base type d ∈ SBT1 ∩ SBT2, one has BD1

d = BD2

d .

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

450 S. Estévez-Mart́ın et al.

The amalgamated sum S = D1⊕D2 of two joinable domains D1 and D2 is defined

as a new domain with signature Σ = 〈TC, SBT1 ∪ SBT2, DC, DF, SPF1 ∪ SPF2〉,
constructed as follows:

• For i = 1, 2 and for all d ∈ SBTi: BS
d = BDi

d .

(no conflict will arise for those d ∈ SBT1 ∩ SBT2, because of joinability)

• For i = 1, 2, for all p ∈ SPFi, p other than ==, and for all tn, t ∈ US:

pStn → t is defined to hold iff one of the following two cases holds:

either t = ⊥ or else there exist t′n, t
′ ∈ UDi

such that t′n � tn, t
′ � t and

pDi t′n → t′.

Note that the value universe US underlying an amalgamated sum S = D1 ⊕ D2 is

a superset of UDi
for i = 1, 2. The interpretation of == in S will behave as defined

for any constraint domain (see Subsection 2.3). For primitive functions p ∈ SPFi

other than ==, the definition of pS is designed to obtain an extension of pDi which

satisfies the technical conditions required by Definition 1.

The amalgamated sum D1 ⊕ · · · ⊕ Dn of n pairwise joinable domains Di (1 �
i � n) can be defined analogously. The following definition and theorem guarantee

the expected behavior of amalgamated sums as conservative extensions of their

components. The proof of the theorem is given in Appendix A.1.

Definition 8 (Domain-specific Constraints and Truncation Operator)

Assume S = D1 ⊕ · · · ⊕Dn of signature Σ, constructed as the amalgamated sum of

n pairwise joinable domains Di of signatures Σi. Let any 1 � i � n be arbitrarily

fixed.

(1) A set Π ⊆ APConDi
is called Di-specific iff every valuation η ∈ ValS such

that η ∈ SolS(Π) satisfies η(X) ∈ UDi
for all X ∈ var(Π). Note that the R-

and FD-specific sets of constraints previously introduced in subsections 2.4.3

and 2.4.4 are also specific in the sense just defined.

(2) Consider the information ordering � over US. The Di-truncation of a given

S value t ∈ US is defined as the �-greatest Di value | t |Di
∈ UDi

which

satisfies | t |Di
� t, so that any other Di value t̂ ∈ UDi

such that t̂ � t

must satisfy t̂ � | t |Di
. An effective construction of | t |Di

from t can be

obtained by substituting ⊥ in place of any subpattern of t which has any of

the following two forms: a basic value u which does not belong to UDi
, or a

partial application of a primitive function which does not belong to Di-specific

signature. Note that | t |Di
= t if and only if t ∈ UDi

.

(3) The Di-truncation of a given S-valuation η ∈ ValS is the Di valuation | η |Di

defined by the condition | η |Di
(X) = | η(X) |Di

, for all X ∈ Var. Note that

| η |Di
= η if and only if η ∈ ValDi

.

Theorem 2 (Properties of Amalgamated Sums)

For any S = D1 ⊕ · · · ⊕ Dn of signature Σ constructed as the amalgamated sum of

n pairwise joinable domains Di of signatures Σi (1 � i � n):

(1) S is well defined as a constraint domain; i.e., the interpretations of primitive

function symbols in S satisfy the four conditions listed in Definition 1 from

Subsection 2.3.

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

On the cooperation of the constraint domains H, R, and FD in CFLP 451

(2) S is a conservative extension of Di for all (1 � i � n); i.e., for all 1 � i � n,

for any p ∈ SPFm
i other than ==, and for every tm, t ∈ UDi

, one has pDi tm → t

iff pS tm → t.

(3) For all 1 � i � n, for any set of primitive constraints Π ⊆ APConDi
and for

every valuation η ∈ ValDi
, one has η ∈ (WT)SolDi

(Π) iff η ∈ (WT)SolS(Π).

(4) For all 1 � i � n, for any set of Di-specific primitive constraints Π ⊆
APConDi

and for every valuation η ∈ ValS, one has η ∈ (WT)SolS(Π) iff

| η |Di
∈ (WT)SolDi

(Π).

Note that amalgamated sums of the form H⊕D are always possible, and give rise

to compound domains that can profit from the extensible Herbrand solver. However,

in order to construct more interesting sums tailored to the communication among

several pure domains, so-called mediatorial domains are needed. Given n pairwise

joinable domains Di with specific signatures Σi = 〈TC, SBTi, DC, DF, SPFi〉
(1 � i � n), a mediatorial domain for the communication among D1, . . . ,Dn is

defined as any domain M with specific signature Σ0 = 〈TC, SBT0, DC, DF, SPF0〉
constructed in such a way that the following conditions are satisfied:

• SBT0 ⊆
⋃n

i=1 SBTi, and SPF0 ∩ SPFi = ∅ for all 1 � i � n.

• For each d ∈ SBT0 and for any 1 � i � n such that d ∈ SBTi, BM
d = BDi

d .

(no confusion can arise, since the domains Di are pairwise joinable).

• Each p ∈ SPF0 is a so-called equivalence primitive #==di,dj with declared

principal type di → dj → bool, for some 1 � i, j � n and some di ∈ SBTi,

dj ∈ SBTj .

• Moreover, each equivalence primitive #==di,dj is used in infix notation and

there is an injective partial mapping injdi,dj : BDi

di
→ BDj

dj
used to define the

interpretation of #==di,dj in M as follows: for all s, t, r ∈ UM, s #==M
di,dj

t → r

iff some of the three cases listed below hold:

(1) s ∈ dom(injdi,dj), t ∈ BDj

dj
, t = injdi,dj (s) and true � r.

(2) s ∈ dom(injdi,dj), t ∈ BDj

dj
, t �= injdi,dj (s) and false � r.

(3) r = ⊥.

Equivalence primitives #==di,dj allow to write well-typed atomic mediatorial con-

straints of the form a #==di,dj b →! c, using expressions a :: di, b :: dj and c :: bool.

Constraints of the form a #==di,dj b →! true resp. a #==di,dj b →! false are

abbreviated as a #==di,dj b resp. a #/==di,dj b and called bridges and antibridges,

respectively. The usefulness of bridges for cooperative goal solving in CFLP

has been motivated in the introduction and will be elaborated when presenting

the cooperative goal-solving calculus CCLNC(C) in Section 3. Antibridges and

mediatorial constraints a #==di,dj b →!R, where R is a variable, can also occur in

CCLNC(C) computations, but they are not so directly related to domain cooperation

as bridges.

Each particular choice of injective partial mappings injdi,dj and their corresponding

equivalence primitives #==di,dj gives rise to the construction of a particular media-

torial domain M, suitable for communication among the Di. Moreover, it is clear

by construction that the n + 1 domains M, D1, . . . , Dn are pairwise joinable, and it

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

452 S. Estévez-Mart́ın et al.

is possible to build the amalgamated sum C = M ⊕ D1 ⊕ · · · ⊕ Dn. This “hybrid”

domain supports the communication among the domains Di via bridge constraints

provided by M. Therefore, M is called a coordination domain for D1, . . . ,Dn.

In practice, it is advisable to include the Herbrand domain H as one of the

component domains Di when building a coordination domain C. In application

programs over such a coordination domain, the H solver is typically helpful for

solving symbolic equality and disequality constraints over user-defined datatypes,

while the solvers of other component domains Di whose specific signatures include

the primitive == may be helpful for computing with equalities and disequalities

related to Di’s specific base types.

2.6 The coordination domain C = M⊕H⊕FD⊕R

In this subsection, we explain the construction of a coordination domain for coope-

ration among the three pure domains H, FD, and R.

First, we define a mediatorial domain M suitable to this purpose. It is built with

specific signature Σ0 = 〈TC, SBT0, DC, DF, SPF0〉, where SBT0 = {int, real} and

SPF0 = {#==int,real}. The equivalence primitive #==int,real is interpreted with respect

to the total injective mapping injint,real :: � → �, which maps each integer value

into the equivalent real value. In the sequel, we will write #== in place of #==int,real
when referring to this equivalence primitive. We will use the same abbreviation for

writing mediatorial constraints.

Next, we use this mediatorial domain for building C = M ⊕ H ⊕ FD ⊕ R. In

the rest of the paper, C will always stand for this particular coordination domain,

whose usefulness has been motivated in Section 1 and will become more evident

in Section 3. Note that bridges X #== RX and antibridges X #/== RX can be useful

just as constraints; in particular, X #== RX acts as an integrality constraint over the

value of the real variable RX. More importantly, in Section 3 the mediatorial domain

C will serve as a basis for useful cooperation facilities, including the projection of

R constraints to the FD solver (and vice versa) using bridges, the specialization of

H constraints to become R- or FD-specific in some computational contexts, and

some other special mechanisms designed for processing the mediatorial constraints

occurring in computations.

In particular, computation rules for simplifying mediatorial constraints will be

needed. Although M is not a “pure” domain, simplifying M constraints is most

conveniently thought of as the task of a M solver. This solver is expected to

deal with M-specific constraint sets Π ⊆ APConM consisting of atomic primitive

constraints π of the form t #==s →! b, where b is either a variable or a Boolean

constant and each of the two patterns t and s is either a variable or a numeric

value of the proper type (int for t and real for s). For any finite set Π ⊆ APConM
of such M-specific constraints, it is clear that dvarM(Π) = var(Π). Therefore,

it is safe to define odvarM(Π) = var(Π) and thus cvarM(Π) = ∅. We define a

glass-box solver solveM by means of the store transformation technique explained

in Subsection 2.4.1, using the strs for M stores shown in Table 2. Because of

the absence of critical variables, one-step transformations of M stores do not

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

On the cooperation of the constraint domains H, R, and FD in CFLP 453

Table 2. Store transformations for solveM

M1 (t #== s) →! B, Π � σ ��M (t #== s, Π)σ1 � σσ1

if t ∈ Var ∪ �, s ∈ Var ∪ �, B ∈ Var, where σ1 = {B �→ true}.

M2 (t #== s) →! B, Π � σ ��M (t #/== s, Π)σ1 � σσ1

if t ∈ Var ∪ �, s ∈ Var ∪ �, B ∈ Var, where σ1 = {B �→ false}.

M3 X #==u′, Π � σ ��M Πσ1 � σσ1

if u′ ∈ �, and there is u ∈ � such that u #==M u′ → true, where σ1 = {X �→ u}.

M4 X #== u′, Π � σ ��M �
if u′ ∈ �, and there is no u ∈ � such that u #==M u′ → true.

M5 u #== RX, Π � σ ��M Πσ1 � σσ1

if u ∈ � and u′∈� is so chosen that u #==M u′ → true, where σ1 = {RX �→ u′}.

M6 u #== u′, Π � σ ��M Π � σ if u ∈ �, u′ ∈ �, and u #==M u′ → true.

M7 u #== u′, Π � σ ��M � if u ∈ �, u′ ∈ �, and u #==M u′ → false.

M8 u #/== u′, Π � σ ��M Π � σ if u ∈ �, u′ ∈ �, and u #==M u′ → false

M9 u #/== u′, M � σ ��M � if u ∈ �, u′ ∈ �, and u #==M u′ → true.

depend on a parametrically given set X of critical variables and have the form

π,Π � σ ��M Π′ � σ′, indicating the transformation of any store π,Π � σ, which

includes the atomic constraint π plus other constraints Π; no sequential ordering

is intended. We say that π is the selected atomic constraint for this transformation

step.

The following theorem ensures that the sts for M stores can be accepted as a

correct specification of a glass-box solver for the domain M.

Theorem 3 (Formal Properties of the M Solver)

The sts with transition relation ��M is finitely branching and terminating, and

therefore

solveM(Π) =
∨

{∃Y ′(Π′ � σ′) | Π′ � σ′ ∈ SFM(Π), Y ′ = var(Π′ � σ′) \ var(Π)}

is well defined for any finite Π ⊆ APConM of M-specific constraints. The solver

solveM satisfies all the requirements for solvers enumerated in Definition 6. Moreover,

whenever Π ⊆ APConM is M-specific and Π ��solveM ∃Y ′(Π′ � σ′), the constraint set

Π′ is also M-specific and σ′(X) is either a Boolean value, an integer value or a real

value for all X ∈ vdom(σ′).

The proof is omitted, because it is completely similar to that of Theorem 1 but

much easier. In fact, the sts for M stores involves no decompositions. Actually, this

sts is finitely branching, terminating, locally sound, and locally complete. Therefore,

Lemma 5 can be applied.

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

454 S. Estévez-Mart́ın et al.

The framework for cooperative programming and the cooperative goal-solving

calculus CCLNC(C) presented in Section 3 essentially rely on the coordination

domain C just discussed, and the instance CFLP (C) of the CFLP scheme (López-

Fraguas et al. 2007) provides a declarative semantics for proving the soundness

and completeness of CCLNC(C). As we will see, some cooperative goal-solving

rules in CCLNC(C) rely on the identification of certain atomic primitive Herbrand

constraints π as FD- or R-specific, respectively, on the basis of the mediatorial

constraints available in a given M store M. The notations M � π in FD and

M � π in R defined below serve to this purpose.

Definition 9 (Inference of Domain-specific Extended Herbrand Constraints)

Assume a mediatorial store M and a well-typed atomic extended Herbrand constraint

π having the form t1 == t2 or t1 /= t2, where each of the two patterns t1 and t2 is

either a numeric constant v or a variable V . Then we define:

(1) M � π in FD (read as “M allows to infer that π is FD-specific”) iff some of

the following three conditions hold:

(a) t1 or t2 is an integer constant.

(b) t1 or t2 is a variable that occurs as the left argument of the operator #==

within some mediatorial constraint belonging to M.

(c) t1 or t2 is a variable that has been recognized to have type int by some

implementation-dependent device.

(2) M � π in R (read as “M allows to infer that π is R-specific”) iff some of the

following three conditions hold:

(a) t1 or t2 is a real constant.

(b) t1 or t2 is a variable that occurs as the right argument of the operator

#== within some mediatorial constraint belonging to M.

(c) t1 or t2 is a variable that has been recognized to have type real by some

implementation-dependent device.

3 Cooperative programming and goal solving in CFLP (C)

This section presents our cooperative computation model for goal solving. After in-

troducing programs and goals in the first subsection, the subsequent subsections deal

with goal-solving rules, illustrative computation examples, and results concerning

the formal properties of the computation model.

Our goal-solving rules work by transforming initial goals into final goals in

solved form which serve as computed answers, as in the previously published

constrained lazy narrowing calculus CLNC(D) (López-Fraguas et al. 2004), which

works over any parametrically given domain D equipped with a solver. We have

substantially extended CLNC(D) with various mechanisms for domain cooperation

via bridges, projections, and some more ad hoc operations. The result is a cooperative

constrained lazy narrowing calculus CCLNC(C) which is sound and complete (with

some limitations) w.r.t. the instance CFLP (C) of the generic CFLP scheme (López-

Fraguas et al. 2007). For the sake of typographic simplicity, we have restricted our

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

On the cooperation of the constraint domains H, R, and FD in CFLP 455

presentation of CCLNC(C) to the case C = M ⊕ H ⊕ FD ⊕ R, although it could

be easily extended to other coordination domains, as sketched in our previous paper

(Estévez-Martı́n et al. 2007b).

3.1 Programs and goals

CFLP (C)-programs are sets of constrained rewrite rules that define the behavior of

possibly higher-order and/or nondeterministic lazy functions over C, called program

rules. More precisely, a program rule Rl for a defined function symbol f ∈ DFn
Σ

with principal type f :: τn → τ has the form f tn → r ⇐ Δ, where tn is a linear

sequence of patterns, r is an expression, and Δ is a finite conjunction δ1, . . . , δm of

atomic constraints δi ∈ AConC. Each program rule Rl is required to be well-typed,

i.e., there must exist some type environment Γ for the variables occurring in Rl such

that Σ, Γ �WT ti :: τi for all 1 � i � n, Σ, Γ �WT r :: τ and Σ, Γ �WT δi for all

1 � i � m.

The left-linearity requirement is quite common in functional and functional logic

programming. As in CLP , the conditional part of a program rule needs no explicit

occurrences of existential quantifiers. A program rule Rl is said to include free

occurrences of higher-order logic variables iff there is some variable X which does

not occur in the left-hand side of Rl but has some occurrence in a context of the form

X em (with m > 0) somewhere else in Rl. A program P includes free occurrences of

higher-order logic variables iff some of the program rules in P do.

As in functional languages such as Haskell (Peyton-Jones 2002), our programs

rules can deal with higher-order functions and are not expected to be always

terminating. Moreover, in contrast to Haskell and most other functional languages,

we do not require program rules to be confluent. Therefore, some program defined

functions can be nondeterministic and return several values for a fixed choice of

arguments in some cases. As a concrete example of typed CFLP (C)-program written

in the concrete syntax of the TOY system, we refer to the program rules presented

in Subsection 1.2.

Programs are used to solve goals using a cooperative goal-solving calculus which

will be described in Subsections 3.2, 3.3, and 3.4. Goals over the coordination domain

C have the general form G ≡ ∃U. P � C � M � H � F � R, where the symbol �

is interpreted as conjunction and:

• U is a finite set of so-called existential variables, intended to represent local

variables in the computation.

• P is a set of so-called productions of the form e1 → t1, . . . , em → tm, where

ei ∈ ExpC and ti ∈ PatC for all 1 � i � m. The set of produced variables of

G is defined as the set pvar(P) of variables occurring in t1 . . . tm. During

goal solving, productions are used to compute values for the produced

variables insofar as demanded, using the goal-solving rules for constrained

lazy narrowing presented in Subsection 3.2. We consider a production relation

between variables, such that X �P Y holds iff X,Y ∈ pvar(P) and there is

some 1 � i � m such that X ∈ var(ei) and Y ∈ var(ti).

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

456 S. Estévez-Mart́ın et al.

• C is the so-called constraint pool, a finite set of constraints to be solved,

possibly including active occurrences of defined functions symbols.

• M = ΠM � σM is the mediatorial store, including a finite set of atomic primitive

constraints ΠM ⊆ APConM and a substitution σM . We will write BM ⊆ ΠM

for the set of all π ∈ ΠM which are bridges t #== s, where each of the two

patterns t and s may be either a variable or a numeric constant.

• H = ΠH � σH is the Herbrand store, including a finite set of atomic primitive

constraints ΠH ⊆ APConH and a substitution σH .

• F = ΠF � σF is the finite domain store, including a finite set of atomic primitive

constraints ΠF ⊆ APConFD and a substitution σF .

• R = ΠR � σR is the real arithmetic store, including a finite set of atomic

primitive constraints ΠR ⊆ APConR and a substitution σR .

A goal G is said to have free occurrences of higher-order logic variables iff there

is some variable X occurring in G in some context of the form X em, with m > 0.

Two special kinds of goals are particularly interesting. Initial goals just consist of a

well-typed constraint pool C . More precisely, the existential prefix U, productions

in P , and stores M, H , F, and R are empty. Solved goals (also called solved forms)

have empty P and C parts and cannot be transformed by any goal-solving rule.

Therefore, they are used to represent computed answers. We will also write � to

denote an inconsistent goal.

Example 7 (Initial and Solved Goals)

Consider the initial goals Goal 1, Goal 2, and Goal 3 presented in TOY syntax in

Subsection 1.2, for the choice d = 2, n = 4. When written with the abstract syntax

for general CFLP (C)-goals they become

(1) � bothIn (triangle (2, 2.75) 4 0.5) (square 4) (X,Y) ����

(2) � bothIn (triangle (2, 2.5) 2 1) (square 4) (X,Y) ����

(3) � bothIn (triangle (2, 2.5) 8 1) (square 4) (X,Y) ����

The expected solutions for these goals have been explained in Subsection 1.2. A

general notion of solution for goals will be defined in Subsection 3.6. The resolution

of these example goals in our cooperative goal-solving calculus CCLNC(C) will

be discussed in detail in Subsection 3.5. The respective solved forms obtained as

computed answers (restricted to the variables in the initial goal) will be:

(1) �
(2) ���� (� � {X �→ 2, Y �→ 2}) �

(3) ���� (� � {X �→ 0, Y �→ 2}) �

���� (� � {X �→ 1, Y �→ 2}) �

���� (� � {X �→ 2, Y �→ 2}) �

���� (� � {X �→ 3, Y �→ 2}) �

���� (� � {X �→ 4, Y �→ 2}) �

The goal-solving rules of the CCLNC(C) calculus presented in the rest of this

section have been designed as an extension of an existing goal-solving calculus for

the CFLP scheme (López-Fraguas et al. 2004), adding the new features needed to

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

On the cooperation of the constraint domains H, R, and FD in CFLP 457

support solver coordination via bridge constraints. In contrast to previous related

works such as Loogen et al. (1993), Antoy et al. (1994, 2000), and del Vado-Vı́rseda

(2003, 2005, 2007), we have omitted the use of so-called definitional trees to ensure

an optimal selection of needed narrowing steps. This feature could be easily added to

CCLNC(C) following the ideas from del Vado-Vı́rseda (2005), but we have decided

not do so in order to avoid technical complications which do not contribute to a

better understanding of domain cooperation. Moreover, the design of CCLNC(C)

is tailored to programs and goals having no free occurrences of higher-order logic

variables. As shown in González-Moreno et al. (2001), goal-solving rules for dealing

with free higher-order logic variables give rise to ill-typed solutions very often. If

desired, they could be easily added to our present setting.

Let us finish this subsection with a brief discussion of some technical issues

needed in the sequel. The set odvar(G) of obviously demanded variables in a given

goal G is defined as the least subset of var(G) which satisfies the following two

conditions:

(1) odvar(G) includes odvarM(ΠM), odvarH(ΠH), odvarFD(ΠF), and odvarR(ΠR)

which are defined as explained in Subsections 2.3 and 2.4.

(2) X ∈ odvar(G) for any production (Xak → t) ∈ P such that k > 0 and either

t /∈ Var or else t ∈ odvar(G).

Note that odvar(G) boils down to odvarM(ΠM) ∪ odvarH(ΠH) ∪ odvarFD(ΠF) ∪
odvarR(ΠR) in the case that G has no free occurrences of higher-order variables.

Productions e → X such that e is an active expression and X /∈ odvar(G) is a not

obviously demanded variable are called suspensions, and play an important role

during goal solving.

Certain properties are trivially satisfied by initial goals and kept invariant through

the application of goal transformations. Such goal invariant properties include those

formalized in previous works as, e.g., López-Fraguas et al. (2004): each produced

variable is produced only once, all the produced variables must be existential, the

transitive closure �+
P of the relation between produced variables must be irreflexive,

and no produced variable occurs in the answer substitutions. Other goal invariants

are more specific of our current cooperative setting based on the coordination

domain C:

• The domains of the substitutions σM , σH , σF, and σR are pairwise disjoint.

• For any store S in G, the application of σS causes no modification to the goal.

• For any X ∈ vdom(σM), σM(X) is either a Boolean value, an integer value, or

a real value.

• For any X ∈ vdom(σF), σF (X) is either an integer value or a variable occurring

in ΠF .

• For any X ∈ vdom(σR), σR(X) is either a real value or a variable occurring in

ΠR .

These properties remain invariant through goal transformations because of

Theorem 3 and Postulates 2 and 1, and also because the bindings computed by

each particular solver are properly propagated to the rest of the goal. In particular,

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

458 S. Estévez-Mart́ın et al.

whenever a variable binding {X �→ t} arises in one of the stores during goal solving,

the propagation of this binding to the goal applies the binding everywhere, but

places it only within the substitution of this particular store, so that the first item

above is ensured.

At this point, we must introduce some auxiliary notations in order to make

this idea more precise. Let D stand for any of the four domains M, H, FD,

or R and consider the store S = ΠS � σS corresponding to D. We will note as

(P �C �M �H �F �R)@Dσ
′ the result of applying σ′ to P �C �M �H �F �R

and composing σS with σ′. More formally, in the particular case that D is chosen as

FD, we define (P �C �M �H �F �R)@FDσ
′ as Pσ′ �Cσ′ �M �σ′ �H �σ′ �F@

σ′ �R �σ′, where F@σ′ is defined as ΠFσ
′ � σFσ

′ and S � σ′ is defined as ΠSσ
′ � σS � σ

′

for S being M, H, or R. Recall that the application of σ′ to σS has been defined as

σS � σ
′ = σSσ

′ � vdom(σS) in Subsection 2.2, and note that σS � σ
′ retains the same

domain as σS .

The notations explained in the previous paragraph will be used for presenting

several goal transformation rules in the next subsections. The formal definition for

the other three possible choices of D is completely analogous. In the rest of the

paper, we will restrict our attention to so-called admissible goals G that arise from

initial goals through the iterated application of goal transformation rules and enjoy

the goal invariant properties just described.

3.2 Constrained lazy narrowing rules

The core of our cooperative goal-solving calculus CLNC(C) consists of the goal-

solving rules displayed in Table 3. Roughly speaking, these rules model the behavior

of constrained lazy narrowing ignoring domain cooperation and solver invocation.

They have been adapted from López-Fraguas et al. (2004) and can be classified as

follows: the first four rules encode unification transformations similar to those found

in the H sts (see Subsection 2.4.2) and other related formalisms; rule EL discharges

unneeded suspensions, rule DF (presented in two cases in order to optimize the

k = 0 case) applies program rules to deal with calls to program defined functions;

rule PC transforms demanded calls to primitive functions into atomic constraints

that are placed in the pool; and rule FC, working in interplay with PC, transforms

the atomic constraints in the pool into a flattened form consisting of a conjunction

of atomic primitive constraints with new existential variables.

The behavior of the main rules in Table 3 will be illustrated in Subsection 3.5.

Example 8 focuses on the transformation rules PC and FC. Their iterated application

flattens the atomic R constraint (RX + 2*RY)*RZ <= 3.5 into a conjunction of

four atomic primitive R constraints involving three new existential variables that

are placed in the constraint pool. Note that López-Fraguas et al. (2004) and other

previous related calculi also include rules that can be used to achieve constraint

flattening, but the resulting atomic primitive constraints are placed in a constraint

store. In our present setting, they are kept in the pool in order that the domain

cooperation rules described in the next subsection can process them.

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

On the cooperation of the constraint domains H, R, and FD in CFLP 459

Table 3. Rules for constrained lazy narrowing

DC DeComposition

∃U. h em → h tm, P � C � M � H � F � R ��DC ∃U. em → tm, P � C � M � H � F � R

CF Conflict Failure

∃U. e → t, P � C � M � H � F � R ��CF �

If e is rigid and passive, t /∈ Var, e and t have conflicting roots.

SP Simple Production

∃U. s → t, P � C � M � H � F � R ��SP ∃U ′
. (P � C � M � H � F � R)@Hσ′

If s = X ∈ Var, t /∈ Var, σ′ = {X �→ t} and U ′ = U or else s ∈ PatC , t = X ∈ Var, σ′ = {X �→ s} and U
′
= U\{X}.

IM IMitation

∃X,U. h em→X, P � C � M � H � F � R ��IM ∃Xm,U. (em→Xm, P � C � M � H � F � R)σ′

If h em /∈ PatC is passive, X ∈ odvar(G) and σ′ = {X �→ h Xm}.

EL ELimination

∃X,U. e → X, P � C � M � H � F � R ��EL ∃U. P � C � M � H � F � R

If X does not occur in the rest of the goal.

DF Defined Function

∃U. f en → t, P � C � M � H � F � R ��DFf

∃Y ,U. en → tn, r → t, P � C ′ , C � M � H � F � R

If f ∈ DFn , t /∈ Var or t ∈ odvar(G) and Rl : f tn → r ⇐ C ′ is a fresh variant of a rule in P, with

Y = var(Rl) new variables.

∃U. f enak → t, P � C � M � H � F � R ��DFf

∃X,Y ,U. en → tn, r → X, X ak → t, P � C ′ , C � M � H � F � R

If f ∈ DFn (k > 0), t /∈ Var or t ∈ odvar(G) and Rl : f tn → r ⇐ C ′ is a fresh variant of a rule in P, with

Y = var(Rl) and X new variables.

PC Place Constraint

∃U. p en → t, P � C � M � H � F � R ��PC ∃U. P � p en →! t, C � M � H � F � R

If p ∈ PFn and t /∈ Var or t ∈ odvar(G).

FC Flatten Constraint

∃U. P � p en →! t, C � M � H � F � R ��FC

∃Vm,U. am → Vm, P � p tn →! t, C � M � H � F � R

If p ∈ PFn , some ei /∈ PatC , am (m � n) are those ei which are not patterns, Vm are new variables,

and p tn is obtained from p en by replacing each ei which is not a pattern by Vi .

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

460 S. Estévez-Mart́ın et al.

Example 8 (Constraint Flattening)

� (RX + 2 ∗ RY) ∗ RZ <= 3.5 ���� ��FC

∃RA. (RX + 2 ∗ RY) ∗ RZ → RA � RA <= 3.5 ���� ��PC

∃RA. � (RX + 2 ∗ RY) ∗ RZ →! RA, RA <= 3.5 ���� ��FC

∃RB, RA.RX + 2 ∗ RY → RB � RB ∗ RZ→!RA,RA <= 3.5 ���� ��PC

∃RB,RA. � RX + 2 ∗ RY →! RB, RB ∗ RZ →! RA, RA <= 3.5 ���� ��FC

∃RC,RB, RA. 2 ∗ RY → RC � RX + RC→!RB, RB ∗ RZ→!RA, RA <= 3.5 ���� ��PC

∃RC,RB, RA. � 2 ∗ RY →!RC, RX + RC→!RB, RB ∗ RZ→!RA, RA <= 3.5 ����

Note that suspensions e → X can be discharged by rule EL in case that X does

not occur in the rest of the goal. Otherwise, they must wait until X gets bound

to a nonvariable pattern or becomes obviously demanded, and then they can be

processed by using either rule DF or rule PC, according to the syntactic form of e.

Moreover, all the substitutions produced by the transformations bind variables X

to patterns t, standing for computed values that are shared by all the occurrences

of t in the current goal. In this way, the goal transformation rules encode a lazy

narrowing strategy.

3.3 Domain cooperation rules

This subsection presents the goal transformation rules in CCLNC(C) which take

care of domain cooperation. The core of the subsection deals with bridges and

projections. A few more ad hoc cooperation rules are presented at the end of the

subsection.

Given a goal G whose pool C includes an atomic primitive constraint π ∈
APConFD and whose mediatorial store M includes a set of bridges BM , we will

consider three possible goal transformations intended to convey useful information

from π to the R solver:

• To compute new bridges bridgesFD→R(π, BM) to add to M, by means of a

bridge generation operation bridgesFD→R defined to this purpose.

• To compute projected R constraints projFD→R(π, BM) to be added to R, by

means of a projection operation projFD→R defined to this purpose.

• To place π into the FD store F .

Similar goal transformations based on two operations bridgesR→FD and projR→FD

can be used to convey useful information from a primitive atomic constraint

π ∈ PConR to the FD solver. Rules SB, PP, and SC in Table 4 formalize these

transformations, while Tables 5 and 6 give an effective specification of the bridge

generation and projection operations.

The formulation of SB, PP, and SC in Table 4 relies on the identification of certain

atomic primitive Herbrand constraints π as FD- or R-specific, as indicated by the

notations M � π in FD and M � π in R, previously explained in Subsection 2.6.

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

On the cooperation of the constraint domains H, R, and FD in CFLP 461

Table 4. Rules for bridges and projections

SB Set Bridges

∃U. P � π, C � M � H � F � R ��SB ∃V ′
, U. P � π, C � M ′ � H � F � R

If π is a primitive atomic constraint and either (i) or (ii) holds, where

(i) π is a proper FD constraint or else an extended H constraint such that M � π in FD, and M′ = B′ ,M,
where ∃V ′ B′ = bridgesFD→R(π, BM) �= ∅.

(ii) π is a proper R constraint or else an extended H constraint such that M � π in R, and M′ = B′ ,M, where
∃V ′ B′ = bridgesR→FD(π, BM) �= ∅.

PP Propagate Projections

∃U. P � π, C � M � H � F � R ��PP ∃V ′ , U. P � π, C � M � H � F ′ � R′

If π is a primitive atomic constraint and either (i) or (ii) holds, where

(i) π is a proper FD constraint or else an extended H constraint such that M � π in FD, ∃V ′ Π′ =
projFD→R(π, BM) �= ∅, F ′ = F , and R′ = Π′ , R, or else,

(ii) π is a proper R constraint or else an extended H constraint such that M � π inR, ∃V ′ Π′ = projR→FD(π, BM) �= ∅,
F ′ = Π′ , F , and R′ = R.

SC Submit Constraints

∃U. P � π, C � M � H � F � R ��SC ∃U. P � C � M ′ � H ′ � F ′ � R′

If π is a primitive atomic constraint and one of the following cases applies:

(i) π is a M constraint, M ′ = π,M, H ′ = H , F ′ = F , and R′ = R.
(ii) π is an extended H constraint such that neither M � π in FD nor M � π in R, M′ = M, H ′ = π,H , F ′ = F ,

and R′ = R.
(iii) π is a proper FD constraint or else an extended H constraint such that M � π in FD, M′ = M, H ′ = H ,

F ′ = π, F , and R′ = R.
(iv) π is a proper R constraint or else an extended H constraint such that M � π in R, M′ = M, H ′ = H , F ′ = F ,

and R′ = π, R.

The notation Π, S is used at several places to indicate the new store obtained by

adding the set of constraints Π to the constraints within store S . The notation π, S

(where π is a single constraint) must be understood similarly. In practice, SB, PP,

and SC are best applied in this order. Note that PP places the projected constraints

in their corresponding stores, while constraints in the pool that are not useful

anymore for computing additional bridges or projections will be eventually placed

into their stores by means of transformation SC.

The functions bridgesD→D′
and projD→D′

are specified in Table 5 for the case

D = FD, D′ = R and in Table 6 for the case D = R, D′ = FD. Note that the

primitive #/ is not considered in Table 5 because integer division constraints cannot

be projected into real division constraints. The notations �a (resp. !a") used in

Table 6 stand for the least integer upper bound (resp. the greatest integer lower

bound) of a ∈ �. Constraints t1 > t2, t1 >= t2 are not explicitly considered in

Table 6; they are treated as t2 < t1, t2 <= t1, respectively. In Tables 5 and 6, the

existential quantification of the new variables V ′ is left implicit, and results displayed

as an empty set of constraints must be read as an empty (and thus trivially true)

conjunction.

The next result states some basic properties of bridgesD→D′
and projD→D′

. The

easy proof is omitted.

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

462 S. Estévez-Mart́ın et al.

Table 5. Computing bridges and projections from FD to R

π bridgesFD→R(π, B) projFD→R(π, B)

domain [X1 , . . . , Xn] a b {Xi #== RXi | 1 � i � n, Xi has

no bridge in B and RXi new}
{a <= RXi , RXi <= b | 1 � i � n and

(Xi #== RXi) ∈ B}

belongs X [a1 , . . . , an] {X #== RX | X has no bridge in

B and RX new}
{min(a1 , . . . , an) <= RX, RX <=

max(a1 , . . . , an) | 1 � i � n and (X #==

RX) ∈ B}

t1 #< t2

(resp. #<=, #>, #=>) {Xi #== RXi | 1 � i � 2, ti is

a variable Xi with no bridge in B,

and RXi new}

{tR1 < tR2 | For 1 � i � 2: either ti is an

integer constant n and tRi is the integral

real n, or else ti is a variable Xi with (Xi

#== RXi) ∈ B, and tRi is RXi}

t1 == t2 {X #== RX | either t1 is an integer

constant and t2 is a variable X

with no bridges in B (or vice

versa) and RX is new}

{tR1 == tR2 | For 1 � i � 2: tRi is

determined as in the #< case}

t1 /= t2 {X #== RX | either t1 is an integer

constant and t2 is a variable X

with no bridges in B (or vice

versa) and RX is new}

{tR1 /= tR2 | For 1 � i � 2: tRi is

determined as in the #< case}

t1 #+ t2 →! t3

(resp. #-, #*) {Xi #== RXi | 1 � i � 3, ti is a

variable Xi with no bridge in B

and RXi new}

{tR1 + tR2 →! tR3 | For 1 � i � 3: tRi is

determined as in the #< case}

Proposition 1 (Properties of Bridges and Projections Between FD and R)

Let D and D′ be chosen as FD and R, or vice versa. Then:

(1) bridgesD→D′
(π, B) and projD→D′

(π, B) make sense for any atomic primitive

constraint π which is either D-proper or extended Herbrand and D-specific,

and for any finite set B of bridges.

(2) bridgesD→D′
(π, B) returns a possibly empty finite set B′ of new bridges involving

new variables V ′. In particular, bridgesD→D′
(π, B) = ∅ is assumed whenever

Tables 5 and 6 do not include any row covering π. The completeness condition

WTSolC(π ∧ B) ⊆ WTSolC(∃V ′(π ∧ B ∧ B′)) holds, where B and B′ are

interpreted as conjunctions. Note that the correctness condition SolC(π ∧ B) ⊇
SolC(∃V ′(π ∧ B ∧ B′)) also holds trivially.

(3) projD→D′
(π, B) returns a finite set Π′ ⊆ APConD′ of atomic primitive D′

constraints involving new variables V ′. In particular, projD→D′
(π, B) = ∅ is

assumed whenever Tables 5 and 6 do not include any row covering π. The

completeness condition WTSolC(π ∧ B) ⊆ WTSolC(∃V ′(π ∧ B ∧ Π′)) holds,

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

On the cooperation of the constraint domains H, R, and FD in CFLP 463

Table 6. Computing bridges and projections from R to FD

π bridgesR→FD(π, B) projR→FD(π, B)

RX < RY ∅ (no bridges are created) {X #< Y | (X #== RX),(Y #== RY) ∈ B}

RX < a ∅ (no bridges are created) {X #< �a | a ∈ �, (X #== RX) ∈ B}

a < RY ∅ (no bridges are created) {!a" #< Y | a ∈ �, (Y #== RY) ∈ B}

RX <= RY ∅ (no bridges are created) {X #<= Y |(X #== RX),(Y #== RY) ∈ B}

RX <= a ∅ (no bridges are created) {X #<= !a" | a ∈ �, (X #== RX) ∈ B}

a <= RY ∅ (no bridges are created) {�a #<= Y | a ∈ �, (Y #== RY) ∈ B}

t1 == t2 {X #== RX | either t1 is an

integral real constant and t2 is

a variable RX with no bridges in

B (or vice versa) and X is new}

{tFD
1 == tFD

2 | For 1 � i � 2: either ti is an

integral real constant n and tFD
i is the integer

n, or else ti is a variable RXi with (Xi #==

RXi) ∈ B, and tFD
i is Xi}

t1 /= t2 ∅ (no bridges are created) {tFD
1 /= tFD

2 | For 1 � i � 2: either ti is an

integral real constant n and tFD
i is the integer

n, or else ti is a variable RXi with (Xi #==

RXi) ∈ B, and tFD
i is Xi}

t1 + t2 →! t3

(resp. -, *)

{X #== RX | t3 is a variable RX

with no bridge in B, X new, for

1 � i � 2, ti is either an integral

real constant or a variable RXi

with bridge (Xi #== RXi) ∈ B}

{tFD
1 #+ tFD

2 →! tFD
3 | For 1 � i � 3: tFD

i is

determined as in the previous case}

t1 / t2 →! t3 ∅ (no bridges are created) {tFD
2 #* tFD

3 →! tFD
1 | For 1 � i � 3 is

determined as in the previous case}

where B and Π′ are interpreted as conjunctions. Note that the correctness

condition SolC(π ∧ B) ⊇ SolC(∃V ′(π ∧ B ∧ Π′)) also holds trivially.

Example 9 illustrates the operation of the goal transformation rules from Table

4 for computing bridges and projections with the help of the functions specified in

Tables 5 and 6.

Example 9 (Computation of Bridges and Projections)

� (RX + 2 ∗ RY) ∗ RZ <= 3.5 � X #== RX, Y #== RY , Z #== RZ ��� ��
FC3 ,PC3

∃RC,RB, RA. � 2 ∗ RY →! RC, RX + RC →! RB, RB ∗ RZ →! RA, RA <= 3.5 �

X #== RX, Y #== RY , Z #== RZ ��� ��
SB3

∃C,B, A, RC, RB, RA. � 2 ∗ RY →! RC, RX + RC →! RB, RB ∗ RZ →! RA, RA <= 3.5 �

C #== RC, B #== RB, A #== RA, X #== RX, Y #== RY , Z #== RZ ��� ��
PP4

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

464 S. Estévez-Mart́ın et al.

∃C, B, A, RC, RB, RA. � 2 ∗ RY →! RC, RX + RC →! RB, RB ∗ RZ →! RA, RA <= 3.5 �

C #== RC, B #== RB, A #== RA, X #== RX, Y #== RY , Z #== RZ ��

2 #* Y →! C, X #+ C →! B, B #* Z →! A, A #<= 3 � ��
SC4

∃C, B, A, RC, RB, RA. �� C #== RC, B #== RB, A #== RA, X #== RX, Y #== RY , Z #== RZ ��

2 #* Y →! C, X #+ C →! B, B #* Z →! A, A #<= 3 �

2 * RY →! RC, RX + RC →! RB, RB * RZ →! RA, RA <= 3.5

Note that the initial goal in this current example is an extension of the initial goal

in Example 8. The first six steps of the current computation are similar to those in

Example 8, taking care of flattening the R constraint (RX+2*RY)*RZ <= 3.5. The

subsequent steps use the transformation rules from Table 4 until no further bridges

and projections can be computed and no constraints remain in the constraint pool.

We have borrowed the projection idea from Hofstedt’s work (see, e.g., Hofstedt

2001; Hofstedt and Pepper 2007), but our proposal of using bridges to compute

projections is a novelty. In Hofstedt’s approach, projecting constraints from one

domain into another depends on common variables present in both stores. In our

approach, well-typing requirements generally prevent one and the same variable to

occur in constraints from different domains. In order to improve the opportunities for

computing projections, our cooperative goal-solving calculus CCLNC(C) provides

the goal transformation rule SB for creating new bridges during the computations.

Some other differences between CCLNC(C) and the cooperative computation model

proposed by Hofstedt et al. are as follows:

• All the projections presented in this paper return just one ∃V ′ Π′. In Hofstedt’s

terminology, such projections are called weak, while projections returning

disjunctions
∨l

k=1 ∃V ′
kΠ

′
k with l > 1 are called strong. The use of strong

projections is illustrated in Hofstedt and Pepper (2007) by means of a problem

dealing with the computation of resistors that have a certain capacity. The

strong projection used in this example is a finite disjunction of conjunctions

of the form X == x ∧ Y == y for various numeric values x and y. Solving

this disjunction gives rise to an enumeration of solutions. In Estévez-Martı́n

et al. (2007b), we have presented a solution of the resistors problem where

an equivalent enumeration of solutions can be computed by the FD solver

via backtracking, without building any strong projection. This is possible

in our framework due to the presence of labeling constraints that are not

used in the resistor example as presented in Hofstedt and Pepper (2007).

Therefore, strong projections are not necessary for this particular example of

cooperation between FD and R. Theoretically, strong projections could be

useful in other problems, and rule PP in our CCLNC(C) calculus could be

very straightforwardly adapted to work with strong projections. However, we

decided not to do so because we are not aware of any useful extension to

extend Tables 5 and 6 for computing strong projections. We could find no

formulation of practical procedures for computing projections in Hofstedt and

Pepper (2007) and related works, where all projections used in examples are

presented in an ad hoc manner.

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

On the cooperation of the constraint domains H, R, and FD in CFLP 465

Table 7. Rules for inferring H constraints from M constraints

IE Infer Equalities

∃U. P�C � X #== RX, X ′ #== RX, M � H � F�R ��UB

∃U. P � C � X #== RX, M � H � X == X ′ , F�R.

∃U. P�C � X #== RX, X #== RX ′ , M � H � F�R ��UB

∃U. P � C � X #== RX, M � H � F�RX==RX ′ , R.

ID Infer Disequalities

∃U. P�C � X#/==u′ , M � H � F�R ��ID ∃U. P � C � M � H � X/=u, F�R

if u ∈ �, u′ ∈ � and u #==M u′ → true.

∃U. P�C � u#/==RX, M � H � F�R ��ID ∃U. P � C � M � H � F � RX/=u′ , R

if u ∈ �, u′ ∈ � and u #==M u′ → true.

• Currently, our CCLNC(C) calculus projects FD (resp. R) constraints from

the pool C into the R store R (resp. FD store F). Hofstedt’s proposal also

allows to compute projections from constraints placed into the stores. In our

previous paper (Estévez-Martı́n et al. 2007b), we have sketched a cooperative

goal-solving calculus where an arbitrary coordination domain was assumed

and projections could act over the constraints within constraint stores. In fact,

the resistor problem mentioned in the previous item was solved in Estévez-

Martı́n et al. (2007b) by making essential use of projections that acted over

constraints within the FD and R stores. In the current paper, goal solving is

restricted to the coordination domain C = M ⊕ H ⊕ FD ⊕ R and projections

can be applied only to the constraints placed in the constraint pool. These

two limitations correspond to the state of the current TOY implementation.

In particular, projections acting over stored constraints are not yet handled

because the current TOY system has no convenient mechanisms for processing

the constraint stores handled by the underlying SICStus Prolog.

• Goal solving in CCLNC(C) enjoys the soundness and completeness properties

presented in Subsection 3.6. In our opinion, these are more elaborate than the

soundness and completeness results provided in Hofstedt’s work.

To finish this subsection, we present the goal transformation rules in Table

7, which can be used to infer H constraints from the M constraints placed

in the store M. The inferred H constraints happen to be FD- or R-specific,

according to the case, and can be placed in the corresponding store. Therefore, the

rules in this group model domain cooperation mechanisms other than bridges and

projections.

3.4 Constraint-solving rules

The presentation of CCLNC(C) finishes with the constraint-solving rules displayed

in Table 8. Rule SF models the detection of failure by a solver, and the other

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

466 S. Estévez-Mart́ın et al.

Table 8. Rules for M, H, FD, and R constraint solving

MS M-Constraint Solver (glass-box)

∃U. P � C � M � H � F � R ��MS ∃Y ′ , U. (P � C � (Π′ � σM) � H � F � R)@Mσ′

If pvar(P) ∩ var(ΠM) = ∅, (ΠM � σM) is not solved, ΠM ��
solveM ∃Y ′(Π′ � σ′).

HS H-Constraint Solver (glass-box)

∃U. P � C � M � H � F � R ��HS ∃Y ′ , U. (P � C � M � (Π′ � σH) � F � R)@Hσ′

If pvar(P) ∩ odvarH(ΠH) = ∅, X =def pvar(P) ∩ var(ΠH), (ΠH � σH) is not χ-solved,

ΠH ��
solveHX

∃Y ′(Π′ � σ′).

FS FD-Constraint Solver (black-box)

∃U. P � C � M � H � F � R ��FS ∃Y ′ , U. (P � C � M � H � (Π′ � σF) � R)@FDσ
′

If pvar(P) ∩ var(ΠF) = ∅, (ΠF � σF) is not solved, ΠF ��
solveFD ∃Y ′(Π′ � σ′).

RS R-Constraint Solver (black-box)

∃U. P � C � M � H � F � R ��RS ∃Y ′ , U. (P � C � M � H � F � (Π′ � σR))@Rσ
′

If pvar(P) ∩ var(ΠR) = ∅, (ΠR � σR) is not solved, ΠR ��
solveR ∃Y ′(Π′ � σ′).

SF Solving Failure

∃U. P � C � M � H � F � R ��SF �

If S is the D store (D being M, H, FD or R), pvar(P)∩ odvarD(ΠS) = ∅, X =def pvar(P)∩ var(ΠS), (ΠS � σS) is not

χ-solved and ΠS ��
solveDX

�. Note that X �= ∅ is possible only in the case D = H.

rules describe the possible transformation of a goal by a solver’s invocation.

Each time a new constraint from the pool is placed into its store by means of

transformation SC, it is pragmatically convenient to invoke the corresponding solver

by means of the rules in this table. The solvers for the four domains M, H, FD,

and R involved in the coordination domain C are considered. The availability

of the M solver means that solving mediatorial constraints contributes to the

cooperative goal-solving process, in addition to the role of bridges for guiding

projections.

Let D be any of the four domains, and let Π be the set of constraints in-

cluded in the D store in a given goal G with productions P . As explained

in Subsection 2.4.1, each invocation solveD(Π,X) depends on a set of critical

variables X ⊆ cvarD(Π) which must be properly chosen. On the other hand, the

goal invariants explained in Subsection 3.1 require that no produced variable is

bound to a nonlinear pattern, and the safe binding condition satisfied by any solver

ensures that a solver invocation never binds any variable X ∈ X, except to a

constant.

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

On the cooperation of the constraint domains H, R, and FD in CFLP 467

Because of these reasons, the rules in Table 8 allow a solver invocation solveD(Π,X)

only if the following two conditions are satisfied:

(a) pvar(P) ∩ odvarD(Π) = ∅.
Motivation: If this condition does not hold, for any choice of X ⊆ cvarD(Π)

there is some variable X ∈ pvar(P) \ X, and the solver invocation could bind

X to a nonlinear pattern.

(b) X = pvar(P) ∩ var(Π).

Motivation: Because of condition (a), this X is a subset of cvarD(Π), and the

safe binding condition of solvers ensures that the invocation solveD(Π,X) will

bind no produced variable, except to a constant.

When D is not H, we know from Section 2 that all the variables in Π can

be assumed to be obviously demanded. Then odvarD(Π) = var(Π), condition (a)

becomes pvar(P) ∩ var(Π) = ∅, (b) becomes X = ∅, and solveD(Π, ∅) can be

abbreviated as solveD(Π). The rules related to M, FD, and R in Table 8 assume

the simplified form of condition (a), (b). The notations Π ��solveDX
∃Y ′(Π′ � σ′) and

Π ��solveDX
� introduced in Subsection 2.4.1 are used to indicate the nondeterministic

choice of an alternative returned by a successful D solver invocation and a failed D
solver invocation, respectively. Note also the use of the notation (. . .)@Dσ

′ explained

near the end of Subsection 3.1.

At this point, we can precise the notion of solved goal as follows: a goal G is

solved iff it has the form ∃U. � � M � H � F � R (with empty P and C)

and the CLNC(C)-transformations in Tables 7 and 8 cannot be applied to G. The

CLNC(C)-transformations in Tables 3 and 4 are obviously not applicable to solved

goals, since they refer to P and C .

3.5 One example of cooperative goal solving

In order to illustrate the overall behavior of our cooperative goal-solving calculus, we

present a CCLNC(C) computation solving the goal Goal 2 discussed in Subsection

1.2. The reader is referred to Figure 2 for a graphical representation of the problem

and to Subsection 3.1 for a formulation of the goal and the expected solution in

the particular case d = 2, n = 4. However, the solution is the same for any choice

of positive integer values d and n such that n = 2*d, and here we will discuss the

general case.

The CCLNC(C) calculus leaves ample room for choosing a particular goal

transformation at each step, so that many different computations are possible

in principle. However, the TOY implementation follows a particular strategy. The

part P �C of the current goal is treated as a sequence and processed from left to

right, with the only exception of suspensions e → X that are delayed until they can

be safely eliminated by means of rule EL or the goal is so transformed that they

cease to be suspensions. As long as the current goal is not in solved form, a subgoal

is selected and processing according to a strategy which can be roughly described

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

468 S. Estévez-Mart́ın et al.

as follows:

(1) If P includes some production which can be handled by the constrained

lazy narrowing rules in Table 3, the leftmost such production is selected and

processed. Note that the selected production must be either a suspension

e → X that can be discharged by rule EL, or else a production that is not a

suspension. The applications of rule DF are performed in an optimized way

by using definitional trees (del Vado-Vı́rseda 2005, 2007).

(2) If P is empty or consists only of productions e → X that cannot be processed

by means of the constrained lazy narrowing rules in Table 3, and moreover

some of the stores M, H , F, or R is not in solved form and its constraints inclu-

de no obviously demanded produced variables, then the solvers for such stores

are invoked, choosing the set X of critical variables as explained in Table 8.

(3) If neither of the two previous items applies and C is not empty, the leftmost

atomic constraint δ in C is selected. In case it is not primitive, the flattening

rule FC from Table 3 is applied. Otherwise, δ is a primitive atomic constraint

π, and exactly one of the following cases applies:

(a) If π is a proper FD constraint or else an extended H constraint such

that M � π in FD, then π is processed by means of the rules SB, PP,

and SC from Table 4. This generates bridges and projected constraints π′,

if possible, and submits π to the store F . Then, the rules from Table 8 are

used for invoking the FD solver (in case that the constraints in F include

no produced variables) and the R solver (in case that the constraints in

R include no produced variables).

(b) If π is a proper R constraint or else an extended H constraint such that

M � π in R, then π is processed by means of the rules SB, PP, and

SC from Table 4. This generates bridges and projected constraints π′, if

possible, and submits π to the store R. Then, the rules from Table 8 are

used for invoking the R solver (in case that the constraints in R include

no produced variables) and the FD solver (in case that the constraints

in F include no produced variables).

(c) If π is an extended H constraint such that neither M � π in FD nor

M � π in R, then π is submitted to the store H by means of rule SC,

and the H solver is invoked in case that the constraints in H include no

obviously demanded produced variables.

(d) If π is a M constraint, then π is submitted to the store M by means of

rule SC, the rules of Table 7 are applied if possible, and the M solver is

invoked in case that the constraints in M include no produced variables.

The series of goals G0 up to G12 displayed below correspond to the initial

goal, the final solved goal, and a selection of intermediate goals in a computation

which roughly models the strategy of the TOY implementation, working with the

projection functionality activated. In the initial goal, d and n are arbitrary positive

integers such that n = 2*d and d’ = d+0.5.

G0 : � bothIn (triangle (d, d′) 2 1) (square n) (X,Y)== true ���� ��FC

G1 : ∃U1 . bothIn (triangle (d, d′) 2 1) (square n) (X,Y) → A � A== true ���� ��SC(ii)

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

On the cooperation of the constraint domains H, R, and FD in CFLP 469

G2 : ∃U2 . bothIn (triangle (d, d′) 2 1) (square n) (X,Y) → A � �� A == true�� ��DFbothIn

G3 : ∃U3 .triangle (d, d′) 2 1 → R, square n → G, (X,Y) → (X ′ , Y ′), true → A �

X ′ #== RX, Y ′ #== RY , isInR (RX,RY) == true, isInG (X ′ , Y ′) == true,
labeling [] [X ′ , Y ′] �� A == true �� ��∗

SP2 ,DC,SP3 ,HS

G4 : ∃U4 . �X #== RX, Y #== RY , isIn (triangle (d, d′) 2 1) (RX,RY) == true,
isIn (square n) (X,Y) == true, labeling [] [X,Y] �� σH �� ��∗

SC(i)2 ,MS

G5 : ∃U5 . � isIn (triangle (d, d′) 2 1) (RX,RY)== true, isIn (square n) (X,Y)== true,

labeling [] [X,Y] �X #== RX, Y #== RY � σH �� ��∗
CLN

G6 : ∃U6 . � RY >= d′ − 1, 2 ∗ RY − 2 ∗ 1 ∗ RX <= 2 ∗ d′ − 2 ∗ 1 ∗ d,
2 ∗ RY + 2 ∗ 1 ∗ RX <= 2 ∗ d′ + 2 ∗ 1 ∗ d, domain [X,Y] 0 n,
labeling [] [X,Y] � X #== RX, Y #== RY � σ′

H �� ��∗
FC,PC

G7 : ∃U7 . � d′ − 1 →!RA, RY >= RA, 2 ∗ RY − 2 ∗ 1 ∗ RX <= 2 ∗ d′ − 2 ∗ 1 ∗ d,
2 ∗ RY + 2 ∗ 1 ∗ RX <= 2 ∗ d′ + 2 ∗ 1 ∗ d, domain [X,Y] 0 n,
labeling [] [X,Y] � X #== RX, Y #== RY � σ′

H �� ��∗
SC(iv),RS

G8 : ∃U8 . � RY >= d′′ , 2 ∗ RY − 2 ∗ 1 ∗ RX <= 2 ∗ d′ − 2 ∗ 1 ∗ d,
2 ∗ RY + 2 ∗ 1 ∗ RX <= 2 ∗ d′ + 2 ∗ 1 ∗ d, domain [X,Y] 0 n,
labeling [] [X,Y] � X #== RX, Y #== RY � σ′

H �� SR ��∗
BP,CS

G9 : ∃U9 . � 2 ∗ RY − 2 ∗ 1 ∗ RX <= 2 ∗ d′ − 2 ∗ 1 ∗ d,
2 ∗ RY + 2 ∗ 1 ∗ RX <= 2 ∗ d′ + 2 ∗ 1 ∗ d, domain [X,Y] 0 n, labeling [] [X,Y] �

X #== RX, Y #== RY � σ′
H � Y # >= d � RY >= d′′ , SR ��∗

FR,BP

G10 : ∃U10 . � domain [X,Y] 0 n, labeling [] [X,Y] �

X #== RX, Y #== RY B #== RB, C #== RC , S ′
M � σ′

H �

Y # >= d, 2# ∗ Y # − 2# ∗X →!B,B# <= 1, 2# ∗ Y # + 2# ∗X →!C,C# <= n′ , S ′
F �

RY >= d′′ , 2 ∗ RY − 2 ∗ RX →!RB,RB <= 1, 2 ∗ RY + 2 ∗ RX →!RC,RC <= n′ , S ′
R ��∗

CS

G11 : ∃U11 . � domain [d, d] 0 n, labeling [] [d, d] � S ′′
M � σ′

H � S ′′
F � S ′′

R ��∗
SC(iii),FS,SC(iii),FS

G12 : ∃U12 . � � S ′′
M � σ′

H � S ′′
F � S ′′

R

The local existential variables ∃Ui of each goal Gi are not explicitly displayed, and

the notation Gi−1 ��∗
RS Gi is used to indicate the transformation of Gi−1 into Gi using

the goal-solving rules indicated by RS. At some steps, RS indicates a particular

sequence of individual rules, named as explained in the previous subsections. In other

cases, namely for i = 6 and 9 � i � 11, RS indicates sets of goal transformation

rules, named according to the following conventions:

• CLN names the set of constrained lazy narrowing rules presented in Table 3.

• FR names the set consisting of the two rules FC and PC displayed at the end

of Table 3, used for constraint flattening.

• BP names the set of rules for bridges and projections presented in Table 4.

• CS names the set of constraint-solving rules presented in Table 8.

We finish with some comments on the computation steps:

• Transition from G0 to G1: The only constraint in C is flattened, giving rise to

one suspension and one flat constraint in the new goal. The produced variable

A is not obviously demanded because the constraint A == true is not yet

placed in the H store.

• Transition from G1 to G2: The only suspension is delayed, and the only

constraint in the pool is processed by submitting it to the H store. However,

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

470 S. Estévez-Mart́ın et al.

the H solver cannot be invoked at this point, because A has become an

obviously demanded variable that is also produced.

• Transition from G2 to G3: The former suspension has become a production

which is processed by applying the program rule defining the function bothIn,

which introduces new productions in P and new constraints in C .

• Transition from G3 to G4: The four productions in P are processed by binding

propagations and decompositions (rules SP and DC), until P becomes empty.

Then the H solver can be invoked. At this point, the H store just contains a

substitution σH resulting from the previous binding steps.

• Transition from G4 to G5: P is empty, and the two first constraints in C are

bridges. They are submitted to the M store and the M solver is invoked,

which has no effect in this case.

• Transition from G5 to G6: There are no productions, and the two first

constraints in the pool are processed by steps similar to those used in the

transition going from G0 to G4. Upon completing this process, the new pool

includes a number of new constraints coming from the conditions in the

program rules defining the functions isIn, triangle and square, and the

substitution stored in H has changed. At this point, P is empty again and

the constraints in C plus the bridges in M amount to a system equivalent to

the one used in Subsection 1.2 for an informal discussion of the resolution of

Goal 2.

• Transition from G6 to G7 and from G7 to G8: There are no productions,

and flattening the first constraint in C gives rise to the primitive constraint

d’-1 →! RA. This is submitted to the R store and the R solver is invoked,

which computes d’’ as the numeric value of d’-1 and propagates the variable

binding RA �→ d’’ to the whole goal, possibly causing some other internal

changes in the R store.

• Transition from G8 to G9: There are no productions, and the first constraint

in C is now RY >= d’’. Since d’’ = d’-1 = d+0.5-1 = d-0.5, we have

�d’’ = d. Therefore, projecting RY >= d’’ with the help of the available

bridges (including Y #== RY) allows to compute Y #>= d as a projected FD
constraint. Both RY >= d’’ and Y #>= d are submitted to their respective

stores and the two solvers are invoked, having no effect in this case.

• Transition from G9 to G10: There are no productions, and the two first atomic

constraints in the pool of G9 (two R constraints δ1 and δ2) are processed

by steps similar to those used in the transition going from G6 to G9, except

that the solver invocations are delayed to the transition from G10 to G11

and commented in the next item. (Actually, the TOY implementation would

invoke the solvers two times: the first time when processing δ1 and the

second time when processing δ2. Here we explain the overall effect of the two

invocations for the sake of simplicity.) Upon completing this process, G10 stays

as follows: P is empty, C includes the two other constraints which were there

in G9, and the stores M, F, and R have changed because of new bridges and

projections. In fact, the constraints within the stores F and R in G10 would

be equivalent but not identical to the ones shown in this presentation due to

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

On the cooperation of the constraint domains H, R, and FD in CFLP 471

intermediate flattening steps that we have not shown explicitly. In particular,

the R constraint 2*RY-2*RX →! RB and its FD-projection 2#*Y#-2#*X →!

B would really not occur in this form, but a conjunction of primitive constraints

obtained by flattening them would occur at their place.

• Transition from G10 to G11: At this point, the FD solver is able to infer that

the constraints in the FD store imply one single solution for the variables X

and Y, namely {X �→ d, Y �→ d}. Therefore, the FD solver propagates these

bindings to the whole goal, affecting in particular to the bridges in M. Then,

the M solver propagates the corresponding bindings {RX �→ rd, RY �→ rd}.
(rd being the representation of d as an integral real number), and the R solver

succeeds.

• Transition from G11 to G12: The two constraints in C have now become trivial.

Submitting them to their stores and invoking the respective solvers leads to

a solved goal, whose restriction to the variables in the initial goal is the

computed answer ���� (� � {X �→ d, Y �→ d}) �. Note that no labeling

whatsoever has been performed, independently of the size of n.

3.6 Properties of the cooperative goal-solving calculus CCLNC(C)

This final subsection presents the main semantic results of the paper, namely sound-

ness and limited completeness of the cooperative goal-solving calculus CCLNC(C)

w.r.t. the declarative semantics of CFLP (C) given in López-Fraguas et al. (2007).

To start with, we define the notion of solution for a given goal.

Definition 10 (Solutions of Goals and Their Witnesses)

(1) Let G ≡ ∃U. P � C � M � H � F � R be an admissible goal for a given

CFLP (C)-program P. The set of solutions SolP(G) of G w.r.t. P includes

all those μ ∈ ValC such that there is some μ′ ∈ ValC verifying μ′ =\U μ

and μ′ ∈ SolP(P �C �M �H �F �R), which holds iff the following two

conditions are satisfied:

(a) μ′ ∈ SolP(P �C). By definition, this means P �CRWL(C) (P �C)μ′, which

is equivalent to P �CRWL(C) Pμ′ and P �CRWL(C) Cμ′. This notation refers

to the existence of proofs in the instance CRWL(C) of the constrained

rewriting logic CRWL, whose inference rules can be found in López-

Fraguas et al. (2007).

(b) μ′ ∈ SolC(M �H �F �R), which is equivalent to μ′ ∈ SolC(M)∩SolC(H)∩
SolC(F) ∩ SolC(R).

(2) If M is a multiset having as its members the CRWL(C)-proofs mentioned in

item (1)(a) above, we will say that M is a witness for the fact that μ ∈ SolP(G),

and we will write M : μ ∈ SolP(G).

(3) A solution μ ∈ SolP(G) is called well-typed iff the valuation μ′ =\U μ mentioned

in item (1) can be so chosen that (P �C �M �H �F �R)μ′ is well-typed,

which is noted as μ′ ∈ WTSolP(P �C �M �H �F �R). The set of all well-

typed solutions of G w.r.t. P is written as WTSolP(G). In case that M is a

witness for μ ∈ SolP(G), we also say that M is a witness for μ ∈ WTSolP(G)

and we write M : μ ∈ WTSolP(G).

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

472 S. Estévez-Mart́ın et al.

In case that G is a solved goal S , we write SolC(S) (resp. WTSolC(S)) in place of

SolP(S) (resp. WTSolP(S)).

Concerning item (1)(b) in the previous definition, note that the equivalence η ∈
SolC(M)∩SolC(H)∩SolC(F)∩SolC(R) ⇔ η ∈ SolM(M)∩SolH(H)∩SolF(F)∩SolR(R)

does not make sense in general, because a given valuation η ∈ ValC is not always

a D valuation when D is chosen as one of the four components of C. However,

Theorem 2 from Subsection 2.5 allows to reason with solutions known for C in terms

of solutions known for the four components, as we will see in the mathematical

proofs of Appendix A.2.

Before presenting our soundness and completeness results for CCLNC(C) let us

comment on some limitations concerning completeness:

• As already said in Subsection 3.1, the design of CCLNC(C) is tailored to

programs and goals having no free occurrences of higher-order logic variables.

Therefore, the completeness results of this subsection are limited to this kind

of programs and goals.

• The completeness of CCLNC(C) is obviously conditioned by the completeness

of the solvers invoked by the goal transformation rules in Table 8. On the

other hand, the completeness requirement for solvers in Definition 6 is limited

to well-typed solutions. Therefore, the completeness results of this subsection

refer only to well-typed solutions of the initial goal.

• As discussed in Subsections 2.4.2, 2.4.3, and 2.4.4, certain invocations of

constraint solvers can be incomplete even w.r.t. well-typed solutions. Therefore,

the completeness results of this subsection are also limited by the assumption

that no incomplete solver invocations occur during goal solving.

• Finally, the goal transformation rule DC from Table 3 can give rise to

opaque decompositions. Similarly to the opaque decompositions caused by

the transformation rules H3 and H7 for H stores (see Subsection 2.4.2), the

opaque decompositions caused by DC can lose well-typed solutions. In what

follows, we will say that an application of the goal transformation rule DC

is transparent iff the expression h em involved in the rule application is such

that h is m-transparent (or equivalently, h is not m-opaque). Only transparent

applications of the rule DC can be trusted to preserve well-typed solutions.

For this reason, the completeness results of this subsection are limited by the

assumption that no opaque applications of rule DC occur during goal solving.

Unfortunately, the eventual occurrence of opaque decomposition steps during

goal solving (be they due to rule DC from Table 3 or to the stss H3 and H7 of

the H solver) is an undecidable problem, because of theoretical results proved

in González-Moreno et al. (2001).

In the sequel, we will use the notation G ��RL,γ,P G′ to indicate that the admissible

goal G for the CFLP (C)-program P is transformed into the new goal G′ by an

application of the selected rule RL applied to the selected part γ of G. It is important

to note that the selected part γ of G must have the form expected by the selected

rule RL. More precisely, γ must be selected as one of the stores in case that RL

is some transformations in Table 8, as a pair of bridges in case that RL is the

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

On the cooperation of the constraint domains H, R, and FD in CFLP 473

transformation IE from Table 7, and as an atom in any other case. We will use also

the notation G ��+
RL,γ,P G′ to indicate the existence of some computation of the form

G ��RL,γ,P G1 ��∗
P G′ transforming G in G′ in n steps for some n � 1.

We are now in a position to present the main results of this subsection. First, we

state a theorem which guarantees local soundness and completeness for the one-step

transformation of a given goal. A proof is given in Appendix A.2.

Theorem 4 (Local Soundness and Limited Local Completeness)

Assume a given program P and an admissible goal G for P which is not in solved

form. Choose any rule RL applicable to G and select a part γ of G suitable for

applying RL. Then there are finitely many possible transformations G ��RL,γ,P G′
j

(1 � j � k), and moreover:

(1) Local Soundness: SolP(G) ⊇
⋃k

j=1 SolP(G′
j).

(2) Limited Local Completeness: WTSolP(G) ⊆
⋃k

j=1 WTSolP(G′
j), provided that

the application of RL to the selected part γ of G is safe in the following sense:

it is neither an opaque application of DC nor an application of a rule from

Table 8 involving an incomplete solver invocation.

A global soundness result for CCLNC(C) follows easily from the first item of

Theorem 4. In particular, it ensures that the solved forms obtained as computed

answers for an initial goal using the rules of the cooperative goal-solving calculus

are indeed semantically valid answers of G.

Theorem 5 (Soundness Theorem)

Assume a CFLP (C)-program P, an admissible goal G for P, and a solved goal S

such that G ��∗
P S . Then, SolC(S) ⊆ SolP(G).

Proof

As an obvious consequence of Theorem 4 (item (1)), one gets SolP(G′) ⊆ SolP(G)

for any G′ such that G ��P G′. From this, an easy induction shows that SolP(S) ⊆
SolP(G) holds for each solved form S such that G ��∗

P S . Since SolP(S) = SolC(S),

the soundness result is proved. �

Note that the local completeness part (item (2)) of Theorem 4 also implies that

failing goals have no solution; i.e., from a failing transformation step G ��RL,P �
we can conclude WTSolP(G) = ∅, provided that the application of RL is safe.

However, a global completeness result for CCLNC(C) does not immediately follow

from item (2) of Theorem 4. For an arbitrarily given μ ∈ WTSolP(G), completeness

needs to ensure a terminating CCLNC(C) computation ending up with a solved

form S such that μ ∈ WTSolC(S). According to Definition 10, μ ∈ WTSolP(G)

implies the existence of a witness M : μ ∈ WTSolP(G). In Appendix A.2, we have

defined a well-founded progress ordering � between pairs (G,M) formed by a goal

G and a witness, and we have proved the following result:

Lemma 6 (Progress Lemma)

Consider an admissible goal G for a CFLP (C)-program P and a witness M : μ ∈
WTSolP(G). Assume that neither P nor G have free occurrences of higher-order

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

474 S. Estévez-Mart́ın et al.

variables, and that G is not in solved form. Then:

(1) There is some RL applicable to G which is not a failing rule.

(2) Assume any choice of a rule RL (not a failure rule) and a part γ of G, such

that RL can be applied to γ in a safe manner. Then there is some finite

computation G ��+
RL,γ,P G′ such that:

• μ ∈ WTSolP(G′).

• There is a witness M′ : μ ∈ WTSolP(G′) verifying (G,M) � (G′,M′).

Using the former lemma, we can prove the following completeness result:

Theorem 6 (Limited Completeness Theorem)

Let an admissible goal G for a program P and a well-typed solution μ ∈ WTSolP(G)

be given. Assume that neither P nor G have free occurrences of higher-order

variables. Then, unless prevented by some unsafe rule application, one can find a

CCLNC(C)-computation G ��∗
P S ending with a goal in solved form S such that

μ ∈ WTSolC(S).

Proof

The thesis of the theorem can be rephrased by writing μ ∈ WTSolP(S) in place

of the equivalent condition μ ∈ WTSolC(S). The hypothesis allow us to choose a

witness M : μ ∈ WTSolP(G). In order to prove the rephrased thesis we reason by

induction on the well-founded ordering � (see, e.g., Baader and Nipkow 1998 for an

explanation of this proof technique). In case that G is a solved goal, the rephrased

thesis holds trivially with S taken as G itself. In case that G is not solved, we apply

the Progress Lemma 6 to P and M : μ ∈ WTSolP(G) and we obtain a rule RL and

a part γ of G such that RL can be applied to γ. Assuming that this rule application is

a safe one, Lemma 6 also provides a finite computation G ��+
RL,γ,P G′ such that there

is a witness M′ : μ ∈ WTSolP(G′) fulfilling (G,M) � (G′,M′). Since neither P nor

G have free occurrences of higher-order variables, the same must be true for G′. By

well-founded induction hypothesis we can then conclude that, unless prevented by

some unsafe goal transformation step, one can find a computation G′ ��∗
P S ending

with a goal in solved form S such that μ ∈ WTSolP(S). The desired computation is

then G ��+
RL,γ,P G′ ��∗

P S . �

4 Implementation

This section sketches the implementation of the CCLNC(C) computational model

on top of the TOY system. The current implementation has evolved from older

versions that supported the domains H and R, but not yet FD and its cooperation

with H and R. We describe the architectural components of the current TOY
system and briefly discuss the implementation of the main cooperation mechanisms

provided by CCLNC(C), namely bridges and projections. The reader is referred

to Arenas et al. (2007) and Estévez-Martı́n et al. (2006, 2007c, 2008b) for more

details.

Instead of using an abstract machine for running byte-code or intermediate code,

TOY programs are compiled to and executed in Prolog, as in other related systems

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

On the cooperation of the constraint domains H, R, and FD in CFLP 475

Fig. 4. Architectural components of the cooperation schema in TOY.

(Antoy and Hanus 2000). The compilation generates Prolog code that implements

goal solving by constrained lazy narrowing guided by definitional trees, a well-

known device for ensuring an optimal behavior of lazy narrowing (Loogen et al.

1993; Antoy et al. 1994, 2000; del Vado-Vı́rseda 2003, 2005, 2007). TOY relies on

an efficient Prolog system (SICStus Prolog 2007), which provides many libraries,

including constraint solvers for the domains FD and R.

TOY is distributed (http://toy.sourceforge.net) as a free open-source Source-

forge project and runs on several platforms. Installation is quite simple. Console and

windows executables are provided, no further software is required. In addition,

TOY can be used inside ACIDE (Sáenz-Pérez 2007), an emerging multiplat-

form and configurable integrated development environment (alpha development

status).

4.1 Architectural components of the cooperation schema

Figure 4 shows the architectural components of the cooperation schema in TOY.

As explained in Subsection 2.6, the three pure constraint domains H, R, and FD
are combined with a mediatorial domain M to yield the coordination domain

C = M ⊕ H ⊕ FD ⊕ R which supports our cooperation model. Therefore, these

four domains are supported by the implementation. Moreover, the set of primitives

supported by the domains R and FD in the TOY implementation is wider than

the simplified description given in Subsections 2.4.3 and 2.4.4.

The solvers and constraint stores for the domains FD and R are provided by

the SICStus Prolog constraint libraries. The impedance mismatch problem among

the host language constraint primitives and these solvers is tackled by glue code

(see Subsection 4.2). Proper FD and R constraints, as well as Herbrand constraints

specific to FD and R (see Subsections 2.4.4 and 2.4.3) are posted to the respective

stores and handled by the respective SICStus Prolog solvers. On the other hand,

the stores and solvers for the domains H and M are built into the code of the

TOY implementation, rather than being provided by the underlying SICStus Prolog

system.

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

476 S. Estévez-Mart́ın et al.

4.2 Implementing domain cooperation

This subsection explains the implementation of the fundamental mechanisms for

domain cooperation: bridges and projections. The constraints provided by the

mediatorial domain M and their semantics have been explained in Subsections 2.5

and 2.6. Mediatorial constraints have the general form a #== b →! c, with a ::int,

b :: real and c :: bool, while bridges a #== b and antibridges a #/== b abbreviate a

#== b →! true and a #== b →! false, respectively.

In order to deal with H and M constraints, the TOY system uses a so-called

mixed store which keeps a representation of the H and M stores as one single

Prolog structure. It includes encodings of H constraints in solved form (i.e., totality

constraints X == X and disequality constraints X /= t), as well as encodings of

bridges and antibridges. The implementation of the H and M solvers in TOY is

plugged into the Prolog code of various predicates which control the transformation

of the mixed store (passed as argument) by means of two auxiliary arguments Cin

and Cout.

In the next three subsections, we discuss the implementation of mediatorial

constraints and projections. We will show and comment selected fragments of

Prolog code, involving various predicates with auxiliary arguments Cin and Cout, as

explained above. Regarding projections, the TOY implementation has been designed

to support two modes of use: a “disabled projections” mode which allows to solve

mediatorial constraints, but computes no projections; and an “enabled projections”

mode which also computes projections. For each particular problem, the user can

analyze the trade-off between communication flow and performance gain and decide

the best option to execute a goal in the context of a given program.

4.2.1 The equivalence primitive #==

The equivalence primitive #== :: int → real → bool used for building media-

torial constraints is implemented as a Prolog predicate (also named #==) with five

arguments, whose explanation follows. Arguments L and R stand for the left (integer)

and right (real) parameters of the primitive #==. Argument Out stands for its result.

Finally, arguments Cin and Cout stand for the state of the mixed store before

and after performing a call to the primitive #==, respectively. Figure 5 shows the

Prolog code for the predicate #==, and the comments below explain why this code

implements the M solver described in Table 2 of Subsection 2.6 and the special

cooperation rules IE and ID of the CCLNC(C) calculus specified in Table 7 from

Subsection 3.3.

Lines (2) and (3) compute the head normal forms (hnfs) of L and R into HL and

HR, respectively. This process may generate new Herbrand constraints that will be

added to the mixed store. The value of HL resp. HR will be either a variable or a

number, ensuring that no suspensions will occur in the Prolog code from line (4)

on. This code is intended to process the constraint HL #== HR →! Out according

to the behavior of the M solver specified in Table 2, Subsection 2.6. Because of

rules M1 and M2 in Table 2, the constraint is handled as a bridge HL #== HR when

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

On the cooperation of the constraint domains H, R, and FD in CFLP 477

(1) #==(L, R, Out, Cin, Cout):-

(2) hnf(L, HL, Cin, Cout1),

(3) hnf(R, HR, Cout1, Cout2),

(4) tolerance(Epsilon),

(5) ((Out=true,

(6) Cout3 = [’#==’(HL,HR)|Cout2],

(7) freeze(HL, {HL - Epsilon =< HR, HR =< HL + Epsilon}),

(8) freeze(HR, (HL is integer(round(HR)))));

(9) (Out=false,

(10) Cout3 = [’#/==’(HL,HR)|Cout2],

(11) freeze(HL, (F is float(HL), {HR =\= F})),

(12) freeze(HR, (0.0 is float_fractional_part(HR) ->

(13) (I is integer(HR), HL #\= I); true)))),

(14) cleanBridgeStore(Cout3,Cout).

Fig. 5. Implementation of mediatorial constraints (#== / 2).

Out equals true, and as an antibridge HL #/== HR when Out equals false. For this

reason, one can say that the #== primitive accepts reification. Indeed, in Figure 5 we

find that a bridge HL #== HR is posted to the mixed store if the value for Out can

be unified with true (line (6)), whereas an antibridge HL #/== HR is posted if the

value for Out can be unified with false (line (10)).

Solving both bridges and antibridges is accomplished by using the concurrent

predicate freeze, which suspends the evaluation of its second argument until the

first one becomes ground. Solving a bridge HL #== HR amounts to impose the

equivalence of its two arguments (variables or constants), which are of different

type (integer and real), so that type casting is needed. Variable HL is assigned to

the integer version of HR (line (8)) via the Prolog functions round and integer,

implementing rule M3 in Table 2. Similarly, line (7) is roughly intended to assign the

float version of HL to HR in order to implement rule M5 in Table 2. However, due to

the imprecise nature of real solvers, occasionally HR’s value will be an approximation

to an integer value. Therefore, line (7) actually constrains the real variable HR to

take a value between HL - Epsilon and HL + Epsilon, where Epsilon (line (4)) is

a user-defined parameter (zero by default) which introduces a tolerance and avoids

undesirable failures due to inexact computations of integer values. Lines (7) and

(8) also cover the implementation of rule M6 in Table 2. On the other hand,

solving an antibridge HL #/== HR amounts to impose that both arguments are not

equivalent. Therefore, as soon as HL or HR becomes bound to one numeric value, a

disequality constraint between the (suitably type-casted) value of the bound variable

and its mate argument is posted to the proper SICStus Prolog solver (lines 11-13).

The code in these lines implements rule M8 in Table 2 and rule ID in Table 7.

Moreover, the failure rules in Table 2 (namely M4, M7, and M9) are also

implemented by the frozen goals in lines (7)-(8) and (11)-(13) of Figure 5.

Indeed, whenever HL and HR become bound, the corresponding frozen goal is

triggered and the equivalence (resp. nonequivalence) is checked, which may yield to

success or failure, thus implementing rules M7 and M9; and wherever HR becomes

bound to a nonintegral real value, the frozen goal in line (8) yields failure, thus

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

478 S. Estévez-Mart́ın et al.

implementing rule M4. Finally, line (14)) invokes a predicate that simplifies the

mixed store by implementing the effect of rule IE in Table 7 applied as much as

possible to all the available (encodings of) bridges between variables.

4.2.2 Projection: FD to R

If the user has enabled projections with the command /proj, the TOY system

can process a given atomic primitive FD constraint by computing bridges and

projected R constraints as explained in Subsection 3.3. The Prolog implementation

has a different piece of code (Prolog clause) for each FD primitive which can

be used to build projectable constraints. The information included in Table 5 for

computing bridges and projections from different kinds of FD constraints, as well

as the effect of the goal transformation rules in Table 4, is plugged into these

pieces of Prolog code. The code excerpt below shows the basic behavior of the

implementation for the case of FD constraints built with the inequality primitive

#<, without considering optimizations:

(1) #<(L, R, Out, Cin, Cout):-

(2) hnf(L, HL, Cin, Cout1), hnf(R, HR, Cout1, Cout2),

(3) ((Out=true, HL #< HR); (Out=false, HL #>= HR)),

(4) (proj_active ->

(5) (searchVarsR(HL, Cout2, Cout3, RHL),

(6) searchVarsR(HR, Cout3, Cout, RHR),

(7) ((Out==true, { RHL < RHR });

(8) (Out==false, { RHL >= RHR })));

(9) Cout=Cout2).

Following a technique similar to that explained for #== above, the primitive #<

is implemented by a Prolog predicate with five arguments (line (1)). Its two input

arguments (L and R) are reduced to hnf (line (2)), and a primitive constraint is

posted to the SICStus FD solver, depending on the Boolean result (Out) returned

by #< (line (3)). Moreover, if projection is active (indicated by the dynamic predicate

proj active in line (4)), then, the predicate searchVarsR (lines (5-6)) inspects

the mixed store looking for bridges relating the FD variable HL and HR to the R
variables RHL and RHR, respectively. In case that some of these variables are bound

to a numeric variable, the relation to the mate variable just means that their numeric

values are equivalent. Predicate searchVarsR also creates new bridges if necessary,

according to the specifications in Table 5, and returns the modified state of the

mixed store in its third argument. Finally, the projected constraints computed as

specified in Table 5 (in this case, a single constraint, which is either RHL < RHR or

RHL >= RHR depending on the value of Out) are sent to the SICStus R solver.

4.2.3 Projection: R to FD

If the user has enabled projections, the TOY system can also process a given atomic

primitive R constraint by computing bridges and projected FD constraints as

explained in Subsection 3.3. The Prolog implementation is similar to that discussed

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

On the cooperation of the constraint domains H, R, and FD in CFLP 479

in the previous subsection, with a different piece of code (Prolog clause) for each

R primitive which can be used to build projectable constraints, and encoding the

information from Table 6. A comparison between Tables 5 and 6 shows that there

are less opportunities for building bridges from R to FD than the other way round,

but more opportunities for building projections. The code excerpt below shows the

basic behavior of the implementation for the case of R constraints built with the

inequality primitive >, ignoring optimisations:

(1) >(L, R, Out, Cin, Cout):-

(2) hnf(L, HL, Cin, Cout1), hnf(R, HR, Cout1, Cout),

(3) (Out = true, {HR > HL} ; Out = false, {HL =< HR}),

(4) (proj_active ->

(5) (searchVarsFD(HL, Cout, BL, FDHL),

(6) searchVarsFD(HR, Cout, BR, FDHR),

(7) ((BL == true, BR == true, Out == true, FDHL #> FDHR);

(8) (BL == true, BR == true, Out == false, FDHL #=< FDHR);

(9) (BL == true, BR == false, Out == true, FDHL #> FDHR);

(10) (BL == true, BR == false, Out == false, FDHL #=< FDHR);

(11) (BL == false, BR == true, Out == true, FDHL #> FDHR);

(12) (BL == false, BR == true, Out == false, FDHL #=< FDHR);

(13) true); true).

As in the previous subsection, the primitive > is implemented by a Prolog predicate

with five arguments (line (1)). Its two input arguments (L and R) are reduced to hnf

(line (2)), and a primitive constraint is posted to the SICStus R solver, depending

on the Boolean result (Out) returned by > (line (3)). Moreover, if projection is

active (line (4)), then predicate searchVarsFD (lines (5-6)) inspects the mixed

store looking for bridges relating the R-variables HL and HR to FD-variables. As

shown in Table 6, no new bridges can be created during this process. Therefore,

in contrast to the predicate searchVarsR presented in the previous subsection, the

third argument of predicate searchVarsFD does not represent a modified state of

the mixed store. Instead, it is a Boolean value that indicates whether a bridge has

been found or not. More precisely, in line (5) there are two possibilities: either BL is

true and HL is a nonbound R-variable related to the FD-variable FDHL by means of

some bridge in the mixed store Cout; or else BL is false, HL is bound to a real value

u, and FDHL is computed as �u . Analogously, in line (6) there are two possibilities:

either BR is true and HR is a nonbound R-variable related to the FD-variable FDHR

by means of some bridge in the mixed store Cout; or else BR is false, HR is bound

to a real value u, and FDHR is computed as !u". Finally, lines (7-12) perform a

distinction of cases corresponding to all the possiblities for projecting the constraint

HL > HR →! Out according to Table 6 and the various values of BL, BR, and Out.

In each case, the projected FD constraint is posted to the SICStus FD solver.

As a concrete example, when solving the conjunctive goal X #== RX, RX > 4.3,

line (11) in the Prolog code for > just explained will eventually work for solving the

right subgoal. In this case, viewing RX as HL and 4.3 as HR, the value computed for

BL will be true because the bridge X #== RX will be available in the mixed store,

and FDHL will be X. On the other hand, the value computed for BR will be false,

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

480 S. Estévez-Mart́ın et al.

and the value of FDHR will be computed as !4.3", i.e., 4. Applying the proper case in

Table 6, the projected constraint X #> 4 will be posted to the SICStus FD solver.

5 Performance results

In this section, we study the performance of the systems TOY (Arenas et al.

2007; Estévez-Martı́n et al. 2006, 2007c, 2008b) and META-S (Frank et al. 2003a,

2003b, 2005), i.e., the closest related approach we are aware of when solving various

problems requiring domain cooperation. After presenting a set of benchmarks in

the first subsections, the following three subsections deal with an analysis of the

benchmarks in each of the two systems and a comparison between both.

5.1 The benchmarks

We have selected a reasonably wide set of benchmarks which allows to analyze what

happens when the set of constraints involved in the formulation of a programming

problem is solved differently depending on the combination of domains that are

involved in their solving. A concise description of the benchmarks is presented

below.

• Donald (donald): A cryptoarithmethic problem with 10 FD variables, 1 linear

equation, and 1 alldifferent constraint. It consists of solving the equation

DONALD + GERALD = ROBERT.

• Send More Money (smm): Another cryptoarithmethic problem with 8 FD
variables ranging over [0,9], 1 linear equation, 2 disequations, and 1 alldifferent

constraint. It consists of solving the equation SEND + MORE = MONEY.

• Nonlinear Crypto-Arithmetic (nl-csp): A problem with 9 FD variables and

nonlinear equations.

• Wrong-Wright (wwr): Another cryptoarithmethic problem with 8 FD variables

ranging over [1,9], 1 linear equation, and 1 alldifferent constraint. It consists

of solving the equation WRONG + WRONG = RIGHT.

• 3 × 3 Magic Square (mag.sq.): A problem that involves 9 FD variables and

7 linear equations.

• Equation 10 (eq.10): A system of 10 linear equations with 7 FD variables

ranging over [0,10].

• Equation 20 (eq.20): A system of 20 linear equations with 7 FD variables

ranging over [0,10].

• Knapsack (knapsack): A classical knapsack problem taken from Hooker

(2000). We considered two versions: one as a constraint satisfaction problem

(labeled as csp) and another one as an optimisation one (labeled as opt).

• Electrical Circuit (circuit): A problem taken from Hofstedt (2000a), in which

one has an electric circuit with some connected resistors (i.e., R variables) and

a set of capacitors (i.e., FD variables). The goal consists of knowing which

capacitor has to be used so that the voltage reaches the 99% of the final

voltage between a given time range.

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

On the cooperation of the constraint domains H, R, and FD in CFLP 481

• bothIn (goal2): The problem of solving the goal presented as Goal 2 in

Subsection 1.2 for several values of n. Instances goal2(n) of this benchmark

correspond to solving an instance of Goal 2 for the corresponding n.

• bothIn (goal3): The problem of solving the goal presented as Goal 3 in

Subsection 1.2 for several values of n. Instances goal3(n) of this benchmark

correspond to solving an instance of Goal 3 for the corresponding n.

• Distribution (distrib): An optimized distribution problem involving the coop-

eration of the domains R and FD. The problem deals with a communication

network where NR continuous and ND discrete suppliers of raw material have

an attached cost to be minimized (see Appendix 8 in Arenas et al. 2007). The

global optimum is computed. The various instances distrib(ND,NR) of this

benchmark correspond to different choices of values for ND and NR.

All the benchmarks were coded using FD variables and most of them demand

the solving of (non)linear equations. Only the last four of them strictly require

cooperation between FD and R and cannot be solved by using just one of these

domains. However, the rest of the benchmarks are also useful to evaluate the

overhead introduced when the different solvers are enabled. The formulation of

benchmarks nl-csp, mag.sq, circuit, and smm was taken from the distribution of

META-S. Full details and code of the benchmarks (written in both TOY and

META-S) are available at http://www.lcc.uma.es/∼afdez/cflpfdr/.

All the benchmarking process was done using the same Linux machine (under the

professional version of Suse Linux 9.3) with an Intel Pentium M processor running at

1.70 GHz and with an RAM memory of 1 GB. In the rest of this section, performance

numbers, in milliseconds, have been computed as the average result of 10 runs for

each benchmark. In all tables, the best result obtained for each benchmark among

those computed under the various configurations has been highlighted in boldface.

5.2 Benchmark analysis in TOY

In this section, we briefly present empirical support for two claims: (a) that the

activation of the cooperation mechanism between FD and R does not penalize the

execution time in problems which can be solved by using the domain FD; and (b)

that the cooperation mechanism using projections helps to speed up the execution

time in problems where both the domain FD and the domain R are needed.

Tables 9–12 show the performance of each benchmark for several configurations

of the TOY system, as explained below. The first column in each table displays the

name of the benchmark to be solved, and the next columns correspond to different

activation modes of the TOY system, namely:

• TOY(FD), an activation mode where the FD solver (but not the R solver)

is enabled. Actually, this corresponds to an older version of the TOY system

which did not provide simultaneous support for R constraints.

• TOY(FD + R), an activation mode where both the FD solver and the R
solver are enabled, but the projection mechanism is disabled.

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

482 S. Estévez-Mart́ın et al.

Table 9. Solving FD benchmarks in TOY (first solution search)

(overload evaluation)

FD constraint solving

TOY(FD) TOY(FD + R) TOY(FD + R)p

Benchmark näıve ff näıve ff näıve ff

donald 1078 195 1040 188 7476 678

smm 16 15 14 16 47 49

nl-csp 15 20 15 18 39 86

wwr 18 19 18 19 58 52

maq.sq. 92 91 89 89 87 91

eq.10 74 90 74 81 284 261

eq.20 138 134 139 131 431 421

knapsack (csp) 5 5 5 5 5 5

knapsack (opt) 40 15 35 15 70 40

Table 10. Solving FD ∼ R benchmarks in TOY (first solution search)

(evaluation of the constraint projection mechanism)

FD ∼ R constraint solving

TOY(FD + R) TOY(FD + R)p

Benchmark näıve ff näıve ff

donald 304970 288700 8305 727

smm 22528 22627 41 40

nl-csp 411 383 44 87

wwr 411 420 54 58

maq.sq. 166 168 158 163

eq.10 266 271 290 269

eq.20 402 408 433 397

knapsack (csp) 5 5 5 5

knapsack (opt) 16 15 11 14

• TOY(FD + R)p, an activation mode where the FD solver, the R solver, and

the projection mechanism are all enabled.

The heading “FD constraint solving” in Table 9 indicates that all the benchmarks

have been formulated in such a way that all the constraints needed to solve them are

submitted to the FD solver and the R solver is not invoked. Note that although the

activation mode TOY(FD) is sufficient to execute all the benchmarks presented in

this table, the benchmarks have also been executed in the modes TOY(FD + R) and

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

On the cooperation of the constraint domains H, R, and FD in CFLP 483

Table 11. Solving FD ∼ R benchmarks in TOY (first solution search) (evaluation

of the constraint projection mechanism on benchmarks necessarily demanding solver

cooperation)

FD ∼ R constraint solving

TOY(FD + R) TOY(FD + R)p

Benchmark näıve ff näıve ff

circuit 14 13 14 20

distrib (2,5.0) 662 506 144 504

distrib (3,3.0) 1486 810 132 814

distrib (3,4.0) 2098 1290 156 1178

distrib (4,5.0) 20444 12670 240 12744

distrib (5,2.0) 29108 5162 198 7340

distrib (5,5.0) 141734 85856 272 86497

distrib (5,10.0) 568665 464230 474 462980

goal2 (100) 25 28 14 14

goal2 (200) 40 44 13 15

goal2 (400) 70 72 12 13

goal2 (800) 131 135 12 15

goal2 (10000) 704 713 14 16

goal2 (20000) 1271 1270 12 16

goal2 (40000) 2325 2333 11 16

goal2 (80000) 4452 4472 13 16

goal2 (200000) 10725 10781 13 15

goal3 (100) 18 20 15 16

goal3 (200) 26 28 13 13

goal3 (400) 41 44 15 16

goal3 (800) 75 77 16 17

goal3 (5000) 354 360 14 16

Table 12. Solving goal3(n) benchmarks in TOY (all solutions search)

FD ∼ R constraint solving

TOY(FD + R) TOY(FD + R)p

Benchmark näıve ff näıve ff

goal3 (100) 673 625 265 242

goal3 (200) 1867 1844 329 352

goal3 (400) 6527 6573 583 579

goal3 (800) 24460 24727 976 994

goal3 (5000) 911880 920670 5365 6135

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

484 S. Estévez-Mart́ın et al.

TOY(FD + R)p with the aim of analyzing the overhead caused by the activation

of these more complex modes when solving problems that do not need them.

The heading “FD ∼ R constraint solving” in Tables 10–12 indicates that the

formulations of the benchmarks require both the FD solver and the R solver to

be enabled; more precisely, although the benchmarks shown in Table 10 admit a

natural formulation that can be totally solved by the FD solver, we have used

an alternative formulation in which the (non)linear constraints were submitted to

the R solver, whereas the rest of the constraints were sent to the FD solver; also

solving the benchmarks shown in Tables 11 and 12 strictly requires cooperation

between FD and R. These tables only consider the two activation modes of the

TOY system which make sense for such benchmarks, namely TOY(FD + R) and

TOY(FD + R)p.

Tables 9–12 also include two columns corresponding to two different labeling

strategies: naı̈ve, in which FD variables are labeled in a prefix order (i.e., the

leftmost variable is selected); and first fail (ff), in which the FD variable with

the smallest domain is chosen first for enumerating. Combined with the distinct

activation modes, this yields a number of configurations (i.e., six in Table 9 and four

in the rest).

Inspection of Table 9 reveals that the performance of all the benchmarks does not

get worse when moving from TOY(FD) to TOY(FD + R) and TOY(FD + R)p,

and it even improves in some cases. For those benchmarks that are most naturally

coded in the domain FD (as, for instance, smm, wwr, and mag.sq) the best results

are not those obtained in TOY(FD + R)p, but even in such cases the appreciable

overload is not a great one.

Inspection of Tables 10 and 11 reveals that the projection mechanism causes a

significant speedup of the solving process in most cases. Note that this mechanism

behaves specially well in solving the goal2(n) and goal3(n) benchmarks, where the

running time is stabilized in the range between 11 and 17 ms when projections are

enabled. Significant speedups (i.e., at least two or more magnitude orders) are also

detected in donald and smm benchmarks as well as in the different distrib benchmark

instances.

Finally, Table 12 presents the results corresponding to computing all the results

for the last five benchmarks in Table 11. The execution times are naturally higher

than those shown in Table 11, where only first solutions were computed. However,

the significant speedup caused by the activation of projections remains clearly

observable.

5.3 Benchmark analysis in META-S

In this subsection, we present the results of executing benchmarks in META-S,

a flexible meta-solver framework that implements the ideas proposed in Hofstedt

(2001) and Hofstedt and Pepper (2007) for the dynamic integration of external

stand-alone solvers to enable the collaborative processing of constraints. As already

mentioned in Sections 1 and 3, the cooperative framework underlying META-S

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

On the cooperation of the constraint domains H, R, and FD in CFLP 485

bears some analogies with the approach described in this paper. Both META-S and

TOY provide means for different numeric constraint domains to cooperate. TOY
supports cooperation between the domains H, FD, and R, while META-S connects

several kind of solvers, such as:

• An FD solver (for floats, strings, and rationals) that was implemented in

Common Lisp using as reference a library of routines for solving binary

constraint satisfaction problems provided by Peter van Beek and available

from http://www.ai.uwaterloo.ca/∼vanbeek/software/csplib.tar.gz.

• A solver for linear arithmetic, i.e., the constraint solver LINAR described

in Krzikalla (1997). This solver is based on the Simplex algorithm and was

implemented in the language C. It handles linear equations, inequalities, and

disequations over rational numbers.

• An interval arithmetic solver that uses the sound math library

(available at http://interval.sourceforge.net/interval/index.html),

an ANSI C library implemented on the basis of the solver for interval

arithmetic of Timothy J. Hickey from Brandeis University (available from

http://www.cs.brandeis.edu/∼tim/).

The interested reader is referred to Frank and Mai (2002) for more details on

the META-S solvers. There are also some other significant differences between both

systems. META-S is implemented in Common Lisp whereas TOY is implemented in

Prolog. In contrast to TOY, META-S does not support different activation modes

(corresponding to TOY(FD), TOY(FD + R), and TOY(FD + R)p in TOY),

neither explicit labeling strategies, nor facilities for optimization. On the other hand,

META-S supports the choice of different constraint-solving strategies (Frank et al.

2007), which is not the case in TOY. More details regarding the comparison between

TOY and META-S can be found in Subsection 5.4.

We have investigated the performance of META-S in solving the benchmarks

already considered for TOY in the previous section and the performance results

are shown in Tables 13–14. The organization of rows and columns is also similar to

the TOY tables (but considering the two different strategies explained below). The

occurrences of the symbol “−” indicate that the corresponding benchmark (namely,

the knapsack optimization and the distribution problem) could not be executed

because the META-S system provides no optimization facilities; the term “error”

corresponds with a failure returned by the system that was not able to solve the

goal. We have used the version 1.0 of META-S (kindly provided by its implementors

on our request) compiled using SuSE Linux version 9.3 (professional version), based

on CMU Common Lisp 18d.

For the META-S benchmarks, we have utilized the combination of the FD solver

(usually for rationals) and an arithmetic solver which was found analogous to the

FD plus R combination used in the corresponding TOY benchmark. In fact, for

META-S, we have selected the linear arithmetic solver since the interval arithmetic

solver yielded poorer results in all cases. In addition, we have considered the best

problem formulation (in terms of the target solver for each constraint) that yielded

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

486 S. Estévez-Mart́ın et al.

Table 13. Solving the benchmarks in META-S (first solution search)

META-S

Eager Heuristic

Benchmark Standard Ordered Standard Ordered

donald 268510 469370 5290 6140

smm 950 620 590 580

nl-csp 344800 1230 302314 970

wwr 10930 650 620 620

maq.sq. 1160 1220 520 540

eq.10 60 60 70 70

eq.20 60 60 70 70

knapsack (csp) 60 60 70 70

knapsack (opt) – – – –

distrib (2,5.0) – – – –

distrib (3,3.0) – – – –

distrib (3,4.0) – – – –

distrib (4,5.0) – – – –

distrib (5,2.0) – – – –

distrib (5,5.0) – – – –

distrib (5,10.0) – – – –

circuit 70 70 70 70

goal2 (100) 330 330 330 330

goal2 (200) 730 740 740 740

goal2 (400) 2340 2340 2340 2350

goal2 (800) 8550 8540 8560 8560

goal3 (100) 410 410 460 460

goal3 (200) 900 900 1080 1080

goal3 (400) 2870 2880 3520 3540

goal3 (800) 10630 10720 13140 13370

Table 14. Solving goal3(n) benchmarks in META-S (all solutions search)

META-S

Eager Heuristic

Benchmark Standard Ordered Standard Ordered

goal3 (100) 8930 8880 6940 6940

goal3 (200) 60700 60870 47190 46880

goal3 (400) 453330 459980 346930 348900

goal3 (800) error error error error

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

On the cooperation of the constraint domains H, R, and FD in CFLP 487

the best running time. Moreover, we have executed each META-S benchmark under

four different constraint-solving strategies:

• Standard eager, in which all constraint information is propagated as early as

possible.

• Ordered eager, working as the previous one complemented with user-given

information for determining the order of projection operations.

• Standard heuristic, working as the standard eager strategy complemented with

an heuristic for giving priority to those variable bindings more likely to lead

to failure.

• Ordered heuristic, working as the previous one complemented with user-given

information for determining the order of projection operations.

In certain form, näıve and ff labeling in TOY are similar, respectively, to eager

and heuristic strategies in META-S. For the sake of a fair comparison, whenever

possible we have encoded the META-S benchmarks using exactly the same problem

formulations as well as the same constraints that were used in the corresponding

TOY benchmarks. Benchmarks were coded using the functional logic language

FCLL of META-S. Also, we took care that the variable orders were identical for

the different resolution/labeling strategies in both systems.

Note that the META-S benchmarks shown in Table 13 (resp. Table 14) correspond

to the TOY benchmarks in Tables 9–11 (resp. Table 12), all of which refer to first

solution search (resp. all solutions search).

5.4 TOY versus META-S

The tables displayed in this subsection are intended to compare the performance

of TOY and META-S. Table 15 compares the behavior of both systems when

computing the first solution of various benchmarks, while the results in Table 16

correspond to the computation of all the solutions for a few instances of the

benchmark goal3(n). More precisely, the execution times and META-S/TOY rates

displayed in Table 15 correspond to the best results for each benchmark under those

obtained for the various configurations in Tables 10–11 and 13, respectively; while

Table 16 has been built from the information displayed in Tables 12 and 14 in a

similar way.

The analogies and differences between the domain cooperation mechanisms

supported by TOY and META-S have been discussed at the end of Subsection 3.3.

In both cases, projections play a key role, and the information displayed in Tables

15 and 16 allows mainly to draw conclusions on the computational performance

of both systems. META-S seems to behave particularly well in the solving of

linear equations, especially when the problem requires no global constraints (such

as an alldifferent constraint used in benchmarks eq10 and eq20). The reason maybe

twofold: first, that the linear arithmetic solver of META-S performs better than its

FD solver, and, second, that flattening a nested constraint in TOY generates as

many flat constraints as the number of operators it includes.

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

488 S. Estévez-Mart́ın et al.

Table 15. Solving benchmarks in TOY versus META-S (first solution search)

System TOY META-S META-S/TOY

donald 188 5290 28.13

smm 14 580 41.42

nl-csp 15 970 64.66

wwr 18 620 34.44

maq.sq. 87 520 5.97

eq.10 74 60 0.81

eq.20 131 60 0.45

knapsack (csp) 5 60 12

knapsack (opt) 11 – –

circuit 13 70 5.38

goal2 (100) 14 330 23.57

goal2 (200) 13 730 56.15

goal2 (400) 12 2340 195.00

goal2 (800) 12 8540 711.66

goal3 (100) 15 410 27.33

goal3 (200) 13 900 69.23

goal3 (400) 15 2870 191.33

goal3 (800) 16 10630 664.375

Table 16. Solving goal3(n) in TOY versus META-S (all solutions search)

System TOY META-S META-S/TOY

goal3 (100) 242 6940 28.67

goal3 (200) 329 46880 142.49

goal3 (400) 579 346930 599.18

goal3 (800) 976 error –

However, in general, TOY shows an improvement of about one order of

magnitude with respect to the META-S system, for the benchmarks used in our

comparison. As an extreme case, the computation time for obtaining the first solution

of the benchmark goal3(800) increases more than three orders of magnitude with

respect to TOY, and computing all the solutions for this benchmark in META-S

does not succeed. In certain form, the experimental results suggest that our proposal

is not only promising but also interesting in its current state.

In any case, the “superior” performance of TOY with respect to META-S has to

be interpreted carefully. One reason for TOY’s advantage may be that the numerical

solvers connected in the current version of META-S have been implemented just

to experiment with the concepts of the underlying theoretical framework described

in Hofstedt (2001) and Hofstedt and Pepper (2007), without much concern for

optimization, while TOY relies on the optimized solvers provided by SICStus

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

On the cooperation of the constraint domains H, R, and FD in CFLP 489

Prolog. Another advantage of TOY is the availability of global constraints such

as alldifferent that are lacking in META-S. Admittedly, a better comparison of the

performance results in both systems would be obtained by comparing independently

the integrated solvers in each of the systems, and then normalizing the global results

for the systems; or alternatively, by connecting the same solvers to both systems.

This would be possible if all the integrated solvers were effectively black-boxes

that can be unplugged from the systems. Unfortunately, this is not the case, as the

solvers attached to TOY are used as provided by SICStus Prolog and they were

not internally adjusted to work in a cooperation system, whereas the solvers used in

META-S were implemented with regard to their integration into the implementation

of META-S as a system with cooperating components.

In favor of META-S, we mention that the cooperation model proposed in META-

S seems to be more flexible than the cooperation model currently implemented in

TOY, and provides facilities not yet available in TOY. For instance, META-

S allows to integrate and/or redefine evaluation strategies (Frank et al. 2003b),

whereas TOY relies on a fixed strategy for goal solving and constraint evaluation.

Also, the projection mechanism currently implemented in TOY is less powerful

than in META-S, because projections cannot be applied to the constraints inside the

constraint stores. Finally, META-S enables the integration of different host languages

(Frank et al. 2005), whereas the CCLNC(C) goal-solving calculus implemented in

TOY is intended for declarative languages fitting the CFLP scheme.

6 Related work

In this section, in addition to already mentioned related works, we extend the

discussion to other proposals developed in the area of cooperative constraint solving.

Of course, the issues of communication and cooperation are relevant to many aspects

of computation. Here, we discuss a selection of the literature concerning proposals

for communication and cooperation in constraint and declarative programming.

Existing cooperative systems are very diverse and range from domain combinations

to a mix of distinct techniques for solving constraints over the same domain.

Moreover, the cooperating systems may be very different in nature: some of them

perform complete constraint solving, whereas others just execute basic forms of

propagation. In general, depending on the nature of the cooperation, we catalogue

cooperative constraint solving in four nondisjoint categories:

(1) Cooperation of (built-in) domains coexisting in the same system.

(2) Interchange of information between different solvers/domains via special

constructs.

(3) Interoperability or communication between independent solvers.

(4) Combination or integration of entities with distinct nature (i.e., methods

and/or solvers based on different algorithms, or languages with different

resolution mechanisms).

In the following four subsections we discuss some of the relevant work done in

each of these categories, as well as their relation to our own approach.

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

490 S. Estévez-Mart́ın et al.

6.1 Cooperation of (built-in) domains coexisting in the same system

There are a number of constraint systems that provide support for the interaction

between built-in and predefined domains. In these systems, a solver is viewed as a

device that transforms the original set of constraints to an equivalent reduced set.

As examples, we can cite the following systems:

• CLP(BNR) (Benhamou and Older 1997), Prolog III (Colmerauer 1990), and

Prolog IV (N’Dong 1997) allow solver cooperation, mainly limited to Booleans,

reals, and naturals (as well as term structures such as lists and trees).

• The language NCL (Zhou 2000) provides an integrated constraint framework

that strongly combines Boolean logic, integer constraints, and set reasoning.

Currently, NCL also integrates efficient CP domain cutting techniques and

OR algorithms.

Most existing systems of this kind have two main problems: first, the cooperation

is restricted to a limited set of computation domains supported by the system; and

second, the cooperation mechanism is very dependant on the involved computation

domains and thus presents difficulties to be generalized to other computation

domains.

Our computational model for the cooperation of the domains H, FD, and

R and its current TOY implementation can be catalogued in this category, and

insofar it shares the two limitations just mentioned. However, our approach is

more general because it is based on a generic scheme for CFLP programming

over a parametrically given coordination domain C. The cooperative goal-solving

calculus CLNC(C) presented in Section 3 refers to the particular coordination

domain C = M⊕H⊕FD⊕R, but it can be easily extended to other coordination

domains, as sketched in our previous paper (Estévez-Martı́n et al. 2007b).

6.2 Interchange of information between computation domains and/or solvers

via special constructs

Another cooperation technique consists of providing special built-in constructs

designed to propagate information among different computation domains that

coexist in the same system. For example, this is the case with the reified constraints

that enable a communication between arithmetic computations and a Boolean

domain.

Within this type of cooperation we can cite Conjunto (Gervet 1997), a constraint

language for propagating interval constraints defined over finite sets of integers. This

language provides so-called graduated constraints which map sets onto arithmetic

terms, thus allowing a one-way cooperative channel from the set domain to the

integer domain. Graduated constraints can be used in a number of applications

as, for instance, to handle optimization problems by applying a cost function to

quantifiable terms (i.e., arithmetic terms which are associated to set terms).

Also, a generic framework for defining and solving interval constraints on any set

of domains (finite or infinite) with a lattice structure is formulated in Fernández and

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

On the cooperation of the constraint domains H, R, and FD in CFLP 491

Hill (2004, 2006). This approach also belongs to the cooperation category described

in Subsection 6.1. It enables the construction of new (compound) constraint solvers

from existing solvers using lattice combinators, so that different solvers (possibly on

distinct domains) can communicate and cooperate in solving a problem. The clp(L)

language presented in Fernández and Hill (2004) is a prototype implementation of

this framework and allows information to be transmitted among different (possibly

user-defined) computation domains.

Our proposal in this paper can also be considered to fit into the special constructs

category by viewing bridge constraints as channels that enable the propagation of

information between different computation domains.

6.3 Interoperability

A number of recent publications deal with approaches to solver cooperation

requiring interoperability, understood as the behavior of some coordinating system

that supports communication between several autonomous systems. In such settings,

cooperation relies on suitable interfaces, which have to be specified and implemented

according to the specific formats required by the various domains and solvers.

For instance, Goualard (2001) proposes a C++ constraint-solving library called

aLiX for communicating between different solvers, possibly written in different

languages. Two of the main aims of aLiX are to permit the transparent commu-

nication of solvers and ensure type safety, that is to say, the capacity to prevent

a priori the connection of a solver that does not conform to the input format of

the interface with another solver. The current version of aLiX is not mature yet,

although its interoperability approach offers interesting possibilities. One of the main

shortcomings of the current aLiX version is that a component for solving continuous

constraints is not yet integrated into the system, and thus real constraints cannot be

processed.

In the same spirit, many constraint systems provide both a linear and a nonlinear

solver for the real domain. As the linear solver is more efficient of the two, it should

be used whenever the constraints are linear, and there is a need for communication

between the two real solvers. As an example, Monfroy et al. (1995) describe a

client/server architecture to enable communication between the component solvers.

This consists of managers for the system and the solvers that must be defined on

the same computational domain (the real numbers, for example) but with different

classes of admissible constraints (i.e., linear and nonlinear constraints). The CLP

system CoSAc is an implementation of this architecture. A built-in platform permits

the integration and connection of the components. The exchange of information is

managed by means of pipes and the exchanged data are character strings. One of the

main drawbacks of this system is the lack of type safety. Moreover, the cooperation

happens at a fixed level that prevents the communication of solvers in a transparent

way, since the solvers cannot obtain additional information from the structure of

the internal constraint store. As already discussed at the end of Subsection 3.3, the

current TOY implementation of our cooperative computation model suffers from

a similar limitation, preventing the constraints already placed into the FD and R

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

492 S. Estévez-Mart́ın et al.

stores to be projected. This issue should be addressed in future improvements of our

system.

As CoSAc does not permit solver combination, Monfroy designed a domain-

independent environment for solver collaboration, and he used this concept in

order to unify solver cooperation and combination. Basically, solver cooperation

means the use of several solvers with data exchange between them, whereas solver

combination is understood as the construction of new solvers from other previously

defined solvers. In his Ph.D. thesis (Monfroy 1996), Monfroy developed the system

BALI (binding architecture for solver integration) that facilitates the integration

of heterogeneous solvers as well as the specification of solver cooperation via a

number of cooperation primitives. Monfroy’s approach assumes that all the solvers

work over a common store, while our own proposal requires communication among

different stores. Monfroy also designed SoleX (Monfroy and Ringeissen 1999), a

domain-independent scheme for constraint-solver extension. This schema consists of

a set of rules for transforming constraints that cannot be managed by a solver into

constraints that can be treated by that solver, thus extending the range of solvable

constraints. Unfortunately, as commented in Monfroy (1996: 195), SoleX and BALI

were not integrated. Such an integration could lead to a framework including both

solver collaboration and solver extension.

The interoperability category also includes a line of research dealing with the

development of coordination languages, aiming at the specification of cooperation

between solvers. There exist several proposals whose main goal is to study the use of

control languages to specify elementary constraint solvers as well as the collaboration

of solvers in a uniform and flexible way. For instance, Arbab and Monfroy (1998)

propose to use the coordination language MANIFOLD for improving the constraint-

solver collaboration language of BALI. More recent works such as Monfroy and

Castro (2004) and Castro and Monfroy (2004) aim at providing means of designing

strategies that are more complex than simple master–slave approaches. Basically,

Castro and Monfroy propose an asynchronous language composed of interaction

components that control external agents (in particular solvers) by managing the

data flow. A software framework for constructing distributed constraint solvers,

implemented in the coordination language MANIFOLD, has been described in

Zoeteweiz (2003). A different point of view regarding solver cooperation is analyzed

in Pajot and Monfroy (2003), where a paradigm to enable the user to separate

computation strategies from the search phases is presented.

Also it is worth mentioning the project COCONUT1 whose goal was to integrate

techniques from mathematical programming, constraint programming, and interval

analysis (and thus it can also be catalogued in the category of cooperation via

techniques combination as described in Section 6.4). A modular solver environment,

that can be extended with open-source and commercial solvers, was provided for

nonlinear continuous global optimization. This framework was also designed for

1 See http://www.mat.univie.ac.at/ neum/glopt/coconut/

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

On the cooperation of the constraint domains H, R, and FD in CFLP 493

distributed computing and has a strategy engine that can be programmed using a

specific interpreted language based on Python.

Mircea Marin has developed in his Ph.D. thesis (Marin 2000) a CFLP scheme that

combines Monfroy’s approach to solver cooperation (Monfroy 1996) with a higher-

order lazy narrowing calculus somewhat similar to López-Fraguas et al. (2004)

and the goal-solving calculus presented in Section 3 of this paper. In this setting,

Monfroy’s ideas are used to provide various primitives for solver combination, and

the CFLP scheme allows to embed the resulting solvers into a functional and

logic programming language. In contrast to our proposal, Marin’s approach allows

for higher-order unification, which leads both to greater expressivity and to less

efficient implementations. Another difference w.r.t. our approach is the intended

application domain. The instance of CFLP implemented by Marin et al. (2001)

combines four solvers over a constraint domain for algebraic symbolic computation.

This line of research has been continued in works such as Kobayashi (2003) and

Kobayashi et al. (2001, 2002, 2003). These papers describe a collaborative CFLP

system, called Open CFLP , which solves symbolic constraints by collaboration

between distributed constraint solvers in an open environment such as Internet. The

solvers act as providers of constraint-solving services, and Open CFLP is able to

use them without knowing their location and implementation details. The common

communication infrastructure (i.e., the protocol) and the specification language were

implemented using CORBA and MathML, respectively.

Another recent proposal for the combination of solvers in a declarative program-

ming language can be found in de la Banda et al. (2001). This paper deals with the

construction of solvers in the HAL system, which supports the extension of existing

solvers and the construction of hybrid ones. HAL provides semioptional type, mode

and determinism declarations for predicates and functions as well as a system of

type classes over which constraint solvers’ capabilities are specified. In particular,

HAL type classes can require that the types belonging to them must have a suitable

associated constraint solver.

A quite general scheme for solver cooperation fitting the interoperability category

has been proposed by Hofstedt (2000a, 2000b, 2001) and Hofstedt and Pepper (2007).

Here, constraint domains are formalized by using Σ-structures in a sorted language,

constraints are modeled as n-ary relations, and cooperation of solvers is achieved by

two mechanisms: constraint propagation that submits a constraint belonging to its

corresponding store; and projection of constraint stores that consults the contents

of a given store SD and deduces constraints for another domain. Relying on these

mechanisms, different constraint solvers (possibly working over different domains,

and implemented in various languages) can be used as components of an overall

system, whose architecture provides a uniform interface for constraint solvers which

allows a fine-grain formal specification of information exchange between them. This

approach has been implemented in the system META-S (Frank et al. 2003a, 2003b,

2005) that supports the dynamic integration of arbitrary external (stand-alone)

solvers to enable the collaborative processing of constraints. Some analogies and

differences between this approach and our own have been discussed already at

several places of this paper (see Introduction, and Sections 3.3 and 5).

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

494 S. Estévez-Mart́ın et al.

As a more theoretical line of work related to the interoperability category, there are

a number of formal approaches to the combination of constraint solvers on domains

modeled as algebraic structures. This kind of research stems from a seminal paper

by Nelson and Oppen (1979). More recent relevant work includes several papers by

Baader and Schulz (1995). For instance, Baader and Schulz (1995) provide an abstract

framework to combine constraint languages and constraint solvers, and focuse on

ways in which different and independently defined solvers may be combined. This

paper does not really deal with the constraint cooperation mechanism, but it focuses

in defining algebraic properties needed for the combination of constraint languages

and solvers. Later on, Baader and Schulz (1998) generalized a proposal from a

previous paper (Baader and Schulz 1996) and presented a general method for the

combination of constraint systems, which is is applicable to so-called quasi-structures.

This general notion comprises various instances, such as (quotient) term algebras,

rational trees, lists, sets, etc. The methods proposed in Baader and Schulz (1996, 1998)

can be seen as extensions of previous approaches to the combination of unification

algorithms for equational theories, viewing them as instances of constraint solvers

(Kirchner and Ringeissen 1992, 1994). As pointed out in Kepser and Richts (1999),

a weak point of these approaches is the lack of practical use.

Our proposal can clearly be catalogued in the interoperability category, because it

aims at the cooperation of several constraint domains equipped with their respective

solvers. Our main communication mechanism, namely bridges, has the advantage

of syntactic simplicity, while being compatible with the static type systems used by

many declarative languages. Moreover, our notion of coordination domain allows

us to use a generic scheme for CFLP programming as a formal foundation.

6.4 Combining methods and/or solvers based on different algorithms

One popular approach to cooperation consists of combining solvers or methods

based on different algorithms. In this category, we include the integration of different

paradigms in one language. In the following, we provide a (nonexhaustive) list of

proposals of this kind.

For instance, one of the initial forms of cooperating constraint solving consisted

of using different problem solvers (viewed as algorithms) to work individually over

different subparts of an overall problem. This was the approach used in Durfee et al.

(1989) in order to integrate within a network a number of individual solvers intended

to work over different parts of a problem. In a similar way, Khedro and Genesereth

(1994) proposed a multiagent model where each agent acts independently to solve

a distributed set of constraints that constitutes a distributed constraint satisfaction

problem. The paper (Hong 1994) also studied the confluence of solvers to solve a

common problem, suggesting to manage a set of algorithms each of which should

be repeatedly applied on the problem until reaching a stable form.

Within the area of constraint programming, Benhamou (1996) described a unified

framework for heterogeneous constraint solving. Here, the cooperation comes from

the combination of different algorithms, possibly defined over distinct structures. The

main idea is to represent the solvers as constraint narrowing operators (CNO) that

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

On the cooperation of the constraint domains H, R, and FD in CFLP 495

are closure operators, and to use a generalized notion of arc-consistency. Conditions

on the CNOs needed to ensure the main properties of the principal algorithm are

identified. Solver communication involving shared common variables and sending

and receiving information to each other is described. The paper also gives a fixed

point semantics to describe the cooperation process. One of the main drawbacks of

this proposal is that termination of the central algorithm relies on the finiteness of an

approximate domain A built as a subset of the powerdomain ℘(D) of the domain D

under consideration, including D among its members and closed under intersection.

For instance, termination cannot be guaranteed in case that D is the domain of sets

of real numbers, which is useful for dealing with real interval constraints.

In relation to the problem of solving real constraints, Benhamou et al. (1999)

have proposed the combination of hull consistency and box consistency with the

objective of reducing the computation time achieved by using box consistency alone.

This idea was reflected in DecLic (Benhamou et al. 1997; Goualard et al. 1999), a

CLP language that mixes Boolean, integer, and real constraints in the framework

of intervals. This system was shown to be fairly efficient on classical benchmarks

but at the expense of decreasing the declarativity of the language as a consequence

of allowing the programmer to choose the best kind of consistency to use for each

constraint.

The combination of interval techniques for solving nonlinear systems is also

tackled in Granvilliers (2001), who describes a cooperative strategy to combine the

interval-based local consistencies methods (i.e., box and hull consistency) with the

multidimensional interval Newton method and shows the efficiency of the main

algorithm.

Another proposal for developing a cooperation technique for solving large-scale

combinatorial optimization problems was described in Castro et al. (2004). This

paper introduces a framework for designing cooperative strategies, describing a

scheme for the sequential cooperation between Forward Checking and Hill-Climbing.

A set of benchmarks for the Capacity Vehicle Routing Problem shows the advantages

of using this framework that always outperforms a single solver.

The combination of linear programming solvers and interval solvers has also

been specially fertile in the last decades (Marti and Rueher 1995). Many of the

cooperating systems resulting from this combination have been implemented as

(prototype) declarative systems, as, e.g., ICE (Beringer and Backer 1995), Prolog IV

(N’Dong 1997), CIAL (Chiu and Lee 2002), and CCC (Rueher and Solnon 1997),

among others.

The integration of mathematical programming techniques in the CLP scheme (van

Hoeve 2000) may be considered another form of cooperation that has been treated

extensively in the literature; see, e.g., the integration of Mixed Integer programming

and CLP (Rodosěk et al. 1997; Harjunkoski et al. 2000; Thorsteinsson 2001), the

combination of CLP and Integer Programming (Bockmayr and Kasper 2000), and

the combination of CLP and Linear Programming (Vandecasteele and Rodosěk

1998), among others.

The domain cooperation framework presented in this paper is quite generic, and

its current implementation in TOY relies on the availability of black box solvers

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

496 S. Estévez-Mart́ın et al.

provided by SICStus Prolog (2007). Therefore, it cannot be catalogued into the

cooperation category considered in this subsection, which is very specific and relies

on a detailed control of the techniques and solvers involved. Nevertheless, the work

described in this subsection points to combination techniques which lead to improved

performance and may be useful for future implementations of our approach.

7 Conclusions and future work

The work presented in this paper is aimed as a contribution to the efficient

use of constraint domains and solvers in declarative languages and systems. We

have investigated foundational and practical issues concerning a computational

framework for the cooperation of constraint domains in CFLP , using constraint

projection guided by bridge constraints as the main cooperation tool. Taking a

generic scheme as a formal basis, we have focused on a particular case of practical

importance, namely the cooperation among the symbolic Herbrand domain H and

the two numeric domains R and FD.

The relation to our previous related work and some pointers to related work by

other researchers have been presented in Section 1, and a more detailed discussion

of the state-of-the-art concerning cooperation of constraint domains can be found

in Section 6. In the rest of this section, we give a summary of the main results

presented in the other sections of the paper, followed by some considerations

concerning current limitations and possible lines of future work.

7.1 Summary of main results

Our results include a formal computation model for cooperative goal solving in

CFLP , the development of an implemented system, and experimental evidence on

the implementation’s performance and its comparison with the closest related system

we are aware of. More precisely:

• In Section 2, we have presented a formal framework for the cooperation

of constraint domains in an improved version of an already existing CFLP

scheme for CFLP. We have formalized a notion of constraint solver suitable for

CFLP programming, as well as a mathematical construction of coordination

domains, a special kind of hybrid domains built as a combination of several

pure domains intended to cooperate. In addition to the facilities provided by

their components, coordination domains supply special primitives for building

bridge constraints to allow communication between different component

domains. As particular case of practical interest, we have formalized a

coordination domain C = M ⊕ H ⊕ FD ⊕ R tailored to the cooperation of

three useful pure domains: the Herbrand domain H which supplies equality

and disequality constraints over symbolic terms, the domain R which supplies

arithmetic constraints over real numbers, and the domain FD which supplies

finite domain constraints over integer numbers. Practical applications involving

more that one of these pure domains can be naturally treated within the

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

On the cooperation of the constraint domains H, R, and FD in CFLP 497

CFLP (C) instance of the CFLP scheme. From a programmer’s viewpoint,

the domain H supports generic equality and disequality constraints over

arbitrary user-defined datatypes, while R and FD provide more specific

numeric constraints.

• Section 3 presents a formal calculus for cooperative goal solving in CFLP (C).

The main programming features available to CFLP (C) programmers include

a Milner’s like polymorphic type system, lazy and possibly higher-order

functions, predicates, and the cooperation of the three domains within C.

The goal-solving calculus is presented as a set of goal transformation rules for

reducing initial goals into solved forms. There are rules that use lazy narrowing

to process program defined function calls in a demand-driven way, domain

cooperation rules dealing among other things with bridges and projections,

and constraint-solving rules to invoke the solvers of the various pure domains

involved in the cooperation. The section concludes with theoretical results

ensuring soundness and completeness of the goal-solving calculus, where

completeness is guaranteed for well-typed solutions as far as permitted by

the completeness of the underlying solvers and some other more technical

requirements.

• Section 4 presents the implementation of the cooperative goal-solving calculus

for CFLP (C) in a state-of-the-art declarative programming system. In addition

to describing general aspects such as the software architecture, we have focused

on the implementation of domain cooperation mechanisms, illustrating the

correspondence between code generation in the implemented system, and the

goal transformation rules for cooperation formalized in the previous section.

• Section 5 is devoted to performance analysis by means of a set of benchmarks.

The experimental results obtained lead us to several conclusions. First, we

conclude that the activation of the domain cooperation mechanisms between

FD and R does not penalize the execution time in problems which can be

solved by using the domain FD alone. Second, we also conclude that the

cooperation mechanism using projections helps to speed up the execution

time in problems where a real cooperation between FD and R is needed.

Third, our experiments show a good performance of our implementation

with respect to the closest related system we are aware of. In summary, we

conclude that our approach to the cooperation of constraint domains has

been effectively implemented in a practical system that is distributed as a free

open-source Sourceforge project (http://toy.sourceforge.net) and runs

on several platforms.

7.2 Some current limitations and planned future work

In the future, we would like to improve some of the limitations of our current

approach to domain cooperation, concerning both the formal foundations and the

implemented system. More precisely:

• The cooperative goal-solving calculus CCLNC(C) presented in Section 3

should be generalized to allow for an arbitrary coordination domain C in

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

498 S. Estévez-Mart́ın et al.

place of the concrete choice M ⊕ H ⊕ FD ⊕ R. This is a straightforward

task. However, for the purposes of the present paper we found more appro-

priate to deal just with the coordination domain supported by the current

implementation.

• The implemented system should be expanded to support some of these

more general coordination domains, which could include specific domains

for Boolean values, sets, or different types of numeric values. More efficient

and powerful constraint solvers for such domains should also be integrated

within the implementation.

• CCLNC(C) should also be expanded to allow the computation of projections

from the primitive constraints placed within the constraint stores. These more

powerful projections were allowed in the preliminary version of CCLNC(C)

presented in Estévez-Martı́n et al. (2007b), but they were not implemented

and no completeness result was given. Currently, projections are computed

only from the constraints placed in the constraint pool (see rule PP in Table

4 in Subsection 3.3) and the TOY implementation only supports this kind of

projections. Allowing projections to act over stored constraints will require to

solve new problems both on the formal level (where some substantial difficulties

are expected for proving a completeness result) and on the implementation

level (where the current system will have to be modified to enable a transparent

access to the constraint stores).

• As a consequence of the previous improvement, the cooperative goal-solving

process will show more complicated patterns of interaction among solvers.

Therefore, some means to describe goal-solving strategies should be provided

to enable users to specify some desired sequences of goal transformation rules,

especially with regard to the activation of solvers and projections. In addition

to being implemented as part of the practical system, goal-solving strategies

are expected to be helpful for proving the completeness of a cooperative

goal-solving calculus improved as described in the previous item.

• The experimentation with benchmarks and application cases should be further

developed.

• Last but not least, the implemented system should be properly maintained

and improved in various ways. In particular, library management should be

standardized, both with respect to loading already existing libraries and with

respect to developing new ones.

Appendix A [Auxiliary results and proofs]

This Appendix collects proofs of the results stated in Sections 2 and 3 omitted from

the main text. Some of them rely on previously stated auxiliary results, especially

Lemmata 1 and 2 from Subsection 2.2 and Lemma 3 from Subsection 2.3. In

addition, some other auxiliary results will be included at the proper places.

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

On the cooperation of the constraint domains H, R, and FD in CFLP 499

A.1 Properties of constraint solvers and coordination domains

The first part of the Appendix includes the proofs of the main results stated in

Section 2. First, we present the proof of Lemma 5, about general properties of proof

transformation systems.

Proof of Lemma 5

(1) The transition relation ��D,X of the sts generates a tree with root Π � ε,

whose leaves correspond to the stores belonging to SFD(Π,X). Since ��D,X
is finitely branching and terminating, this tree is locally finite and has no

infinite branches. By so-called König’s Lemma (see Baader and Nipkow 1998;

Section 2.2) the tree must be finite. Therefore, it must have finitely many

leaves, and SFD(Π,X) is finite. For later use, we remark that solveD(Π,X)

can be characterized as
∨

{∃Y ′(Π′ � σ′) | Π � ε ��D,X! Π′ � σ′, Y ′ = var(Π′ � σ′) \ var(Π)}

(2) Assume that the sts has the fresh local variables property and the safe bindings

property. Because of the remark at the end of item (1), for each X-solved form

∃Y ′(Π′ � σ′) computed by the call solveD(Π,X) there is some sequence of

��D,X steps

Π � ε = Π′
0 � μ′

0 ��D,X Π′
1 � μ′

1 ��D,X . . . ��D,X Π′
n � μ′

n

such that Π′
n � μ′

n = Π′ � σ′ is irreducible, and the following conditions hold for

all 1 � i � n: Π′
i � μ′

i is a store with fresh local variables Y ′
i = var(Π′

i � μ′
i) \

var(Π′
i−1 � μ′

i−1); μ′
i = μ′

i−1μi for some substitution μi verifying vdom(μi) ∪
vran(μi) ⊆ var(Π′

i−1) ∪ Y ′
i ; and μi(X) is a constant for all X ∈ X ∩ vdom(μi).

Then, Y ′ = Y ′
1 , . . . , Y

′
n , and an easy induction on n allows to prove that

vdom(σ′) ∪ vran(σ′) ⊆ var(Π) ∪ Y ′ and that σ′(X) is a constant for all X ∈
X∩vdom(σ′). Therefore, the solver solveD also satisfies the fresh local variables

property and the safe bindings property.

(3) Assume that the sts is locally sound. Because of the remark in item (1), to

prove soundness of solveD it is sufficient to show that the union
⋃

{SolD(∃Y ′(Π′ � σ′)) | Π � σ ��D,X! Π′ � σ′, Y ′ = var(Π′ � σ′) \ var(Π � σ)}

is a subset of SolD(Π � σ). In order to show this, we assume

Π � σ ��n
D,X! Π′ � σ′, Y ′ = var(Π′ � σ′) \ var(Π � σ)

and prove SolD(∃Y ′(Π′ � σ′)) ⊆ SolD(Π � σ) by induction on n:

n = 0: in this case Y ′ = ∅, Π′ � σ′ = Π � σ. The inclusion to be proved is

trivial.

n > 0: in this case Π � σ ��D,X Π′
1 � σ′

1 ��n−1
D,X! Π′ � σ′ for some store Π′

1 � σ′
1.

Let Y ′
1 = var(Π′

1�σ′
1) \ var(Π � σ) and Y ′′ = var(Π′ � σ′) \ var(Π′

1�σ′
1).

Then, Y ′ = Y ′
1 , Y

′′ = var(Π′ � σ′) \ var(Π � σ). By induction hypothesis,

we can assume SolD(∃Y ′′(Π′ � σ′)) ⊆ SolD(Π′
1 � σ′

1). Then, for any given

η ∈ SolD(∃Y ′(Π′ � σ′)) we can prove η ∈ SolD(Π � σ) by the following

reasoning: by definition of SolD, there is η′ ∈ SolD(Π′ � σ′) such that η′ =\Y ′ η

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

500 S. Estévez-Mart́ın et al.

and hence η′ =var(Π � σ) η. Trivially, it follows that η′ ∈ SolD(∃Y ′′(Π′ � σ′)),

which implies η′ ∈ SolD(Π′
1 � σ′

1) by induction hypothesis. Trivially again, it

follows that η′ ∈ SolD(∃Y ′
1 (Π

′
1 � σ′

1)) which implies η′ ∈ SolD(Π � σ) due to

local soundness. Since η′ =var(Π � σ) η, we can conclude that η ∈ SolD(Π � σ).

(4) Assume now a selected set RS of strs such that the sts is locally complete

for RS-free steps. Because of the remark in item 1., to prove completeness of

solveD for RS-free invocations it is sufficient to show that WTSolD(Π � σ) is

a subset of the union
⋃

{WTSolD(∃Y ′(Π′ � σ′)) | Π � σ ��D,X! Π′ � σ′, Y ′ = var(Π′ � σ′)\var(Π � σ)}

under the additional assumption that Π � σ is hereditarily RS-irreducible.

This can be viewed as a property of the store Π � σ that can be proved by

well-founded induction (see again Baader and Nipkow 1998; Section 2.2) on

the terminating store transformation relation ��D,X:

Base Case: Π � σ is irreducible w.r.t. ��D,X. In this case, the union reduces to

the set WTSolD(Π � σ) and the inclusion to be proved is trivial.

Inductive Case: Π � σ is reducible w.r.t. ��D,X. In this case, since Π � σ

is hereditarily RS-irreducible and the sts is locally complete for RS-free

steps, for any η ∈ WTSolD(Π � σ) there is some hereditarily RS-irreducible

(Π′
1 � σ′

1) such that Π � σ ��D,X Π′
1 � σ′

1 and η ∈ WTSolD(∃Y ′
1 (Π

′
1 � σ′

1))

where Y ′
1 = var(Π′

1�σ′
1) \ var(Π � σ). Then, by definition of SolD, there is

η′
1 ∈ WTSolD(Π′

1 � σ′
1) such that η′

1 =\Y ′
1
η. The induction hypothesis can be

assumed for Π′
1 � σ′

1, and there must be some Π′ � σ′ such that Π′
1 � σ′

1 ��D,X
!Π′ � σ′, Y ′′ = var(Π′ � σ′) \ var(Π′

1�σ′
1) and η′

1 ∈ WTSolD(∃Y ′′(Π′ � σ′)).

By definition of SolD, there is η′ ∈ WTSolD(Π′ � σ′) such that η′ =\Y ′′ η′
1.

Moreover, we get Π � σ ��D,X! Π′ � σ′ and Y ′ = Y ′
1 , Y

′′ = var(Π′ � σ′) \
var(Π � σ) such that η′ =\Y ′ η, and thus η ∈ WTSolD(∃Y ′(Π′ � σ′)).

This completes the proof of the lemma. �

Table A 1 displayed in the next page and the two auxiliary lemmata stated and

proved immediately afterward will be used in the subsequent proof of Theorem 1,

the main result in this subsection. It ensures that solveH satisfies the requirements

for solvers listed in Definition 6 (except for a technical limitation concerning

completeness). The proof of this theorem also relies on Lemma 5.

Lemma 7 (Auxiliary Soundness Lemma)

Assume Π ⊆ PConD and σ, σ1 ∈ SubD such that σ is idempotent and Πσ = Π.

Then SolD(Πσ1) ∩ SolD(σσ1) ⊆ SolD(Π) ∩ SolD(σ).

Proof of Lemma 7

The hypothesis of the lemma say that σ = σσ and Πσ = Π. On the other hand,

because of the Substitution Lemma 3 and the definition of SolD, any η ∈ ValD
verifies η ∈ SolD(Πσ1) ∩ SolD(σσ1) iff σ1η ∈ SolD(Π) and σσ1η = η. Therefore, to

prove the lemma it suffices to assume

(a) σ = σσ (b) Πσ = Π (c) σ1η ∈ SolD(Π) (d) σσ1η = η

and to deduce from these assumptions that η ∈ SolD(Π) ∩ SolD(σ).

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

On the cooperation of the constraint domains H, R, and FD in CFLP 501

Table A 1. Well-founded progress ordering for >lex

Rules P1 P2 P3 P4 P5

H1 � � � >

H2 � � � >

H3 � � >

H4 � � � � >

H5 >

H6 >

H7 � � >

H8 >

H9 >

H10 � � � � >

H11a � >

H11b >

H12 >

H13 >

First, we prove that η ∈ SolD(Π) as follows: by (c) and (b), we obtain σ1η ∈
SolD(Πσ), which amounts to σσ1η ∈ SolD(Π) by the Substitution Lemma. By (d),

this is the same as η ∈ SolD(Π).

Next, we note that η ∈ SolD(σ) is equivalent to ση = η, which can be proved by

the following chain of equalities: ση =(d) σσσ1η =(a) σσ1η =(d) η. �

Lemma 8 (Auxiliary Completeness Lemma)

Assume Π ⊆ PConD, σ, σ1 ∈ SubD and η, η′ ∈ ValD such that η ∈ SolD(Π)∩SolD(σ),

σ1η
′ = η′ and η′ =\Y ′ η, where Y ′ are fresh variables away from var(Π)∪ vdom(σ)∪

vran(σ). Then ση′ = η′ and η′ ∈ SolD(Πσ1) ∩ SolD(σσ1).

Proof of Lemma 8

In what follows we can assume ση = η due to the hypothesis η ∈ SolD(σ).

We prove ση′ = η′ by showing that Xση′ = Xη′ holds for any variable X ∈ Var.
This is trivial for X /∈ vdom(σ). For X ∈ vdom(σ), we can assume that Y ′ is away

from X and var(Xσ); therefore η′ =X,var(Xσ) η and hence Xση′ = Xση = Xη = Xη′

(where the assumption ση = η has been used at the second step).

Now we prove η′ ∈ SolD(Πσ1). Because of the Substitution Lemma 3, this is

equivalent to σ1η
′ ∈ SolD(Π), which amounts to η ∈ SolD(Π) due to the hypothesis

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

502 S. Estévez-Mart́ın et al.

σ1η
′ = η′, η′ =\Y ′ η and Y ′ away from var(Π). But η ∈ SolD(Π) is also ensured by

the hypothesis.

Finally, η′ ∈ SolD(σσ1) is equivalent to σσ1η
′ = η′, which can be proved as follows:

σσ1η
′ = ση′ = η′ (where the first step relies on the assumption σ1η

′ = η′ and the

second step relies on a previously proved equality). �

Proof of Theorem 1

Consider the sts for H stores with transition relation ��H,X as specified in Table

1 in Subsection 2.4.2, implicitly assuming that the notation used for the various

strs is exactly the same as there. We prove that this sts satisfies the six properties

enumerated in Definition 7. The last one (namely Local Completeness) holds for

URS-free steps, where URS = {OH3,OH7,H13} is the set of unsafe H-strs, as

explained in Subsection 2.4.2.

(1) Fresh Local Variables Property: The specification of the strs in Table 1 clearly

guarantees this property.

(2) Safe Bindings Property: An inspection of Table 1 shows that the strs H1 and

H2 bind a variable to a constant, and the other strs never bind a variable

X ∈ X. Therefore, this property is also satisfied.

(3) Finitely Branching Property: This property holds because those strs that

allow a nondeterministic choice of the next store provide only finitely many

possibilities.

(4) Termination Property: Given a H store Π � σ and a set X ⊆ cvar(Π), we

define a 5-tuple of natural numbers ||Π � σ||X =def (P1, P2, P3, P4, P5) ∈ �5

where

P1 is the number of occurrences of atomic constraints in Π which are

unsolved w.r.t. X. In this context, an atomic constraint π occurring in Π

is said to be unsolved w.r.t. X iff some of the strs can be applied taking

π as the selected atomic constraint.

P2 is the sum of the depths of all the occurrences of variables X ∈ X within

patterns in Π.

P3 is the sum of the syntactical sizes of all the patterns occurring in Π.

P4 is the number of unsolved occurrences of obviously demanded variables

in Π. In this context, an occurrence of an obviously demanded variable

X in Π is called solved iff X occurs in a constraint of the form X == X,

and unsolved otherwise.

P5 is the number of occurrences of misplaced variables in Π. In this context,

misplaced occurrences of X in Π are those occurrences of the form t ==

X or t /= X, with t ∈ Var and X �= t.

Let >lex be the lexicographic ordering induced by >� over �5. We claim that:

(�) Π � σ ��H,X Π′ � σ′ ⇒ ||Π � σ||X >lex ||Π′ � σ′||X

This is justified by Table A 1, which shows the behavior of the different strs

w.r.t. >lex. In order to understand the table, note that two different cases have

been distinguished for the application of the str H11, namely:

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

On the cooperation of the constraint domains H, R, and FD in CFLP 503

• H11a Application of H11 choosing a value of i such that X∩ var(ti) �= ∅.
• H11b Application of H11 choosing a value of i such that X∩ var(ti) = ∅.
Since >lex is a well-founded ordering, termination of ��H,X can be concluded

from (�). The reader is referred to Section 2.3 in Baader and Nipkow (1998)

for more information on this proof technique.

(5) Local Soundness Property: Given a H store Π � σ and a set X ⊆ odvarH(Π),

we must prove that the union
⋃

{SolH(∃Y ′(Π′ � σ′)) | Π � σ ��H,X Π′ � σ′, Y ′ = var(Π′ � σ′) \ var(Π � σ)}

is a subset of SolD(Π � σ). Obviously, it suffices to prove the inclusion

(†) SolH(∃Y ′(Π′ � σ′)) ⊆ SolH(Π � σ)

for each Π′ � σ′ such that Π � σ ��H,X! Π′ � σ′ with Y ′ = var(Π′ � σ′) \
var(Π � σ). However, (†) is an easy consequence of

(††) SolH(Π′ � σ′) ⊆ SolH(Π � σ)

In fact, assuming (††) and an arbitrary η ∈ SolH(∃Y ′(Π′ � σ′)), there must be

some η′ ∈ SolH(Π′ � σ′) such that η =\Y ′ η′. Then, η′ ∈ SolH(Π � σ) because

of (††), and thus η ∈ SolH(Π � σ) because η =\Y ′ η′ and Y ′ ∩ var(Π � σ) = ∅.
Having proved that (††) entails (†), we proceed to prove (††) by a case

distinction according to the str used in the step Π � σ ��H,X Π′ � σ′. In each

case, we assume that the stores Π � σ and Π′ � σ′ occurring in (††) have

exactly the form displayed for the corresponding transformation in Table 1

displayed in Subsection 2.4.2. For instance, in the case of transformation H1

we write (t == s) →! R, Π � σ in place of Π � σ. Moreover, in all the cases

we silently use the fact that the constraints and variables within any store are

not affected by the substitution kept in that store.

H1 Assume η ∈ SolH((t == s, Π)σ1 � σσ1). Then η ∈ SolH((t == s, Π)σ1) ∩
SolH(σσ1). We must prove η ∈ SolH((t == s) →!R, Π � σ).

Since (t == s,Π) = (t == s, Π)σ, we can infer η ∈ SolH(t == s, Π)∩SolH(σ)

from our assumptions and Lemma 7.

It remains to prove that η ∈ SolH((t == s) →!R). Since we already

know that η ∈ SolH(t == s), it suffices to prove that Rη = true. But

η ∈ SolH(σσ1) means σσ1η = η, and therefore Rη = Rσσ1η = Rσ1η =

true η = true.

H2 Very similar to H1.

H3 Trivial. Clearly, SolH(tm==sm) = SolH(h tm == h sm).

H4 Trivial. Clearly, SolH(X == t) = SolH(t == X).

H5 Assume η ∈ SolH(tot(t), Πσ1�σσ1). Then, tη is a total pattern and

η ∈ SolH(Πσ1) ∩ SolH(σσ1). We must prove η ∈ SolH(X == t, Π �σ).

Since Π = Πσ, we can infer η ∈ SolH(Π)∩SolH(σ) from our assumptions

and Lemma 7. It remains to prove that η ∈ SolH(X == t). But η ∈
SolH(σσ1) means σσ1η = η. Thus, Xη = Xσσ1η = Xσ1η = tη, which

implies η ∈ SolH(X == t), because tη is total.

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

504 S. Estévez-Mart́ın et al.

H6 Trivial, because η ∈ SolH(�) is false for any η.

H7 Trivial. Clearly, SolH(ti / = si) ⊆ SolH(h tm /= h sm).

H8 Trivial, because η ∈ SolH(h tn /= h′ sm) holds for any η.

H9 Trivial, for the same reason as H6.

H10 Trivial. Clearly, SolH(X /= t) = SolH(t /= X).

H11 Assume η ∈ SolH((Zi /= ti, Π)σ1 � σσ1). Then η ∈ SolH((Zi /= ti)σ1) and

η ∈ SolH(Πσ1) ∩ SolH(σσ1). We must prove η ∈ SolH(X /= c tn, Π � σ).

Since Π = Πσ, we can infer η ∈ SolH(Π) ∩ SolH(σ) from our as-

sumptions and Lemma 7. It remains to prove that η ∈ SolH(X /= c tn).

Because of η ∈ SolH(σσ1), we know that σσ1η = η. Therefore, it suffices

to prove σσ1η ∈ SolH(X /= c tn), which can be reasoned as follows:

σσ1η ∈ SolH(X /= c tn) ⇔(1) η ∈ SolH(X /= c tn)σσ1

⇔ η ∈ SolH(X /= c tn)σ1 ⇐(2) η ∈ SolH(Zi /= tiσ1)

⇐(3) η ∈ SolH(Zi /= ti)σ1

where (1) holds because of the Substitution Lemma 3, (2) and (3) hold

by construction of σ1, and η ∈ SolH(Zi /= ti)σ1 holds because of the

assumptions of this case.

H12 Assume η ∈ SolH(Πσ1�σσ1). Then, η ∈ SolH(Πσ1) ∩ SolH(σσ1). We

must prove η ∈ SolH(X /= c tn, Π � σ).

Since Π = Πσ, we can infer η ∈ SolH(Π) ∩ SolH(σ) from our assump-

tions and Lemma 7. It remains to prove that η ∈ SolH(X /= c tn). This

is the case because Xη = Xσσ1η = Xσ1η = (dZm)η, where the first

equality holds because of the assumption η ∈ SolH(σσ1) and the third

equality holds by construction of σ1.

H13 Trivial, for the same reason as H6.

(6) Local Completeness Property for URS-free steps: Recall the set of unsafe

strs URS = {OH3,OH7,H13} defined in Subsection 2.4.2. Assume a H store

Π � σ and a set X ⊆ odvarH(Π), such that Π � σ is URS-irreducible but

not in X-solved form. We must prove that WTSolD(Π � σ) is a subset of the

union
⋃

{WTSolD(∃Y ′(Π′�σ′)) | Π�σ ��H,X Π′�σ′, Y ′ = var(Π′�σ′) \ var(Π�σ)}

Given any well-typed solution η ∈ WTSolH(Π � σ) (which satisfies in partic-

ular ση = η), we must find Π′ � σ′ and η′ such that

(‡) Π � σ ��H,X Π′ � σ′, η′ ∈ WTSolH(Π′ � σ′), η =\Y ′ η
′

so that η ∈ WTSolH(∃Y ′(Π′ � σ′)) will be ensured. Because of the assumptions

on Π � σ, there must be some str Hi /∈ URS that can be used to transform

Π � σ. Below we analyze all the possibilities for Hi, considering all the strs

shown in Table 1 in Subsection 2.4.2 except OH3, OH7, and H13. In all the

cases we conclude that the conditions (‡) displayed above can be ensured.

When considering different strs that can be alternatively applied to one and

the same store (as, e.g., H1 and H2) we group all the possibilities within the

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

On the cooperation of the constraint domains H, R, and FD in CFLP 505

same case, arguing that some rule in the group can be chosen to transform

Π � σ ensuring (‡). In all the cases, we assume that the stores Π � σ and

Π′ � σ′ occurring in (‡) have exactly the form displayed for the corresponding

transformation in Table 1, we note the selected atomic constraint as π, and we

silently use the fact that the constraints and variables within any store are not

affected by the substitution kept in that store.

H1, H2 In this case π is (t == s) →!R, η ∈ WTSolH(t == s →!R, Π � σ) and

Y ′ = ∅. Because of η ∈ WTSolH(π), one of the two following subcases

must hold:

(a) η(R) = true and η ∈ WTSolH(t == s) or else

(b) η(R) = false and η ∈ WTSolH(t /= s)

Assume that subcase (a) holds. Then, (‡) can be ensured by transforming

the given store with H1 and proving η′ = η ∈ WTSolH(Πσ1 � σσ1). Note

that Lemma 8 can be applied with Y ′ = ∅, η′ = η and σ1 = {R �→ true},
because the condition σ1η = η follows trivially from η(R) = true. Then,

η ∈ SolH(Πσ1) ∩ SolH(σσ1) is ensured by Lemma 8, and η obviously

remains a well-typed solution.

Assume now that subcase (b) holds. Then a similar argument can be

used, but choosing H2 instead of H1.

H3 In this case π is h tm == h sm and (‡) can be ensured by choosing to

transform the given store with H3 and taking Y ′ = ∅ and σ′ = σ. Note

that h must be m-transparent because of the URS-freeness assumption,

and the Transparency Lemma 2 can be applied to ensure that η remains

a well-typed solution of the new store.

H4 In this case π is t == X, where t is not a variable, and (‡) can be trivially

ensured by choosing to transform the given store with H4 and taking

Y ′ = ∅ and σ′ = σ.

H5 In this case π is t == X, with X /∈ X, X /∈ var(t), X �= t. Moreover, η ∈
WTSolH(X == t, Π � σ) and Y ′ = ∅. Then (‡) can be ensured by trans-

forming the given store with H5 and proving η′ = η ∈ WTSolH(tot(t),

Πσ1 � σσ1). The assumption η ∈ WTSolH(π) means that η(X) = tη is

a total pattern, so that η(Y) is also a total pattern for each variable

Y ∈ var(t). In these conditions, η ∈ SolH(tot(t)) and σ1η = η holds for

σ1 = {X �→ t}. This allows to apply Lemma 8 with Y ′ = ∅, η′ = η and

σ1, ensuring that η ∈ SolH(Πσ1) ∩ SolH(σσ1). Obviously, η remains a

well-typed solution.

H7 In this case, π is h tm /= h sm. Because of η ∈ WTSolH(π), there must

be some index i such that 1 � i � m and η ∈ WTSolH(ti /= si). Then

(‡) can be ensured by choosing to transform the given store with H7

and this particular value of i, and taking Y ′ = ∅, σ′ = σ. Note that h

must be m-transparent because of the URS-freeness assumption, and

the Transparency Lemma 2 can be applied to ensure that η remains a

well-typed solution of the new store.

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

506 S. Estévez-Mart́ın et al.

H8 In this case π is h tn /= h′ sm with h �= h′ or n �= m, and (‡) can be trivially

ensured by choosing to transform the given store with H8, taking Y ′ = ∅
and σ′ = σ.

H10 This is a trivial case, similar to H4.

H11, H12 In this case π is X /= c tn, with X /∈ X, c ∈ DCn and X ∩ var(c tn) �= ∅,
η ∈ WTSolH(X /= c tn Π � σ). Because of η ∈ WTSolH(π), one of the

two following subcases must hold for η(X):

(a) η(X) = c sn, where si/= tiη holds for some 1 � i � n.

(b) η(X) = d sm, where d ∈ DCm belongs to the same datatype as c, but

d �= c.

Assume that subcase (a) holds. Then (‡) can be ensured by choosing to

transform the given store with H11 and a particular value of i such that

si/= tiη holds, taking Y ′ = Zn, defining η′ as the valuation that satisfies

η′(Zj) = sj for all 1 � j � n and η′(Y) = η(Y) for any other variable Y

and proving η′ ∈ WTSolH((Zi /= ti, Π)σ1 � σσ1).

Obviously, η =\Y ′ η′. Moreover, σ1η
′ = η′, since Xσ1η

′ = (c sn)η
′ =

c sn = Xη = Xη′ and Y σ1η
′ = Y η′ for any variable Y �= X. Therefore,

Lemma 8 can be applied to ensure that η′ ∈ SolH(Πσ1) ∩ SolH(σσ1).

Since η was a well-typed solution and data constructors have the

transparency property (see Subsection 2.1), η′ can also be well-typed

under appropriated type assumptions for the new variables Y ′ = Zn

introduced by the transformation step. It only remains to prove that

η′ ∈ SolH((Zi/=ti)σ1). This can be reasoned by a chain of equivalences,

ending with the condition known to hold in subcase (a):

η′ ∈ SolH((Zi/=ti)σ1) ⇔(1) σ1η
′ ∈ SolH(Zi/=ti) ⇔(2)

η′ ∈ SolH(Zi/=ti) ⇔ η′(Zi)/=tiη′ ⇔(3) si/=tiη′

Note that (1) holds because of Lemma 3, (2) holds because σ1η
′ = η′, and

(3) holds by construction of η′. This finishes the proof for this subcase.

Finally, assume now that subcase (b) holds. Then (‡) can be ensured

by choosing to transform the given store with H12 and the particular

data constructor d ∈ DCm for which we know that η(X) = d sm, taking

Y ′ = Zm, defining η′ as the valuation that satisfies η′(Zj) = sj for all

1 � j � m and η′(Y) = η(Y) for any other variable Y and proving

η′ ∈ WTSolH(Πσ1 � σσ1).

Obviously, η =\Zm
η′. Moreover, σ1η

′ = η′ can be easily checked, as in

subcase (a). Therefore, Lemma 8 can be applied to ensure that η′ ∈
SolH(Πσ1) ∩ SolH(σσ1). Finally, since η was a well-typed solution, η′ is

clearly also well-typed under appropriated type assumptions for the new

variables Y ′ = Zn introduced by the transformation step.

Using items (1) to (6) above and Lemma 5, we can now claim that solveH satisfies

the requirements for solvers enumerated in Definition 6, except that the Completeness

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

On the cooperation of the constraint domains H, R, and FD in CFLP 507

Property is guaranteed to hold only for safe (i.e., URS-free) solver invocations and

the Discrimination Property has not been proved yet.

The remark in item (1) of the proof of Lemma 5 allows to rephrase the

Discrimination Property as follows: if a given H store Π � σ satisfies neither

(a) X ∩ odvar(Π) �= ∅ nor (b) X ∩ var(Π) = ∅, then Π � σ can be reduced by

some ��H,X transformation. Assume that Π � σ satisfies neither (a) nor (b). Because

of ¬ (b), there must be some π ∈ Π such that (c) X ∩ var(π) �= ∅. Because of

¬ (a), this π must satisfy (d) X ∩ odvar(π) = ∅, which together with (c) entails

(e) X ∩ cvar(π) �= ∅. Using (d), (e) and reasoning by case distinction on the syntactic

form of π, we find in all the cases some ��H,X transformation which can be used to

transform the store Π � σ taking π as the selected atomic constraint. The cases are

as follows:

• π is (t == s) →! R. In this case the store can be transformed by means of H1

or H2.

• π is h tm == h sm. In this case the store can be transformed by means of H3.

• π is t == X with t /∈ Var. In this case the store can be transformed by means

of H4.

• π is X == t with X /∈ var(t), X �= t. Because of (d) above we know that X /∈ X,

and the store can be transformed by means of H5.

• π is X == t with X ∈ var(t), X �= t. In this case the store can be transformed

by means of H6.

• π is h tm /= h sm. In this case the store can be transformed by means of H7.

• π is h tn /= h′ sm with h �= h′ or n �= m. In this case the store can be transformed

by means of H8.

• π is t /= t with t ∈ Var ∪ DC ∪ DF ∪ SPF . In this case the store can be

transformed by means of H9.

• π is t /= X with t /∈ Var. In this case the store can be transformed by means

of H10.

• π is X /= c tn, with c ∈ DCn. Because of (d), (e) above we know that X /∈ X
and X ∩ var(c tn) �= ∅. Therefore, the store can be transformed by means of

H11 or H12.

• π is X /= h tm with h /∈ DCm. Because of (d), (e) above we know that X /∈ X
and X ∩ var(h tm) �= ∅. Therefore, the store can be transformed by means of

H13.

This completes the proof of the Discrimination Property and the Theorem. �

We refrain to include in this Appendix a proof of Theorem 3, stated in Subsection

2.6 and ensuring the properties required for the solver solveM. The proof would follow

exactly the same pattern as the previous one, but with much simpler arguments,

since the sts for M stores involves no decompositions. Actually, this sts is finitely

branching, terminating, locally sound, and locally complete. Therefore, Lemma 5 can

be applied to ensure all the properties required for solvers, including unrestricted

completeness.

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

508 S. Estévez-Mart́ın et al.

We end this subsection with the proof of Theorem 2, ensuring that the amal-

gamated sums presented in Subsection 2.5 are well-defined domains behaving as a

conservative extension of their components.

Proof of Theorem 2
Assume S = D1 ⊕· · ·⊕Dn of signature Σ constructed as the amalgamated sum of n

pairwise joinable domains Di of signatures Σi, 1 � i � n. Note that the information

ordering � introduced in Subsection 2.2 has the same syntactic definition for any

specific domain signature. Note also that any arguments concerning well typing

needed for this proof can refer to the principal type declarations within signature

Σ, which includes those within signature Σi for all 1 � i � n. Let us now prove the

four claims of the theorem in order.

(1) S is well defined as a constraint domain; i.e., the interpretations of primitive

function symbols p ∈ SPF in S satisfy the four conditions listed in Definition

1 from Subsection 2.3. We consider them one by one, assuming that p is not

the primitive == except in the fourth condition.

(a) Polarity: Assume p ∈ SPFm and tm, t′m, t, t
′ ∈ US such that pS tm → t,

tm � t′m and t � t′. In case that t is ⊥, we trivially conclude pS t′n → t′

because t′ must be also ⊥. Otherwise, by the first assumption and the

definition of pS, there must be some 1 � i � n and some t′′m, t
′′ ∈ UDi

such that t′′m � tm, t′′ � t and pDi t′′m → t′′. Since t′′m � tm � t′m and

t′′ � t � t′, pDi t′′m → t′′ implies pS t′m → t′ by definition of pS.

(b) Radicality: Assume p ∈ SPFm and tm, t ∈ US such that pS tm → t and

t is not ⊥. By the definition of pS there must be some 1 � i � n and

some t′′m, t
′′ ∈ UDi

such that t′′m � tm, t′′ � t and pDi t′′m → t′′. By the

radicality condition for Di, there must be some total t′ ∈ UDi
such that

pDi t′′m → t′ � t′′. Note that t′ � t′′ � t, and because of t′′m � tm and

t′ � t′, pDi t′′m → t′ implies pS tm → t′ by definition of pS.

(c) Well-typedness: Assume p ∈ SPFm, a monomorphic instance τ′m → τ′ of

p’s principal type and tm, t ∈ US such that Σ �WT tm :: τ′m and pS tm → t.

In case that t is ⊥, the type judgement Σ �WT ⊥ :: τ′ holds trivially.

Otherwise, by the assumption pS tm → t and the definition of pS there

exist 1 � i � n and t′m, t
′ ∈ UDi

such that t′m � tm, t′ � t and pDi t′m → t′.

Moreover, since t′m � tm the assumption Σ �WT tm :: τ′m and the Type

Preservation Lemma 1 imply Σ �WT t′m :: τ′m Then, the well-typedness

assumption for Di guarantees Σ �WT t′ :: τ′, which implies Σ �WT t :: τ′

because of t � t′ and Lemma 1.

(d) Strict Equality: The primitive == (in case that it belongs to SPF) is

interpreted as strict equality over US. This is automatically guaranteed by

the amalgamated sum construction.

(2) Given an index 1 � i � n, a primitive function symbol p ∈ SPFm
i and values

tm, t ∈ UDi
, we must prove: pDi tm → t iff pS tm → t. By definition of pS, we

know that pS tm → t holds iff there are some t′m, t
′ ∈ UDi

such that t′m � tm,

t′ � t and pDi t′m → t′. But this condition is equivalent to pDi tm → t because

pDi satisfies the polarity property.

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

On the cooperation of the constraint domains H, R, and FD in CFLP 509

(3) Given an index 1 � i � n, a set of primitive constraints Π ⊆ APConDi
and

a valuation η ∈ ValDi
, we will prove: η ∈ SolDi

(Π) ⇔ η ∈ SolS(Π). The

corresponding equivalence for the case of well-typed solutions follows then

easily. Since

η ∈ SolDi
(Π) ⇔ ∀π ∈ Π : η ∈ SolDi

(π) ⇔ ∀π ∈ Π : η ∈ SolS(π) ⇔ η ∈ SolS(Π)

it suffices to prove the equivalence

(�) η ∈ SolDi
(π) ⇔ η ∈ SolS(π)

for a fixed π ∈ Π. Note that π must have the form p tm →! t for some

p ∈ SPFm
i , tm ∈ PatDi

and total t ∈ PatDi
. In case that p is ==, (�) is

trivially true because t1η==Di t2η →!tη and t1η==St2η →!tη hold under the

same conditions, as specified in Definition 1 from Subsection 2.3. In case that

p is not ==, let t′m = tmη and t′ = tη. If t′ is not a total pattern, then neither

η ∈ SolDi
(π) nor η ∈ SolS(π) hold. Otherwise,

η ∈ SolDi
(π) ⇔ pDi t′m → t′ ⇔(��) p

St′m → t′ ⇔ η ∈ SolS(π)

where the (��) step holds by the second item of this theorem, because t′m, t
′ ∈

UDi
.

(4) Given an index 1 � i � n, a set of Di-specific primitive constraints Π ⊆
APConDi

and a valuation η ∈ ValS, we will prove: η ∈ SolS(Π) ⇔ | η |Di
∈

SolDi
(Π). The corresponding equivalence for the case of well-typed solutions

follows then easily.

First, we prove η ∈ SolS(Π) ⇐ | η |Di
∈ SolDi

(Π). Assume | η |Di
∈ SolDi

(Π).

Applying the previous item of this theorem, we obtain | η |Di
∈ SolS(Π). Since

| η |Di
� η, we can apply the Monotonicity Lemma 4 and get η ∈ SolS(Π), as

desired.

Now we prove η ∈ SolS(Π) ⇒ | η |Di
∈ SolDi

(Π). Assume η ∈ SolS(Π). Since

Π is Di-specific, we can also assume that η(X) ∈ UDi
for all X ∈ var(Π). Then

η(X) = | η |Di
(X) holds for all X ∈ var(Π), and therefore | η |Di

∈ SolS(Π),

which implies | η |Di
∈ SolDi

(Π), again because of the previous item of this

theorem. �

A.2 Properties of the CCLNC(D) calculus

The second part of the Appendix includes the proofs of the main results stated in

Subection 3.6. First, we present an auxiliary result which is not stated in the main

text of the article. The (WT)Sol notation is intended to indicate that the lemma

holds both for plain solutions and for well-typed solutions.

Lemma 9 (Auxiliary Result for Checking Goal Solutions)

Let G ≡ ∃U. P � C � M � H � F � R be an admissible goal for a given

CFLP (C)-program P. Assume new variables Y ′ away from U and the other

variables in G, and two valuations μ, μ̂ ∈ ValC such that μ̂ =\U,Y ′ μ and μ̂ ∈
(WT)SolP(P �C �M �H �F �R). Then μ ∈ (WT)SolP(G).

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

510 S. Estévez-Mart́ın et al.

Proof

Consider ˆ̂μ ∈ ValC univocally defined by the two conditions ˆ̂μ =\Y ′ μ̂ and ˆ̂μ =Y ′ μ.

By hypothesis, μ̂ ∈ (WT)SolP(P �C �M �H �F �R) and the variables Y ′ do not

occur in G. Therefore, ˆ̂μ ∈ (WT)SolP(P �C �M �H �F �R) is ensured by the

construction of ˆ̂μ. Recalling Definition 10 (see Subsection 3.6), we only need to prove
ˆ̂μ =\U μ in order to conclude μ ∈ (WT)SolP(G). In fact, given any variable X /∈ U,

either X ∈ Y ′ or X /∈ Y ′. In the first case, ˆ̂μ(X) = μ(X) by construction of ˆ̂μ. In the

second case, ˆ̂μ(X) = μ̂(X) by construction of ˆ̂μ and μ̂(X) = μ(X) because of one of

the hypothesis. �

Next, we present the proof of Theorem 4 which guarantees local soundness and

completeness for the one-step transformation of a given goal.

Proof of Theorem 4

Assume a given program P, an admissible goal G for P which is not in solved form,

and a rule RL applicable to a selected part γ of G. The claim that there are finitely

many possible transformations G ��RL,γ,P G′
j (1 � j � k) can be trivially checked

by inspecting all the rules in Tables 3, 4, 7, and 8 one by one. We must prove two

additional claims:

(1) Local Soundness: SolP(G) ⊇
⋃k

j=1 SolP(G′
j).

(2) Limited Local Completeness: WTSolP(G) ⊆
⋃k

j=1 WTSolP(G′
j), provided that

the application of RL to the selected part γ of G is safe; i.e., it is neither an

opaque application of DC nor an application of a rule from Table 8 involving

an incomplete solver invocation.

Claims (1) and (2) must be proved for each RL separately. In case that RL is some of

the rules displayed in Table 3, proving (1) and (2) involves building suitable witnesses

as multisets of CRWL(C) proof trees, using techniques originally stemming from

González-Moreno et al. (1996, 1999) and later extended to CFLP programs without

domain cooperation in López-Fraguas et al. (2004). In case that RL is some of the

rules shown in Tables 4, 7, and 8, proving (1) and (2) requires almost no work with

building witnesses.

We will consider rules DF and FC as representatives for Table 3, and most of the

rules from Tables 4, 7, and 8, which are the main novelty in this paper. When dealing

with each rule RL, we will assume that G resp. G′
j are exactly as the original resp.

transformed goal as displayed in the presentation of RL in Subsection 3.2, 3.3, or

3.4. In our reasonings we will use the notation M : P �CRWL(C) (P �C)μ′ to indicate

that the witness M is a multiset of CRWL(C) proof trees that prove (P �C)μ′

from program P, using the inference rules of the CRWL(C) logic presented in

López-Fraguas et al. (2004).

A.2.1 Selected rules from Table 3

Rule DF, Defined Function. In this case, γ is a production f en → t.

(1) Local Soundness: Assume μ ∈ SolP(G′
j) for some 1 � j � k. Then there exists

μ′ =\Y ,U μ such that μ′ ∈ SolP(en → tn, r → t, P �C ′, C �M �H �F �R).

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

On the cooperation of the constraint domains H, R, and FD in CFLP 511

From this we deduce that μ′ ∈ SolC(M �H �F �R) and M′ : P �CRWL(C)

(en → tn, r → t, P �C ′, C)μ′ for a suitable witness M′. A part of M′ proves

(en → tn, r → t, C ′)μ′, which allows to deduce (f en → t)μ′ using the CRWL(C)

inference rule which deals with defined functions. Therefore, M′ can be used

to build another witness M : P �CRWL(C) (f en → t, P �C)μ′. Since μ′ =\U μ,

we can conclude that μ ∈ SolP(G).

(2) Limited Local Completeness: Assume μ ∈ WTSolP(G). Then there is some

μ′ =\U μ such that μ′ ∈ WTSolP(f en → t, P �C �M �H �F �R). Then,

μ′ ∈ WTSolC(M �H �F �R) and M : P �CRWL(C) (f en → t, P �C)μ′ for

a suitable witness M. Note that M must include a CRWL(C) proof tree T
proving the production (f en → t)μ′ using some instance of Rl : f tn → r ⇐ C ′,

suitably chosen as a variant of some P rule with new variables Y = var(Rl).

Let us choose j so that G′
j is the result of applying DF with f en → t as the

selected part of G and Rl as the selected P rule for f. Consider a well-typed

μ′′ ∈ ValC that instantiates the variables in Y as required by the proof tree T,

and instantiates any other variable V to μ′(V). By suitably reusing parts of M,

it is possible to build a witness M′ : P �CRWL(C) (en → tn, r → t, P �C ′, C)μ′′.

Since μ′′ =\Y ,U μ, we can conclude that μ ∈ WTSolP(G′
j).

Rule FC, Flatten Constraint. In this case, γ is an atomic constraint p en →! t such

that some ei is not a pattern and k = 1. We write G′ instead of G′
1. For the sake

of simplicity, we consider p e1 t2 →! t, where e1 is not a pattern. The presentation

of the rule is then as in Table 3 with n = 2, m = 1.

(1) Local Soundness: Assume μ ∈ SolP(G′). Then there exists μ′ =\V1 ,U
μ such that

μ′ ∈ SolP(e1 → V1, P � pV1 t2 →! t, C �M �H �F �R). Then, we get μ′ ∈
SolC(M �H �F �R) and M′ : P �CRWL(C) (e1 → V1, P � pV1 t2 →! t, C)μ′

for a suitable witness M′. A part of M′ proves (e1 → V1, p V1 t2 →! t)μ′, which

allows to deduce (p e1 t2 →! t)μ′ using the CRWL(C) inference rule which deals

with primitive functions. Therefore, M′ can be used to build another witness

M : P �CRWL(C) (P � p e1 t2 →! t, C)μ′. Since μ′ =\U μ, we can conclude that

μ ∈ SolP(G).

(2) Limited Local Completeness: Assume μ ∈ WTSolP(G). Then there is some

μ′ =\U μ such that μ′ ∈ WTSolP(P � p e1 t2 →! t, C �M �H �F �R). Then,

μ′ ∈ WTSolC(M �H �F �R) and M : P �CRWL(C) (P � p e1 t2 →! t, C)μ′

for a suitable witness M. Note that M must include a CRWL(C) proof tree

T proving the atomic constraint (p e1 t2 →! t)μ′. A part of T must prove a

production of the form e1μ
′ → t1 for some suitable pattern t1. Consider a well-

typed μ′′ ∈ ValC such that μ′′(V1) = t1 and μ′′ =\V1
μ′. By suitably reusing parts

of M, it is possible to build a witness M′ : P �CRWL(C) (e1 → V1, P � pV1 t2 →
! t, C)μ′′. Since μ′′ =\V1 ,U

μ, we can conclude that μ ∈ WTSolP(G′).

A.2.2 Rules from Table 4

Rule SB, Set Bridges. In this case, γ is a primitive atomic constraint π which can be

used to compute bridges, and k = 1. We write G′ instead of G′
1. The application of

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

512 S. Estévez-Mart́ın et al.

the rule computes ∃V ′ B′ = bridgesD→D′
(π, BM) �= ∅, where D = FD and D′ = R

or vice versa, according to the two cases (i) and (ii) explained in Table 4.

(1) Local Soundness: Assume μ ∈ SolP(G′). Then there exists μ′ =\V ′ ,U μ such that

μ′ ∈ SolP(P � π, C �M ′ �H �F �R). Therefore, μ′ ∈ SolC(M ′ �H �F �R)

and M′ : P �CRWL(C) (P � π, C)μ′ for a suitable witness M′. Since M ′ is B′,M,

we get μ′ ∈ SolC(M �H �F �R) and M′ : P �CRWL(C) (P � π, C)μ′, which

implies μ ∈ SolP(G) because of Lemma 9.

(2) Limited Local Completeness: Assume μ ∈ WTSolP(G). Then there is some

μ′ =\U μ such that μ′ ∈ WTSolP(P � π, C �M �H �F �R). Therefore, μ′ ∈
WTSolC(M �H �F �R) and M : P �CRWL(C) (P � π, C)μ′ for a suitable

witness M. Since π is primitive, these conditions imply μ′ ∈ WTSolC(π ∧BM).

By item (2) of Proposition 1 from Subsection 3.3, we know that V ′ are new fresh

variables and WTSolC(π ∧ BM) ⊆ WTSolC(∃V ′(π ∧ BM ∧ B′)). From this we

can conclude that μ′ ∈ WTSolC(∃V ′(π∧BM ∧B′)) and therefore there is some

μ′′ =\V ′ μ′ such that μ′′′ ∈ WTSolC(π ∧ BM ∧ B′). Since V ′ are new variables

not occurring in G, it is easy to check that μ′′ ∈ WTSolC(M ′ �H �F �R)

and M : P �CRWL(C) (P � π, C)μ′′, which ensures μ ∈ WTSolP(G′).

Rule PP, Propagate Projections. In this case, γ is a primitive atomic constraint

π which can be used to compute projections, and k = 1. We write G′ instead

of G′
1. The application of the rule obtains G′ from G by computing ∃V ′ Π′ =

projD→D′
(π, BM) �= ∅, where D = FD and D′ = R or vice versa, according to the

two cases (i) and (ii) explained in Table 4. The reasonings for local soundness and

limited local completeness are quite similar to those used in the case of rule SB,

except that item (3) of Proposition 1 must be used in place of item (2).

Rule SC, Submit Constraints. In this case, γ is a primitive atomic constraint π and

k = 1. We write G′ instead of G′
1.

(1) Local Soundness: Assume μ ∈ SolP(G′). Then there exists μ′ =\U μ such that

μ′ ∈ SolP(P �C �M ′ �H ′ �F ′ �R′). Therefore, μ′ ∈ SolC(M ′ �H ′ �F ′ �R′)

and M′ : P �CRWL(C) (P �C)μ′ for a suitable witness M′. Because of the syn-

tactic relationship between G and G′ (see Table 4), μ′ ∈ SolC(M ′ �H ′ �F ′ �R′)

amounts to μ′ ∈ SolC(M �H �F �R) and μ′ ∈ SolC(π). Because of μ′ ∈
SolC(π), the witness M′ can be expanded to another witness M : P �CRWL(C)

(P � π, C)μ′. Thanks to this new witness we obtain μ′ ∈ SolP(P � π, C �

M �H �F �R) and thus μ ∈ SolP(G).

(2) Limited Local Completeness: Assume μ ∈ WTSolP(G). Then there is some

μ′ =\U μ such that μ′ ∈ WTSolP(P � π, C �M �H �F �R). Therefore, μ′ ∈
WTSolC(M �H �F �R) and M : P �CRWL(C) (P � π, C)μ′ for a suitable

witness M. Because of the syntactic relationship between G and G′ and the

fact that π is primitive, we can conclude that μ′ ∈ WTSolC(M ′ �H ′ �F ′ �R′).

Let M′ be the witness constructed from M by omitting the CRWL(C) proof

tree for πμ′ which is part of M. Then M′ : P �CRWL(C) (P �C)μ′. This allows to

conclude μ′ ∈ WTSolP(P �C �M ′ �H ′ �F ′ �R′) and thus μ ∈ WTSolP(G′).

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

On the cooperation of the constraint domains H, R, and FD in CFLP 513

A.2.3 Rules from Table 7

Rule IE, Infer Equalities. This rule includes two similar cases. Here we will treat

only the first one, the second one being completely analogous. The selected part

γ is a pair of bridges of the form X #== RX, X ′ #== RX and k = 1. We write G′

instead of G′
1.

(1) Local Soundness: Assume μ ∈ SolP(G′). Then there exists μ′ =\U μ such

that μ′ ∈ SolP(P �C �X #== RX, M �H �X == X ′, F �R). This implies

two facts: first, M′ : P �CRWL(C) (P �C)μ′ for a suitable witness M′; and

second, μ′ ∈ SolC(X #== RX, M �H �X == X ′, F �R). The second fact

clearly implies μ′ ∈ SolC(X #== RX, X ′ #== RX, M �H �F �R). Along with

the witness M′, this condition guarantees μ′ ∈ SolP(P �C �X #== RX, X ′

#== RX, M �H �F �R) and hence μ ∈ SolP(G).

(2) Limited Local Completeness: Assume μ ∈ WTSolP(G). Then there is some

μ′ =\U μ such that μ′ ∈ WTSolP(P �C �X #== RX, X ′ #== RX, M �H �F �

R). This implies two facts: first, M : P �CRWL(C) (P �C)μ′ for a suitable wit-

ness M; and second, μ′ ∈ WTSolC(X #== RX, X ′ #== RX, M �H �F �R).

The second fact clearly implies μ′ ∈ WTSolC(X #== RX, M �H �X ==

X ′, F �R). Then, μ′ ∈ WTSolP(P �C �X #== RX, M �H �X == X ′, F �R)

holds thanks to the same witness M, and therefore μ ∈ SolP(G′).

Rule ID, Infer Disequalities. This rule includes two similar cases. Here we consider

only the first one, the second one being completely analogous. The selected part

γ is an antibridge of the form X #/== u′ placed within the M store, and k = 1.

We write G′ instead of G′
1. The application of the rule obtains G′ from G by

dropping X #/== u′ from M and adding a semantically equivalent disequality

constraint X /= u to the F store. The reasonings for local soundness and limited

local completeness are very similar to those used in the case of rule IE.

A.2.4 Rules from Table 8

Here we present only the proofs concerning the two rules FS and SF. Note that

the soundness and completeness properties of the FD solver refer to valuations

over the universe UFD, that must be related to valuations over the universe UC
by means of Theorem 2 from Subsection 2.5, as we will see below. The same

technique can be applied to the rules MS and RS. Rule HS can be also handled

similarly to FS, but in this case Theorem 2 is not needed because the soundness

and completeness properties of the extensible H solver refer directly to valuations

over the universe UC.

Rule FS FD-Constraint Solver (black-box). The selected part γ is the FD
store F .

(1) Local Soundness: Let us choose G′ as one of the finitely many goals G′
j such

that G ��FS,γ,P G′
j . Then G′ = ∃Y ′, U.(P �C �M �H � (Π′ � σF) �R)@FDσ

′

for some ∃Y ′(Π′ � σ′) chosen as one of the alternatives computed by the FD

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

514 S. Estévez-Mart́ın et al.

solver, i.e., such that ΠF ��solveFD ∃Y ′(Π′ � σ′). Assume now μ ∈ SolP(G′).

Then there exists μ′ =\Y ′ ,U μ such that

μ′ ∈ SolP((P �C �M �H � (Π′ � σF) �R)@FDσ
′)

for some ∃Y ′(Π′ � σ′) such that ΠF ��solveFD ∃Y ′(Π′ � σ′). Since Π′ � σ′ is a

store, we can assume Π′σ′ = Π′ and deduce the following conditions:

(0)M′ : P �CRWL(C) (P �C)σ′μ′ for a suitable witnessM′

(1) μ′ ∈ SolC(ΠMσ′ � σM �σ′) (2) μ′ ∈ SolC(ΠHσ
′ � σH � σ′)

(3) μ′ ∈ SolC(Π′σ′ � σFσ
′), whereΠ′σ′ = Π′ (4) μ′ ∈ SolC(ΠRσ

′ � σR � σ′)

In particular, (3) implies μ′ ∈ Sol(σFσ
′), i.e.,

(5) σFσ
′μ′ = μ′

In order to conclude that μ ∈ SolP(G), we show that the hypothesis of the

auxiliary Lemma 9 hold for μ̂ = μ′. Clearly, μ̂ =\U,Y ′ μ and the new variables

Y ′ are away from U and the other variables in G. We still have to prove that

μ′ ∈ SolP(P �C �M �H �F �R).

• Proof of μ′ ∈ SolP(P �C): Because of the invariant properties of admissible

goals, (P �C) = (P �C)σF . Using this equality and (5) we get (P �C)σ′μ′ =

(P �C)σFσ
′μ′ = (P �C)μ′. Therefore, M′ : P �CRWL(C) (P �C)μ′ follows

from (0).

• Proof of μ′ ∈ SolC(S), S being any of the stores M, H , R: According to the

choice of S we can use (1), (2) or (4) to conclude

(6) μ′ ∈ SolC(ΠSσ
′) and (7) μ′ ∈ Sol(σS � σ

′), i.e., (σS � σ
′)μ′ = μ′

— Proof of μ′ ∈ SolC(ΠS): Because of the invariant properties of admis-

sible goals, ΠS = ΠSσF . Then (6) is equivalent to μ′ ∈ SolC(ΠSσFσ
′).

By applying the Substitution Lemma 3 we deduce σFσ
′μ′ ∈ SolC(ΠS),

which amounts to μ′ ∈ SolC(ΠS) because of (5).

— Proof of μ′ ∈ Sol(σS): Assume any variable X ∈ vdom(σS). Then

Xμ′ = XσSσ
′μ′ = XσSσFσ

′μ′ = XσSμ
′

where the first equality holds because of (7), the second equality holds

because the admissibility properties of G guarantee σS � σF = σS , and

the third equality holds because of (5).

• Proof of μ′ ∈ SolC(F): First, we claim that

(8) | σ′μ′ |FD∈ Sol(σ′), i.e., σ′ | σ′μ′ |FD= | σ′μ′ |FD

To prove the claim, assume any X ∈ vdom(σ′). Because of Postulate 2 there

are two possible cases:

(a) σ′(X) is an integer value n. Then:

Xσ′ | σ′μ′ |FD= n = | Xσ′μ′ |FD= X | σ′μ′ |FD

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

On the cooperation of the constraint domains H, R, and FD in CFLP 515

(b) X ∈ var(ΠF) and σ′(X) is a variable X ′ ∈ var(ΠF). Then σ′(X ′) = X ′

because σ′ is idempotent, and:

Xσ′ | σ′μ′ |FD= X ′ | σ′μ′ |FD= | X ′σ′μ′ |FD=

| X ′μ′ |FD= | Xσ′μ′ |FD= X | σ′μ′ |FD

We continue our reasoning using (8).

— Proof of μ′ ∈ SolC(ΠF): From (3) and the Substitution Lemma 3

we get σ′μ′ ∈ SolC(Π′). Because of Postulate 2 we can assume that

all the constraints belonging to Π′ are FD-specific. Then, item (4)

of Theorem 2 can be applied to conclude | σ′μ′ |FD∈ SolFD(Π′).

Using (8) we get | σ′μ′ |FD∈ SolFD(Π′ � σ′), which trivially implies

| σ′μ′ |FD∈ SolFD(∃Y ′(Π′ � σ′)). Because of the soundness property

of the FD solver (see Definition 6 and Postulate 2) we obtain

| σ′μ′ |FD∈ SolFD(ΠF). Applying again item (4) of Theorem 2, we

get σ′μ′ ∈ SolC(ΠF). Since ΠF � σF is a store, ΠF = ΠFσF and

therefore σ′μ′ ∈ SolC(ΠFσF). Then, the Substitution Lemma 3 yields

σFσ
′μ′ ∈ SolC(ΠF), which is the same as μ′ ∈ SolC(ΠF) because

of (5).

— Proof of μ′ ∈ Sol(σF): μ′ = σFμ
′ follows from the following chain of

equalities, which relies on (5) and the idempotency of σF :

μ′ = σFσ
′μ′ = σFσFσ

′μ′ = σFμ
′

(2) Limited Local Completeness: At this point we assume that rule FS can be

applied to G in a safe way, i.e., that the solver invocation solveFD(ΠF) satisfies

the completeness property for solvers stated in Definition 6 (see Subsection

2.4.1). Assume μ ∈ WTSolP(G). Then there is some μ′ =\U μ such that

μ′ ∈ WTSolP(P �C �M �H �F �R). Consequently, we can assume:

(9) (P �C)μ′ is well-typed andM : P �CRWL(C) (P �C)μ′ for some witnessM

(10) μ′ ∈ WTSolC(M) (11) μ′ ∈ WTSolC(H)

(12) μ′ ∈ WTSolC(F) (13) μ′ ∈ WTSolC(R)

In particular, (12) implies μ′ ∈ WTSolC(ΠF). Thanks to Postulate 2 we

can assume that ΠF is FD-specific and apply item 4 of Theorem 2 to

conclude | μ′ |FD∈ WTSolFD(ΠF). By completeness of the solver invocation

solveFD(ΠF) there is some alternative ∃Y ′(Π′ � σ′) computed by the solver

(i.e., such that ΠF ��solveFD ∃Y ′(Π′ � σ′)) verifying

(14) | μ′ |FD∈ WTSolFD(∃Y ′(Π′ � σ′))

Then G′ = ∃Y ′, U.(P �C �M �H � (Π′ � σF) �R)@FDσ
′ is one of the the

finitely many goals G′
j such that G ��FS,γ,P G′

j . In the rest of the proof we will

show that μ ∈ WTSolP(G′) by finding μ′′ =\Y ′ ,U μ such that

(†) μ′′ ∈ SolP((P �C �M �H � (Π′ � σF) �R)@FDσ
′)

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

516 S. Estévez-Mart́ın et al.

Because of (14) there is ˆ̂μ ∈ ValFD such that

(15) | μ′ |FD=\Y ′ ˆ̂μ ∈ WTSolFD(Π′ � σ′)

Let μ′′ ∈ ValC be univocally defined by the conditions μ′′ =Y ′ ˆ̂μ and μ′′ =\Y ′ μ′.

Since μ =\U μ′, it follows that μ′′ =\Y ′ ,U μ. Moreover, | μ′′ |FD= ˆ̂μ, because

for any variable X ∈ Var there are two possible cases: either X ∈ Y ′ and

then | μ′′ |FD (X) = | ˆ̂μ |FD (X) = ˆ̂μ(X), since ˆ̂μ ∈ ValFD; or else X /∈ Y ′ and

then | μ′′ |FD (X) = | μ′ |FD (X) = ˆ̂μ(X), since | μ′ |FD=\Y ′ ˆ̂μ. From (15) and

| μ′′ |FD= ˆ̂μ we obtain μ′′ ∈ WTSolFD(Π′) by applying item 4 of Theorem 2.

We now claim:

(16) μ′′ ∈ WTSolFD(Π′ � σ′)

To justify this claim, it is sufficient to prove μ′′ ∈ Sol(σ′), i.e., σ′μ′′ = μ′′. In

order to prove this let us assume any X ∈ vdom(σ′). Because of Postulate 2,

there are two possible cases:

(a) σ′(X) is an integer value n. From (15) we know ˆ̂μ ∈ Sol(σ′) and therefore
ˆ̂μ(X) = n. Since | μ′′ |FD= ˆ̂μ, it follows that μ′′(X) = n, and then Xσ′μ′′ =

n = Xμ′′.

(b) X ∈ var(ΠF) and σ′(X) is a variable X ′ ∈ var(ΠF). Then:
Xσ′μ′′ = X ′μ′′

=X ′μ′ (using μ′′ =\Y ′ μ′ and X ′ /∈ Y ′)

= | X ′μ′ |FD (using the fact that ΠF is FD-specific and (12))

=X ′ | μ′ |FD
=X ′ ˆ̂μ (using (15) and X ′ /∈ Y ′)

=Xσ′ ˆ̂μ = X ˆ̂μ (using (15))

=X | μ′ |FD (using (15) and X /∈ Y ′)

= | Xμ′ |FD = Xμ′ (using the fact that ΠF is FD-specific and (12))

=Xμ′′ (using μ′′ =\Y ′ μ′ and X /∈ Y ′)

We are now in a position to prove (†), thereby finishing the proof:

• Proof of μ′′ ∈ WTSolP(P �C)σ′: Because of the Substitution Lemma 3, this

is equivalent to σ′μ′′ ∈ WTSolP(P �C). Because of (16), σ′μ′′ = μ′′. Since

μ′ =\Y ′ μ′′ and the variables Y ′ do not occur in P �C , μ′′ ∈ WTSolP(P �C)

is equivalent to μ′ ∈ WTSolP(P �C), which is ensured by the same witness

M given by (9).

• Proof of μ′′ ∈ WTSolC(S � σ′), S being any of the stores M, H , R: According

to the choice of S we can use (10), (11), or (13) to conclude

(17) μ′ ∈ WTSolC(ΠS) and (18) μ′ ∈ Sol(σS), i.e., σSμ
′ = μ′

— Proof of μ′′ ∈ WTSolC(ΠSσ
′): Since μ′′ =\Y ′ μ′ and the variables Y ′ do

not occur in ΠS , (17) implies μ′′ ∈ WTSolC(ΠS), which is equivalent

to σ′μ′′ ∈ WTSolC(ΠS) because of (16). Then, μ′′ ∈ WTSolC(ΠSσ
′)

follows from the Substitution Lemma 3.

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

On the cooperation of the constraint domains H, R, and FD in CFLP 517

— Proof of μ′′ ∈ WTSol(σS � σ
′): Assume any variable X ∈ vdom(σS).

Then

XσSσ
′μ′′ = XσSμ

′′ = XσSμ
′ = Xμ′ = Xμ′′

where the first equality holds because of (16), the second equality holds

because μ′′ =\Y ′ μ′ and the variables Y ′ do not occur in XσS , the third

equality holds because of (18), and the fourth equality holds because

μ′′ =\Y ′ μ′ and the variables Y ′ do not include X.

• Proof of μ′′ ∈ WTSolC(Π′σ′ � σFσ
′):

— Proof of μ′′ ∈ WTSolC(Π′σ′): This is a trivial consequence of (16),

since Π′σ′ = Π′ (because Π′ � σ′ is a store).

— Proof of μ′′ ∈ Sol(σFσ
′): Because of (16) we can assume that μ′′ ∈

Sol(σ′), i.e., σ′μ′′ = μ′′. We must prove σFσ
′μ′′ = μ′′. Assume any variable

X ∈ vdom(σFσ
′). Because of the invariant properties of admissible goals,

there are three possible cases:

(a) X ∈ vdom(σF) and σF (X) is an integer value n. Because of (12), we

know that μ′ ∈ Sol(σF) and hence XσFμ
′ = n = Xμ′. Moreover,

Xμ′′ = Xμ′ = n because μ′′ =\Y ′ μ′ and the variables Y ′ do not

include X. Then we can conclude that XσFσ
′μ′′ = n = Xμ′′.

(b) X ∈ vdom(σF) and σF (X) = X ′ ∈ var(ΠF). Then:
XσFσ

′μ′′ = X ′σ′μ′′

=X ′μ′′ (using (16))

=X ′μ′ (using μ′′ =\Y ′ μ′ and X ′ /∈ Y ′)

=XσFμ
′ = Xμ′ (using (12))

=Xμ′′ (using μ′′ =\Y ′ μ′ and X /∈ Y ′)

(c) X /∈ vdom(σF). Then XσF = X, and we can use μ′′ ∈ Sol(σ′) to

deduce that XσFσ
′μ′′ = Xσ′μ′′ = Xμ′′.

Rule SF, Solving Failure. The selected part γ is one of the four stores of the goal,

the number k of possible transformations G ��RL,γ,P G′
j of G into a nonfailed goal

G′
j is 0, and therefore

⋃k
j=1 WTSolP(G′

j) = ∅.

(1) Local Soundness: The inclusion SolP(G) ⊇ ∅ holds trivially.

(2) Limited Local Completeness: The inclusion WTSolP(G) ⊆ ∅ is equivalent to

WTSolP(G) = ∅. In order to prove this, we assume that the application of SF

to G has relied on a complete invocation of the D solver. Since the invocation

of the solver has failed (i.e., ΠS ��solveDX
�) but it is assumed to be complete, we

know that WTSolD(ΠS) = ∅. From this we can conclude WTSolC(ΠS) = ∅,
using item (4) of Theorem 2 in case that D is not H. Finally, WTSolP(G) = ∅
is a trivial consequence of WTSolC(ΠS) = ∅. �

A.2.5 Proof of the progress lemma

In this Subsection we prove the Progress Lemma 6 used in Subsection 3.6 to obtain

the Global Completeness Theorem 6. First, we define a well-founded progress ordering

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

518 S. Estévez-Mart́ın et al.

� between pairs (G,M) formed by an admissible goal G without free occurrences of

higher-order variables and a witness M = {T1, . . . ,Tn} for the fact that μ ∈ SolP(G).

Given such a pair, we define a 7-tuple ||(G,M)|| =def (O1, O2, O3, O4, O5, O6, O7)

(where O1 is a finite multiset of natural numbers and O2, . . . , O7 are natural numbers)

as follows:

O1 is the restricted size of the witness M, defined as the multiset of natural

numbers {| T1 |, . . . , | Tn |}, where | Ti | (1 � i � n) denotes the restricted

size of the CRWL(C) proof tree Ti as defined in López-Fraguas et al. (2007),

namely as the number of nodes in Ti corresponding to CRWL(C) inference

steps that depend on the meaning of primitive functions p (as interpreted in

the coordination domain C) plus the number of nodes in Ti corresponding

to CRWL(C) inference steps that depend on the meaning of user-defined

functions f (according to the current program P).

O2 is the sum of ||p en|| for all the total applications p en of primitive functions

p ∈ PFn occurring in the parts P and C of G, where ||p en|| is defined as the

number of argument expressions ei (1 � i � n) that are not patterns.

O3 is the number of occurrences of rigid and passive expressions h en that are not

patterns in the productions P of G.

O4 is the sum of the syntactic sizes of the right hand sides of all the productions

occurring in P .

O5 is the sum sf M + sf H + sf F + sf R of the solvability flags of the four constraint

stores occurring in G. The solvability flag sf M takes the value 1 if rule MS

from Table 8 can be applied to G, and 0 otherwise. The other three flags are

defined analogously.

O6 is the number of bridges occurring in the mediatorial store M of G.

O7 is the number of antibridges occurring in the mediatorial store M of G.

Let >lex be the lexicographic product of the 7 orderings >i (1 � i � 7), where

>1 is the multiset ordering >mul over multisets of natural numbers, and >i is the

ordinary ordering > over natural numbers for 2 � i � 7. Finally, let us define the

progress ordering � by the condition (G,M) � (G′,M′) iff ||(G,M)|| >lex ||(G′,M′)||.
As proved in Baader and Nipkow (1998), >mul is a well-founded ordering and the

lexicographic product of well-founded orderings is again a well-founded ordering.

Therefore, � is well-founded.

Now we can prove the Progress Lemma 6.

Proof of Lemma 6

Consider an admissible goal G ≡ ∃U. P � C � M � H � F � R for a program P, a

well-typed solution μ ∈ WTSolP(G) and a witness M for the fact that μ ∈ SolP(G).

Assume that neither P nor G have free occurrences of higher-order variables, and

that G is not in solved form.

(1) Let us prove that there must be some rule RL applicable to G which is not

a failure rule. Since G is not in solved form, we know that either P �= ∅ , or

else C �= ∅, or else some of the transformations displayed in Tables 7 and 8

can be applied to G. Note that CF cannot be applied to G because G has got

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

On the cooperation of the constraint domains H, R, and FD in CFLP 519

solutions. Moreover, if the failing rule SF would be applicable to G, then some

of the other rules in Table 8 would be applicable also. Let PR be the set of

those transformation rules displayed in Table 3 which are different of CF, EL,

and FC. In the following items, we analyze different cases according to the

from of G. In each case we either find some rule RL that can be applied to

G or we make some assumption that can be used to reason in the subsequent

cases. In the last item we conclude that rule EL can be applied, if no previous

item has allowed to prove the applicability of another rule.

(a) If some of the transformation rules in Tables 7 and 8 can be applied to G,

then we are ready. In the following items, we assume that this is not the

case.

(b) If P �= ∅ and some rule RL ∈ PR can be applied to G, then we are ready.

In the following items we assume that this is not the case.

(c) Because of the hypothesis that G has no free occurrences of higher-order

variables, from this point on we can assume that each production occurring

in P must have one of the three following forms:

i h em → X, with h em passive but not a pattern.

ii fen ak → X, with f ∈ DFn and k � 0.

iii p en → X, with p ∈ PFn.

If this were not the case, then P would include some production e → t of

some other form, and a simple case analysis of the syntactic form of e → t

would lead to the conclusion that some rule RL ∈ PR could be applied

to it.

(d) If C �= ∅ and includes some atomic constraint α that is not primitive, then

the rule FC from Table 3 can be applied to α, and we are ready. In the

following items we assume that this is not the case.

(e) If C �= ∅ and only includes primitive atomic constraints π, then at least rule

rule SC from Table 4 (and maybe also rules SB and PP) can be applied to

G taking π as the selected part, and we are ready. In the following items,

we assume that C = ∅.
(f) At this point, if there would be some variable X ∈ pvar(P) ∩ odvar(G),

this X would be the right-hand side of some production in P with one

of the three forms i, or ii or iii displayed in item (c) above, and one of

the three rules IM or DF or PC could be applied, which contradicts the

assumptions made at item (b). From this point on, we can assume that

pvar(P) ∩ odvar(G) = ∅.
(g) Let S = ΠS � σS be any of the four stores, let D be the corresponding

domain, and let χ = pvar(P) ∩ var(ΠS). Because of the assumptions made

at item (a), S must be in χ-solved form and the discrimination property

of the solver solveD ensures that one of the two following conditions must

hold:

i χ ∩ odvarD(ΠS) �= ∅, i.e., pvar(P) ∩ var(ΠS) ∩ odvarD(ΠS) �= ∅.
ii χ ∩ varD(ΠS) = ∅, i.e., pvar(P) ∩ var(ΠS) = ∅.

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

520 S. Estévez-Mart́ın et al.

Since i contradicts the assumption pvar(P)∩odvar(G) = ∅ made at item (f),

ii must hold for the four stores. On the other hand, the invariant properties

of admissible goals guarantee that produced variables cannot occur in the

answer substitutions σS .

(h) At this point, because of the assumptions made at the previous items, we

can assume that C = ∅, the four stores are in solved form and include no

produced variables, and all the productions occurring in P have the form

e → X, where X is a variable. Since G is not solved, it must be the case

that P �= ∅.
Note that pvar(P) is finite and not empty. Moreover, the transitive closure

�+
P of the production relation �P between produced variables must be

irreflexive due to the invariant properties of admissible goals. Therefore,

there is some production (e → X) ∈ P such that X is minimal w.r.t. �P .

The variable X cannot occur in e because this would imply X �P X,

contradicting the irreflexivity of �+
P . For any other production (e′ →

X ′) ∈ P , X must be different of X ′ because of the invariant properties

of admissible goals, and X cannot occur in e′ because this would imply

X �P X ′, contradicting the minimality of X w.r.t. �P . Moreover, X cannot

occur in the stores because they include no produced variables.

Therefore, X does not occur in the rest of the goal, and the rule EL can

be applied to eliminate e → X.

(2) Assume now any choice of a rule RL (not a failure rule) and a part γ

of G, such that RL can be applied to γ in a safe manner, i.e., involving

neither an opaque application of DC nor an incomplete solver invocation. We

must prove the existence of a finite computation G ��+
RL,γ,P G′ and a witness

M′ : μ ∈ WTSolP(G′) such that (G,M) � (G′,M′). Due to the Limited

Local Completeness of CCLNC(C) (Theorem 4, item (2)), there is one step

G ��RL,γ,P G′
1 such that M′ : μ ∈ WTSolP(G′) with a witness M′ constructed

as we have sketched in the proof of Theorem 4. We define the desired finite

computation by distinction of cases as follows:

(a) If RL is different from the two rules SB and PP, then the finite

computation is chosen as G ��RL,γ,P G′
1 and G′ is G′

1.

(b) If RL is SB and PP is applicable to γ, then the finite computation is

chosen as G ��SB,γ,P G′
1 ��PP,γ,P G′

2 ��SC,γ,P G′
3 and G′ is G3.

(c) If RL is SB and PP is not applicable to γ, then the finite computation is

chosen as G ��SB,γ,P G′
1 ��SC,γ,P G′

2 and G′ is G2.

(d) If RL is PP and SB is applicable to γ, then the finite computation is

chosen as G ��PP,γ,P G′
1 ��SB,γ,P G′

2 ��SC,γ,P G′
3 and G′ is G3.

(e) If RL is PP and SB is not applicable to γ, then the finite computation is

chosen as G ��PP,γ,P G′
1 ��SC,γ,P G′

2 and G′ is G2.

Note that cases (b), (c), (d), and (e) above refer to the rules in Table 4. In all

these cases, the Limited Local Completeness of CCLNC(C) allows to find all

the computation steps and a witness M′ : μ ∈ WTSolP(G′). In all the cases,

we claim that (G,M) � (G′,M′), i.e., ||(G,M)|| >lex ||(G′,M′)||. This can be

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

On the cooperation of the constraint domains H, R, and FD in CFLP 521

Table A 2. Well-founded progress ordering � for CCLNC(C)

Rules O1 O2 O3 O4 O5 O6 O7

DC �mul � � >

SP �mul � � >

IM �mul � >

EL �mul � � >

DF >mul

PC �mul � � >

FC �mul >

(b),(c),(d),(e) >mul

IE �mul � � � � >

ID �mul � � � � � >

MS �mul � � � >

HS �mul � � � >

FS �mul � � � >

RS �mul � � � >

justified by Table A 2. Each file of this table corresponds to a possibility for

the rule RL used in a one-step finite computation G ��+
RL,γ,P G′ of type (a),

except for one file which corresponds to a finite computation G ��+
RL,γ,P G′

of type (b), (c), (d), or (e). Each column 1 � i � 7 shows the variation in

Oi according to >i when going from ||(G,M)|| to ||(G′,M′)|| by means of the

corresponding finite computation. For instance, the file for IE shows that the

application of this rule does not increase Oi for 1 � i � 5 and decreases O6.

It only remains to show that the information displayed in Table A 2 is correct.

Here we limit ourselves to explain the key ideas. A more precise proof could

be presented on the basis of a more detailed construction of the witnesses

M′ : μ ∈ WTSolP(G′).

• For every rule RL, the application of RL does not increase O1, as shown

by the first column of the table. This happens because the witness M′ can

be constructed from M in such a way that all the inference steps within

M′ dealing with primitive and defined functions are borrowed from M.

• The application of any of the rule DF strictly decreases O1, as seen in

the table. The reason is that the witness M includes a CRWL(C) proof

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

522 S. Estévez-Mart́ın et al.

tree T for an appropriate instance of a production of the form f en → t.

The root inference of this proof tree contributes to the restricted size of

M and disappears in the witness M′ constructed from M as sketched

in Subsection A.2.1. Therefore, the restricted size of M′ decreases by one

w.r.t. the restricted size of M.

• The table also shows that finite computations of type (b), (c), (d), or (e)

strictly decrease O1. The reason is that such finite computations always

work with a fixed primitive atomic constraint π which is ultimately moved

from the constraint pool C of G to one of the stores in G′ when performing

the last SC computation step. The witness M : μ ∈ WTSolP(G) includes

a CRWL(C) proof tree for an appropriate instance of π, while no

corresponding proof tree is needed in the witness M′. Therefore, the

restricted size of M′ decreases by some positive amount.

• The application of rule FC decrements O2, because G includes a production

p en → t with ||p en|| > 0, which is replaced in G′ by a primitive atomic

constraint p tn →! t with ||p tn|| = 0 and some new productions ei → Vi

whose contribution to the O2 measure of G′ must be smaller than ||p en||.
• The application of rule IE decreases O6 and does not increment Oi for

1 � i � 5. This is because in this case the witness M′ can be chosen as

M itself, the measures O2, O3, O4, and O5 are obviously not affected by IE,

and the measure O6 obviously decreases by 1 when IE is applied.

• Because of similar reasons, the application of rule ID decreases O7 and

does not increment Oi for 1 � i � 6.

• Let RL be any of the four constraint solving transformations MS, HS,

FS, and RS. The witness M′ : μ ∈ WTSolP(G′) can be guaranteed to

exist only if the solver invocation has been a complete one. In this case,

M′ can be chosen as the same witness M, and therefore the O1 measure

does not increase when going from G to G′. Measures O2, O3, and O4 are

not affected by the bindings created by the solver invocations (since they

substitute patterns for variables). Measure O5 obviously decreases, since

the solvability flag sf S for the store that has been solved descends from 1
to 0. �

References

Antoy, S., Echahed, R. and Hanus, M. 1994. A needed narrowing strategy. In Proc. POPL’94.

ACM Press, 268–279.

Antoy, S., Echahed, R. and Hanus, M. 2000. A needed narrowing strategy. Journal of the

ACM 74, 4, 776–822.

Antoy, S. and Hanus, M. 2000. Compiling multi-paradigm declarative programs into Prolog.

In FroCoS. LNCS, vol. 1794. Springer, 171–185.

Arbab, F. and Monfroy, E. 1998. Using coordination for cooperative constraint solving. In

SAC. 139–148.

Arenas, P., Estévez, S., Fernández, A., Gil, A., López-Fraguas, F., Rodrı́guez-

Artalejo, M. and Sáenz-Pérez, F. 2007. TOY: A Multiparadigm Declarative Language

(Version 2.3.1). Technical Report. R. Caballero and J. Sánchez, Eds. Available at

http://toy.sourceforge.net.

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

On the cooperation of the constraint domains H, R, and FD in CFLP 523

Arenas, P., Gil, A. and López-Fraguas, F. 1994. Combining lazy narrowing with disequality

constraints. In PLILP’94. LNCS, vol. 844. Springer, 385–399.

Baader, F. and Nipkow, T. 1998. Term Rewriting and All That. Cambridge University Press.

Baader, F. and Schulz, K. 1995. On the combination of symbolic constraints, solution

domains and constraints solvers. In CP’95. LNCS, vol. 976. Springer, 380–397.

Baader, F. and Schulz, K. 1996. Unification in the union of disjoint equational theories:

combining decision procedures. Journal of Symbolic Computation 21, 2, 211–243.

Baader, F. and Schulz, K. 1998. Combination of constraint solvers for free and quasi-free

structures. TCS 192, 1, 107–161.

Benhamou, F. 1996. Heterogeneous constraint solving. In ALP’96. LNCS, vol. 1139. Springer,

62–76.

Benhamou, F., Goualard, F. and Granvilliers, L. 1997. Programming with the declic

language. In 2nd International Workshop on Interval Constraints. Port-Jefferson, New York,

1–13.

Benhamou, F., Goualard, F., Granvilliers, L. and Puget, J.-F. 1999. Revising hull and

box consistency. In ICLP’99. The MIT Press, 230–244.

Benhamou, F. and Older, W. 1997. Applying interval arithmetic to real, integer and Boolean

constraints. The Journal of Logic Programming 32, 1, 1–24.

Beringer, H. and Backer, B. D. 1995. Combinatorial problem solving in constraint

logic programming with cooperating solvers. In Logic Programming: Formal Methods and

Practical Applications. Elsevier Science B.V., North-Holland, 245–272.

Bockmayr, A. and Kasper, T. 2000. Branch and infer: a unifying framework for integer

and finite domain constraint programming. INFORMS Journal of Computing 10, 3,

287.

Buntine, W. L. and Bürckert, H. J. 1994. On solving equations and disequations. Journal

of the ACM 41, 4, 591–629.

Castro, C. and Monfroy, E. 2004. Designing hybrid cooperations with a component language

for solving optimisation problems. In AIMSA 2004. LNCS, vol. 3192. Springer, 447–458.

Castro, C., Moossen, M. and Riff, M.-C. 2004. A cooperative framework based on local

search and constraint programming for solving discrete global optimisation. In SBIA’04.

LNCS, vol. 3171. Springer, 93–102.

Chiu, C.-K. and Lee, J. H.-M. 2002. Efficient interval linear equality solving in constraint

logic programming. Reliable Computing 8, 2, 139–174.

Colmerauer, A. 1984. Equations and inequations on finite and infinite trees. In Proc. of the

2nd International Conference on Fifth Generation Computer Systems, K.-L. Clark and S.-A.

Tarnlund, Eds. Tokyo, 85–99.

Colmerauer, A. 1990. An introduction to PROLOG III. Communications of the ACM

(CACM) 33, 7, 69–90.

Comon, H. 1991. Disunification: a survey. In Computational Logic—Essays in Honor of Alan

Robinson. MIT Press, 322–359.

Comon, H. and Lescanne, P. 1989. Equational problems and disunification. Journal of

Symbolic Computation 7, 371–425.

Damas, L. and Milner, R. 1982. Principal type-schemes for functional programs. In POPL’82.

ACM Press, 207–212.

de la Banda, M., Jeffery, D., Marriott, K., Nethercote, N., Stuckey, P. and Holzbaur,

C. 2001. Building constraint solvers with HAL. In ICLP’01. LNCS, vol. 2237. Springer,

90–104.

del Vado-Vı́rseda, R. 2003. A demand-driven narrowing calculus with overlapping

definitional trees. In PPDP’03. ACM Press, 213–227.

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

524 S. Estévez-Mart́ın et al.

del Vado-Vı́rseda, R. 2005. Declarative constraint programming with definitional trees. In

Proc. FroCoS’05. LNAI, vol. 3717. Springer, 184–199.

del Vado-Vı́rseda, R. 2007. A higher-order demand-driven narrowing calculus with

definitional trees. In ICTAC’07. LNCS, vol. 4711. Springer, 165–179.

Durfee, E., Lesser, V. and Corkill, D. 1989. Cooperative distributed problem solving. In

The Handbook of Artificial Intelligence, Vol. IV, E. Feigenbaum, A. Barr and P. Cohen, Eds.

Addison-Wesley, 83–147.

Estévez-Martı́n, S., Fernández, A., Hortalá-González, T., Rodrı́guez-Artalejo, M.,

Sáenz-Pérez, F. and del Vado-Vı́rseda, R. 2007a. A proposal for the cooperation of

solvers in constraint functional logic programming. ENTCS 188, 37–51.

Estévez-Martı́n, S., Fernández, A. and Sáenz-Pérez, F. 2006. Implementing TOY: A

Constraint Functional Logic Programming with Solver Cooperation. Research Report LCC

ITI 06-8, Universidad de Málaga.

Estévez-Martı́n, S., Fernández, A. J., Hortalá-González, M. T., Rodrı́guez-Artalejo, M.

and del Vado Vı́rseda, R. 2007b. A fully sound goal solving calculus for the cooperation

of solvers in the CFLP scheme. ENTCS 177, 235–252.

Estévez-Martı́n, S., Fernández, A. J., Hortalá-González, M. T., Rodrı́guez-Artalejo,

M. and del Vado Vı́rseda, R. 2008a. Cooperation of constraint domains in the toy system.

In PPDP’08. ACM Press, 258–268.

Estévez-Martı́n, S., Fernández, A. J. and Sáenz-Pérez, F. 2007c. About implementing

a constraint functional logic programming system with solver cooperation. In Proc. of

CICLOPS’07. 57–71.

Estévez-Martı́n, S., Fernández, A. J. and Sáenz-Pérez, F. 2008b. Playing with TOY :

constraints and domain cooperation. In Proc. ESOP’08. LNCS, vol. 4960. Springer, 112–

115.

Fernández, A. J. and Hill, P. M. 2004. An interval constraint system for lattice domains.

ACM Transactions on Programming Languages and Systems 26, 1, 1–46.

Fernández, A. J. and Hill, P. M. 2006. An interval constraint branching scheme for lattice

domains. Journal of Universal Computer Science 12, 11, 1466–1499.

Fernandez, M. 1992. Narrowing based procedures for equational disunification. Applicable

Algebra in Engineering, Communication and Computing 3, 1, 1–26.

Frank, S., Hofstedt, P. and Mai, P. R. 2003a. A flexible meta-solver framework for constraint

solver collaboration. In Proc. KI 2003. LNCS, vol. 2821. Springer, 520–534.

Frank, S., Hofstedt, P. and Mai, P. R. 2003b. Meta-s: a strategy-oriented meta-solver

framework. In Proc. FLAIRS. AAAI Press, 177–181.

Frank, S., Hofstedt, P., Pepper, P. and Reckmann, D. 2007. Solution strategies for

multi-domain constraint logic programs. In 6th International Andrei Ershov Memorial

Conference on Perspectives of Systems Informatics (PSI 2006), I. Virbitskaite and

A. Voronkov, Eds. LNCS, vol. 4378. Springer, Novosibirsk, Russia, 209–222. Revised

Papers.

Frank, S., Hofstedt, P. and Reckman, D. 2005. Meta-s—combining solver cooperation

and programming languages. In Proc. W(C)LP 2005. Ulmer Informatik-Berichte 2005-01,

159–162.

Frank, S. and Mai, P. R. 2002. Strategies for Cooperating Constraint Solvers. Diploma Thesis,

University of Technology, Berlin.

Frühwirth, T. 1998. Theory and practice of constraint handling rules. Journal of Logic

Programming, Special Issue on Constraint Logic Programming 37, 1–3, 95–138.

Gervet, C. 1997. Interval propagation to reason about sets: definition and implementation

of a practical language. Constraints 1, 3, 191–244.

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

On the cooperation of the constraint domains H, R, and FD in CFLP 525

González-Moreno, J., Hortalá-González, M., López-Fraguas, F. and Rodrı́guez-

Artalejo, M. 1996. A rewriting logic for declarative programming. In Proc. ESOP’96.

LNCS, vol. 1058. Springer, 156–172.

González-Moreno, J., Hortalá-González, M., López-Fraguas, F. and Rodrı́guez-

Artalejo, M. 1999. An approach to declarative programming based on a rewriting logic.

Journal of Logic Programming 40, 47–87.

González-Moreno, J. C., Hortalá-González, M. T. and Rodrı́guez-Artalejo, M. 2001.

Polymorphic types in functional logic programming. Journal of Functional and Logic

Programming 1, 1–71.

Goualard, F. 2001. Component programming and interoperatibility in constraint solver

design. In ERCIM Workshop on Constraints. The Computing Research Repository (CoRR).

Goualard, F., Benhamou, F. and Granvilliers, L. 1999. An extension of the WAM for

hybrid interval solvers. The Journal of Functional and Logic Programming 1, 1–36.

Granvilliers, L. 2001. On the combination of interval constraint solvers. Reliable

Computing 7, 6, 467–483.

Granvilliers, L., Monfroy, E. and Benhamou, F. 2001. Cooperative solvers in constraint

programming: a short introduction. ALP Newsletter 14 , 2.

Hanus, M. 2006. Curry: An Integrated Functional Logic Language (Version 0.8.2 of

March 28, 2006). Technical Report. Available at http://www.informatik.uni-kiel.de/

~mh/curry/.

Harjunkoski, Jain, V. and Grossmann, I. 2000. Hybrid mixed-integer/constraint logic

programming strategies for solving scheduling and combinatorial optimization problems.

Computers and Chemical Engineering 24, 337–343.

Hindley, R. 1969. The principal type-scheme of an object in combinatory logic. Transactions

of the American Mathematical Society 146, 29–60.

Hofstedt, P. 2000a. Better communication for tighter cooperation. In 1st International

Conference on Computational Logic (CL’2000). LNCS, vol. 1861. Springer, 342–357.

Hofstedt, P. 2000b. Cooperating constraint solvers. In CP’2000. LNCS, vol. 1894. Springer,

520–524.

Hofstedt, P. 2001. Cooperation and Coordination of Constraint Solvers. Ph.D. Thesis,

Technischen Universität Dresden, Fakultät Informatik.

Hofstedt, P. and Pepper, P. 2007. Integration of declarative and constraint programming.

Theory and Practice of Logic Programming 7, 1–2, 93–121.

Hong, H. 1994. Confluency of Cooperative Constraint Solving . Technical Report 94-08,

Johannes Kepler University, Austria.

Hooker, J. 2000. Logic-based methods for optimization, combining optimization and

constraint satisfaction. In Discrete Mathematics and Optimization. John Wiley & Sons,

New York.

Jaffar, J. and Lassez, J. 1987. Constraint logic programming. In Proc. POPL’87. ACM Press,

111–119.

Jaffar, J. and Maher, M. 1994. Constraint logic programming: a survey. Journal of Logic

Programming 19–20, 503–581.

Jaffar, J., Maher, M., Marriott, K. and Stuckey, P. 1998. Semantics of constraints logic

programs. Journal of Logic Programming 37, 1–3, 1–46.

Jaffar, J., Michaylov, S., Stuckey, P. and Yap, R. 1992. The CLP(R) language and system.

ACM Transactions on Programming Languages and Systems 14 , 3, 339–395.

Kepser, S. and Richts, J. 1999. Optimisation techniques for combining constraint solvers. In

FroCoS’98. 193–210.

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

526 S. Estévez-Mart́ın et al.

Khedro, T. and Genesereth, M. 1994. Modeling multiagent cooperation as distributed

constraint satisfaction problem solving. In ECAI’94, A. Cohn, Ed. John Wiley & Sons,

249–253.

Kirchner, H. and Ringeissen, C. 1992. A constraint solver in finite algebras and its

combination with unification algorithms. In Proc. of the Joint International Conference and

Symposium on Logic Programming(JICSLP’92), K. R. Apt, Ed. MIT Press, 225–239.

Kirchner, H. and Ringeissen, C. 1994. Combining symbolic constraint solvers on algebraic

domains. Journal of Symbolic Computation 18, 2, 113–155.

Kobayashi, N. 2003. Study of an Open Equational Solving System. Ph.D. Thesis, Institute of

Information Sciences and Electronics, University of Tsukuba, Japan.

Kobayashi, N., Marin, M. and Ida, T. 2001. Collaborative constraint functional logic

programming in an open environment. In The Second Asian Workshop on Programming

Languages and Systems (APLAS’01). Korea, 49–59.

Kobayashi, N., Marin, M. and Ida, T. 2003. Collaborative constraint functional logic

programming system in an open environment. IEICE Transactions on Information and

Systems E86-D, 1, 63–70.

Kobayashi, N., Marin, M., Ida, T. and Che, Z. 2002. Open CFLP: an open system for

collaborative constraint functional logic programming. In 11th International Workshop on

Functional and (Constraint) Logic Programming (WFLP’02). Grado, Italy, 229–232.

Krzikalla, O. 1997. Constraint solver für lineare constraints über reellen zahlen. Großer Beleg,

Technische Universität Dresden.

Lassez, J., Maher, M. and Marriot, K. 1988. Unification revisited. In Foundations of logic

and functional programming. LNCS, vol. 306. Springer, 67–113.

Loogen, R., López-Fraguas, F. and Rodrı́guez-Artalejo, M. 1993. A demand driven

computation strategy for lazy narrowing. In Proc. PLILP’93. LNCS, vol. 714. Springer,

184–200.

López-Fraguas, F., Rodrı́guez-Artalejo, M. and del Vado-Virseda, R. 2004. A lazy

narrowing calculus for declarative constraint programming. In PPDP’04. ACM Press, 43–

54.

López-Fraguas, F., Rodrı́guez-Artalejo, M. and del Vado Vı́rseda, R. 2007. A new generic

scheme for functional logic programming with constraints. Higher-Order and Symbolic

Computation 20, 1–2, 73–122.

Maher, M. J. 1988. Complete axiomatizations of the algebras of finite, rational and infinite

trees. In LICS’88. IEEE Computer Society, 348–357.

Marin, M. 2000. Functional Logic Programming with Distributed Constraint Solving. Ph.D.

Thesis, Johannes Kepler Universität Linz.

Marin, M., Ida, T. and Schreiner, W. 2001. CFLP: a Mathematica implementation of a

distributed constraint solving system. In IMS’99, vol. 8. WIT Press, 287–300.

Marti, P. and Rueher, M. 1995. A distributed cooperating constraints solving system.

International Journal of Artificial Intelligence Tools 4, 1–2, 93–113.

Milner, R. 1978. A theory of type polymorphism in programming. Journal of Computer and

Systems Sciences 17, 348–375.

Monfroy, E. 1996. Solver Collaboration for Constraint Logic Programming. Ph.D. Thesis,

Centre de Recherche en Informatique de Nancy.

Monfroy, E. 1998. A solver collaboration in BALI. In Proc. of JCSLP’98. MIT Press,

349–350.

Monfroy, E. and Castro, C. 2004. A component language for hybrid solver cooperations.

In ADVIS’04. LNCS, vol. 3261. Springer, 192–202.

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

On the cooperation of the constraint domains H, R, and FD in CFLP 527

Monfroy, E. and Ringeissen, C. 1999. An open automated framework for constraint solver

extension: the solex approach. Fundamenta Informaticae 39, 1–2, 167–187.

Monfroy, E., Rusinowitch, M. and Schott, R. 1995. Implementing Non-linear Constraints

with Cooperative Solvers. Research Report 2747, CRI Nancy.

N’Dong, S. 1997. Prolog IV ou la programmation par contraintes selon PrologIA. In

JFPLC’97. Edition HERMES, 235–238.

Nelson, G. and Oppen, D. 1979. Simplification by cooperating decision procedures. ACM

Transactions on Programming Languages and Systems 1, 2, 245–257.

Pajot, B. and Monfroy, E. 2003. Separating search and strategy in solver cooperations. In

Proc. PSI’03. LNCS, vol. 2890. Springer, 401–414.

Peyton-Jones, S. 2002. Haskell 98 Language and Libraries: The Revised Report. Technical

Report. Avilable at: http://www.haskell.org/onlinereport/.

Rodosěk, R., Wallace, M. and Hajian, M. 1997. A new approach to integrating mixed

integer programming and constraint logic programming. In Annals of Operations Research,

vol. 86. 63–87.

Rodrı́guez-Artalejo, M. 2001. Functional and constraint logic programming. In Constraints

in Computational Logics: Theory and Applications. LNCS, vol. 2002. Springer, 202–270.

Rueher, M. and Solnon, C. 1997. Concurrent cooperating solvers over reals. Reliable

Computing 3, 3, 325–333.

Sáenz-Pérez, F. 2007. ACIDE: an integrated development environment configurable for

LaTeX. The PracTeX Journal 3 , 1–17.

Saraswat, V. 1992. The category of constraint systems is cartesian closed. In Proc. of the 7th

Annual IEEE Symposium on Logic in Computer Science. IEEE Press, 341–345.

SICStus Prolog. 2007. Available at http://www.sics.se/isl/sicstus.

Thorsteinsson, E. 2001. Branch-and-check: a hybrid framework integrating mixed integer

programming and constraint logic programming. In CP 2001, T. Walsh, Ed. LNCS, vol.

2239. Springer, 16–30.

van Hentenryck, P., Saraswat, V. and Deville, Y. 1998. Design, implementation and

evaluation of the constraint language cc(FD). Journal of Logic Programming 37, 139–164.

van Hentenryck, P., Simonis, H. and Dincbas, M. 1994. Constraint satisfaction using

constraint logic programming. Artificial Intelligence 58, 113–159.

van Hoeve, W. 2000. Towards the Integration of Constraint Logic Programming and

Mathematical Programming. Master’s Thesis, University of Twente, The Netherlands.

Vandecasteele, H. and Rodosěk. 1998. Modelling combinatorial problems for CLP(FD+R).

In Proc. of the Benelux Workshop on Logic Programming. 1–9.

Zhou, J. 2000. Introduction to the constraint language NCL. The Journal of Logic

Programming 45, 1-3, 71–103.

Zoeteweij, P. 2003. Coordination-based distributed constraint solving in DICE. In ACM

Symposium on Applied Computing (SAC’03). ACM, Melbourne, FL, 360–366.

https://doi.org/10.1017/S1471068409003780 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003780

