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Recent comparisons between classical Wagner theory for the impact of two liquid
droplets and direct numerical simulations in Cimpeanu & Moore (J. Fluid Mech.,
vol. 856, 2018, pp. 764–796) show that, in some regimes, the inviscid theory
over-predicts the thickness of the root of the splash jet that forms in the impact,
while also struggling to predict the angle at which the jet is emitted. The effect of
capillary and viscous perturbations to Helmholtz flows was investigated in a previous
study, see Moore et al. (J. Fluid Mech., vol. 742, 2014, R1). However, the paper
in question ignored a term in the second-order perturbation analysis, which needs
to be included in order to predict the displacement of the inviscid free boundary
to lowest order. In this paper, we derive a singular integro-differential equation for
the free-surface perturbations caused by viscosity in Helmholtz flows and discuss its
application both in the context of Wagner theory and more generally. In particular,
viscosity can induce non-monotonic behaviour in the free boundary profiles near
points of maximum curvature.

Key words: boundary layers, interfacial flows (free surface)

1. Introduction
Helmholtz flows describe any of a number of problems that deal with two-

dimensional, steady, inviscid free-streamline flows. They are of particular interest
in water-entry and droplet impact problems, as the flow local to the root of the
splash jet that forms upon impact reduces to a Helmholtz flow in a frame moving
with the root of the jet, see for example Wagner (1932) or Howison, Ockendon &
Wilson (1991).

In a recent analysis on droplet–droplet impact problems, Cimpeanu & Moore (2018)
noted that the Helmholtz solution over-predicts the thickness of the splash jet close to
its root and speculate that it is the neglect of other physical effects that leads to this
discrepancy. This has led to a desire to find the viscous perturbation to the free-surface
location predicted by the Helmholtz flow.

The previous study of Moore et al. (2014) addresses the effects of both viscosity
and surface tension near free surfaces in high Reynolds number flows. They found that,
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882 A19-2 M. R. Moore and others

for flows in which the free boundary is smooth in the inviscid limit, boundary-layer
separation could only occur if the dimensionless curvature in the inviscid limit was
of the order of the Reynolds number. While this conclusion is indeed true, it was
reached based on a study of the third term in an asymptotic expansion in terms of
the Reynolds number, but one term was inadvertently omitted from the equation for
the perturbed free boundary. It transpires that this term is necessary in order to find
the perturbation to the free-surface profile explicitly.

This paper is motivated by both the need to remedy this shortcoming and by the
insight provided by powerful computational fluid dynamics tools for flows of this
type. We begin in §§ 2–3 by formulating the general Helmholtz problem, reviewing
the large-Reynolds-number boundary-layer analysis and showing how the complete
three-term asymptotic analysis reduces the problem to that of finding a Dirichlet-to-
Neumann map for Laplace’s equation. Although this map cannot be found explicitly,
we show in § 4 that conformal mappings can be employed to pose the problem as a
singular integro-differential equation that can be solved relatively easily numerically
and asymptotically. Using this output and that of the implementation built on top of
the Gerris architecture (Popinet 2003, 2009) on the full interfacial problem, in § 5 we
present viscous free-boundary profiles for the simple case of symmetric jet impact and
for the Wagner droplet impact model studied in, for example, Purvis & Smith (2005)
and Cimpeanu & Moore (2018). The perturbation resulting from viscous effects is
found to be remarkably similar in both cases and it reveals the existence of unexpected
non-monotonic behaviour in the perturbation to the free boundary near the point where
its curvature reaches its maximum.

2. Problem formulation
We consider a steady, two-dimensional free-surface flow of an incompressible fluid

of constant density ρ and viscosity µ. The surface tension coefficient is σ . In the limit
in which viscosity and surface tension are vanishingly small, under the assumption that
the fluid is initially irrotational, there is an inviscid solution U=∇Φ, where U is the
fluid velocity and Φ is the velocity potential. The corresponding fluid pressure is given
by P, while the free-surface location is given by y=H(x). Here (x, y) are Cartesian
coordinates chosen suitably for a given problem. We call this the Helmholtz solution
and, in particular, we non-dimensionalise in such a way that P = 0 or, equivalently,
|∇Φ|2 = 1 on the free surface. An example of a particular Helmholtz problem is the
impact of two symmetric jets, as depicted in figure 1.

The most convenient coordinate frame in which to analyse perturbations to the
Helmholtz flow due to viscosity is one tailored to y = H(x). Here we let (s, n)
denote this curvilinear coordinate system, where s denotes arc length along the free
surface and n denotes the direction normal to this curve. This coordinate system is
depicted in figure 1. The scale factor, m, when moving to this system is given by
m = 1 + κ(s)n, where κ(s) denotes the curvature of the inviscid free boundary. We
will only consider flows in which the free boundary is of infinite length and the fluid
is incoming from s=−∞; thus we take s∈ (−∞,∞), and we take the fluid to be in
n> 0. Finally, we shall assume that there is no incoming vorticity from the upstream
flow, that is, there is no effect of viscosity as s→−∞.

The dimensionless Navier–Stokes equations for the fluid velocity u= (u, v) and the
fluid pressure p in this curvilinear coordinate system are given by

u
m
∂u
∂s
+ v ∂u

∂n
+ κuv

m
=− 1

m
∂p
∂s
+ 1

mRe

[
∂τss

∂s
+ 1

m
∂

∂n
(m2τsn)

]
, (2.1)
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y = H(x)
n
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FIGURE 1. The steady impact of two inviscid, symmetric jets is an example of a
Helmholtz flow. Subject to suitable non-dimensionalisation – here with L/2 chosen as a
length scale and V as a velocity scale – the Helmholtz problem is that depicted on the
left. The curvilinear coordinate system (s, n) embedded in the inviscid free surface is also
shown.

u
m
∂v

∂s
+ v ∂v

∂n
− κu2

m
=−∂p

∂n
+ 1

mRe

[
∂τsn

∂s
+ ∂

∂n
(mτnn)− κτss

]
, (2.2)

∂u
∂s
+ ∂

∂n
(mv)= 0, (2.3)

where Re = ρLU/µ is the Reynolds number based on reference length and velocity
scales L, U respectively, and the components of the stress tensor τ are given by

τss = 2
m

(
∂u
∂s
+ κv

)
, τsn = ∂u

∂n
− κu

m
+ 1

m
∂v

∂s
, τnn = 2

∂v

∂n
. (2.4a−c)

On the perturbed free boundary, n= h(s), the kinematic boundary condition is given
by

v = u
m

dh
ds
. (2.5)

As mentioned in Moore et al. (2014) and discussed in detail in appendix A, the
leading-order effect of sufficiently small surface tension is simply to displace the
free boundary normally by an amount proportional to −1/We, with no induced
perturbation to the outer inviscid flow (since the outer problem is invariant under
rigid body translations and rotations). Here We = ρLU2/σ is the Weber number.
Hence we will neglect surface tension, so that the stress-free boundary conditions are
given by

p
m

dh
ds
− τss

mRe
dh
ds
+ τsn

Re
= 0, −p+ τnn

Re
− τsn

mRe
dh
ds
= 0, (2.6a,b)

on n = h(s). Finally, since the flow field upstream is uniform, we assume far-field
conditions such that viscous perturbations are negligible upstream and away from the
free surface.
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882 A19-4 M. R. Moore and others

3. Solution for large Re

For the rest of this analysis, we shall assume that ε2 = 1/Re is small. Under the
assumption that any vorticity generated due to viscosity is confined to a boundary
layer near the free surface, the flow for n=O(1) can be assumed to be inviscid, with
u=∇φ, for some velocity potential φ(s, n). In particular, if we expand

φ(s, n)= φ0(s, n)+ ε2φ1(s, n)+ o(ε2), p= p0 + ε2p1 + o(ε2), (3.1a,b)

we simply have φ0(s, n) = Φ(s, n), p0 = P(s, n) from the Helmholtz solution. In
particular,

u= 1+O(n), v =O(n2), p=O(n) as n→ 0. (3.2a−c)

3.1. Leading-order boundary-layer solution
In order to satisfy the stress-free conditions (2.6a,b), there must be a boundary
layer close to the free surface where viscous effects are non-negligible. Asymptotic
expansions introduced in Moore et al. (2014) show that the relevant scalings are

n= εñ, u= 1+ εũ, v = ε2ṽ, p= εp̃, h= ε2h̃, τss = ετ̃ss,
τsn = τ̃sn, τnn = ετ̃nn.

}
(3.3)

We substitute these into (2.1)–(2.6) and expand as asymptotic series in powers of ε.
To leading order in the boundary layer, we see that

∂ p̃0

∂ ñ
= κ, ∂ ũ0

∂s
=−∂ p̃0

∂s
+ ∂

2ũ0

∂ ñ2
,

∂ ũ0

∂s
+ ∂ṽ0

∂ ñ
= 0, (3.4a−c)

subject to

p̃0(s, 0)= 0,
∂ ũ0

∂ ñ
(s, 0)= κ, ṽ0(s, 0)= dh̃0

ds
, (3.5a−c)

on the free surface, and

ũ0→ 0 as s→−∞, ũ0 ∼−κ ñ as ñ→∞. (3.6a,b)

Clearly, from (3.4a), (3.5a),

p̃0 = κ ñ. (3.7)

Upon writing ũ0=−κ ñ+ w̃ to reduce (3.4b) to the heat equation, we employ a Fourier
transform in s to deduce that

w̃=− 2√
π

∫ s

−∞

κ(ξ)√
s− ξ exp

( −ñ2

4(s− ξ)
)

dξ . (3.8)

It is straightforward to show that, provided the curvature decays upstream, w̃ is
exponentially small as ñ→∞.

Finally, we can find the transverse velocity, ṽ0, by integrating the continuity
equation, (3.4c), and applying the linearised kinematic boundary condition, (3.5c), on
the free surface. However, the pertinent information, as previously deduced in Moore
et al. (2014), is that, in the far field, we have

ṽ0 = dκ
ds

ñ2

2
+ dh̃0

ds
+ 2κ + exp. small terms (3.9)

as ñ→∞. This gives us a matching condition for the transverse velocity in the O(ε2)-
problem in the outer region.
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3.2. Second-order boundary-layer solution
In order to close the problem and find an equation for the correction to the free-
surface location, h̃0, we also need a matching condition for the pressure, which means
we must proceed to the next order in our boundary-layer analysis.

At O(ε) in (2.2), we have

−2κ ũ0 + κ2ñ=−∂ p̃1

∂ ñ
, (3.10)

subject to the O(ε)-form of the normal stress boundary condition, (2.6b),

p̃1 + h̃0
∂ p̃0

∂ ñ
= 0 on ñ= 0. (3.11)

Recalling that ∂ p̃0/∂ ñ= κ , we find that the second-order boundary-layer pressure is

p̃1 =−3κ2ñ2

2
− κ h̃0 + 2κ

[
w̃∗ −

∫ ∞
ñ

w̃(s, ν) dν
]
, (3.12)

where, from (3.8),

w̃∗ =
∫ ∞

0
w̃(s, ν) dν =−2

∫ s

−∞
κ(ξ) dξ . (3.13)

In particular, the far-field expansion of the O(ε)-pressure is given by

p̃1 =−3κ2ñ2

2
+ κ(2w̃∗ − h̃0)+ exp. small terms (3.14)

as ñ→∞.

3.3. Second-order inviscid problem

We now have enough information to solve for both φ1 and h̃0. Following Moore et al.
(2014), the second-order velocity potential and pressure in the inviscid region satisfy
the Laplace and Bernoulli equations

∇2φ1 = 0, p1 +
[(

1
1+ κ ñ

)2
∂φ0

∂s
∂φ1

∂s
+ ∂φ0

∂n
∂φ1

∂n

]
= 0, (3.15a,b)

in n > 0. The matching conditions for the transverse component of velocity and the
pressure as we approach the boundary layer give

∂φ1

∂n
= dh̃0

ds
+ 2κ,

∂φ1

∂s
= κ(h̃0 − 2w̃∗) on n= 0. (3.16a,b)

We note that it is the equation for ∂φ1/∂s in (3.16) that was incorrect in Moore
et al. (2014), as it did not include the w̃∗-term, which measures the viscous
perturbation to the flow due to the curvature of the Helmholtz free surface. The
correct condition makes it somewhat more complicated to derive an expression
for the free-surface displacement. We will now show how a Dirichlet-to-Neumann
operator can be used to relate the two boundary conditions in (3.16), leading to a
singular integro-differential equation for h̃0(s).
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4. Dirichlet-to-Neumann map
Let z= x+ iy be a complex variable in the physical plane, Ω , with the free boundary

y = H(x), and let w0 = φ0 + iψ0 be the corresponding complex potential. In (3.15)–
(3.16), we have derived a problem for the correction to the leading-order inviscid
solution in Ω with complex potential w1(z), which will now be mapped to W(w0)
in the potential plane so that

dw1

dz
= dW

dw0

dw0

dz
. (4.1)

Now, since |w′0(z)|2= 1 on the free surface, we set w′0(z)= e−iθ for θ ∈ (θ0, θ1) there.
Thus, with W =P + iQ, we have

∂φ1

∂x
− i
∂φ1

∂y
= e−iθ

(
∂P
∂φ0
− i

∂P
∂ψ0

)
. (4.2)

By definition, the tangent and normal to the free surface are given by

t= (cos θ, sin θ), n= (− sin θ, cos θ), (4.3a,b)

so that the first-order velocity is

∂φ1

∂x
i+ ∂φ1

∂y
j =

(
1

1+ κn
∂φ1

∂s
t+ ∂φ1

∂n
n
)∣∣∣∣

n=0

=
(

cos θ
∂φ1

∂s
− sin θ

∂φ1

∂n

)
i+
(

sin θ
∂φ1

∂s
+ cos θ

∂φ1

∂n

)
j, (4.4)

and hence

∂φ1

∂x
− i
∂φ1

∂y
= e−iθ

(
∂φ1

∂s
− i
∂φ1

∂n

)
(4.5)

on the free surface.
Therefore, after combining (4.2) and (4.5), we see that

∂P
∂φ0
− i

∂P
∂ψ0
= ∂φ1

∂s
− i
∂φ1

∂n
(4.6)

on the lowest-order free surface ψ0 = 1,−∞<φ0 = s<∞.
Now, let us map the w0-plane to the strip Z = {ζ = ξ + iη | 0 < η < 1, −∞ <

ξ < ∞} in a ζ -plane under the map ζ = F(w0). The complex potential W(w0) is
mapped to Ŵ(ζ ). We shall require that the free surface is mapped to η = i and the
remaining boundaries, which will be lines of symmetry or solid walls, to η= 0; thus
the appropriate boundary condition is

∂P̂
∂η
= 0 on η= 0, (4.7)

where Ŵ = P̂ + iQ̂. On the free surface, we have

∂P̂
∂ξ
− i
∂P̂
∂η
=
[
∂φ1

∂s
− i
∂φ1

∂n

]
d

dζ
F−1(ζ )

∣∣∣∣
ζ=ξ+i

= f (ξ)− ig(ξ), (4.8)

say, for functions f (ξ), g(ξ) that depend on F(ζ ).
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FIGURE 2. Steady impact of two symmetric jets. By symmetry, we consider the top-left
quadrant only. Fluid is entering the domain from BC and leaving the domain at AD.

Now that we have reduced the problem to one in the strip Z , we can utilise Fourier
transforms to solve both the Dirichlet and Neumann problems separately. Equating
them on the boundary, we find that

iF(g)(k)= tanh kF( f )(k), (4.9)

where F(·) indicates the Fourier transform. This is readily inverted to deduce that

g(ξ)=−1
2
−
∫ ∞
−∞

f (t)cosech
(

π(ξ − t)
2

)
dt, (4.10)

where the latter integral is interpreted in the Cauchy principal value sense.

5. Two examples
5.1. Symmetric jet impact

Consider the classical problem of the steady impact of two symmetric jets, see for
example Milne-Thomson (1996). We shall assume that they collide horizontally on
the y-axis on their line of symmetry so that the system reaches a steady state. The
configuration in the top-left quadrant is depicted in figure 2. The corresponding
potential plane is depicted in figure 3.

After a straightforward application of the hodograph method, we find that the
inviscid prediction for the free-surface location is given parametrically by

x(θ)=−1+ 2
π

log tan
θ

2
, y(θ)= 1+ 2

π
log tan

(
θ

2
+ π

4

)
, (5.1a,b)

where θ ∈ (0,π/2). The arc length around the free surface and its curvature are given
by

s(θ)= 2
π

log tan θ, κ(s)= π

4
sech

πs
2
. (5.2a,b)
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A

D

B

C

¥0
¥0 = 1

ƒ0

FIGURE 3. The potential plane for the steady impact of two symmetric jets.

As is clear from figure 3, the potential plane is the strip Z . Hence, with F(ζ )= ζ ,

f (s)= ∂φ1

∂s
, g(s)= ∂φ1

∂n
, (5.3a,b)

so that from (3.16) and (4.10) the perturbation to the free surface satisfies the singular
integro-differential equation

0= dh̃0

ds
+ 2κ(s)+ 1

2
−
∫ ∞
−∞

cosech
(

π(s− t)
2

) [
h̃0(t)κ(t)− 2κ(t)w̃∗(t)

]
dt, (5.4)

where

w̃∗ =−2arctan(eπs/2). (5.5)

As s→±∞, we know that the second-order velocity potential in the inviscid region
must approximately satisfy

∂2φ1

∂n2
= 0,

∂φ1

∂n

∣∣∣∣
n=0

= dh̃0

ds
+ 2κ(s),

∂φ1

∂n

∣∣∣∣
n=1

= 0, (5.6a−c)

where the final condition is due to the symmetry of the problem. Hence, we must
have

dh̃0

ds
→−2κ(s) as s→±∞. (5.7)

This can, however, be improved upon. If we assume that the integrand in the principal
value integral in (5.4) satisfies a Hölder condition, we can integrate (5.4) over all s
and exchange the order of integration to see that

h̃0(∞)= h̃0(−∞)−π. (5.8)

Therefore, the effect of viscosity is to thicken the jet at the outlet by twice the angle
the tangent to the free surface turns as s increases, or in other words, the ratio of the
jet thickness at the outlet (s=∞) to that at the inlet (s=−∞) is given by

(H + ε2h̃0)(∞)
(H + ε2h̃0)(−∞)

= 1+ π

Re
+ o

(
1

Re

)
. (5.9)

We check the veracity of this prediction by comparing (5.9) to results extracted
from direct numerical simulations (DNS) of the full unsteady Navier–Stokes equations
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Direct numerical simulations

FIGURE 4. The correction to the ratio of the size of the jet outlet to the jet inlet as
a function of the Reynolds number, with We= 104 fixed. The analytical prediction (5.9)
is depicted by the squares while the results extracted from the DNS are depicted by the
circles.

performed in Gerris (Popinet 2003, 2009). The developed computational configuration
includes the air flow and the effects of viscosity and surface tension. We have
considered a range of Reynolds numbers from 103 to 1.6 × 104 with the Weber
number fixed at We = 104. The appropriate length and velocity scales upon which
these numbers are based have been taken in this problem to be the thickness and speed
of the jet upstream (i.e. at BC). The Weber number has been chosen to be consistent
with our asymptotic analysis, in which we have assumed that viscous perturbations
dominate, or are at worst comparable to, surface tension-driven perturbations to the
inviscid flow. The results are displayed in figure 4. We see excellent agreement over
a this range of Reynolds numbers.

In order to study the perturbed free boundary in more detail, we set

s= 2ŝ
π
, t= 2t̂

π
, ĥ(ŝ)= h̃0(s)− 2w̃∗(s), (5.10a−c)

so that

dĥ
dŝ
+ 1

2π
−
∫ ∞
−∞

ĥ(t̂)
cosh t̂ sinh(ŝ− t̂)

dt̂= 1
cosh ŝ

. (5.11)

An asymptotic expansion of (5.11) allows us to show that

ĥ∼
(

2+ 2
π

∫ ∞
−∞

ĥ(t̂)
1+ e2t̂

dt̂

)
eŝ as s→−∞, (5.12)

ĥ∼π+
(

2ŝ+ 2
π

∫ ∞
−∞

ĥ(t̂)−π

1+ e−2t̂
dt̂

)
e−ŝ as ŝ→∞. (5.13)
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FIGURE 5. The viscous correction to the free-surface location, h̃0(s), for the symmetric
jet impact problem (solid line) alongside the corresponding perturbation derived from the
DNS (circles). This comparison is displayed for Re= 4× 103,We= 104. The solution to
(5.4) has been shifted by a constant value to account for the Weber number.

We can utilise these far-field expansions to solve (5.11) using collocation. We
truncate the ŝ-domain at some large M and use (5.12)–(5.13) to approximate ĥ(ŝ) far
upstream and far downstream respectively. For ŝ∈ (−M,M), we subdivide the domain
and approximate ĥ(ŝ) by piecewise cubics in each subsection. By enforcing suitable
smoothness of the free-surface perturbation, we are able to find the coefficients of
the cubics using the singular integro-differential equation.

The leading-order viscous free-surface perturbation h̃0(s) = ĥ + 2w̃∗ is displayed
as the solid line in figure 5 alongside data extracted from the DNS, as represented
by the circles. Note that the solution of the integro-differential equation has been
shifted uniformly in s to account for the surface tension that is included in the full
numerical simulations (see appendix A for more details). The data from the direct
numerical simulations have been calculated by evaluating the normal distance between
the inviscid free surface (5.1) and the numerical data for a large range of s.

It is clear that there is good agreement between the theoretical prediction and
the numerical results in figure 5, except for large negative s (cf. figure 6a). It is
perhaps surprising to see that the free-surface perturbation is not monotonic in arc
length: there is a minimum in the viscous perturbation close to (but not exactly at)
the point of maximum curvature in the inviscid problem (s = 0). We also note that
the dimensionless curvature is always much smaller than Re, which means that the
scalings in § 3 are never violated.

We have performed extensive numerical investigations into the upstream disparities.
Whilst the results are certainly affected by changes in the physical properties (density
and viscosity) of the surrounding gas, another significant issue is that the size of
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√ Re
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(a) (b)

(c)
Vorticity in both liquid and air Vorticity in the liquid only

Analytical prediction of vorticity

FIGURE 6. Vorticity in the symmetric jet impingement example. The results of the direct
numerical simulations for Re=4000, We=10 000 depicting: (a) vorticity in both fluids, (b)
vorticity in the liquid phase only. There is a clear thickening of the boundary layer as the
flow turns the corner of the free surface, as precited by (5.9). The maximum/minimum
colour bars in the plots have been chosen to aid visualisation. The maximum value of
the vorticity in the liquid phase is approximately 1.5. (c) Contours of the corresponding
leading-order vorticity magnitude extracted from the boundary-layer analysis (5.14) are
depicted in the (s, ñ)-plane. Note that from (5.2a), the range of s in (c) covers the majority
of the free surface. We see a similar thickening of the boundary layer downstream.

the deviations in question are of the order of within the smallest grid cells used in
the DNS. The reader should also recall that the size of the perturbations depicted in
figure 5 have been scaled by Re, so that the size of perturbation we are seeking is of
O(10−4) dimensionless spatial units in a large domain spanning O(10) units in either
direction, which is a significant computational challenge. Despite this sensitivity near
the inlet (which could in principle be improved upon either by further refinement or
by using a larger domain at greatly increased computational cost), the overall good
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quality of the comparison and key features of the results remain consistent across a
wide range of parameters constructed in view of the applicability of the asymptotic
treatment of the analytical solution.

Finally, we consider the vorticity produced in the boundary layer due to the
presence of the curved free surface. The leading-order vorticity is given by

ω0 =
(
∂ ũ0

∂ ñ
+ κ
)

k= ∂w̃0

∂ ñ
k, (5.14)

which is independent of the viscous free-surface perturbation, h̃0(s).
We display contours of constant vorticity as a function of (s,ñ) in figure 6(c). Firstly,

we note that the range of s considered encapsulates the majority of the free surface,
since tan θ decays exponentially quickly as a function of s, see (5.2a). The vorticity is
relatively small throughout the boundary layer, indeed it decays exponentially as ñ→
∞ and |s|→∞. However, there is an evident thickening of the profile downstream of
the point of maximum curvature on the inviscid free surface (s= 0), suggesting that
the boundary layer thickens downstream. This is further corroboration of the result
given by (5.9).

Plots of vorticity magnitude extracted from the DNS are displayed alongside the
analytical prediction. In figure 6(a), the vorticity in both the liquid and air phases
is shown, while in figure 6(b), we display simply the vorticity in the liquid phase.
We clearly see that the vorticity induced by the jet is larger in the air, while in
figure 6(b), it is evident that the boundary layer has thickened as it moves around
the corner. Finally, we note that the scales of the colour bars in the DNS plots of
figure 6(a,b) have been chosen to aid visualisation: the maximum value of the vorticity
in the liquid phase is approximately 1.5, in good agreement with the leading-order
analytical prediction of approximately 1.4.

5.2. The Wagner droplet impact problem
As described in detail in Cimpeanu & Moore (2018), the leading-order inner
Helmholtz flow arising in the Wagner theory for symmetric droplet impact and its
corresponding potential plane are depicted in figures 7–8 respectively. Adapting the
solution of Wagner (1932) for the problem of solid–liquid impact, the leading-order
inner solution is given parametrically by

φ0 + iψ̂0 = υ − log υ + 1, x+ iy=−(1+ υ + 4
√
υ + log υ), (5.15a,b)

where the fluid lies in Im(υ) > 0, the free surface lies along υ = a where a is real
and negative and the branch cuts are taken along the negative real axis. In particular,
the free-surface profile is given parametrically by

x(a)=−1− a− log(−a), y(a)=−π− 4
√−a, (5.16a,b)

so that arc length along the free surface and its curvature are given by

s= 1+ a− log(−a), κ =
√−a
(1− a)2

, (5.17a,b)

where we note that s ∈ (−∞,∞). Finally, we see that

w̃∗ =−2π+ 4arctan(
√−a). (5.18)
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y = H(x)
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FIGURE 7. The (suitably scaled) leading-order inner problem according to Wagner theory
for a droplet–droplet impact at small times. The dashed line indicates a dividing streamline
that terminates at a relative stagnation point on the body at S. In a frame moving with
the turnover points, the problem is a Helmholtz flow.

A B

S C
D

ƒ0

¥0

¥0 = -π

FIGURE 8. The potential plane corresponding to the Helmholtz flow depicted in figure 7.

The map from the Wagner potential plane to the strip Z is given by

φ0 + iψ0 = eπζ −πζ + 1, (5.19)

where, on the free surface, we can write a=−eπξ to give

s= χ(ξ)=−πξ − eπξ + 1. (5.20)

Note that ξ =∞ corresponds to s=−∞ and ξ =−∞ corresponds to s=∞. Thus,

f (ξ)= χ ′(ξ) ∂φ1

∂s

∣∣∣∣
s=χ(ξ)

, g(ξ)= χ ′(ξ) ∂φ1

∂n

∣∣∣∣
s=χ(ξ)

, (5.21a,b)

and hence (4.10) gives

χ ′(ξ)
∂φ1

∂n

∣∣∣∣
s=χ(ξ)

+ 1
2
−
∫ ∞
−∞

χ ′(t)
∂φ1

∂s

∣∣∣∣
s=χ(t)

cosech
(

π(ξ − t)
2

)
dt= 0. (5.22)
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Now, recalling (3.16) and letting

◦
h(ξ)= h̃0(s(ξ)),

◦
κ(ξ)= κ(s(ξ)), ◦w∗(ξ)= w̃∗(s(ξ)), (5.23a−c)

we see that

d
◦
h

dξ
+ 1

2
−
∫ ∞
−∞

χ ′(t) ◦κ(t)cosech
(π

2
(ξ − t)

)
(
◦
h(t)− 2 ◦w∗(t)) dt=−2χ ′(ξ) ◦κ(ξ). (5.24)

As with (5.11), if we integrate (5.24) over all ξ , then assuming the integrand
satisfies a Hölder condition, we can reverse the order of integration, and, after
returning to arc length as a variable, we deduce that

h̃0(∞)= h̃0(−∞)− 2
∫ ∞
−∞

κ(s) ds= h̃0(−∞)− 2π. (5.25)

Thus, the ratio of the perturbation to the Wagner free surface upstream to that
downstream is given by

(H + ε2h̃0)(∞)
(H + ε2h̃0)(−∞)

= 1+ 2π

Re
+ o

(
1

Re

)
. (5.26)

We can also solve (5.24) numerically by collocation. Firstly, note that

χ ′(ξ) ◦κ(ξ)=−π

2
sech

πξ

2
. (5.27)

Thus, if we set

ξ = −2ξ̂
π
, t= −2t̂

π
, ĥ(ξ̂ )= ◦

h(ξ)− 2 ◦w∗(ξ), (5.28a−c)

we deduce that

dĥ

dξ̂
− 1

π
−
∫ ∞
−∞

ĥ(t̂)

cosh t̂ sinh(ξ̂ − t̂)
dt̂= 2

cosh ξ̂
, (5.29)

which is remarkably similar to (5.11). As in (5.12)–(5.13), a far-field analysis of (5.29)
shows us that

ĥ(ξ̂ )∼ 4

(
1− 1

π

∫ ∞
−∞

ĥ(t̂)
1+ e2t̂

dt̂

)
eξ̂ as ξ→−∞, (5.30)

ĥ(ξ̂ )∼ 2π− 8ξ̂e−ξ̂ − 4

(
3+ 1

π

∫ ∞
−∞

ĥ(t̂)− 2π

1+ e−2t̂
dt̂

)
e−ξ̂ as ξ̂→∞. (5.31)

Truncating the ξ̂ -domain and utilising these far-field forms as previously, we can solve
for ĥ(ξ̂ ) numerically.

Returning to original variables, we plot the leading-order viscous correction h̃0(s)
as a function of arc length in figure 9. The perturbation is again not monotonic in
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FIGURE 9. The viscous correction to the free-surface location, h̃0(s), for the Wagner jet
root. Downstream as s→∞, one can see the perturbation approaching the predicted value
of −2π, while upstream we see inverse square-root decay back into the bulk (the outer
Wagner region), which we display in further detail in the inset, where the dashed line
indicates square-root decay.

arc length near the point of maximum curvature in the inviscid problem (s = 1.77),
although in this case we now see that the maximum normal shift from the Helmholtz
solution is no longer far downstream, where we approach −2π as predicted by (5.26).
Moreover, we see much slower decay upstream as we move out of the Wagner jet root
back into the outer region. The perturbation decays like 1/

√−s as s→−∞, which
is expected when one considers the far field of the eigensolutions for the Laplace
problem depicted in figure 7.

There are significant difficulties in reaching good quantitative agreement between
the direct numerical simulation results and the asymptotic theory. Setting up a
finite computational domain that is sufficiently large to appropriately incorporate the
analytically derived far-field conditions requires length scales of at least O(102). At
the same time, as hinted in (5.26), the target solutions would differ by O(Re−1),
which leads to a multi-scale environment spanning at least six orders of magnitude
in a highly sensitive set-up. Furthermore, there are intrinsic subtleties connected to
the construction of suitable boundary conditions in the gas, as well as immediately
adjacent stable outflow boundary conditions in a non-trivially evolving flow. Ultimately
we anticipate that the presence of surface tension effects, solving for the full
Navier–Stokes solutions in both liquid and gas phases, as well as any discretisation
errors in general would all lead to minor discrepancies at the level of the solution
comparison. A representative result is illustrated on the left-hand side of figure 10,
wherein an inset is used to indicate the accuracy of the comparison near the turnover
region. As dictated by the scalings (3.3), we consider morphological features of
interest at O(1/Re), thus making the set-up a very challenging one. Therefore even
qualitative flow properties are very difficult to obtain and would in themselves
contribute to a successful and informative study. We display such qualitative results

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

83
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.832


882 A19-16 M. R. Moore and others

-2 0 2 4 6 8 10

0

-5

-10

-15

-20
0 0.05 0.10

-6.0

-6.5

-7.0

-7.5

-8.0

x s

y

-20 -15 -10 -5 0 5 10 15 20

0.30

0.25

0.20

0.15

0.10

0.05

0

-0.05

-0.10

N
or

m
al

 sh
ift

Direct numerical simulation
Analytical prediction

(a) (b)

FIGURE 10. (a) A typical comparison between the analytically predicted shape of the
interface (dashed line), alongside a profile extracted from the direct numerical simulations
(continuous line). The highlighted inset focuses on the discrepancies found near the
turnover point. (b) The normal distance between the free-surface location as found via
direct numerical simulation of the full Navier–Stokes problem and the inviscid prediction
of Wagner theory. As elaborated upon in the text, we only concentrate on qualitative rather
than quantitative comparisons between the analytical prediction and the results of the full
simulations, but we see clear evidence of the shape of the viscous perturbation predicted
by (5.29) and displayed in figure 9.

in figure 10(b). In order to be consistent with the analytical formulation, the data
extracted from the DNS have been shifted horizontally to fix the turnover point at
x = 0 and vertically to align with the jet far downstream. We have then calculated
the normal distance between the inviscid free-surface profile and the simulation
data. We see remarkably good qualitative agreement in the perturbation profile when
comparing with figure (9), in particular capturing the square root decay upstream and
the non-monotonic behaviour in the profile downstream of s= 0.

Finally, we consider the vorticity in the jet-root problem. The vorticity is now given
by

ω0 =−∂w̃0

∂ ñ
k, (5.32)

where the change in sign from (5.14) comes from the change in chirality of the
coordinate system.

We display the analytical prediction for the leading-order vorticity magnitude in
figure 11(c). Similarly to the symmetric jets example and consistent with (5.26), we
see that the boundary layer is thicker downstream of the turnover point (s = 0). A
similar picture is seen from the vorticity data extracted from the DNS, as shown
for the liquid phase in figure 11(b). As alluded to previously, although we can only
really expect qualitative comparisons between the full numerical simulations and the
analytical predictions, the minimum value of the vorticity in the numerical solution is
−0.62, which is not too dissimilar to the analytical prediction, which is approximately
−0.6 (cf. figure 11c). As with the symmetric jet case, we see in figure 11(a) that
vorticity in the air is again larger than that in the liquid, although still of a similar
order of magnitude.
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FIGURE 11. Vorticity produced by the curved free boundary in the Wagner jet-root
problem. The DNS results for the vorticity distribution in: (a) both the liquid and air
phases; (b) the liquid phase only. The simulations use Re = 4000 and We = 10 000 and
we have included streamlines (in white) and chosen the colour bar scale to aid the
visualisation. (c) Magnitude of the leading-order vorticity as predicted by the analytical
solution. Both the numerical and analytical results show that the boundary layer thickens
downstream of the turnover point, as predicted by (5.26).
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Noticeably, in both the analytical predictions and the DNS results, there is no
singularity in the boundary layer in this regime, and the conclusion reached in
Batchelor (1967) and Moore et al. (2014) still holds, namely that we require
κ = O(Re) somewhere on the free surface for the vorticity to be shed into the
inviscid bulk.

6. Conclusion
For steady free-surface flows at large Reynolds number, a systematic three-term

asymptotic expansion has confirmed the conjecture of Moore et al. (2014) that the
principal effect of viscosity is to displace the inviscid free boundary normally by a
distance of O(Re−1) compared to the inviscid length scale. For inviscid free-surface
curvature of O(1) as Re→∞, the analysis confirms that the vorticity is confined
to the boundary layer, decaying exponentially quickly as we move away from the
boundary.

However, the updated theory yields a singular integro-differential equation for
the viscous perturbation to the free-surface location, equation (4.10). Analysis of
this equation suggests that, as predicted by Moore et al. (2014), the thickening of
the free surface (and hence the boundary layer) due to viscosity is proportional to
twice the angle turned by the tangent vector to the inviscid free surface (cf. (5.9),
(5.26)). However, numerical investigations of (4.10) for two particular examples
also predict the appearance of non-monotonic behaviour in the viscous correction
to the free-boundary profile: such behaviour has not been reported previously. This
prediction has been confirmed by direct numerical simulation of the full Navier–Stokes
equations.

Naturally, the discovery of non-monotonic perturbations leads to the question of
whether such behaviour is present for other free-surface flows. Possible avenues
for further investigation could include flows with larger curvature such as oblique
jet impact, or considering the importance of unsteady effects in the production
and diffusion of vorticity (particularly if the inviscid free surface is rotating or
expanding/contracting). This latter case is considered briefly in Batchelor (1967),
although he does not consider the shape of the free-surface perturbation due to
viscosity. It is an interesting question as to whether an equivalent equation to (4.10)
holds in these regimes, and whether it admits solutions with such non-monotonic
behaviour, or indeed solutions with singularities.

Moreover, it would be interesting to investigate the stability of these configurations
and also to apply the asymptotic approach to free boundaries between nearly inviscid
fluids of comparable densities, for which the stability results of, for example, Hooper
& Boyd (1983) would be relevant.

Appendix A. The role of surface tension
For the purposes of motivation, we begin by considering the effects of surface

tension in a purely inviscid flow with velocity potential φ, in which the flow has
nearly unit velocity in the x-direction. We assume the cavity boundary is near the
x-axis and described by y = −κx2/2 in Cartesian coordinates, and on this boundary
the normal of derivative of φ vanishes while the pressure is −κ/We. Thus from
Bernoulli’s equation,

|∇φ|2 = 1+ κ

We
. (A 1)
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When we write φ = x+ φ1 for small φ1, we find that, to first order in 1/We,

∂φ1

∂y
+ κx= 0 and

∂φ1

∂x
= κ

We
, (A 2a,b)

on y= 0. This means that the potential function φ1 that grows least rapidly at infinity
(in order to match with a far field) is

φ1 =−κx
(

y− 1
We

)
, (A 3)

and the effect of surface tension is to translate the free boundary normally.
However, when Re is large but finite with 1/We=O(1/Re), we can in fact go further

than this. Writing

1
We
= α

Re
, (A 4)

where α =O(1), the stress conditions on the free surface (2.6) become

p
m

dh
ds
− τss

mRe
dh
ds
+ τsn

Re
=− α

mRe
dh
ds
(∇ · n) , −p+ τnn

Re
− τsn

mRe
dh
ds
= α

Re
(∇ · n)

(A 5a,b)

on n= h(s), where

∇ · n= κ − κ2h− d2h
ds2
+ o(h), (A 6)

for small h.
Hence, performing a large-Re asymptotic expansion as in § 3, we see that

the leading-order problem remains unchanged, with surface tension entering the
second-order pressure, so that (3.12) becomes

p̃1 =−3κ2ñ2

2
− ακ − κ h̃0 + 2κ

[
w̃∗ −

∫ ∞
ñ

w̃(s, ν) dν
]
. (A 7)

The appropriate matching conditions for the second-order inviscid problem are
therefore

∂φ1

∂n
= dh̃0

ds
+ 2κ,

∂φ1

∂s
= κ(h̃0 + α − 2w̃∗) on n= 0. (A 8a,b)

Therefore, mapping h̃0→ h̃0 − α removes surface tension from the problem.
We confirm this by reconsidering the viscous free-surface perturbation in the

symmetric jets problem for several values of the Weber number while keeping
the Reynolds number fixed. As in figure 5, we consider an example for which
Re = 4 × 103, but consider a range of Weber numbers from 2.5 × 103 − 4 × 104.
For each case, we take the DNS data, subtract off a term equivalent to the inviscid
prediction and a uniform normal shift according to the Weber number and plot the
results, which are displayed in figure 12. The excellent collapse of the DNS data for
each of these values of the Weber number indicates that the above analysis holds in
this regime.
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FIGURE 12. The viscous correction to the free-surface location, h̃0(s), for the symmetric
jet problem for various values of the Weber number. This comparison is displayed for
Re= 4× 103 and the analytical prediction is represented by the solid line. One can clearly
see that for Weber numbers comparable to Re and larger, surface tension has no qualitative
effect on the leading-order viscous perturbation.

Clearly, we need significantly larger surface tension to alter the leading-order stress
conditions, specifically 1/We = α/√Re, where α = O(1). In this limit, we anticipate
a larger perturbation to the outer inviscid flow – O(1/

√
Re) as opposed to O(1/Re) –

but this is beyond the scope of the present paper.
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