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Online parameter identification in time-dependent differential equations from time course

observations related to the physical state can be understood as a non-linear inverse and ill-

posed problem and appears in a variety of applications in science and engineering. The feature

as well as the challenge of online identification is that sensor data have to be continuously

processed during the operation of the real dynamic process in order to support simulation-

based decision making. In this paper we present an online parameter identification method

that is based on a non-linear parameter-to-output operator and, as opposed to methods

available so far, works both for finite- and infinite-dimensional dynamical systems, e.g., both

for ordinary differential equations and time-dependent partial differential equations. A further

advantage of the method suggested is that it renders typical restrictive assumptions such as full

state observability, linear parametrisation of the underlying model and data differentiation or

filtering unnecessary. Assuming existence of a solution for exact data, a convergence analysis

based on Lyapunov theory is presented. Numerical illustrations given are by means of online

identification both of aerodynamic coefficients in a 3DoF-longitudinal aircraft model and of

a (distributed) conductivity coefficient in a heat equation.

1 Introduction

Dynamical systems such as systems of ordinary differential equations (ODEs) or time-

dependent partial differential equations (PDEs) play an important role in the modelling of

instationary processes in science and engineering. Often, these models contain parameters –

either constants or functions of dependent and independent variables such as time, spatial

coordinates or state variables – that cannot be directly accessed and hence are unknown.

Then one faces the (typically) non-linear and ill-posed inverse problem (see [8]) of

indirectly determining those parameters from observations in the frequency or time domain

related to the dynamical system. In case of time-domain data the problem of parameter

identification can be treated either offline or online – depending on the application one

has in mind. In offline identification, one first observes the dynamical system over a period

of time and only then uses the data collected for the determination of the parameters. In

online identification the parameters have to be identified simultaneously to the evolution

of the real system and the data-collection process. Initial parameter guesses have to
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be continuously improved since accurate parameter values are needed for simulation-

based decision making while the system still is in operation, e.g., as an input to control

algorithms.

Let us consider the abstract time-continuous dynamical system

xt(t) = f(x(t), q, t),
(1.1)

x(0) = x0

in state space form for the physical state x(t) in some space X, where the right-hand side

f contains (an) unknown parameter(s) q belonging to some space Q. Furthermore, assume

that a system output

y(t) = h(x(t), q, t) (1.2)

with y(t) belonging to some space Y can be observed over time and the corresponding data,

possibly affected by measurement errors, are denoted by z(t) ∈ Y . In online identification

one aims at inferring and continuously updating the parameter q ∈ Q simultaneously to

the operation of the process modelled by (1.1) and the observation of (1.2). Given an

estimate q̂(t) ∈ Q of q at time t any online update law for the estimate has to satisfy two

basic conceptual constraints (see [19]). First, the computation of q̂(t) can only be based

on data up to the current time t, i.e., z(τ) with τ � t, or in other words, future data z(τ)

with τ > t cannot be used for calculating the current guess q̂(t). Second, at time t the

data z(τ) with τ � t is condensed into q̂(t) and possibly some auxiliary quantity G(t) of

fixed dimension and afterwards has to be – with or without loss of relevant information –

discarded. Only that way memory space and computation time can be avoided to increase

with t. The basic structure of any online algorithm in the time-continuous setting looks

like

q̂t(t) = g1(q̂(t), G(t), z(t)),

Gt(t) = g2(G(t), q̂(t), z(t)).

Assuming that a solution q compatible with the data exists, the goal is to construct

mappings g1 and g2 such that (in case of exact data)

q̂(t) → q as t → ∞. (1.3)

Online parameter identification, as a central tool for adaptive control of dynamical systems,

is mainly investigated in the related literature and also referred to as real-time, recursive,

adaptive or sequential identification. So far, available methods backed by a convergence

result in the sense of (1.3) are based on one or more of the following assumptions:

• The system (1.1), (1.2) is finite-dimensional.

• The system (1.1), (1.2) is linear time-invariant.

• The system (1.1), (1.2) allows to establish (typically by the use of filtering techniques)
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the linear relationship

y(t) = W (t)q (1.4)

between the unknown model parameter q ∈ �d and the model output y(t) ∈ �m via a

time-dependent matrix W (t) ∈ �m×d.

• The system (1.1), (1.2) shows special structural properties crucial for the construction

of (then structure depending) so-called model reference methods.

• The state variable is fully observable, i.e., (1.2) reduces to y(t) = x(t).

For details on the linear and finite-dimensional case we refer to [1, 14, 17, 22, 24]. Model

reference techniques relying on the full-state observability can be found in [17] and [20].

In the infinite-dimensional case, so far only a limited number of methods have been

suggested for online identification in certain time-dependent PDEs (see [3, 4, 6, 21]).

All these techniques require full state observations; in important cases – such as the

online identification of heat conduction parameters appearing in the time-dependent heat

equation – even observations of spatial derivatives of the data are necessary. In [4], the

authors consider ‘the elimination of these restrictions’ as a ‘formidable challenge’.

In this paper, we suggest and analyse an online parameter identification method that

works without the assumptions mentioned above. Still it can be applied to general

deterministic time-continuous state space models (1.1), (1.2) in Hilbert spaces X, Y and Q

of finite and infinite dimensions and also allows for partial state observations. It combines

ideas from adaptive control related to the linear and finite-dimensional setup (1.4) and

from regularisation theory (see [8]) for offline parameter identification problems. As a

consequence, our online method is based on a – only implicitly defined – non-linear

parameter-to-output map

F(·, t) : q̂ → ŷ(t) (1.5)

that maps the estimate q̂ onto a simulated output ŷ(t) ∈ Y at time t which then is

compared to the current data z(t) ∈ Y . Assuming existence of a solution q in case of

exact data, i.e., F(q, t) = z(t), for all t, we prove convergence (1.3) based on Lyapunov

theory.

The paper is organised as follows: Section 2 briefly reviews basic ideas for online

identification in the context of (1.4) and contains preliminary remarks concerning the

underlying dynamical system (1.1), (1.2). Section 3 introduces the online method based on

(1.5) and analyses its convergence properties for the case of exact data. In practice the

data will always be perturbed due to measurement errors and parameter identification

schemes (no matter if offline or online) designed for the noise-free case may fail, e.g., lead

to parameter drift, if applied to perturbed data due to the ill-posedness of the problem.

Hence, Section 4 focuses on techniques in order to counteract negative effects due to data

noise. Finally, the method is illustrated in Section 5 by means of online identification

of aerodynamic coefficients in a non-linear ODE system describing longitudinal aircraft

motions and by means of online parameter identification of a distributed heat conductivity

coefficient.
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We conclude the introductory discussion by pointing out two central concepts in the

convergence analysis of online identification methods, common to the methods discussed

in [1, 3, 4, 14, 17–20, 22, 24] and also followed in this paper. First, we emphasise that –

though online parameter identification algorithms in practice are also used to track time-

varying parameters – all available convergence results are based on the assumption that

the true model parameter q does not explicitly depend on the time variable. The reason

for this assumption is that the time derivative et(t) of the parameter error

e(t) := q̂(t) − q (1.6)

then equals the time-derivative q̂t(t) of the parameter estimate, which tremendously

simplifies theoretical matters (see, for instance, [3, 24]). The use of parameters constant

with respect to time in the analysis is often motivated by considering the plant dynamics

to be much faster than those of the parameter. Hence, also in this paper we shall assume

that the model parameter q ∈ Q in (1.1), (1.2) to be identified does not depend explicitly on

time t. Still, our approach allows for parameter functions q that depend on (parts of) the

time-varying state variable, e.g., q = q(x(t)), or on space variables. Second, identifiability of

unknown model parameters in general can only be expected if the available data contain

enough information. In context of online identification such data richness assumptions

are typically formulated in terms of so-called persistence of excitation conditions, which,

e.g., for (1.4) reads as

∃γ, t̄ > 0, ∀t ∈ �+

∫ t+t̄

t

W (s)TW (s) ds � γI (1.7)

(see, e.g., [14, 24]). Special variants for the infinite-dimensional case can be found in

[3, 5, 21]; the condition used in this paper is introduced in Section 3. Given persistence

of excitation, parameter convergence (1.3), or e(t) → 0, is shown by means of Lyapunov

theory. The central idea is to define a Lyapunov function V (e, t) such that

κ2(‖e‖) � V (e, t) � κ1(‖e‖) > 0, for e� 0,

d

dt
V (e(t), t) � −κ3(‖e(t)‖) < 0, (1.8)

where the κi’s are class K-functions and (1.8) is considered along the trajectory of the

dynamical system for the error e(t). A continuous function κ : �+ → �+ is called a class

K-function if κ(0) = 0, κ(s) > 0 for all s > 0 and κ is non-decreasing. See, e.g., [24, 29]

for more details on Lyapunov theory in finite- or infinite-dimensional spaces, respectively.

2 Preliminaries

The matrix W (t) in (1.4) serves as a linear parameter-to-output map between finite-

dimensional spaces and can formally be understood as a special case of (1.5). Hence,

a short review – following [14] and [24] – of online identification based on the setup

(1.4) naturally sets up the stage for the method to be presented in Section 3. The linear

relationship (1.4) may be derived from applying proper filters to linear time-invariant
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dynamical systems. For instance, consider the online identification of the parameters a,

b ∈ � in

xt(t) = −ax(t) + bu(t), x(0) = x0, (2.1)

from observations of the system output y(t) = x(t) ∈ � with given input u(t). Defining

filtered signals yf(t) and uf(t) according to

y
f
t (f) = −λyf(t) + y(t) and u

f
t (f) = −λuf(t) + u(t),

with given λ > 0, one obtains a linear model

y(t) = [yf(t), uf(t)] · [λ− a, b]T

of the form (1.4) with q = [λ− a, b]T .

Given – at time t – an estimate q̂(t) of q and (exact) data z(t) = y(t), the current

prediction error between data z(t) and predicted output W (t)q̂(t) is defined as

‖z(t) −W (t)q̂(t)‖2
�m . (2.2)

As an alternative, the mismatch at time t between data and predicted output can also be

expressed in terms of the total prediction error at time t with exponential forgetting∫ t

0

e−β(t−s)‖z(s) −W (s)q̂(t)‖2
�m ds, (2.3)

with β � 0. As opposed to (2.2) it also takes all data from the past into account and

compares them to outputs made by the current parameter estimate q̂(t), allowing for

beneficial averaging effects. For strictly positive β, the exponential term in the integral

acts as a data weighting factor. Exponential data forgetting is especially used in practical

applications with time-varying parameters since past data are generated by past parameters

and hence should be discounted when being used for the estimation of the current

parameter. As mentioned earlier, convergence theories for online estimators are only

available under the assumption of time-constant parameters to be identified. Even then,

the use of exponential data discounting is of advantage (see (2.6) and Section 3). Finally,

already with respect to the stability properties of the online method to be derived, a

penalty term according to

J(q̂(t), t) =

∫ t

0

e−β(t−s)‖z(s) −W (s)q̂(t)‖2
�m ds+ e−βt(q̂(t) − q0)

TG−1
0 (q̂(t) − q0) (2.4)

is introduced. The purpose of the second term is to avoid that q̂ drifts too far away from

q0 during the initial phase of the identification process where the amount of available

data still is limited. For bounded z(t) and W (t), J(·, t) is a convex function over �d for

all t and any minimum satisfies ∇J(q̂(t), t) = 0, t � 0. This first-order necessary condition

is used to derive the non-recursive parameter estimate

q̂(t) = G(t)

[∫ t

0

e−β(t−s)WT (s)z(s) ds+ e−βtG−1
0 q0

]
. (2.5)
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The gain matrix

G(t) =

[∫ t

0

e−β(t−s)WT (s)W (s) ds+ e−βtG−1
0

]−1

, G(0) = G0, (2.6)

exists for all t because G−1
0 – which is part of (2.6) due to the penalty term in (2.4) –

is symmetric positive definite and WT (s)W (s) is positive semi-definite. Integration and

calculation of the inverse in (2.5) can be avoided by exploiting

[GG−1]t = GtG
−1 + GG−1

t

in order to derive the Riccati-type differential equation

Gt(t) = βG(t) − G(t)WT (t)W (t)G(t), G(0) = G0. (2.7)

Then, differentiation of (2.5) with respect to time t yields the recursive update law

q̂t(t) = G(t)WT (t)(z(t) −W (t)q̂(t)), q̂(0) = q0. (2.8)

The above-mentioned purpose of a strictly positive factor β > 0 is to ensure that the

gain G may not become arbitrarily small or, in other words, β > 0 avoids that G−1 may

grow without bound (see (2.6)). In order to also guarantee that G does not grow without

bound, (2.7) is modified in [24] to

Gt(t) = βG(t) − G(t)
[
WT (t)W (t) + βḠ−1

]
G(t), G(0) = G0, (2.9)

where the symmetric positive definite matrix Ḡ then serves as upper bound for the

gain G.

Motivated by (2.8), (2.9), we derive an online parameter identification method in the

next section, also applicable to non-linear and infinite-dimensional systems (1.1), (1.2).

Instead of the explicitly given matrix W (t) of (1.4) we then have to deal with the non-

linear, implicitly defined operator F of (1.5) acting between infinite-dimensional spaces.

To this end, we recall that neither existence, uniqueness nor stability of the solution to an

inverse problem is guaranteed (see [8]). The focus of this paper is on the design of the

method, its analysis and the ill-posedness of the problem due to data error amplification.

Hence, we simply assume the existence of a solution q∗ for exact data z(t) ∈ Y , i.e., there

exists a q∗ ∈ Qad such that

z(t) = yq∗ (t) (2.10)

holds.

With respect to the underlying direct problem we make the following assumptions.

First, we suppose that the integration of (1.1) and the evaluation of (1.2) with Hilbert

spaces X, Y and Q of arbitrary dimension is well posed in the sense that for all parameters

q belonging to an admissible set Qad ⊆ Q a unique solution xq of (1.1) with corresponding

output yq exists such that xq(t) ∈ X and yq(t) ∈ Y hold for all t. In addition, we shall

assume that (1.1), (1.2) also admits a unique solution x̂ with x̂(t) ∈ X for all t when
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integrated with any time-varying parameter q̂ that stays in the neighbourhood of the true

parameter q∗ ∈ Qad, i.e.,

q̂ ∈ Qρ := {time-varying q | q(t) ∈ Q ∧ ‖q(t) − q∗‖ < ρ, t � 0} (2.11)

for some ρ > 0. This allows to define for s ∈ �+ the non-linear prediction operator

F(·, s) : Qρ → Y , q̂ → ŷ(s), (2.12)

which is evaluated by integration of up to time s

x̂t(t) = f(x̂(t), q̂(t), t), x̂(0) = x0,
(2.13)

ŷ(t) = h(x̂(t), q̂(t), t).

Furthermore, we require that for all q̂ ∈ Qρ and all p ∈ Q the linearised problem

v̂t(t) = fx(x̂(t), q̂(t), t)v̂(t) + fq(x̂(t), q̂(t), t)p,
(2.14)

v̂(0) = 0

admits a unique solution v̂ with v̂(t) ∈ X for all t and that

ŵ(t) = hx(x̂(t), q̂(t), t)v̂(t) + hq(x̂(t), q̂(t), t)p

is well defined in the sense of ŵ(t) ∈ Y . Though these assumptions of course impose

certain restrictions on the right-hand side of f in (1.1) (see [7] or [28]), we do not require

f to have any special structural properties.

3 Online method and convergence analysis

In this section, we combine ideas from the previous one with the non-linear operator

concept from regularisation theory of non-linear inverse problems (see [8]) in order to

define and analyse a method for online parameter identification in (1.1), (1.2) with Hilbert

spaces X, Y and Q of arbitrary dimension. We consider the total prediction error between

the data z(t) and the simulated output ŷ(t) and base our method on the minimisation of

J(q̂(t), t) =

∫ t

0

e−β(t−s)‖z(s) − F(q̂(t), s)‖2
Y ds+ e−βt(q̂(t) − q0)

TG−1
0 (q̂(t) − q0) (3.1)

with data forgetting factor β > 0. As W (s)q̂(t) in (2.4), F(q̂(t), s) in (3.1) represents the

output at time s simulated with a time-constant parameter q ≡ q̂(t) ∈ Bρ(q∗).

Based on the linearised problem (2.14), we define for q̂ ∈ Qρ the linear operator

F ′(q̂, s) : Q → Y , p → ŵ(s). (3.2)

Note that its domain is given only by Q instead of Qρ such that only time-constant

perturbations p ∈ Q in (2.14) are considered. This is due to the fact that in order to

achieve the online goal (1.3), corrections at time t of past parameter guesses q̂(τ) with

τ < t are useless and only would mean unnecessary computational burden.

https://doi.org/10.1017/S0956792508007547 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792508007547


486 P. Kügler

We assume that the linear operator F ′(q̃, s) is bounded in a neighbourhood of q∗, i.e.,

‖F ′(q̃, s)‖ � M, q̃ ∈ Qρ, s ∈ �+, (3.3)

its Hilbert space adjoint operator will be denoted by

F ′(q̃, s)∗ : Y → Q.

Then, the formal replacement of the matrices W (t) and WT (t) in (2.8), (2.9) by the

operators F(q̂, t), F ′(q̂, t) and F ′(q̂, t)∗ leads to the online parameter identification method

q̂t(t) = G(t)F ′(q̂, t)∗(z(t) − F(q̂, t)), q̂(0) = q0, (3.4)

Gt(t) = βG(t) − G(t)
[
F ′(q̂, t)∗F ′(q̂, t) + βḠ−1

]
G(t), G(0) = G0. (3.5)

Here, G0 and Ḡ denote linear, self-adjoint positive definite operators on Q with

μ2‖p‖2 � (G0p, p) � μ1‖p‖2, η2‖p‖2 � (Ḡp, p) � η1‖p‖2, (Ḡp, p) > (G0p, p), p ∈ Q. (3.6)

Again, the update law (3.4), (3.5) can be motivated via an Euler equation for solving the

first-order necessary condition ∇J = 0 for (3.1) but then ignoring second derivatives of F

with respect to the parameter.

The challenge in the analysis of the online method (3.4), (3.5) comes from the fact that

the operators F(q̂, t) and F ′(q̂, t) involved are only implicitly defined via the dynamical

systems (2.13) and (2.14). Furthermore, the non-linearity of F(q̂, t) prevents a straight-

forward transfer of convergence results from existing theories. At the beginning of our

analysis of (3.4), (3.5), we focus on the update law for the gain operator G(t).

Theorem 3.1 For (arbitrary) q̂ ∈ Qρ, let (2.13) be well defined and (3.3) hold. If β > 0,

then G(t) : Q → Q defined by (3.5) with (3.6) is self-adjoint, positive definite and is bounded

by Ḡ, i.e.,

g1(p, p) � (G(t)p, p) � (Ḡp, p), p ∈ Q (3.7)

and g1 = μ1β
β+μ1M2 .

Proof The linear system(
G1
t (t)

G2
t (t)

)
=

(
0 F ′(q̂, t)∗F ′(q̂, t) + βḠ−1

0 β

) (
G1(t)

G2(t)

)
,

(
G1(0)

G2(0)

)
=

(
I

G0

)

has the solution G2(t) = G0e
βt and G1(t) =

∫ t
0

[
F ′(q̂, s)∗F ′(q̂, s) + βḠ−1

]
G0e

βs ds+ I , where

I denotes the identity operator. Furthermore, since F ′(q̂, s)∗F ′(q̂, s) is self-adjoint and

positive semi-definite, G1(t) is invertible. Then, elementary calculations show that G(t) =

G2(t)[G1(t)]−1 is self-adjoint, solves (3.5) and

G−1(t) = (G−1
0 − Ḡ−1)e−βt + Ḡ−1 +

∫ t

0

e−β(t−s) [F ′(q̂, s)∗F ′(q̂, s)
]
ds, (3.8)
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which together with (3.6) implies the second inequality in (3.7). In addition, (3.8) gives

G−1(t) � G−1
0 +

∫ t

0

e−β(t−s) [F ′(q̂, s)∗F ′(q̂, s)
]
ds,

which together with (3.3) and β > 0 yields

G−1(t) � G−1
0 +

M2

β
I, (3.9)

and hence the first inequality in (3.7). �

While Theorem 3.1 shows that G−1(t) − Ḡ−1 is positive definite for all t, it does not

guarantee the existence of a positive lower bound that is independent of t. Existence of

such a constant μ̃ > 0 with

G−1(t) � Ḡ−1 + μ̃I (3.10)

and the assumption

([F ′(q̂, t)∗F ′(q̂, t) + βμ̃](q̂(t) − q∗), (q̂(t) − q∗))

� 2
(
z(t) − F(q̂, t) + F ′(q̂, t)(q̂(t) − q∗), F

′(q̂, t)(q̂(t) − q∗)
)
, q̂ ∈ Qρ, t ∈ �+, (3.11)

allow to show that q̂ according to (3.4), which exists if

G(s)F ′(q, s)∗(z(s) − F(q, s)) is locally Lipschitz, (3.12)

satisfies q̂ ∈ Qρ for a sufficiently good initial guess q0.

Proposition 3.1 Let the assumptions of Theorem 3.1, (3.12), (3.10) and (3.11) hold. If the

initial guess q0 is sufficiently close to q∗, i.e.,

‖q0 − q∗‖ <

√
g1

(
1

η2
+ μ̃

)
ρ, (3.13)

then q̂ defined by (3.4) satisfies q̂ ∈ Qρ.

Proof Consider the solution q̂ of (3.4) with q0 according to (3.13), which exists due to

(3.12) and the boundedness of G, and assume that it leaves the ball Bρ(q∗) at some finite

time t1, i.e.,

‖q̂(t1) − q∗‖ = ρ > ‖q̂ − q∗‖ for all 0 � t < t1. (3.14)

With e(t) = q̂(t) − q∗, one obtains from (3.4), (3.5) the system

et(t) = G(t)F ′(e+ q∗, t)
∗(z(t) − F(e+ q∗, t)), e(0) = q0 − q∗,

(3.15)
Gt(t) = βG(t) − G(t)

[
F ′(e+ q∗, t)

∗F ′(e+ q∗, t) + βḠ−1
]
G(t), G(0) = G0,
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for the parameter error. Since q∗ denotes the true parameter, i.e., z(t) = yq∗ (t), 0 is an

equilibrium point of (3.15). Next, we define the function

V (p, t) = (G−1(t)p, p) (3.16)

and get (
1

η2
+ μ̃

)
‖p‖2 � V (p, t) �

1

g1
‖p‖2, p ∈ Q, (3.17)

for t < t1 due to (3.10) and (3.7). Furthermore V satisfies

d

dt
V (e(t), t) = (G−1

t (t)e(t), e(t)) + 2(G−1(t)et(t), e(t))

= −β((G−1(t) − Ḡ−1)e(t), e(t)) + (F ′(q̂, t)∗F ′(q̂, t)e(t), e(t))

+ 2(F ′(q̂, t)∗(z(t) − F(q̂, t)), e(t))

= 2(z(t) − F(q̂, t) + F ′(q̂, t)e(t), F ′(q̂, t)e(t)) − β((G−1(t) − Ḡ−1)e(t), e(t))

− (F ′(q̂, t)e(t), F ′(q̂, t)e(t)) (3.18)

� 0, (3.19)

along a trajectory of (3.15) for t < t1 because of (3.11) and (3.10). Finally, (3.13) implies

‖e(t)‖ �

√
1

1
η2

+ μ̃
V (e(t), t) �

√
1

1
η2

+ μ̃
V (e(0), 0) �

√
1

( 1
η2

+ μ̃)g1

‖e(0)‖2 < ρ,

for t < t1, which for t → t1 contradicts (3.14). Hence, q̂(t) remains in Bρ(q∗) for all t, i.e.,

q̂ ∈ Qρ and V is a Lyapunov function. �

Assumption (3.11) is trivially satisfied in case of F(q̃, t) = A(t)q̃(t) and F ′(q̃, t) = A(t) with

a linear operator A(t), then reflecting the infinite-dimensional version of (1.4). Hence, it

can be understood as condition that restricts the non-linearity of F locally around the

solution q∗. Given the general result (3.8) for the solution of (3.5), (3.10) is a condition

on the operator F ′(q̂, s)∗F ′(q̂, s) or the excitation of the underlying dynamical system. It

certainly is satisfied if persistence of excitation is given in the sense of

∃γ, t̄ > 0, ∀t ∈ R+

∫ t+t̄

t

F ′(q̃, s)∗F ′(q̃, s) ds � γI, q̃ ∈ Qρ, (3.20)

since then, (3.8) implies (3.10) with μ̃ = min{( 1
μ2

− 1
η1

)e−βt̄, γe−βt̄}. Condition can be

understood as an extension of (1.7) but is different from those used in [3], [5] or [21].

Online parameter identification methods typically are based on fitting the simulated

output to the measured data, e.g., by minimisation of (3.1), while the real goal is to

reduce the error in the parameter space. However, convergence in the output space is in

general no guarantee for convergence of the parameter estimate q̂ towards the true value

(see, e.g., [14] and Section 5 for a numerical example). The following theorem states that

the desired parameter convergence can be obtained for (3.4), (3.5) under persistence of
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excitation (3.20) and a slightly stronger version of assumption (3.11), namely

([F ′(q̂, t)∗F ′(q̂, t) + βμ̃](q̂(t) − q∗), (q̂(t) − q∗))

� 2
(
z(t) − F(q̂, t) + F ′(q̂, t)(q̂(t) − q∗), F

′(q̂, t)(q̂(t) − q∗)
)

+ κ(‖q̂(t) − q∗‖), (3.21)

for q̂ ∈ Qρ, t ∈ �+ with κ denoting a class-K function. Again, (3.21) (with positive μ̃) is

satisfied in the linear case with κ(‖q‖) = βμ̃‖q‖2.

Theorem 3.2 Let the assumptions of Proposition 3.1, (3.20) and (3.21) hold. Then,

q̂(t) → q∗ as t → ∞. (3.22)

Proof Following the steps of the proof of Proposition 3.1, (3.20) and (3.21) allow to

establish

d

dt
V (e(t), t) � −κ(‖e(t)‖). (3.23)

Since 0 is an equilibrium point of (3.15), Lyapunov theory and (3.17) give e(t) → 0 for

t → ∞ (see [29]). �

We emphasise that a positive forgetting factor β > 0 is essential for the convergence

analysis presented since only then the positive definiteness of G for all t can be guaranteed

(see (3.9)) (which gives the upper bound on V in (3.17)). Still, the choice β = 0 is of special

interest since in case of finite dimensions the method (3.4), (3.5) then can be understood

as an extended Kalman Bucy filter (see [10]).

Formal similarities of the online method (3.4) are also given with so-called Kaczmarz

regularisation techniques for solving a system of N non-linear operator equations (see,

e.g., [11]) where the basic idea is to cyclically consider each of the N equations separately.

Hence, Kaczmarz methods – as discussed and analysed in the literature – cannot be

directly applied to online parameter identification; first, one would have to set N = ∞
(with N then considered as discrete time) and abandon the cyclic idea. Motivated by the

convergence analysis in [11] one then might try to establish (3.22) under the so-called

tangential cone condition

‖F(q∗, t) − F(q̂, t) + F ′(q̂, t)(q̂(t) − q∗)‖ � η‖F(q∗, t) − F(q̂, t)‖, η < 1/2, q̂ ∈ Qρ, t � 0.

However, this would imply that the data z(t) and the predicted output ŷ(t) would

have to coincide for all t with q̂(t) = q∗ which of course is not realistic (just think of

q̂(t) = q∗ sin(t) and t = (2n+1)π/2, n = 0, 1, 2, ...). Such implications are not given by (3.11),

(3.21). Finally, we mention the idea of asymptotic regularisation for non-linear operator

equations, [2, 12, 13, 27]. If applied to parameter identification in dynamical system, a

sequence of auxiliary problems has to be integrated over an artificial time interval, hence

also these techniques do not allow for online identification in a straightforward manner.

The disadvantage of the persistence of excitation condition (3.20) – and that of its

counterparts in the literature – is that they hardly can be verified, especially not during

the online computations. Hence, in practical situations studies on how to sufficiently excite
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the underlying system (1.1) by choosing proper input functions f (see [5] and [24]) have

to be conducted in advance before the actual online estimator is started. For ideas for at

least getting a feeling about (3.20) during the online computations we refer to Section 5.1.

A direct realisation of the adjoint operator F ′(q̂, t)∗ in (3.4) would require to solve an

adjoint state equation backwards in time which is not consistent with the idea of online

computation. Hence, (3.4), (3.5) has to be understood as short form of

(q̂t(t), p) = (z(t) − F(q̂, t), F ′(q̂, t)G(t)p), (3.24)

(Gt(t)p, p̃) = β(G(t)p, p̃) − (F ′(q̂, t)G(t)p, F ′(q̂, t)G(t)p̃) − β(Ḡ−1G(t)p, G(t)p̃), (3.25)

for p, p̃ ∈ Q. Note that the linearised system (2.14) has to be solved only once, namely

simultaneous to the integration of (3.24), (3.25) (see Section 5).

4 Online identification in presence of noisy data

In this section, we turn to the case of noisy data zδ(t) ∈ Y and suppose that a bound δ

with

‖zδ(t) − z(t)‖ � δ, t � 0, (4.1)

for the error between noisy and exact data is available. While we still assume that the

exact data are attained by the parameter q∗, existence of a solution in case of noisy data

is not assumed and not even an issue, since for δ > 0 only a regularised approximation

of q∗ is searched for. Due to the ill-posedness of parameter identification, online methods

designed for exact data may fail, e.g., the parameter may diverge, if applied to noisy data

even if the perturbations are bounded (see [14] and Section 5 for a numerical illustration).

Though (3.1) reminds of Tikhonov regularisation (see [8]), it is not sufficient to counteract

instabilities due to data noise since there the penalty term is exponentially discounted –

hence, additional measures become necessary. Of course, in presence of data noise para-

meter convergence in the sense of (3.22) can no longer be expected. Instead, the best one

can ask for is that the parameter guess q̂ converges towards and subsequently stays within

a neighbourhood of the solution q∗, whose size is in the range of the noise level, at least

asymptotically.

Based on ideas presented in [6], [14] and [26] we first consider a so-called leakage

approach

q̂t(t) = G(t)F ′(q̂, t)∗(zδ(t) − F(q̂, t)) − σ(t)G(t)(q̂(t) − q0), q̂(0) = q0, (4.2)

Gt(t) = βG(t) − G(t)
[
F ′(q̂, t)∗F ′(q̂, t) + βḠ−1

]
G(t), G(0) = G0. (4.3)

The purpose of the scalar, positive design variable σ(t) is to ensure that for V � V > 0,

with V as in (3.16) and some V that may depend on δ, the time derivative of V along the

trajectory of the parameter error e(t) = q̂−q∗ for (4.2) is negative. Then, due to Lyapunov

theory, ‖e‖ decreases exponentially until q̂ reaches a neighbourhood of q∗ that depends

on the noise level δ. That way parameter divergence due to data noise can be avoided by

use of a leakage term.
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Theorem 4.1 Let the assumptions of Proposition 3.1, (4.1) hold and choose

σ(t) ≡ σ � M2 + c (4.4)

for some c > 0. If the initial guess q0 satisfies

1
1
η2

+ μ̃

(
1

g1

(
1 +

σ

c

)
‖q0 − q∗‖2 +

δ2

cg1

)
< ρ2,

then q̂ according to (4.2) satisfies q̂ ∈ Qρ and the norm of the parameter error e(t) = q̂(t)−q∗
decreases exponentially until q̂(t) reaches the set

{
q ∈ Q | ‖q − q∗‖2 �

δ2 + σ‖q∗ − q0‖2

cg1(
1
η2

+ μ̃)

}
. (4.5)

Proof Assume that q̂ leaves Bρ(q∗) at some finite time t1, i.e.,

‖q̂(t1) − q∗‖ = ρ > ‖q̂ − q∗‖ for all 0 � t < t1. (4.6)

With e(t) = q̂(t) − q∗ and V (p, t) = (G−1(t)p, p), (4.2), (4.3) yields

dV

dt
(e(t), t) = (G−1

t (t)e(t), e(t)) + 2(G−1(t)et(t), e(t))

= −β((G−1(t) − Ḡ−1)e(t), e(t)) + (F ′(q̂, t)∗F ′(q̂, t)e(t), e(t))

+ 2(F ′(q̂, t)∗(z(t) − F(q̂, t)), e(t))

+ 2(F ′(q̂, t)∗(zδ(t) − z(t)), e(t)) − 2σ(e(t) + q∗ − q0, e(t))

� 2Mδ‖e(t)‖ − 2σ(e(t) + q∗ − q0, e(t)). (4.7)

Since

−σ(e(t) + q∗ − q0, e(t)) = −σ‖e(t)‖2 + σ‖q∗ − q0‖‖e(t)‖

� −σ

2
‖e(t)‖2 +

σ

2
‖q∗ − q0‖2, (4.8)

(4.4) and (3.17) lead to

dV

dt
(e(t), t) � 2Mδ‖e(t)‖ − σ‖e(t)‖2 + σ‖q∗ − q0‖2

� −c‖e(t)‖2 + δ2 + σ‖q∗ − q0‖2

� −cg1V (e(t), t) + δ2 + σ‖q∗ − q0‖2, (4.9)

for t < t1. This allows to show

V (e(t), t) � e−cg1tV (e(0), 0) +
δ2 + σ‖q∗ − q0‖2

cg1
(4.10)
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and (
1

η2
+ μ̃

)
‖e(t)‖2 �

1

g1
‖e(0)‖2 +

δ2 + σ‖e(0)‖2

cg1
<

(
1

η2
+ μ̃

)
ρ2, t < t1,

which contradicts (4.6) for t → t1. Hence, the parameter error satisfies ‖e(t)‖ < ρ for all t

and decreases exponentially until q̂ reaches the set (4.5) due to (4.10). �

Recall that the scalar ρ introduced in (2.11) represents the size of the parameter domain

on which the operator F(·, t) can be defined. For large ρ the statement q̂ ∈ Qρ, extreme

case ρ = ∞, of Theorem 4.1 does not yield a satisfactory bound for the parameter error.

The actual stability result comes with ‘convergence’ of q̂ towards the ball (4.5) around

q∗ whose radius can be much smaller than ρ, especially in case of strong persistence of

excitation, i.e., large μ̃.

The disadvantage of a constant leakage term as in (4.4) is that stability of (4.2)

is achieved at the expense of destroying – even under assumption (3.21) – the ideal

property (3.22) in case of exact data, i.e., δ = 0. Transferring parameter choice rules from

regularisation of general non-linear operators in dependence of the noise level and the

data (see [8]) would suggest to choose

σ = σ(δ) with σ(δ) → 0 as δ → 0, (4.11)

such that for exact data, i.e., δ = 0 in (4.1), the original algorithm (3.4) is obtained.

However, this would require a different proof technique due to the incompatibility of (4.4)

and (4.11).

An alternative to a time-constant σ is the switching strategy

σ(t) =

⎧⎪⎨
⎪⎩

0 if ‖q̂(t) − q0‖ < ξ

σ̄
(

‖q̂(t)−q0‖
ξ

− 1
)n

if ‖q̂(t) − q0‖ ∈ [ξ, 2ξ]

σ̄ else

(4.12)

with σ̄ > 0 (see [14]), which requires the knowledge of an upper bound

‖q∗ − q0‖ � ξ. (4.13)

Here, the leakage term is only activated when ‖q̂(t) − q0‖ exceeds the bound ξ. Since the

actual overshoot over ξ is enforced to stay small, this approach is also referred to as soft

projection. The choice (4.12) yields

σ(t)(e(t) + q∗ − q0, e(t)) = σ(t)(‖q̂(t) − q0‖2 − (q̂(t) − q0, q∗ − q0)

� σ(t)‖q̂(t) − q0‖(‖q̂(t) − q0‖ − ξ + ξ − ‖q∗ − q0‖)

� 0

because of σ(t)(‖q̂(t) − q0‖ − ξ) � 0 and (4.13). Therefore, in contrast to a fixed σ, σ

chosen according to (4.12) can only make d
dt
V (e(t), t) more negative (see (4.7)). Especially,
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under the assumptions of Theorem 3.2, one gets

d

dt
V (e(t), t) � −κ(‖e(t)‖) + 2Mδ‖e(t)‖ − 2σ(t)(e(t) + q∗ − q0, e(t)),

such that in case of exact data, i.e., δ = 0, parameter convergence (3.22) still holds for

(4.2), (4.12). As in Theorem 4.1, the choice σ̄ � M+c in (4.12) allows to show convergence

of e in case of δ� 0 to a residual set slightly larger than (4.5) (see [6] and [14]). If (4.13)

does not hold, then the switching technique has similar properties as the approach with

fixed σ (see [14]).

Finally, we mention the option of so-called dead zone approaches (see [14], [24] and

[26]). The basic idea is to pause the integration of the online estimator whenever the

output error ‖zδ(t) − ŷ(t)‖ is dominated by the noise level δ, i.e., to consider

q̂t(t) =

{
G(t)F ′(q̂, t)∗(zδ(t) − F(q̂, t)) if ‖zδ(t) − F(q̂, t)‖ � τδ

0 else
(4.14)

together with (3.5) for some τ > 1. While some theoretical studies of dead-zone approaches

for the linear, finite-dimensional case can be found in [14] and [26] (not including the

dead-zone analysis of (2.8), (2.9) for m > 1) and a similar regularisation strategy is

followed in [11] for the cyclic Kaczmarz iteration, a convergence analysis of (4.14) poses

additional challenges and will be subject of future investigations.

5 Numerical experiments

This section opens with a simple example in order to illustrate our online parameter

identification method (3.4), (3.5) as well as the crucial theoretical assumptions made

in Section 3. It will be followed by the identification of aerodynamic coefficients in a

longitudinal 3DoF aircraft model before turning the identification of a distributed heat

conduction coefficient from full and partial temperature observations.

5.1 Simple example

As many texts on online identification in linear and finite-dimensional dynamical systems,

we choose the identification of q = [a, b]T ∈ �2 in (2.1) from full state measurements, i.e.,

h(x, q, t) = x, for a basic illustration of our method (3.4), (3.5). For an estimator q̂ with

q̂(t) = [q̂1(t), q̂2(t)]
T the predicted state x̂(t) satisfies

x̂t(t) = −q̂1(t)x̂(t) + q̂2(t)u(t), x̂(0) = x0,

which allows to define the non-linear prediction operator F(·, t) : q̂ → x̂(t). The linearised

problem (2.14) reads as

v̂t(t) = −q̂1(t)v̂(t) +

((
−x̂(t)
u(t)

)
,

(
p1

p2

))
, v̂(0) = 0,
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with p = [p1, p2]
T ∈ �2, which defines the linear operator F ′(q̂, t) : �2 → �, p → v̂(t).

Especially, for p = p1e1 + p2e2 (with ei denoting the ith unit vector) we have

F ′(q̂, t)p = p1v̂1(t) + p2v̂2(t), for all p = [p1, p2]
T ∈ �2, (5.1)

with v̂1(t) = F ′(q̂, t)e1 and v̂2(t) = F ′(q̂, t)e2 given by

v̂1t (t) = −q̂1(t)v̂1(t) − x̂(t), v̂1(0) = 0,
(5.2)

v̂2t (t) = −q̂1(t)v̂2(t) + u(t), v̂2(0) = 0.

Next, taking the inner product in �2 with p ∈ �2 at both sides of (3.4), compared to

(3.24), leads to

(q̂t(t), p) = (z(t) − F(q̂, t)) · F ′(q̂, t)G(t)p

= (z(t) − x̂(t)) · F ′(q̂, t)

(
g11(t)p1 + g12(t)p2

g21(t)p1 + g22(t)p2

)
= (z(t) − x̂(t)) · ((g11(t)p1 + g12(t)p2)v̂1(t) + (g21(t)p1 + g22(t)p2)v̂2(t))

=

((
G

(
v̂1(t)

v̂2(t)

))
(z(t) − x̂(t)), p

)

because of (5.1) and G(t)p ∈ �2. Here, g12(t) = g21(t) due to the symmetry of G(t) : �2 →
�2. Especially, the choices p = e1 and p = e2, respectively, give

q̂1t (t) = (z(t) − x̂(t)) · (g11(t)v̂1(t) + g21(t)v̂2(t)), q̂1(0) = q0
1 ,

(5.3)
q̂2t (t) = (z(t) − x̂(t)) · (g12(t)v̂1(t) + g22(t)v̂2(t)), q̂2(0) = q0

2 .

Finally, (3.5), (5.1) and gij(t) = 〈G(t)ei, ej〉, i, j ∈ {1, 2}, yield

Gt(t) = βG(t) − G(t)

[(
v̂21(t) v̂1(t)v̂2(t)

v̂2(t)v̂1(t) v̂22(t)

)
+ βḠ−1

]
G(t), G(0) = G0.

We applied (5.2), (5.3), (5.1) to the online identification of the true parameter q∗ =

[1.5, 0.5]T in (2.1), with x0 = 0, input u(t) = sin(t) and initial guess q0 = [0, 0]T , from

exact observations, i.e., z(t) = x(t). The results obtained with the setting

G0 =

(
1 0

0 1

)
, Ḡ =

(
10 0

0 10

)
, β = 0.5,

are illustrated in Figures 1–3 (similar results have also been obtained for other settings).

Figure 1 shows that the data z(t) are immediately tracked by the predicted output x̂(t) and

that the parameter estimate q̂ converges towards the true value q∗. The latter suggests that

the input u(t) = sin(t) persistently excites the system (2.1) and hence provides sufficient

information for the online parameter identification. Figure 2 supports this conjecture; it

indicates that

λmin

{∫ t

0

(
v̂1(s)

2 v̂1(s)v̂2(s)

v̂1(s)v̂2(s) v̂22(s)

)
ds

}
→ ∞ as t → ∞,
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Figure 1. Convergence both in output and parameter space.

Figure 2. Indication of persistence of excitation.

Figure 3. Negative time derivative of the Lyapunov function V .
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Figure 4. Definition of axes for 3DoF aircraft model.

where λmin(B) denotes the smallest eigenvalue of B, which is a necessary condition for

(3.20) to hold. Note, that even after the estimate q̂ has converged towards q∗, the linearised

states v̂1 and v̂2 stay excited. (A zoom into) Figure 2(b) also suggests that condition (3.10)

on G−1(t) with Ḡ−1 = 0.1I is satisfied by μ̃ = 0.005 (also see (3.8)). This allows to compare

in Figure 3 the time derivative of the Lyapunov function V (e(t), t) given by (3.18) to the

negative of the class-K function κ(‖e‖) = βμ̃‖e‖2, which indicates that conditions (3.21)

and (3.23), crucial for proving parameter convergence (3.22), hold.

As mentioned in Section 3, the persistence of excitation condition (3.20) typically is

hard to verify, especially during the online identification. Hence, monitoring F ′(q̂, t)∗F ′(q̂, t)

as in Figure 2(a), which has to be computed anyway, might serve as a practicable tool

for getting a clue if sufficient excitation is given. In addition, the minimal eigenvalues

of G−1(t) and
∫ t

0
(F ′(q̂, s) ∗ F ′(q̂, s) ds) could be observed as in Figure 2(b); however, such

calculations pose additional computational tasks to be carried out online.

Currently, we are aware of at least five different methods that can be used for online

parameter identification in (2.1) and, in general, in linear time-invariant systems with

full state observations. A comparison will be the subject of future studies. In the next

subsection, we apply (3.4), (3.5) to online parameter identification in a non-linear ODE-

system with partial state observations. By means of this example, we then also discuss the

influence of measurement errors and of a loss of persistent excitation on our method.

5.2 Longitudinal aircraft dynamics

Models for the dynamics of an aircraft are based on a combination of aerodynamic force

and moment models with vector equations of motion. Choosing a wind axis coordinate

system that has its origin in the rigid aircraft, the x -axis points in the direction of the

aircraft velocity V (as opposed to a body fixed system) (see Figure 4(a)). The three

translational degrees of freedom then are defined by moving along the x-, y- and z-axis,

while the three rotational degrees of freedom are given by the bank angle φ around the

x-axis, the flight path angle γ around the y-axis and the heading angle χ around the

z-axis. If the aircraft is flying under wings-level conditions, i.e., φ = 0, the equations for

the lateral-directional motion can be decoupled from those for the longitudinal motion
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with the latter reading as

Vt(t) =
FT

m
cos α− D

m
− g sin(θ − α)

αt(t) = − FT

mV
sin α− L

mV
+
g

V
cos(θ − α) + Q

θt(t) = Q (5.4)

Qt(t) = M/Jy

Ht(t) = V sin(θ − α)

with γ = θ − α (see Figure 4(b)). The state vector for these equations is

x = [V , α, θ, Q,H]T ∈ �5

with aircraft velocity V , angle of attack α, pitch angle θ, pitch rate Q and altitude H (see

[25] for details). FT denotes the thrust along the body x-axis, m is the mass of the aircraft,

g is the gravitational constant and Jy is the inertia around the y-axis. The typical ansatz

for drag D, lift L and pitching moment M is

D,L,M ∼ V 2SCD,L,M (5.5)

with wing area S and aerodynamic coefficients CD,L,M that may depend on aerodynamic

angles, temperature and density of the atmosphere, altitude, thrust coefficients, Mach and

Reynolds numbers and control parameters. These aerodynamic coefficients are typically

determined through wind tunnel or flight-test data. For a survey about offline methods

used in flight vehicle design we refer to [15]. In the context of flight control design, i.e.,

design of systems that aid or replace the human pilot, modern techniques such as dynamic

inversion (see [25]) use the underlying non-linear state-space aircraft model and hence

require knowledge of the aerodynamic coefficients during the flight. In order to provide

ongoing updates of these coefficients, online parameter identification is necessary.

For testing our online identification method (3.4), (3.5) we considered the model (5.4)

with a setup taken from [25] that corresponds to a medium-size transport aircraft and an

aerodynamic coefficient ansatz

CL = 0.2 · q2 + 0.1 · q1α

CD = 0.01 · q3 + 0.042 · C2
L

CM = 0.05 − 0.022 · α− 0.016 · δe, (5.6)

where δe denotes the elevator deflection. The true parameter vector is q∗ =

[0.85, 1.0, 1.6]T ∈ �3, the initial conditions x(0) represent steady-state flight conditions at

V0 = 500 ft/s and at altitude H0 = 25, 000 ft. Then, choosing a periodic system input

δe(t) = −2.3822 + 3.5 sin(0.1πt), (5.7)

the aircraft falls and climbs with corresponding increase and decrease in velocity as shown
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Figure 5. Exact flight data.

Figure 6. Tracking of flight data.

in Figure 5. With altitude and speed measurements taken during the flight, i.e.,

h(x, q, t) = [V (t), H(t)], (5.8)

Figure 5 also represents the exact data z(t) = [zV (t), zH (t)] for the online identification of

the parameter q∗. For the initial guess q̂(0) = [1.0625, 0.75, 2.0]T , which corresponds to a

25% deviation from q∗ in each component, the results obtained by the online method (3.4),

(3.5) with the setting β = 0.001, G(0) = 0.05I and Ḡ = 0.1I are shown in Figures 6 and 7.

After an initial oscillatory phase, the predicted velocity V̂ and altitude Ĥ track the exact

data zV and zH ; furthermore, the parameter estimate q̂ converges to q∗. Hence, the input

(5.7) sufficiently excites the system (5.4) for online determination of q∗ based on the

output (5.8). Actually, the excitation even seems strong enough to yield a bounded

parameter error in presence of data perturbations. Figure 8 shows noisy data with

|zδV (t) − zV (t)|
|zV (t)| � 0.0142 and

|zδH (t) − zH (t)|
|zH (t)| � 0.025,

while Figures 9 and 10 illustrate that data tracking and bounded parameter errors (the

bounds also hold on a longer time horizon) are obtained by application of (3.4), (3.5)
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Figure 7. Convergence of q̂ towards true values.

Figure 8. Noisy flight data.

Figure 9. Tracking of noisy data.

without additional measures such as presented in Section 4. This numerical observation

would be in line with discussions led in [24], which state that persistence of excitation

may guarantee bounded parameter errors in case of bounded data noise.
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Figure 10. Bounded parameter error in presence of data noise due to persistence of excitation.

Figure 11. Loss of parameter convergence towards q∗ due to lack of persistence of excitation.

The situation changes significantly, if we replace the moment coefficient (5.6) by

CM = 0.1 · q4 − 0.022 · α− 0.016 · δe

with δe as in (5.7) and now address the identification of q∗ = [0.85, 1.0, 1.6, 0.5]T ∈
�4 based on the same data as before (i.e., there now is one additional parameter to

be determined). Choosing an initial guess q0 = [1.0625, 0.75, 2.0, 0.375] and solving the

corresponding offline problem with data, exact data zoffline = [zV ([0, 50]), zH ([0, 50])] by

use of Tikhonov regularisation (see [8]) yields data attainance by means of the parameter

qoffline = [0.85, 0.8312, 1.6, 0.59]T . This shows that only the first and the third component

of q∗ can be uniquely determined. Hence, given non-uniqueness in the offline problem,

online parameter convergence to q∗ cannot be expected: though perfect tracking of exact

data is again obtained by the online method (3.4), (3.5) with settings as before (tracking is

not shown since similar plots as in Figure 6), only the first and the third component of the

parameter estimate q̂ converge, then towards the true values (see Figure 11). The others

strongly oscillate but seem to stay bounded. As mentioned in Section 3, convergence in the

output space, i.e., data tracking, does not guarantee convergence in the parameter space

towards the solution. The latter can only be obtained if the available data contain enough

information, i.e., if the dynamical system is persistently excited. The lack of persistence of
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Figure 12. Loss of data tracking due to noise and no use of regularisation.

Figure 13. Behaviour of parameter estimate q̂ in presence of data noise.

excitation indicated by Figure 11 can have dramatic consequences in case of noisy data;

Figures 12 and 13(a) show that if (3.4), (3.5) is applied to noisy data, neither data tracking

nor boundedness of the parameter estimate q̂ can be guaranteed. Hence, data noise has

to be properly taken into account as discussed in Section 4. For instance, the leakage

approach (4.2), (4.3) with fixed σ may restore data tracking and parameter boundedness

as illustrated in Figures 13(b) and 14 (obtained with σ = 0.5).

5.3 Heat equation

In our final numerical illustration we consider the infinite-dimensional case. Motivated by

an example presented in [3] we focus on the online identification of the space-dependent

heat conductivity

q∗(x) = 0.1 − 0.05 sin(2π(x− 0.25)), x ∈ Ω = (0, 1), (5.9)
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Figure 14. Data tracking restored by use of leakage approach.

in the linear heat equation

ut(x, t) − ∇(q(x)∇u(x, t)) = r(x, t), x ∈ Ω, t > 0, (5.10)

u(x, t) = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

with initial temperature u0(x) = 0 and a heat source

r(x, t) = (4 sin(4πt) + 0.001t2)χ[0.215,0.315].

Here, χ[0.215,0.315] denotes the characteristic function of the interval [0.215, 0.315]. Note

that this problem perfectly fits into our abstract setting (1.1) by considering the weak

operator formulation of (5.10) (see [23]). The exact data either result from full temperature

observations, i.e.,

z(x, t) = uq∗ (x, t), x ∈ [0, 1], t > 0, (5.11)

or from partial temperature observations on the right half of the domain, i.e.,

z(x, t) = uq∗ (x, t), x ∈ [0.5, 1], t > 0, (5.12)

where uq∗ denotes the unique solution of (5.10) corresponding to the true parameter (5.9).

As initial parameter guess we choose the constant function q̂(x, 0) = 0.01.

For the numerical realisation the parameter space Q is discretised by linear ansatz

functions
{
ϕmj

}m
j=0

defined on the uniform mesh {0, 1/m, ..., 1}, i.e.,

ϕmj (x) =

{
1 − |mx− j| x ∈ [ j−1

m
, j+1
m

],

0 elsewhere on [0, 1].

Similarly, the state space X = H1
0 (Ω) is discretised by linear ansatz functions {φnj }n−1

j=1, i.e.,

φnj (x) =

{
1 − |nx− j| x ∈ [ j−1

n
, j+1
n

],

0 elsewhere on [0, 1].
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Figure 15. Convergence both in output and parameter space (full state observation).

Figure 16. Case of partial state observation.

Those functions are also used for the discretisation of the output space Z = L2([0, 1]) or

Z = L2([0.5, 1]), respectively. Figure 15 shows the results obtained by the online method

(3.4), (3.5) with

β = 1, G0 = I, Ḡ = 4I, n = 64, m = 32 (5.13)

for the case of exact full state observations (5.11). At time t = 60 both output and

parameter error have vanished. As opposed to the method discussed in [3], (3.4), (3.5)

does not require to differentiate the data z(x, t). Our method can also be applied if only

partial state observations are available. Figure 16 illustrates that partial data given by

(5.12) again are tracked by the predicted output F(q̂, t) while the parameter can at least

be uniquely determined on the interval [0.5, 1] (on which the data are taken). Still, q̂(·, 60)

is an acceptable online approximation for q∗ on all of Ω. Finally, we considered the case

of noisy partial data zδ with

‖zδ(·, t) − z(·, t)‖L2(0.5,1)

‖z(·, t)‖L2(0.5,1)

� 0.05.
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Figure 17. Stable result in case of noisy data obtained by use of leakage approach.

Tests for the method (4.2), (4.3) with the setup (5.13) showed that the noise amplification

due to the relatively large gain operator G could not be satisfactorily compensated by the

leakage term. However, reducing the gain G via the choice G0 = 0.1I and Ḡ = I allowed

to track the data and recover the parameter even in presence of data noise. Figure 17

shows results obtained with σ = 0.001.

We mention that we also have run successful tests for the online identification of a

temperature-dependent heat conductivity q = q(u) in (5.10). Online identification of such

non-linearities poses additional challenges since the domain of the unknown q may not be

a priori given which then might require to adapt the domain of q during the computations

(see [16]). Such problems also may arise in the context of ODEs, for instance think of

a general ansatz CD,L,M = CD,L,M(α) for the aerodynamic coefficients in (5.4). That topic

will be discussed in a separate paper.

6 Conclusions and outlook

In this paper we discussed the problem of online parameter identification in time-

dependent differential equations. Based on ideas from adaptive control and regularisation

of non-linear operator equations we suggested a method that can be applied both to

finite and infinite non-linear systems and especially allows for partial state observations.

Furthermore, data filtering or differentiation is not needed. The method was analysed by

means of Lyapunov theory and illustrated by means of three numerical examples.

The list of possible future works is long. From the theoretical point of view emphasis

especially has to be put on strategies for choosing the method parameters β, Ḡ and σ in

dependency of the noise level and the data itself. While such parameter choice rules are

well developed in context of regularisation of non-linear operator equations, see [8], no

corresponding theory based advice currently is – to the best of our knowledge – available

for online problems. Time-varying method parameters might accommodate situations in

which the quality of measurements changes during the operation of the system. Another

theoretical challenge is to ease the assumptions under which a convergence analysis

can be performed. One idea is to use so-called averaging techniques (see [17, 19, 22]),

where for the analysis the convergence properties of (3.4) would be related to that of an
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averaged estimate

q̂av
t (t) = lim

T→∞

1

T

∫ T

0

G(s)F ′(q̂av, s)∗(z(s) − F(q̂av, s)) ds.

Furthermore, the dead-zone approach as well as projection methods and ε-techniques (see

[14]) need to be theoretically backed up for the non-linear case in order to provide reliable

alternatives to the leakage approach in presence of noisy data.

From the numerical point of view, the disadvantage of our method is that after discret-

isation (if necessary) the dimension of the total system to be integrated is m2 +mn+m+ n

where m and n denote the dimensions of the parameter and state vectors, respectively.

Hence, the integration of (3.4), (3.5) may become very costly due to dimensional aspects.

Similar numerical challenges arise in the context of Kalman filtering, where also dynam-

ical systems for covariance matrices of dimension m2 have to be integrated (see [10]).

Techniques based on a reformulation of the Riccati equation such as square root filtering

might be transferred to (3.5) in order to decrease the numerical costs.

From the practical point of view, the next step would be to integrate the online

identification method into controllers such that the resulting adaptive control method

is robust. Especially, we are interested in testing the method by means of auto-pilots

based on non-linear 3DoF as well as 6DoF aircraft models. Finally, for any real-world

realisation the online identification method needs to be adapted to digital signals, i.e.,

signals that are discrete and quantised (see [9]) and that can be delayed. The resulting

algorithm needs to be implemented such that the online identification can be executed in

real time with the available computational resources. The numerical results of Section 5

were obtained in Matlab with 2x Dualcore Intel Xeon CPU (Xeon 5130 2.00 GHz) and

4 GB Ram. For instance, the integration of (5.2), (5.3), (5.4) by the Matlab built in ode45

routine with time interval [0, 200] default settings takes about 6 s. This CPU time could

certainly be reduced by the use of especially tailored integration techniques or, e.g., a

switch to C + + coding. However, in order to judge if the CPU time needed is short

enough for the online application in mind, the true time scale of the underlying real-world

process would be needed. Without, the quality of an online method can only be discussed

in a relative manner by defining a reference problem to which several techniques are

applicable and then comparing them with respect to their speed. Such a comparison is

subject of our future work.
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[4] Böhm, M., Demetriou, M. A., Reich, S. & Rosen, I. G. (1998) Model reference adaptive

control of distributed parameter systems. SIAM J. Control Optim. 36, 33–81.

[5] Demetriou, M. A. & Rosen, I. G. (1994) On the persistence of excitation in the adaptive

identification of distributed parameter systems. IEEE Trans. Automat. Control 39, 1117–1123.

[6] Demetriou, M. A. & Rosen, I. G. (2001) On-line robust parameter identification for parabolic

systems. Int. J. Adapt. Control Signal Process. 15, 615–631.

[7] Deuflhard, P. & Bornemann, F. (2002) Scientific Computing with Ordinary Differential Equa-

tions, Springer, New York.

[8] Engl, H. W., Hanke, M. & Neubauer, A. (1996) Regularization of Inverse Problems, Kluwer

Academic Publishers, Dordrecht.

[9] Franklin, G. F., Powell, J. D. & Workman, M. (1997) Digital Control of Dynamic Systems,

Addison Wesley Longman, Menlo Park, California.

[10] Grewal, M. S. & Andrews, A. P. (2001) Kalman Filtering–Theory and Practice Using MAT-

LAB, John Wiley & Sons, New York.

[11] Haltmeier, M., Leitao, A. & Scherzer, O. (2007) Kaczmarz methods for regularizing non-

linear ill-posed equations I: Convergence analysis. Inverse Probl. Imaging 1, 289–298.

[12] Hoffmann, K. H. & Sprekels, J. (1984–85) On the identification of coefficients of elliptic

problems by asymptotic regularization. Numer. Funct. Anal. Optimiz. 7, 157–177.

[13] Hoffmann, K. H. & Sprekels, J. (1986) Inequalities by asymptotic regularization. SIAM J.

Math. Anal. 17, 1198–1217.

[14] Ioannou, P. & Sun, J. (1996) Robust Adaptive Control, Prentice Hall, Upper Saddle River,

New Jersey.

[15] Jategaonkar, R. & Thielecke, F. (2002) ESTIMA–An integrated software tool for nonlinear

parameter estimation. Aerosp. Sci. Technol. 6, 565–578.
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